[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7207331B2 - Light-emitting thin film, light-emitting laminated film, organic electroluminescence element, and method for producing the same - Google Patents

Light-emitting thin film, light-emitting laminated film, organic electroluminescence element, and method for producing the same Download PDF

Info

Publication number
JP7207331B2
JP7207331B2 JP2019567956A JP2019567956A JP7207331B2 JP 7207331 B2 JP7207331 B2 JP 7207331B2 JP 2019567956 A JP2019567956 A JP 2019567956A JP 2019567956 A JP2019567956 A JP 2019567956A JP 7207331 B2 JP7207331 B2 JP 7207331B2
Authority
JP
Japan
Prior art keywords
luminescent
light
compound
film
emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019567956A
Other languages
Japanese (ja)
Other versions
JPWO2019146396A1 (en
Inventor
優太 中村
暁 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2019146396A1 publication Critical patent/JPWO2019146396A1/en
Application granted granted Critical
Publication of JP7207331B2 publication Critical patent/JP7207331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、発光性薄膜、発光性積層膜、有機エレクトロルミネッセンス素子、及びその製造方法に関し、より詳しくは、発光特性が大気下での保存安定性に優れる発光性薄膜、発光性積層膜、及びそれを用いた有機エレクトロルミネッセンス素子等に関する。 TECHNICAL FIELD The present invention relates to a luminescent thin film, a luminescent laminated film, an organic electroluminescence element, and a method for producing the same, and more particularly, a luminescent thin film, a luminescent laminated film, and a luminescent thin film having excellent storage stability in the atmosphere. The present invention relates to an organic electroluminescence device using the same.

発光機能を有する薄膜(以下、発光性薄膜という。)は、薄型発光デバイスが求められる昨今より需要が高まってきている。特に近年では、発光性薄膜を発光層として有し、キャリヤ再結合により発光させる有機エレクトロルミネッセンス(EL)デバイスの開発が盛んに行われている。発光層に用いられる発光性材料として、蛍光発光性材料やリン光発光性材料、熱活性型遅延蛍光材料などが注目されており、発光特性向上や駆動安定性向上に関する発明が数多くなされている。 Demand for a thin film having a light-emitting function (hereinafter referred to as a light-emitting thin film) is increasing these days, when thin light-emitting devices are required. Particularly in recent years, development of organic electroluminescence (EL) devices, which have a light-emitting thin film as a light-emitting layer and emit light by recombination of carriers, has been actively carried out. As light-emitting materials used in the light-emitting layer, fluorescent light-emitting materials, phosphorescent light-emitting materials, thermally activated delayed fluorescent materials, and the like are attracting attention, and many inventions relating to improvement of light emission characteristics and drive stability have been made.

一方、従来発光性薄膜の大気下における保存安定性が低いことが大きな問題となっている。発光性材料、特にリン光材料においては、大気中の酸素や水の影響による発光阻害や材料劣化を引き起こし、大気下で発光特性が低下することが知られている。そのため、発光性薄膜を製造する際には、なるべく大気を避けたプロセス(真空蒸着や不活性ガス雰囲気下での塗布など)が主流となっており、そのことが製造コストを上げる大きな一因となっている。 On the other hand, the low storage stability in the atmosphere of conventional light-emitting thin films poses a serious problem. It is known that light-emitting materials, particularly phosphorescent materials, are affected by oxygen and water in the air, causing light emission inhibition and material deterioration, resulting in a decrease in light-emitting properties in the atmosphere. Therefore, when manufacturing light-emitting thin films, processes that avoid the atmosphere as much as possible (vacuum deposition, coating under an inert gas atmosphere, etc.) are the mainstream, and this is a major factor in increasing manufacturing costs. It's becoming

また、作製した有機EL素子において、素子中の発光層の劣化を防ぐために高バリアーの封止工程が必要であり、さらにコストを上げる要因となっている。有機ELの実用化が進まないのはこのような背景がある。 In addition, in the manufactured organic EL device, a high-barrier sealing process is required in order to prevent deterioration of the light-emitting layer in the device, which further increases the cost. This is the reason why the practical use of organic EL has not progressed.

以上の背景から、発光性材料の大気下における保存安定性を簡易的手法で向上させる検討がなされてきた。例えば、特許文献1に記載されているように、フェノール系酸化防止剤を発光性材料と一緒に含有させた組成物で、大気下での保存安定性を向上させる発明がなされている。しかしながら、前記発明のように溶液状態では大気下での保存安定性に優れる発光性材料含有組成物においても、成膜状態にすると、当該保存安定性が十分ではなく、大気下での保存において発光特性が劣化する問題があった。 In view of the above background, studies have been made to improve the storage stability of light-emitting materials in the atmosphere using simple techniques. For example, as described in Patent Document 1, an invention has been made in which a composition containing a phenolic antioxidant together with a luminescent material has improved storage stability in the atmosphere. However, even in a luminescent material-containing composition that is excellent in storage stability in the atmosphere in a solution state as in the above invention, the storage stability is not sufficient when it is formed into a film, and light is emitted during storage in the atmosphere. There was a problem that the characteristics deteriorated.

特開2015-93938号公報JP-A-2015-93938

本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、発光特性が大気下での保存安定性に優れる発光性薄膜、発光性積層膜、有機エレクトロルミネッセンス素子、及びその製造方法を提供することである。 The present invention has been made in view of the above problems and circumstances, and the problem to be solved is a luminescent thin film, a luminescent laminated film, an organic electroluminescent element, and its It is to provide a manufacturing method.

本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、発光性化合物Aを含有する発光性薄膜が、前記発光性化合物Aの酸化物Bを、当該発光性化合物Aに対して特定量以上含有することによって、発光特性が大気下での保存安定性に優れる発光性薄膜が得られることを見出した。 In order to solve the above problems, the inventors of the present invention, in the process of studying the causes of the above problems, found that a luminescent thin film containing a luminescent compound A is formed by converting the oxide B of the luminescent compound A into the luminescent compound It has been found that a light-emitting thin film having excellent light-emitting properties and excellent storage stability in the atmosphere can be obtained by containing a specific amount or more with respect to A.

すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above problems related to the present invention are solved by the following means.

1.発光性化合物Aを含有する発光性薄膜であって、
前記発光性化合物Aの酸化物Bを、当該発光性化合物Aに対して0.001~100質量%の範囲内で含有し、
前記発光性化合物Aが、イミダゾール環を含むリン光発光性錯体であり、かつ
前記酸化物Bが、前記発光性化合物Aと同じ骨格を有し、かつ、当該骨格内に酸素又は酸素含有置換基を有し、酸化防止剤として機能する酸化物である
ことを特徴とする発光性薄膜。
1. A luminescent thin film containing a luminescent compound A,
The oxide B of the luminescent compound A is contained within the range of 0.001 to 100% by mass with respect to the luminescent compound A ,
The light-emitting compound A is a phosphorescent complex containing an imidazole ring, and
The oxide B is an oxide that has the same skeleton as the luminescent compound A, has oxygen or an oxygen-containing substituent in the skeleton, and functions as an antioxidant.
A luminescent thin film characterized by:

2.前記酸化物Bの分子量が、下記式(1)を満たすことを特徴とする第1項に記載の発光性薄膜。 2. 2. The luminescent thin film according to item 1, wherein the molecular weight of the oxide B satisfies the following formula (1).

式(1) Mw(B)=Mw(A)+(16m+18n)
(式中、Mw(A)は発光性化合物Aの分子量を表す。Mw(B)は酸化物Bの分子量を表す。m、nはそれぞれ0又は整数を表す。ただし、m+n≧1である。)
Formula (1) Mw(B)=Mw(A)+(16m+18n)
(In the formula, Mw (A) represents the molecular weight of the luminescent compound A. Mw (B) represents the molecular weight of the oxide B. m and n each represent 0 or an integer, provided that m+n≧1. )

3.前記発光性化合物Aの酸化物Bを、当該発光性化合物Aに対して0.001~5質量%の範囲内で含有することを特徴とする第1項又は第2項に記載の発光性薄膜。 3. The luminescence according to item 1 or item 2, characterized in that the oxide B of the luminescent compound A is contained in the range of 0.001 to 5% by mass with respect to the luminescent compound A. thin film.

.前記酸化物Bが、ヒドロキシ基、フェノール性ヒドロキシ基、エポキシ基又はカルボニル基のいずれかを有することを特徴とする第1項からまでのいずれか一項に記載の発光性薄膜。 4 . 4. The luminescent thin film according to any one of items 1 to 3 , wherein the oxide B has any one of a hydroxy group, a phenolic hydroxy group, an epoxy group and a carbonyl group.

.第1層及び第2層をこの順に備える発光性積層膜であって、前記第1層が第1項から第項までのいずれか一項に記載の発光性薄膜であることを特徴とする発光性積層膜。 5 . A luminescent laminated film comprising a first layer and a second layer in this order, wherein the first layer is the luminescent thin film according to any one of items 1 to 4 . Luminous laminated film.

.前記第2層が、孤立電子対を有する化合物を含有することを特徴とする第項に記載の発光性積層膜。 6 . 6. The luminescent laminated film according to item 5 , wherein the second layer contains a compound having a lone pair of electrons.

.前記孤立電子対を有する化合物が、含窒素化合物であることを特徴とする第項に記載の発光性積層膜。 7 . 7. The luminescent laminated film according to Item 6 , wherein the compound having the lone electron pair is a nitrogen-containing compound.

.前記第2層が、フッ素化合物を含有することを特徴とする第項に記載の発光性積層膜。 8 . 6. The luminescent laminated film according to item 5 , wherein the second layer contains a fluorine compound.

.前記フッ素化合物が、常温・常圧下でフッ素溶媒として機能することを特徴とする第項に記載の発光性積層膜。 9 . 9. The luminescent laminated film according to item 8 , wherein the fluorine compound functions as a fluorine solvent under normal temperature and normal pressure.

10.前記フッ素溶媒の含有量が、0.01~10質量%の範囲内であることを特徴とする第項に記載の発光性積層膜。 10 . Item 9. The luminescent laminated film according to item 9 , wherein the content of the fluorine solvent is in the range of 0.01 to 10% by mass.

11.1対の電極の間に第1項から第項までのいずれか一項に記載の発光性薄膜、又は第項から第10項までのいずれか一項に記載の発光性積層膜を有することを特徴とする有機エレクトロルミネッセンス素子。 11 . Having the luminescent thin film according to any one of items 1 to 4 or the luminescent laminated film according to any one of items 5 to 10 between a pair of electrodes An organic electroluminescence device characterized by:

12.前記電極の少なくとも一方の仕事関数が、4.2eV以上であることを特徴とする第11項に記載の有機エレクトロルミネッセンス素子。 12 . 12. The organic electroluminescence device according to item 11 , wherein at least one of the electrodes has a work function of 4.2 eV or more.

13.第1項から第項までのいずれか一項に記載の発光性薄膜を製造する発光性薄膜の製造方法であって、
基材上に、大気環境下で、塗布液Aを用いて第1塗膜を形成する工程Aと、
前記工程Aの後に大気環境下での常圧加熱乾燥以外の乾燥工程を有することを特徴とする発光性薄膜の製造方法。
13 . A method for manufacturing a luminescent thin film according to any one of items 1 to 4 , comprising:
A step A of forming a first coating film using the coating liquid A on the substrate in an atmospheric environment;
A method for producing a light-emitting thin film, comprising a drying step other than drying by heating under normal pressure in an atmospheric environment after the step A.

14.第項から第10項までのいずれか一項に記載の発光性積層膜を製造する発光性積層膜の製造方法であって、
基材上に、大気環境下で、塗布液Aを用いて第1塗膜を形成する工程Aと、
前記工程Aの後に大気環境下で常圧加熱乾燥以外の乾燥工程を経て、
前記第1塗膜上に大気環境下で前記塗布液Aとは異なる塗布液Bを用いて第2塗膜を形成する工程Bと、
前記工程Bの後に、大気環境下で乾燥を行う工程Cを有し、かつ、
前記第1塗膜及び前記第2塗膜をこの順に備えることを特徴とする発光性積層膜の製造方法。
14 . A method for producing a luminescent laminated film for producing the luminescent laminated film according to any one of items 5 to 10 ,
A step A of forming a first coating film using the coating liquid A on the substrate in an atmospheric environment;
After the step A, through a drying step other than normal pressure heat drying in an atmospheric environment,
A step B of forming a second coating film on the first coating film using a coating liquid B different from the coating liquid A in an atmospheric environment;
After the step B, having a step C of drying in an atmospheric environment, and
A method for producing a luminescent laminated film, comprising: providing the first coating film and the second coating film in this order.

15.第項から第10項までのいずれか一項に記載の発光性積層膜を製造する発光性積層膜の製造方法であって、
基材上に、大気環境下で、塗布液Aを用いて第1塗膜を形成する工程Aと、前記工程Aの後に、
前記第1塗膜上に大気環境下で、前記塗布液Aとは異なる塗布液Bを用いて第2塗膜を形成する工程Bと、
前記工程Bの後に、大気環境下で乾燥を行う工程Cを有し、かつ、
前記第1塗膜及び前記第2塗膜をこの順に備えることを特徴とする発光性積層膜の製造方法。
15 . A method for producing a luminescent laminated film for producing the luminescent laminated film according to any one of items 5 to 10 ,
After the step A of forming a first coating film using the coating liquid A on the substrate in an atmospheric environment, and the step A,
A step B of forming a second coating film on the first coating film in an atmospheric environment using a coating liquid B different from the coating liquid A;
After the step B, having a step C of drying in an atmospheric environment, and
A method for producing a luminescent laminated film, comprising: providing the first coating film and the second coating film in this order.

16.有機エレクトロルミネッセンス素子の製造方法であって、
13項に記載の発光性薄膜の製造工程、又は第14項若しくは第15項に記載の発光性積層膜の製造工程のいずれかを含むことを特徴とする有機エレクトロルミネッセンス素子の製造方法。
16 . A method for producing an organic electroluminescence device, comprising:
16. A method for producing an organic electroluminescence device, comprising either the step of producing the light-emitting thin film according to Item 13 or the step of producing the light-emitting laminated film according to Item 14 or 15 .

本発明の上記手段により、発光特性が大気下での保存安定性に優れる発光性薄膜、発光性積層膜、有機エレクトロルミネッセンス素子、及びその製造方法を提供することができる。以下、本発明においては、「大気下での保存安定性」は、単に「大気保存安定性」又は「大気安定性」ともいう。 By the means of the present invention, it is possible to provide a light-emitting thin film, a light-emitting laminated film, an organic electroluminescence device, and a method for producing the same, which have excellent light-emitting properties and excellent storage stability in the atmosphere. Hereinafter, in the present invention, "storage stability in the atmosphere" is also simply referred to as "atmospheric storage stability" or "atmospheric stability."

本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。 Although the expression mechanism or action mechanism of the effects of the present invention has not been clarified, it is speculated as follows.

<膜中での発光性材料の相互作用>
発光性材料を膜中に含有させた発光性薄膜は、発光性材料の含有濃度に依存して発光特性が変化することが知られている(例えば、特開2009-37981号公報参照。)。これは、同発光分子間の相互作用により励起子エネルギーの受け渡しが起こっているためで、微視的には発光性材料は膜中で一部近接し凝集して存在していると考えられている。
<Interaction of Luminescent Material in Film>
It is known that a light-emitting thin film containing a light-emitting material changes its light-emitting properties depending on the content concentration of the light-emitting material (see, for example, Japanese Unexamined Patent Application Publication No. 2009-37981). This is due to the transfer of exciton energy due to the interaction between the same light-emitting molecules. there is

<発光性薄膜の大気下での保存安定性劣化の要因>
図1は、発光性化合物Aを含有させた膜を大気中に放置した際の模式図である。上述のとおり、発光性化合物Aは一部凝集して存在している。図1に示すように、発光性薄膜を大気下に保存した際には、大気中の酸素や水分が膜中に浸透していき、発光性化合物Aの近傍まで近づく。この際、水、酸素による消光や発光性化合物Aの劣化が引き起こり、発光膜の発光機能の低下を引き起こす。すなわち、発光性化合物Aの近傍まで大気が近づくことが発光機能低下の要因となる。
<Factors for Degradation of Storage Stability of Luminous Thin Film in Air>
FIG. 1 is a schematic diagram of a film containing a luminescent compound A left in the air. As described above, the light-emitting compound A is partially aggregated. As shown in FIG. 1, when the luminescent thin film is stored in the atmosphere, oxygen and moisture in the atmosphere permeate the film and approach the vicinity of the luminescent compound A. As shown in FIG. At this time, quenching by water and oxygen and deterioration of the luminescent compound A are caused, resulting in deterioration of the luminescent function of the luminescent film. In other words, the approach of the air to the vicinity of the luminescent compound A causes the deterioration of the luminescent function.

<本発明の発光性薄膜の構成>
本発明者らは上記問題に鑑みて、発光特性が大気下での保存安定性に優れる発光性薄膜を検討した結果、発光性化合物A及び前記発光性化合物Aの酸化物Bを含有する膜とすることで、大気下での保存安定性に優れる膜となることを見いだした。
<Structure of the light-emitting thin film of the present invention>
In view of the above problems, the present inventors have investigated a luminescent thin film whose luminescent properties are excellent in storage stability in the atmosphere. By doing so, it was found that a film having excellent storage stability in the atmosphere can be obtained.

<大気安定な発光特性の発現機構>
本発明に係る大気安定な発光特性の発現機構は、以下のように推定している。
<Mechanism of appearance of atmospheric stable luminescence characteristics>
The mechanism of developing stable luminescence characteristics in the atmosphere according to the present invention is presumed as follows.

本発明に係る酸化物Bは式(1)で表される分子量であることが好ましく、具体的には発光性化合物Aと同様の骨格に対し、酸素含有置換基を有する酸化物である。前記酸素含有置換基は、大気中の酸素や水分を捕捉し発光性化合物Aの酸化防止剤として作用する(以下、酸化物Bを酸化防止剤という場合がある。)。 The oxide B according to the present invention preferably has a molecular weight represented by formula (1). The oxygen-containing substituent captures oxygen and moisture in the atmosphere and acts as an antioxidant for the luminescent compound A (hereinafter, the oxide B may be referred to as an antioxidant).

この時、酸化物Bは発光性化合物Aと同様の基本骨格を有するため、図2に示すようにその凝集形態に大きな変化はなく、発光性化合物Aの近傍に酸化物Bが存在することができる。すなわち、大気中の水・酸素が発光性化合物Aに近づいた際、近傍に存在する酸化物Bに優先的に酸素・水が吸着され、発光性化合物Aを効率的に保護することができる。 At this time, since oxide B has a basic skeleton similar to that of luminescent compound A, there is no significant change in the aggregated form as shown in FIG. can. That is, when water/oxygen in the atmosphere approaches the luminescent compound A, the oxygen/water is preferentially adsorbed by the oxide B existing in the vicinity, and the luminescent compound A can be efficiently protected.

一方、図3に示すように、公知の酸化防止剤Cを薄膜中に含有させた際には、発光性化合物Aとの相互作用が十分ではなく、膜中に分散された形で存在しやすい。そのため、本発明に係る酸化物Bを用いたときよりも発光性化合物Aの酸化防止機能が弱く、膜として大気安定な発光特性を示すことができないものと推定される。 On the other hand, as shown in FIG. 3, when the known antioxidant C is contained in the thin film, the interaction with the luminescent compound A is not sufficient, and it tends to exist in a dispersed form in the film. . Therefore, it is presumed that the anti-oxidation function of the luminescent compound A is weaker than when the oxide B according to the present invention is used, and the film cannot exhibit air-stable luminescent properties.

<発光性化合物Aの種類>
発光性化合物Aは、イミダゾール環を含むリン光発光性錯体である。
その他、蛍光発光、リン光発光及び熱活性型遅延蛍光発光など発光形式を問わず、公知の発光性化合物についても、本発明を適用できる。また、前記塗布液Aには、1種類の発光性化合物のみを含有してもよく、2種類以上の発光性化合物を含有してもよい。
<Type of Luminescent Compound A>
Luminescent compound A is a phosphorescent complex containing an imidazole ring.
In addition , the present invention can also be applied to known light-emitting compounds regardless of the form of light emission, such as fluorescence emission, phosphorescence emission, and thermally activated delayed fluorescence emission. Moreover, the coating liquid A may contain only one type of light-emitting compound, or may contain two or more types of light-emitting compounds.

リン光発光性化合物及び熱活性型遅延蛍光発光性化合物は、その発光寿命(τ)が数μs以上と長いため、発光層への大気の侵入や、発光性化合物の酸化劣化などで発光阻害を受けやすい。酸化物Bを同時含有する本発明に係る発光性薄膜では、このような発光阻害の発生を効果的に抑えることができると考えられる。そのため、発光性化合物にリン光発光性化合物及び熱活性型遅延蛍光発光性化合物を用いた場合には、本発明の効果をより有効に得ることができる。 Phosphorescence-emitting compounds and thermally activated delayed fluorescence-emitting compounds have a long emission lifetime (τ) of several μs or more, so emission inhibition occurs due to the intrusion of the atmosphere into the emission layer or the oxidative deterioration of the light-emitting compound. easy to receive. It is believed that the luminescent thin film according to the present invention, which simultaneously contains oxide B, can effectively suppress the occurrence of such luminescence inhibition. Therefore, when a phosphorescence-emitting compound and a heat-activated delayed fluorescence-emitting compound are used as the light-emitting compound, the effects of the present invention can be obtained more effectively.

光性化合物Aは、5員複素環式骨格を含むリン光錯体である。本発明での検討によれば、5員複素環式骨格を含むリン光発光性錯体の大気安定性は他骨格のリン光発光性錯体よりも低いことが判明した。そのため、発光性化合物に5員芳香族複素環骨格を含むリン光発光性錯体を用いた場合には、の効果をより有効に得ることができる。 Luminescent compound A is a phosphorescent complex containing a 5-membered heterocyclic skeleton . According to the investigations of the present invention, it was found that the atmospheric stability of phosphorescent complexes containing a five-membered heterocyclic skeleton is lower than that of phosphorescent complexes having other skeletons. Therefore, when a phosphorescence-emitting complex containing a five-membered aromatic heterocyclic skeleton is used as the light-emitting compound, the effect can be obtained more effectively.

発光性化合物Aを含有させた膜を大気中に放置した際の模式図Schematic diagram when the film containing the luminescent compound A is left in the atmosphere 発光性化合物A及び酸化物Bを含有させた膜を大気中に放置した際の模式図Schematic diagram of a film containing a luminescent compound A and an oxide B left in the atmosphere 公知の酸化防止剤Cを薄膜中に含有させた場合の模式図Schematic diagram when a known antioxidant C is contained in a thin film 本発明の発光性積層膜の層構成の一例を示す模式図Schematic diagram showing an example of the layer structure of the light-emitting laminated film of the present invention 発光性薄膜の上層に孤立電子対を有する化合物を含有させた保護層を積層した積層膜Laminated film in which a protective layer containing a compound with a lone electron pair is laminated on the upper layer of a light-emitting thin film 発光性薄膜の上層にフッ素化合物を含有させた保護層を積層した積層膜Laminated film in which a protective layer containing a fluorine compound is laminated on the upper layer of a light-emitting thin film 有機エレクトロルミネッセンス素子の層構成の一例を示す模式図Schematic diagram showing an example of the layer structure of an organic electroluminescence element

本発明の発光性薄膜は、発光性化合物Aを含有する発光性薄膜であって、前記発光性化合物Aの酸化物Bを、当該発光性化合物Aに対して0.001~100質量%の範囲内で含有し、前記発光性化合物Aが、イミダゾール環を含むリン光発光性錯体であり、かつ前記酸化物Bが、前記発光性化合物Aと同じ骨格を有し、かつ、当該骨格内に酸素又は酸素含有置換基を有し、酸化防止剤として機能する酸化物であることを特徴とする。この特徴は、下記実施態様に共通する又は対応する技術的特徴である。 The luminescent thin film of the present invention is a luminescent thin film containing a luminescent compound A, wherein the oxide B of the luminescent compound A is added in an amount of 0.001 to 100% by mass with respect to the luminescent compound A. wherein the luminescent compound A is a phosphorescent complex containing an imidazole ring, and the oxide B has the same skeleton as the luminescent compound A, and oxygen in the skeleton Alternatively, it is characterized by being an oxide having an oxygen-containing substituent and functioning as an antioxidant . This feature is a technical feature common to or corresponding to the following embodiments.

本発明の実施態様としては、本発明の効果発現の観点から、前記酸化物Bの分子量が、前記式(1)を満たすことが、大気下での保存安定性をより向上する観点から、好ましい。「m+n」の好ましい範囲は、1≦(m+n)≦20の範囲であることが、酸化物Bの分解による発光阻害等を生じることがなく、好ましい。 As an embodiment of the present invention, from the viewpoint of exhibiting the effect of the present invention, it is preferable that the molecular weight of the oxide B satisfies the formula (1) from the viewpoint of further improving the storage stability in the atmosphere. . A preferable range of “m+n” is preferably in the range of 1≦(m+n)≦20, since the decomposition of the oxide B does not cause inhibition of light emission or the like.

前記酸化物Bは、ヒドロキシ基、フェノール性ヒドロキシ基、エポキシ基又はカルボニル基のいずれかを有することが、大気下での保存安定性をより向上する観点から、好ましい。 The oxide B preferably has any one of a hydroxy group, a phenolic hydroxy group, an epoxy group, and a carbonyl group from the viewpoint of further improving storage stability in the atmosphere.

本発明においては、第1層及び第2層をこの順に備える発光性積層膜であって、前記第1層が本発明の発光性薄膜であることを特徴とする。 The present invention is characterized by a luminescent laminated film comprising a first layer and a second layer in this order, wherein the first layer is the luminescent thin film of the present invention.

また、前記第2層中に、孤立電子対を有する化合物を含有することが好ましく、前記孤立電子対を有する化合物が、含窒素化合物であることが、保護膜としての保護機能を有効に発現し、大気下での保存安定性をより向上する観点から、好ましい。 Further, it is preferable that the second layer contains a compound having a lone pair of electrons, and the compound having a lone pair of electrons is a nitrogen-containing compound to effectively exhibit a protective function as a protective film. , is preferable from the viewpoint of further improving the storage stability in the atmosphere.

また、前記第2層中にフッ素化合物を含有することが好ましく、前記フッ素化合物が、常温・常圧下で溶媒であることが、保護膜としての保護機能及び生産性の観点から、好ましい。 Moreover, it is preferable that the second layer contains a fluorine compound, and that the fluorine compound is a solvent at normal temperature and normal pressure from the viewpoint of the protective function and productivity of the protective film.

前記フッ素溶媒の第2層中の含有量は、0.01~10質量%以下であることが、大気下での保存安定性をより向上し、デバイス に用いた際通電時に残溶媒によるキャリヤ輸送阻害による電圧上昇を引き起こさない観点から、好ましい。 When the content of the fluorine solvent in the second layer is 0.01 to 10% by mass or less, the storage stability in the atmosphere is further improved, and the carrier transport by the residual solvent when energized when used in a device. This is preferable from the viewpoint of not causing a voltage rise due to inhibition.

本発明の適用例として、1対の電極の間に本発明の発光性薄膜、又は本発明の発光性積層膜を有する有機エレクトロルミネッセンス素子であることが、大気下での保存安定性に優れる有機エレクトロルミネッセンス素子を提供する観点から、好ましい。 As an application example of the present invention, an organic electroluminescence device having the light-emitting thin film of the present invention or the light-emitting laminated film of the present invention between a pair of electrodes is an organic electroluminescence device having excellent storage stability in the atmosphere. It is preferable from the viewpoint of providing an electroluminescence device.

また、前記電極の少なくとも一方が、仕事関数4.2eV以上の電極であることが、大気下での保存安定性を向上する観点から、好ましい。 At least one of the electrodes is preferably an electrode having a work function of 4.2 eV or more from the viewpoint of improving the storage stability in the atmosphere.

本発明の発光性薄膜の製造方法は、基材上に、大気環境下で、塗布液Aを用いて第1塗膜を形成する工程Aと、前記工程Aの後に大気環境下での常圧加熱乾燥以外の乾燥工程を有することを特徴とする。常圧加熱乾燥以外の乾燥工程を用いることは、発光性化合物Aの酸化が過剰に進行し、発光性化合物Aの消光に関与する副生成物の生成を抑制する観点から好ましい。 The method for producing a luminescent thin film of the present invention comprises a step A of forming a first coating film on a substrate using a coating solution A in an atmospheric environment; It is characterized by having a drying process other than heat drying. It is preferable to use a drying step other than normal pressure heat drying from the viewpoint of suppressing the excessive oxidation of the light-emitting compound A and the formation of by-products involved in the quenching of the light-emitting compound A.

また、本発明の発光性積層膜の製造方法は、基材上に、大気環境下で、塗布液Aを用いて第1塗膜を形成する工程Aと、前記工程Aの後に大気環境下で常圧加熱乾燥以外の乾燥工程を経て、前記第1塗膜上に大気環境下で前記塗布液Aとは異なる塗布液Bを用いて第2塗膜を形成する工程Bと、前記工程Bの後に、大気環境下で乾燥を行う工程を有し、前記第1塗膜及び前記第2塗膜をこの順に形成することを特徴とする。当該製造方法では、第1塗膜を形成した後に大気環境下で常圧加熱乾燥以外の乾燥工程を経て第2塗膜を形成するため、第1塗膜中の発光性化合物Aの酸化が過剰に進行し、発光性化合物Aの消光に関与する副生成物の生成を抑制する観点から、好ましい方法である。 Further, the method for producing a luminescent laminated film of the present invention comprises a step A of forming a first coating film using a coating liquid A on a substrate in an atmospheric environment, and after the step A, in an atmospheric environment A step B of forming a second coating film using a coating liquid B different from the coating liquid A on the first coating film in an atmospheric environment through a drying step other than normal pressure heating drying; It is characterized by having a step of drying in an atmospheric environment afterward, and forming the first coating film and the second coating film in this order. In the production method, after forming the first coating film, the second coating film is formed through a drying process other than normal pressure heating drying in an atmospheric environment, so that the luminescent compound A in the first coating film is excessively oxidized. from the viewpoint of suppressing the formation of by-products involved in the quenching of the light-emitting compound A.

また、前記発光性積層膜の製造方法は、基材上に、大気環境下で、塗布液Aを用いて第1塗膜を形成する工程Aと、前記工程Aの後に、前記第1塗膜上に大気環境下で、前記塗布液Aとは異なる塗布液Bを用いて第2塗膜を形成する工程Bと、前記工程Bの後に、大気環境下で乾燥を行う工程を有し、前記第1塗膜及び前記第2塗膜をこの順に形成することを特徴とする。当該製造方法では第1塗膜及び第2塗膜を連続して製造できるため、生産性の観点から好ましく、第1塗膜が第2塗膜で保護された状態で大気下一括乾燥させているため、発光性化合物Aの酸化が過剰に進行し、発光性化合物Aの消光に関与する副生成物の生成を抑制する観点から、好ましい方法である。 Further, the method for producing the luminescent laminated film includes a step A of forming a first coating film using a coating liquid A on a substrate in an atmospheric environment, and after the step A, the first coating film A step B of forming a second coating film using a coating liquid B different from the coating liquid A in an atmospheric environment, and a step of drying in an atmospheric environment after the step B, The first coating film and the second coating film are formed in this order. Since the first coating film and the second coating film can be continuously manufactured in the manufacturing method, it is preferable from the viewpoint of productivity, and the first coating film is protected by the second coating film. Therefore, it is a preferable method from the viewpoint of suppressing the generation of by-products involved in the quenching of the light-emitting compound A due to excessive oxidation of the light-emitting compound A.

本発明の有機エレクトロルミネッセンス素子の製造方法は、前記発光性薄膜の製造方法、又は発光性積層膜の製造方法のいずれかを有することを特徴とするものである。 The method for producing an organic electroluminescence element of the present invention is characterized by including either the method for producing a light-emitting thin film or the method for producing a light-emitting laminated film.

以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 DETAILED DESCRIPTION OF THE INVENTION The present invention, its constituent elements, and embodiments and modes for carrying out the present invention will be described in detail below. In the present application, "-" is used to mean that the numerical values before and after it are included as the lower limit and the upper limit.

≪本発明の発光性薄膜の概要≫
本発明の発光性薄膜は、発光性化合物Aを含有する発光性薄膜であって、前記発光性化合物Aの酸化物Bを、当該発光性化合物Aに対して0.001~100質量%の範囲内で含有し、前記発光性化合物Aが、イミダゾール環を含むリン光発光性錯体であり、かつ前記酸化物Bが、前記発光性化合物Aと同じ骨格を有し、かつ、当該骨格内に酸素又は酸素含有置換基を有し、酸化防止剤として機能する酸化物であることを特徴とする。
<<Outline of the luminescent thin film of the present invention>>
The luminescent thin film of the present invention is a luminescent thin film containing a luminescent compound A, wherein the oxide B of the luminescent compound A is added in an amount of 0.001 to 100% by mass with respect to the luminescent compound A. wherein the luminescent compound A is a phosphorescent complex containing an imidazole ring, and the oxide B has the same skeleton as the luminescent compound A, and oxygen in the skeleton Alternatively, it is characterized by being an oxide having an oxygen-containing substituent and functioning as an antioxidant .

この構成において、酸化物Bは発光性化合物Aと同様の基本骨格を有するため、その凝集形態に大きな変化はなく、発光性化合物Aの近傍に酸化物Bが存在することができ、大気中の水・酸素が発光性化合物Aに近づいた際、近傍に存在する酸化物Bが優先的に酸素・水を吸着し、発光性化合物Aを効率的に保護することができる。 In this structure, since the oxide B has a basic skeleton similar to that of the light-emitting compound A, there is no significant change in the aggregation form, and the oxide B can be present in the vicinity of the light-emitting compound A. When water/oxygen approaches the luminescent compound A, the oxide B present in the vicinity preferentially adsorbs the oxygen/water, and the luminescent compound A can be protected efficiently.

発光性薄膜の厚さは、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲に調整することが好ましく、より好ましくは2~500nmの範囲に調整され、更に好ましくは5~200nmの範囲に調整される。 The thickness of the light-emitting thin film is not particularly limited, but from the viewpoint of uniformity of the film to be formed, prevention of application of unnecessary high voltage during light emission, and improvement of the stability of the emission color with respect to the driving current. , preferably in the range of 2 nm to 5 μm, more preferably in the range of 2 to 500 nm, and even more preferably in the range of 5 to 200 nm.

〔1〕発光性薄膜
〔1.1〕発光性化合物A
本発明に係る発光性化合物Aは、イミダゾール環を含むリン光発光性錯体である。
その他、蛍光発光、リン光発光及び熱活性型遅延蛍光発光など発光形式を問わず、公知の発光性化合物についても、本発明を適用できる。また、本発明に係る塗布液Aには、1種類の発光性化合物のみを含有してもよく、2種類以上の発光性化合物を含有してもよい。
[1] Luminescent thin film [1.1] Luminescent compound A
The luminescent compound A according to the present invention is a phosphorescent complex containing an imidazole ring.
In addition , the present invention can also be applied to known light-emitting compounds regardless of the form of light emission, such as fluorescence emission, phosphorescence emission, and thermally activated delayed fluorescence emission. Moreover, the coating liquid A according to the present invention may contain only one type of luminescent compound, or may contain two or more types of luminescent compounds.

本発明に係る発光性化合物Aは、構造の異なる発光性化合物同士の組み合わせや、蛍光発光性化合物とリン光発光性化合物とを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。 The light-emitting compound A according to the present invention may be used in combination of light-emitting compounds having different structures, or in combination of a fluorescence-emitting compound and a phosphorescence-emitting compound. This makes it possible to obtain an arbitrary emission color.

本発明に係る発光性化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。 The color emitted by the luminescent compound according to the present invention is determined by a spectral radiance meter CS-1000 ( Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates to determine the color.

本発明においては、1層又は複数層の発光性薄膜が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示すことも好ましい。 In the present invention, it is also preferable that one or more layers of light-emitting thin films contain a plurality of light-emitting dopants with different emission colors to exhibit white light emission.

白色を示す発光性化合物の組み合わせについては特に限定はないが、例えば青と橙や、青と緑と赤の組合わせ等が挙げられる。 Although there is no particular limitation on the combination of light-emitting compounds exhibiting white color, examples thereof include a combination of blue and orange, and a combination of blue, green, and red.

〔1.1.1〕リン光発光性化合物
本発明に係るリン光発光性化合物(以下、「リン光ドーパント」ともいう。)について説明する。本発明に係るリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
[1.1.1] Phosphorescent compound The phosphorescent compound (hereinafter also referred to as “phosphorescent dopant”) according to the present invention will be described. The phosphorescent dopant according to the present invention is a compound in which emission from excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and has a phosphorescence quantum yield of 25 The phosphorescence quantum yield is preferably 0.1 or higher, although it is defined as a compound with a phosphorescence quantum yield of 0.01 or higher at °C.

上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 The phosphorescence quantum yield can be measured by the method described in Experimental Chemistry Course 7, 4th Edition, Spectroscopy II, page 398 (1992 edition, Maruzen). Phosphorescence quantum yield in solution can be measured using various solvents, the phosphorescence dopant according to the present invention, the phosphorescence quantum yield (0.01 or more) is achieved in any of the solvents Just do it.

本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。例えば、Nature 395,151 (1998)、Appl. Phys. Lett. 78, 1622 (2001)、Adv. Mater. 19, 739 (2007)、Chem. Mater. 17, 3532 (2005)、Adv. Mater. 17, 1059 (2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg. Chem. 40, 1704 (2001)、Chem. Mater. 16, 2480 (2004)、Adv. Mater. 16, 2003 (2004)、Angew. Chem. lnt. Ed. 2006, 45, 7800、Appl. Phys. Lett. 86, 153505 (2005)、Chem. Lett. 34, 592 (2005)、Chem. Commun. 2906 (2005)、Inorg. Chem. 42, 1248 (2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew. Chem. lnt. Ed. 47, 1 (2008)、Chem. Mater. 18, 5119 (2006)、Inorg. Chem. 46, 4308 (2007)、Organometallics
23, 3745 (2004)、Appl. Phys. Lett. 74, 1361 (1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許出願公開第2012/228583号明細書、米国特許出願公開第2012/212126号明細書、特開2012-069737号公報、特開2012-195554号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等である。
Specific examples of known phosphorescent dopants that can be used in the present invention include the compounds described in the following documents. See, for example, Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), WO2009/100991, WO2008/101842, WO2003/040257, US2006/835469, US2006/ 0202194, US Patent Application Publication No. 2007/0087321, US Patent Application Publication No. 2005/0244673, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42, 1248 (2003), WO2009/050290, WO2002/015645, WO2009/000673, US2002/0034656, US7332232 , US2009/0108737, US2009/0039776, US6921915, US6687266, US2007/0190359 Specification, US Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2009/0165846, US Patent Application Publication No. 2008/0015355, US Patent No. 7250226, US Patent No. 7396598, US2006/0263635, US2003/0138657, US2003/0152802, US7090928, Angew . Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics
23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), WO 2002/002714, WO 2006/009024, WO 2006/056418, WO 2005/019373, WO 2005/123873, WO 2007/004380, WO 2006/082742, US2006/0251923, US2005/0260441, US7393599, US7534505 , US 7445855, US 2007/0190359, US 2008/0297033, US 7338722, US 2002/0134984 Specification, U.S. Patent Application No. 7279704, U.S. Application Publication No. 2006/098120, U.S. Application Publication No. 2006/103874, WO 2005/076380, WO 2010/032663 , International Publication No. 2008/140115, International Publication No. 2007/052431, International Publication No. 2011/134013, International Publication No. 2011/157339, International Publication No. 2010/086089, International Publication No. 2009/113646, International Publication No. 2012/020327, WO 2011/051404, WO 2011/004639, WO 2011/073149, US Patent Application Publication No. 2012/228583, US Patent Application Publication No. 2012/ 212126, JP 2012-069737, JP 2012-195554, JP 2009-114086, JP 2003-81988, JP 2002-302671, JP 2002-363552 No. Gazette, etc.

中でも、好ましいリン光ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。 Among them, preferred phosphorescent dopants include organometallic complexes having Ir as a central metal. More preferably, the complex contains at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond.

〔1.1.2〕蛍光発光性材料
本発明に係る蛍光発光性化合物(以下、「蛍光ドーパント」ともいう。)について説明する。
[1.1.2] Fluorescent Material The fluorescent compound (hereinafter also referred to as “fluorescent dopant”) according to the present invention will be described.

本発明に係る蛍光ドーパントは、励起一重項からの発光が可能な化合物であり、励起一重項からの発光が観測される限り特に限定されない。 The fluorescent dopant according to the present invention is a compound capable of emitting light from an excited singlet, and is not particularly limited as long as light emission from an excited singlet can be observed.

本発明に係る蛍光ドーパントとしては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、又は希土類錯体系化合物等が挙げられる。 Examples of fluorescent dopants according to the present invention include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, and coumarin derivatives. , pyran derivatives, cyanine derivatives, croconium derivatives, squarium derivatives, oxobenzanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, rare earth complex compounds, and the like.

〔1.1.3〕熱活性型遅延蛍光発光性材料
熱活性型遅延蛍光発光性材料としては、特に限定されないが、例えば、Adv.Mater.2014,DOI:10.1002/adma.201402532、国際公開第2011/156793号、特開2011-213643号公報、特開2010-93181号公報に記載の化合物等が挙げられる。
[1.1.3] Thermally Activated Delayed Fluorescence Material The thermally activated delayed fluorescence material is not particularly limited, but for example, Adv. Mater. 2014, DOI: 10.1002/adma. 201402532, International Publication No. 2011/156793, JP-A-2011-213643, JP-A-2010-93181, and the like.

〔1.2〕酸化物B
本発明に係る酸化物Bは、発光性化合物Aの酸化物であり、好ましくは分子量が下記式(1)を満たす。また、酸化物Bは、前記発光性化合物Aと同じ骨格を有し、かつ、当該骨格内に酸素又は酸素含有置換基を有し、酸化防止剤として機能する酸化物である。
[1.2] Oxide B
The oxide B according to the present invention is an oxide of the luminescent compound A, and preferably has a molecular weight that satisfies the following formula (1). Oxide B is an oxide that has the same skeleton as the luminescent compound A, has oxygen or an oxygen-containing substituent in the skeleton, and functions as an antioxidant.

式(1) Mw(B)=Mw(A)+(16m+18n)
(式中、Mw(A)は発光性化合物Aの分子量を表す。Mw(B)は酸化物Bの分子量を表す。m、nはそれぞれ0又は整数を表す。ただし、m+n≧1である。)
より具体的には、発光性化合物Aと同様の骨格に対し、酸素含有置換基を有する酸化物である。大気中の酸素・水を吸着する置換基はその数や種類に制限はなく、ヒドロキシ基、フェノール系ヒドロキシ基、カルボニル基、エポキシ基のいずれかを含有していることが好ましい。
Formula (1) Mw(B)=Mw(A)+(16m+18n)
(In the formula, Mw (A) represents the molecular weight of the luminescent compound A. Mw (B) represents the molecular weight of the oxide B. m and n each represent 0 or an integer, provided that m+n≧1. )
More specifically, it is an oxide having a skeleton similar to that of the light-emitting compound A and having an oxygen-containing substituent. There are no restrictions on the number or types of substituents that adsorb oxygen and water in the atmosphere, and it is preferable that they contain any one of a hydroxy group, a phenolic hydroxy group, a carbonyl group, and an epoxy group.

具体的に、m、nはそれぞれ、0~20の範囲であることが好ましく、0~10の範囲であることがより好ましい。 Specifically, each of m and n is preferably in the range of 0-20, more preferably in the range of 0-10.

一例として、発光性化合物A(A-1~A-9)及び酸化物B(B-1~B-9)の組み合わせとしては、以下の構造が挙げられる。ただし、発光性化合物(A-4~A-9)及び酸化物(B-4~B-9)は、参考例である。 Examples of combinations of luminescent compounds A (A-1 to A-9) and oxides B (B-1 to B-9) include the following structures. However, the luminescent compounds (A-4 to A-9) and oxides (B-4 to B-9) are reference examples.

Figure 0007207331000001
Figure 0007207331000001

Figure 0007207331000002
Figure 0007207331000002

Figure 0007207331000003
Figure 0007207331000003

Figure 0007207331000004
Figure 0007207331000004

Figure 0007207331000005
Figure 0007207331000005

Figure 0007207331000006
Figure 0007207331000006

Figure 0007207331000007
Figure 0007207331000007

Figure 0007207331000008
Figure 0007207331000008

Figure 0007207331000009
Figure 0007207331000009

Figure 0007207331000010
Figure 0007207331000010

Figure 0007207331000011
Figure 0007207331000011

Figure 0007207331000012
Figure 0007207331000012

Figure 0007207331000013
Figure 0007207331000013

〔1.3〕発光性化合物A及び酸化物Bの含有量
発光性薄膜中における発光性化合物Aの含有濃度については、使用される特定の発光性化合物及び適用する電子デバイスの必要条件に基づいて、任意に決定することができ、発光層の膜厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。
[1.3] Contents of Luminescent Compound A and Oxide B The content concentration of Luminescent Compound A in the luminescent thin film is based on the specific Luminescent Compound used and the requirements of the electronic device to be applied. , can be arbitrarily determined, and may be contained at a uniform concentration in the film thickness direction of the light-emitting layer, or may have an arbitrary concentration distribution.

また、含有量は発光性薄膜全体を100質量%としたときに、1~50質量%の範囲であることが好ましく、1~30質量%の範囲であることがより好ましい。 The content is preferably in the range of 1 to 50% by mass, more preferably in the range of 1 to 30% by mass, when the entire light-emitting thin film is taken as 100% by mass.

発光性薄膜中に発光性材料Aと共に含有する酸化物Bは、その数や種類に制限はなく、複数種の酸化物Bを含有させても良い。その際、全ての酸化物Bが前記式(1)を満たすことが好ましい。 The number and types of the oxides B contained in the light-emitting thin film together with the light-emitting material A are not limited, and plural kinds of oxides B may be contained. At that time, it is preferable that all the oxides B satisfy the formula (1).

酸化物Bの含有量は、前記発光性化合物Aに対して0.001質量%以上含有することを特徴とする。 The content of the oxide B is characterized by containing 0.001 % by mass or more with respect to the luminescent compound A.

また、前記酸化物Bの含有量が、前記発光性化合物Aに対して0.001~100質量%の範囲内であることが、必要であるAlso, the content of the oxide B is required to be in the range of 0.001 to 100% by mass with respect to the luminescent compound A.

すなわち、前記発光性化合物Aに対し、本発明の大気安定性の効果を得るために、酸化物Bの含有量下限としては0.001質量%以上であり、0.01質量%以上であることがより好ましい。 That is, in order to obtain the atmospheric stability effect of the present invention with respect to the luminescent compound A, the lower limit of the content of the oxide B is 0.001 % by mass or more, and 0.01 % by mass or more. is more preferred.

一方、含有量上限としては、100質量%以下であり、10質量%以下の含有比であることがより好ましい。この範囲であれば、有機ELデバイスとして用いた際、酸化物Bが多くなることによって、酸化物Bへのキャリヤトラップの発生を抑制し、発光効率の低下を抑制することができる。 On the other hand, the upper limit of the content is 100% by mass or less, and the content ratio is more preferably 10% by mass or less. Within this range, when used as an organic EL device, the amount of the oxide B is increased, so that the generation of carrier traps in the oxide B can be suppressed, and the decrease in luminous efficiency can be suppressed.

〔1.4〕その他の含有物
本発明の発光性薄膜は、発光性化合物Aの発光阻害しない範囲で他の成分を含有していても良く、例えば、ホスト化合物、電子受容性化合物及び電子供与性化合物等の電荷輸送補助剤を含有していても良く、その他レベリング剤、消泡剤、増粘剤等の塗布性改良剤、バインダー樹脂などを含有していてもよい。
[1.4] Other Contents The light-emitting thin film of the present invention may contain other components as long as they do not inhibit the light emission of the light-emitting compound A. For example, a host compound, an electron-accepting compound and an electron-donating compound may be contained. It may contain a charge transport aid such as a polar compound, and may also contain a coating property improver such as a leveling agent, an antifoaming agent, a thickening agent, a binder resin, and the like.

〔1.4.1〕ホスト化合物
本発明に用いられるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらに好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比率が20質量%以上であることが好ましい。また、ホスト化合物の励起状態エネルギーは、同一層内に含有される発光ドーパントの励起状態エネルギーよりも高いことが好ましい。
[1.4.1] Host compound The host compound used in the present invention is preferably a compound having a phosphorescence quantum yield of less than 0.1 at room temperature (25°C). More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20 mass % or more among the compounds contained in the light-emitting layer. Also, the excited state energy of the host compound is preferably higher than the excited state energy of the light-emitting dopant contained in the same layer.

ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機エレクトロルミネッセンス素子を高効率化することができる。 As the host compound, a known host compound may be used alone, or plural kinds thereof may be used in combination. By using a plurality of types of host compounds, it is possible to adjust the transfer of electric charges, and to improve the efficiency of the organic electroluminescence device.

また、本発明に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位を持つ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物でもよいが、高分子化合物を用いた場合、化合物が溶媒を取り込んで膨潤やゲル化等、溶媒が抜けにくいと思われる現象が起こりやすいので、これを防ぐために分子量は高くない方が好ましく、具体的には塗布時での分子量が2000以下の化合物を用いることが好ましく、塗布時の分子量1000以下の化合物を用いることが更に好ましい。 The host compound used in the present invention may be a conventionally known low-molecular-weight compound, a high-molecular-weight compound having a repeating unit, or a low-molecular-weight compound having a polymerizable group such as a vinyl group or an epoxy group. When a polymer compound is used, a phenomenon such as swelling or gelation due to the compound taking in the solvent, which is thought to be difficult for the solvent to escape, tends to occur. It is preferable to use a compound having a molecular weight of 2000 or less at the time of application, and more preferably a compound having a molecular weight of 1000 or less at the time of application.

公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Calorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。 As a known host compound, a compound that has hole-transporting ability and electron-transporting ability, prevents emission from becoming longer in wavelength, and has a high Tg (glass transition temperature) is preferable. Here, the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Calorimetry).

公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許出願公開第2003/0175553号明細書、米国特許出願公開第2006/0280965号明細書、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0017330号明細書、米国特許出願公開第2009/0030202号明細書、米国特許出願公開第2005/0238919号明細書、国際公開第2001/039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-074939号公報、特開2007-254297号公報、EP2034538、等が挙げられる。 Specific examples of known host compounds include compounds described in the following documents. For example, JP-A-2001-257076, JP-A-2002-308855, JP-A-2001-313179, JP-A-2002-319491, JP-A-2001-357977, JP-A-2002-334786, JP-A-2002-8860 Publications, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 , 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002-363227, 2002-231453, 2003-3165, 2002-234888, 2003-27048, 2002-255934, 2002-260861, 2002-280183, 2002-299060, 2002-302516, 2002-305083, 2002-305084, 2002-308837, US Patent Application Publication No. 2003/0175553, US Patent Application Publication No. 2006/0280965 , US2005/0112407, US2009/0017330, US2009/0030202, US2005/0238919, International Publication No. WO 2001/039234, WO 2009/021126, WO 2008/056746, WO 2004/093207, WO 2005/089025, WO 2007/063796, WO WO 2007/063754, WO 2004/107822, WO 2005/030900, WO 2006/114966, WO 2009/086028, WO 2009/003898, WO 2012/ 023947, JP-A-2008-074939, JP-A-2007-254297, EP2034538, and the like.

本発明に用いられるホスト化合物は、カルバゾール誘導体であることが好ましい。 The host compound used in the present invention is preferably a carbazole derivative.

ホスト化合物の含有量は、発光性薄膜を100質量%としたときに、20~99質量%の範囲であることが好ましく、50~99質量%の範囲であることがより好ましい。 The content of the host compound is preferably in the range of 20 to 99% by mass, more preferably in the range of 50 to 99% by mass, based on 100% by mass of the light-emitting thin film.

〔1.5〕発光性薄膜の製造方法
本発明の発光性薄膜は、発光性化合物A及び酸化物Bをそれぞれ準備し、蒸着法や塗布法といった任意の方法で、基材上に成膜することで作製することができる。
[1.5] Method for producing a luminescent thin film The luminescent thin film of the present invention is formed by preparing a luminescent compound A and an oxide B, respectively, and forming a film on a substrate by an arbitrary method such as a vapor deposition method or a coating method. It can be made by

また、その他の製造方法としては、発光性化合物Aのみを準備し、成膜過程で発光性化合物Aの一部を酸化させ酸化物Bに変性させる製造方法がある。 Moreover, as another manufacturing method, there is a manufacturing method in which only the luminescent compound A is prepared and a part of the luminescent compound A is oxidized to transform into the oxide B during the film formation process.

すなわち、本発明の発光性薄膜を製造する発光性薄膜の製造方法は、基材上に、大気環境下で、塗布液Aを用いて第1塗膜を形成する工程Aと、前記工程Aの後に大気環境下での常圧加熱乾燥以外の乾燥工程を有することを特徴とする発光性薄膜の製造方法を採用することもできる。 That is, the method for producing a luminescent thin film of the present invention comprises a step A of forming a first coating film using a coating solution A on a substrate in an atmospheric environment; It is also possible to adopt a method for producing a light-emitting thin film characterized by having a subsequent drying step other than drying by heating under normal pressure in an atmospheric environment.

具体的には、発光性化合物Aを含有する塗布液Aを用い、大気環境下で塗膜形成することで、発光性化合物Aが酸化物Bへと一部変性し本発明の発光性薄膜を好適に作製することができる。発光性化合物Aの酸化物Bへの変性速度は、発光性化合物Aの種類や濃度などによって異なり、使用する発光性化合物Aの酸化されやすさや、塗布環境、乾燥条件によって任意に変更することができる。 Specifically, a coating liquid A containing a luminescent compound A is used to form a coating film in an atmospheric environment, so that the luminescent compound A is partially denatured to the oxide B to form the luminescent thin film of the present invention. It can be manufactured suitably. The rate of modification of the luminescent compound A to the oxide B varies depending on the type and concentration of the luminescent compound A, and can be arbitrarily changed depending on the ease of oxidation of the luminescent compound A used, the coating environment, and the drying conditions. can.

前記発光性薄膜の大気雰囲気下塗膜形成後の乾燥の手段としては一般的に乾燥手段として汎用されているものを使用でき、減圧又は加圧乾燥、加熱乾燥、送風乾燥、IR乾燥及び電磁波による乾燥などが挙げられる。 As means for drying the light-emitting thin film after the formation of the coating film under the air atmosphere, those generally used as drying means can be used, and drying under reduced pressure or pressure, drying by heating, drying by blowing air, IR drying and by electromagnetic waves. drying, etc.

本発明では、前記塗膜を大気環境下で形成後、加熱乾燥させる場合は減圧下で加熱乾燥させることが好ましい。前記発光性薄膜は大気環境下で加熱乾燥させると、発光性化合物Aの酸化が過剰に進行し、発光性化合物Aの消光に関与する副生成物を生成し、発光強度の低下を引き起こしてしまうためである。加熱乾燥以外の乾燥プロセスを実施する場合は、常圧でも減圧でもよい。 In the present invention, when the coating film is formed in an atmospheric environment and then dried by heating, it is preferably dried by heating under reduced pressure. When the light-emitting thin film is dried by heating in an atmospheric environment, the oxidation of the light-emitting compound A proceeds excessively, producing by-products involved in the quenching of the light-emitting compound A, resulting in a decrease in emission intensity. It's for. When a drying process other than heat drying is carried out, normal pressure or reduced pressure may be used.

加熱乾燥における温度は、特に制限はないが、塗布液に用いる溶媒の沸点以上の温度であることが乾燥時間の短縮の面から好ましい。加熱工程において、加熱時間は限定されないが、好ましくは10秒以上、通常180分以下である。加熱手段の例を挙げると、クリーンオーブン、ホットプレート、赤外線、ハロゲンヒーター、マイクロ波照射などが挙げられる。これらの中でも、膜全体に均等に熱を与えるためには、クリーンオーブン及びホットプレートが好ましい。 The temperature in the heat drying is not particularly limited, but it is preferably at the boiling point of the solvent used in the coating liquid or higher from the viewpoint of shortening the drying time. In the heating step, the heating time is not limited, but is preferably 10 seconds or more and usually 180 minutes or less. Examples of heating means include clean ovens, hot plates, infrared rays, halogen heaters, and microwave irradiation. Among these, a clean oven and a hot plate are preferred in order to evenly apply heat to the entire film.

基材上への塗布液Aの塗布方法としては、特 に制限はなく、例えばスピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、ノズルプリンティング法、インクジェット印刷法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法等が挙げられる。 The method of applying the coating liquid A onto the substrate is not particularly limited, and examples thereof include spin coating, dip coating, die coating, bar coating, blade coating, roll coating, spray coating, and capillary coating. method, nozzle printing method, inkjet printing method, screen printing method, gravure printing method, flexographic printing method, offset printing method and the like.

上記塗布液Aに用いる溶媒としては特に制限はなく、上述した発光性化合物を溶解できる溶媒であることが好ましい。本発明に用いる溶媒としては、発光性化合物の機能を低下させなければ無機溶媒でも有機溶媒でもよい。これらの無機溶媒及び有機溶媒は、それぞれ単独でも用いてもよいし、2種以上を混合して用いてもよい。 The solvent used for the coating liquid A is not particularly limited, and is preferably a solvent capable of dissolving the light-emitting compound described above. The solvent used in the present invention may be either an inorganic solvent or an organic solvent as long as it does not impair the function of the light-emitting compound. These inorganic solvents and organic solvents may be used alone or in combination of two or more.

本発明に用いられる有機溶媒としては、例えば、アルコール類(メタノール、エタノールやジオール、トリオール、テトラフルオロプロパノール等)、グリコール類、セロソルブ類、ケトン類(アセトン、メチルエチルケトン等)、カルボン酸類(ギ酸、酢酸等)、カーボネート類(エチレンカーボネート、プロピレンカーボネート等)、エステル類(酢酸エチル、酢酸プロピル等)、エーテル類(イソプロピルエーテル、THF等)、アミド類(ジメチルスルホキシド等)、炭化水素類(ヘプタン等)、ニトリル類(アセトニトリル等)、芳香族類(シクロヘキシルベンゼン、トルエン、キシレン、クロロベンゼン等)、ハロゲン化アルキル類(塩化メチレン等)、アミン類(1,4-ジアザビシクロ[2.2.2]オクタン、ジアザビシクロウンデセン等)、ラクトン系などが挙げられる。 Examples of organic solvents used in the present invention include alcohols (methanol, ethanol, diols, triols, tetrafluoropropanol, etc.), glycols, cellosolves, ketones (acetone, methyl ethyl ketone, etc.), carboxylic acids (formic acid, acetic acid etc.), carbonates (ethylene carbonate, propylene carbonate, etc.), esters (ethyl acetate, propyl acetate, etc.), ethers (isopropyl ether, THF, etc.), amides (dimethyl sulfoxide, etc.), hydrocarbons (heptane, etc.) , nitriles (acetonitrile, etc.), aromatics (cyclohexylbenzene, toluene, xylene, chlorobenzene, etc.), alkyl halides (methylene chloride, etc.), amines (1,4-diazabicyclo[2.2.2]octane, diazabicycloundecene, etc.), lactones, and the like.

本発明に用いられる無機溶媒としては、例えば、水(HO)や溶融塩等が挙げられる。無機溶媒として用いることができる溶融塩は、例えば、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウム、ヨウ化カルシウムなどの金属ヨウ化物-ヨウ素の組み合わせ;テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイドなどの4級アンモニウム化合物のヨウ素塩-ヨウ素の組み合わせ;臭化リチウム、臭化ナトリウム、臭化カリウム、臭化セシウム、臭化カルシウムなどの金属臭化物-臭素の組み合わせ;テトラアルキルアンモニウムブロマイド、ピリジニウムブロマイドなどの4級アンモニウム化合物の臭素塩-臭素の組み合わせ;フェロシアン酸塩-フェリシアン酸塩、フェロセン-フェリシニウムイオンなどの金属錯体;ポリ硫化ナトリウム、アルキルチオール-アルキルジスルフィドなどのイオウ化合物;ビオロゲン色素、ヒドロキノン-キノンなどが挙げられる。Examples of inorganic solvents used in the present invention include water (H 2 O) and molten salts. Molten salts that can be used as inorganic solvents include metal iodide-iodine combinations such as lithium iodide, sodium iodide, potassium iodide, cesium iodide, calcium iodide; iodine salts of quaternary ammonium compounds such as ido, imidazolium iodide-iodine combinations; metal bromide-bromine combinations such as lithium bromide, sodium bromide, potassium bromide, cesium bromide, calcium bromide; Bromine salt-bromine combination of quaternary ammonium compounds such as ammonium bromide and pyridinium bromide; Metal complexes such as ferrocyanate-ferricyanate and ferrocene-ferricinium ion; Sulfur compounds; viologen dyes, hydroquinone-quinone, and the like.

基材としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基材としては、ガラス、石英、透明樹脂フィルムを挙げることができる。ここで「透明」とは、可視光領域における光透過率が、好ましくは60%以上であることをいい、より好ましくは80%以上であることをいう。 There are no particular restrictions on the type of substrate, such as glass or plastic, and it may be transparent or opaque. When light is extracted from the support substrate side, the support substrate is preferably transparent. Glass, quartz, and transparent resin films can be cited as preferred transparent supporting substrates. Here, the term “transparent” means that the light transmittance in the visible light region is preferably 60% or more, more preferably 80% or more.

樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル、又はポリアリレート類、アートン(商品名JSR社製)若しくはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂により形成されたフィルム等が挙げられる。 Examples of resin films include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate, or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , polyethersulfone (PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic, or polyarylates, Arton (trade name manufactured by JSR) or A film formed of a cycloolefin resin such as APEL (trade name, manufactured by Mitsui Chemicals, Inc.) can be used.

樹脂フィルムの表面には、ガスバリアー層として、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよい。このようなガスバリアー層は、水分や酸素等素子の劣化をもたらすものの浸入を抑制する目的で設けられる。 An inorganic coating, an organic coating, or a hybrid coating of both may be formed as a gas barrier layer on the surface of the resin film. Such a gas barrier layer is provided for the purpose of suppressing the infiltration of substances such as moisture and oxygen that cause deterioration of the element.

ガスバリアー層を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 As the material for forming the gas barrier layer, any material can be used as long as it has a function of suppressing the infiltration of substances that cause deterioration of the device, such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, and the like can be used. Furthermore, in order to improve the fragility of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of organic materials. The order of lamination of the inorganic layer and the organic layer is not particularly limited, but it is preferable to alternately laminate the two layers a plurality of times.

ガスバリアー層の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。 The method for forming the gas barrier layer is not particularly limited. A method, plasma CVD method, laser CVD method, thermal CVD method, coating method, etc. can be used, but the atmospheric pressure plasma polymerization method as described in Japanese Patent Application Laid-Open No. 2004-68143 is particularly preferable.

樹脂フィルムはガスバリアー層を有し、JIS K 7129-1992に準拠した方法で測定された温度25±0.5℃、相対湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m・24h以下であることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3mL/m・24h・atom(1atomは、1.01325×10Paである。)以下であって、温度25±0.5℃、相対湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m・24h以下であることが好ましい。The resin film has a gas barrier layer, and the water vapor permeability at a temperature of 25 ± 0.5 ° C. and a relative humidity of 90 ± 2% RH measured by a method in accordance with JIS K 7129-1992 is 1 × 10 -3 g. /m 2 · 24 h or less, and furthermore, the oxygen permeability measured by a method based on JIS K 7126-1987 is 1 × 10 -3 mL/m 2 · 24 h · atom (1 atom is 1.01325×10 5 Pa.), and the water vapor permeability at a temperature of 25±0.5° C. and a relative humidity of 90±2% RH is 1×10 −3 g/m 2 ·24 h or less. Preferably.

不透明な支持基板としては、例えば、アルミニウム、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。 Examples of opaque supporting substrates include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.

〔2〕発光性積層膜
〔2.1〕発光性積層膜の構成
本発明の発光性薄膜は、任意の化合物を上層に含有させた発光性積層膜とすることで、さらに大気安定性を向上させることができる。発光性積層膜とすることで、上層が保護層として作用し、発光膜への大気の侵入を抑制できるためである。
[2] Luminescent laminated film [2.1] Structure of luminescent laminated film The luminescent thin film of the present invention is a luminescent laminated film in which an arbitrary compound is contained in the upper layer, thereby further improving atmospheric stability. can be made This is because the upper layer acts as a protective layer and can suppress the intrusion of air into the light-emitting film by forming the light-emitting laminated film.

本発明の発光性積層膜の製造方法で形成した発光性積層膜の一例を図4に示す。 FIG. 4 shows an example of a luminescent laminated film formed by the method for producing a luminescent laminated film of the present invention.

乾燥工程前の積層膜10は、例えば、基材20、第1塗膜30、及び第2塗膜40が順に積層されている。ここで、第1塗膜30及び第2塗膜40は、乾燥工程を経て、第1層31及び第2層41となる。また、第1層31は発光性材料を含有するので、発光機能を有する発光層である。 In the laminated film 10 before the drying process, for example, the substrate 20, the first coating film 30, and the second coating film 40 are laminated in order. Here, the first coating film 30 and the second coating film 40 become the first layer 31 and the second layer 41 through a drying process. Moreover, since the first layer 31 contains a light-emitting material, it is a light-emitting layer having a light-emitting function.

また、図4に示した例に限られず、本発明の効果が得られる範囲で積層膜の層構成は変更可能である。例えば、第2塗膜の形成後に、当該第2塗膜上に、さらに、新たな第3塗膜を形成してもよい。当該第3塗膜については、含有する材料や、積層方法に特に制限はない。当該第3塗膜の積層方法は、蒸着法でも塗布法でもよいが、第2塗膜と同様に、大気環境下で、塗布法によって形成することが、プロセス容易性の観点から好ましい。 Moreover, the layer structure of the laminated film is not limited to the example shown in FIG. 4, and can be changed within the range in which the effects of the present invention can be obtained. For example, after forming the second coating film, a new third coating film may be further formed on the second coating film. Regarding the third coating film, there are no particular restrictions on the material to be contained or the lamination method. The method of laminating the third coating film may be a vapor deposition method or a coating method, but like the second coating film, it is preferably formed by a coating method in an atmospheric environment from the viewpoint of process easiness.

また、本発明に係る第2塗膜の形成後の乾燥工程Cは、第2塗膜の形成後に1回以上実施されればよい。例えば、第2塗膜の形成後に、塗布法により第3塗膜を形成する場合、第3塗膜の形成後に1回のみ乾燥工程Cをおこなってもよいし、第2塗膜の形成後に乾燥工程Cを行い、かつ第3塗膜の形成後に再度乾燥工程を行うようにしてもよい。 Moreover, the drying step C after the formation of the second coating film according to the present invention may be performed once or more after the formation of the second coating film. For example, when the third coating film is formed by a coating method after the formation of the second coating film, the drying step C may be performed only once after the formation of the third coating film, or the drying step may be performed after the formation of the second coating film. After performing the step C and forming the third coating film, the drying step may be performed again.

なお、第2塗膜上に第3塗膜を形成する例について説明したが、これに限られず、さらに複数の塗膜を形成することとしてもよい。 Although an example in which the third coating film is formed on the second coating film has been described, the present invention is not limited to this, and a plurality of coating films may be formed.

また、第1塗膜を形成する工程Aの直後に第2塗膜を形成する工程Bを行うことが好ましいが、工程A及び工程Bの間には、本発明の効果を阻害しない範囲で前記大気下での常圧加熱乾燥以外の乾燥プロセスを行ってもよい。その乾燥プロセスは、加熱乾燥である場合、減圧下での加熱乾燥が好ましい。 Further, it is preferable to perform the step B of forming the second coating film immediately after the step A of forming the first coating film, but between the step A and the step B, the above-mentioned A drying process other than normal pressure heat drying under the atmosphere may be performed. When the drying process is heat drying, heat drying under reduced pressure is preferred.

以下、本発明の発光性積層膜の製造方法についての構成要件を詳細に説明する。 The constituent requirements of the method for producing a light-emitting laminated film of the present invention are described in detail below.

〔2.2〕発光性積層膜の製造方法
〔2.2.1〕発光性積層膜の構成
発光性積層膜の構成としては、第1層及び第2層をこの順に備える発光性積層膜であって、前記第1層が少なくとも1種の発光性化合物A及び前記発光性化合物Aの酸化物Bを含有することを特徴する発光性積層膜である。
[2.2] Manufacturing method of luminescent laminated film [2.2.1] Structure of luminescent laminated film A luminescent laminated film, wherein the first layer contains at least one luminescent compound A and an oxide B of the luminescent compound A.

また、前記第2層中には孤立電子対を含む化合物を含有することが好ましい。図5に示すように、本発明の発光性薄膜の上層に孤立電子対を有する化合物(図中、楕円形で示した部分)を含有させた積層膜とすることで、上層から侵入した大気中の水分(図中、H-O-Hと表記)を孤立電子対との水素結合によりトラップし、発光層に侵入する大気の水分の絶対量を減らすことができるためである。 Moreover, it is preferable that the second layer contains a compound containing a lone pair of electrons. As shown in FIG. 5, by forming a laminated film containing a compound having a lone electron pair in the upper layer of the light-emitting thin film of the present invention (the portion indicated by the ellipse in the figure), the atmosphere that entered from the upper layer This is because the moisture (denoted as H—O—H in the drawing) can be trapped by hydrogen bonding with lone electron pairs, and the absolute amount of moisture in the atmosphere that enters the light-emitting layer can be reduced.

さらに好ましくは、前記孤立電子対を含む化合物が含窒素化合物であると好ましい。前記孤立電子対を窒素原子とすることでルイス塩基性を高め、より効率的に水分をトラップし、発光層への侵入を抑制することができるためである。 More preferably, the compound containing the lone pair is a nitrogen-containing compound. This is because by using a nitrogen atom as the lone electron pair, the Lewis basicity can be enhanced, moisture can be trapped more efficiently, and penetration into the light-emitting layer can be suppressed.

また、別の実施様態では、前記第2層中にフッ素化合物を含有する事が好ましい。図6に示すように、本発明の発光性薄膜の上層にフッ素化合物(図中、Fと表記)を含有させた積層膜とすることで、上層から侵入した大気中の水分をフッ素の撥水性により侵入を抑制し、発光層に侵入する水分の絶対量を減らすことができるためである。 In another embodiment, it is preferable that the second layer contain a fluorine compound. As shown in FIG. 6, by forming a laminated film containing a fluorine compound (denoted as F in the figure) in the upper layer of the light-emitting thin film of the present invention, moisture in the atmosphere that has entered from the upper layer can be repelled by the water repellency of fluorine. This is because the penetration of water can be suppressed and the absolute amount of moisture entering the light-emitting layer can be reduced.

さらに好ましくは、前記フッ素化合物が常温・常圧下ではフッ素溶媒であることが好ましい。液体であれば、上層中に均一に分布することができ、下層の発光性薄膜を全面撥水保護できるためである。フッ素溶媒としては、特に制限はないが、構造中にフッ素原子を有するものであればよい。 More preferably, the fluorine compound is a fluorine solvent under normal temperature and normal pressure. This is because a liquid can be uniformly distributed in the upper layer, and the entire surface of the light-emitting thin film in the lower layer can be protected against water. The fluorine solvent is not particularly limited as long as it has a fluorine atom in its structure.

例えば、フッ素含有炭化水素、フッ素含有アルコール、フッ素含有芳香族化合物、フッ素含有エーテル、フッ素含有ケトン、フッ素含有エステル、フッ素含有アミド、フッ素含有カルボン酸などが挙げられる。 Examples thereof include fluorine-containing hydrocarbons, fluorine-containing alcohols, fluorine-containing aromatic compounds, fluorine-containing ethers, fluorine-containing ketones, fluorine-containing esters, fluorine-containing amides, and fluorine-containing carboxylic acids.

本発明においては、これらの中でも、発光効率や低電圧で駆動できる素子が得られるなどの観点で、フッ素含有アルコールを用いることが好ましい。 In the present invention, among these, it is preferable to use fluorine-containing alcohols from the viewpoint of obtaining an element that can be driven with light emission efficiency and low voltage.

好ましいフッ素含有アルコールの1つとして、下記一般式(1)また、一般式(2)、(3)で表される化合物を挙げることができる。 As one of preferable fluorine-containing alcohols, compounds represented by the following general formula (1) or general formulas (2) and (3) can be mentioned.

一般式(1) A-CHOH
一般式(1)において、AはCF又はCHF(CF)nを表し、nは1~5の整数を表す。より好ましくは1~3であり、更に好ましくは1である。フッ素含有アルコールの具体例としては例えば下記化合物が挙げられる。
General formula (1) A—CH 2 OH
In general formula (1), A represents CF 3 or CHF 2 (CF 2 )n, and n represents an integer of 1-5. It is more preferably 1 to 3, and still more preferably 1. Specific examples of fluorine-containing alcohols include the following compounds.

Figure 0007207331000014
Figure 0007207331000014

一般式(2)及び(3)において、A、B、及びDは、それぞれ独立にCH3-x又はCH3-x(CH2-yを表し、xは1~3、yは1~2、nは0~1の整数を表す。In general formulas (2) and (3), A, B, and D each independently represent CH 3-x F x or CH 3-x F x (CH 2-y F y ) n , where x is 1 ~3, y represents an integer of 1-2, and n represents an integer of 0-1.

これらフッ素含有アルコールの具体例としては例えば下記化合物が挙げられる。
2,2,3,3-テトラフルオロプロパノール、
2,2,3,3,3-ペンタフルオロプロパノール、
2-トリフオロメチル-2-プロパノール、
2,2,3,3,4,4-ヘキサフルオロブタノール、
2,2,3,3,4,4,5,5-オクタフルオロペンタノール、
1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、
2,2,2-トリフルオロ-1-エタノール、
2,3-ジフルオロベンジルアルコール、
2,2,2-トリフルオロエタノール、
1,3-ジフルオロ-2-プロパノール、
1,1,1-トリフルオロ-2-プロパノール、
3,3,3-トリフルオロ-1-プロパノール、
2,2,3,3,4,4,4-ヘプタフルオロ-1-ブタノール、
2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール、
3,3,4,4,5,5,5-ヘプタフルオロ-2-ペンタノール、
2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-ペンタデカフルオロ-1-オクタノール、
3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクタノール、
1H,1H,9H-パーフルオロ-1-ノナノール、
1H,1H,2H,3H,3H-パーフルオロノナン-1,2-ジオール、
1H,1H,2H,2H-パーフルオロ-1-デカノール、
1H,1H,2H,3H,3H-パーフルオロウンデカン-1,2-ジオール
などが挙げられる。
Specific examples of these fluorine-containing alcohols include the following compounds.
2,2,3,3-tetrafluoropropanol,
2,2,3,3,3-pentafluoropropanol,
2-trifluoromethyl-2-propanol,
2,2,3,3,4,4-hexafluorobutanol,
2,2,3,3,4,4,5,5-octafluoropentanol,
1,1,1,3,3,3-hexafluoro-2-propanol,
2,2,2-trifluoro-1-ethanol,
2,3-difluorobenzyl alcohol,
2,2,2-trifluoroethanol,
1,3-difluoro-2-propanol,
1,1,1-trifluoro-2-propanol,
3,3,3-trifluoro-1-propanol,
2,2,3,3,4,4,4-heptafluoro-1-butanol,
2,2,3,3,4,4,5,5-octafluoro-1-pentanol,
3,3,4,4,5,5,5-heptafluoro-2-pentanol,
2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluoro-1-octanol,
3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octanol,
1H,1H,9H-perfluoro-1-nonanol,
1H,1H,2H,3H,3H-perfluorononane-1,2-diol,
1H,1H,2H,2H-perfluoro-1-decanol,
1H,1H,2H,3H,3H-perfluoroundecane-1,2-diol and the like.

さらに、フッ素含有プロパノールが好ましく、更に、2、2、3、3-テトラフルオロ-2-プロパノール、若しくは、1、1、1、3、3、3-ヘキサフルオロ-2-プロパノール、若しくは、2,2,3,3,3-ペンタフルオロプロパノールが好ましい。 Further, fluorine-containing propanol is preferred, and 2,2,3,3-tetrafluoro-2-propanol, or 1,1,1,3,3,3-hexafluoro-2-propanol, or 2, 2,3,3,3-pentafluoropropanol is preferred.

本発明で用いられるこれらの含フッ素溶媒は蒸留したものを用いることが好ましい。 These fluorine-containing solvents used in the present invention are preferably distilled.

さらにフッ素溶媒含有量が第2層中に0.01~10質量%の範囲であることが好ましい。0.01質量%以上の場合、フッ素溶媒による撥水効果が維持されるためで、10質量%以下だとデバイスとして通電時に残溶媒によるキャリヤ輸送阻害による電圧上昇を引き起こさないためである。 Furthermore, it is preferable that the fluorine solvent content in the second layer is in the range of 0.01 to 10 mass %. This is because when the amount is 0.01% by mass or more, the water-repellent effect of the fluorine solvent is maintained, and when the amount is 10% by mass or less, voltage rise due to inhibition of carrier transport due to residual solvent does not occur when the device is energized.

〔2.2.2〕発光性積層膜の製造方法
本発明の発光性積層膜は、上述した材料をそれぞれ準備し、蒸着法や塗布法といった任意の方法で積層成膜することで作製することができる。
[2.2.2] Method for producing a luminescent laminated film The luminescent laminated film of the present invention can be produced by preparing each of the materials described above and forming a laminated film by any method such as a vapor deposition method or a coating method. can be done.

その他の製造方法としては、発光性化合物Aのみを準備し、成膜過程で発光性化合物Aの一部を酸化させ酸化物Bに変性させる製造方法がある。具体的には、発光性化合物Aを含有する塗布液を用い、大気環境下、第1塗膜を形成した後、任意の乾燥方法、積層方法を経て第2層を積層することで形成できる。発光性化合物Aの酸化物Bへの変性速度は、発光性化合物Aの種類や濃度などによって異なり、使用する発光性化合物Aの酸化されやすさや、塗布環境、乾燥条件によって任意に変更することができる。 As another production method, there is a production method in which only the luminescent compound A is prepared and part of the luminescent compound A is oxidized to transform it into an oxide B during the film formation process. Specifically, using a coating liquid containing a luminescent compound A, after forming a first coating film in an atmospheric environment, the second layer can be formed by laminating a second layer through an arbitrary drying method and lamination method. The rate of modification of the luminescent compound A to the oxide B varies depending on the type and concentration of the luminescent compound A, and can be arbitrarily changed depending on the ease of oxidation of the luminescent compound A used, the coating environment, and the drying conditions. can.

好ましくは、基材上に、大気環境下で、塗布液Aを用いて第1塗膜を形成する工程Aと、前記工程Aの後に大気環境下での常圧加熱乾燥以外の乾燥工程を経て、前記第1塗膜上に大気環境下で前記塗布液Aとは異なる塗布液Bを用いて第2塗膜を形成する工程Bと、前記工程Bの後に、大気環境下で乾燥を行う工程Cによって形成される第1層、第2層をこの順に備える発光性積層膜の製造方法を挙げることができる。 Preferably, on the substrate, in an atmospheric environment, through a step A of forming a first coating film using the coating liquid A, and after the step A, through a drying step other than normal pressure heat drying in an atmospheric environment. A step B of forming a second coating film on the first coating film using a coating liquid B different from the coating liquid A in an atmospheric environment; and a step of drying in an atmospheric environment after the step B. A method for producing a light-emitting laminated film having a first layer and a second layer formed of C in this order can be mentioned.

前記第1層は大気環境下で加熱乾燥させると、発光性化合物Aの酸化が過剰に進行し、発光性化合物Aの消光に関与する副生成物を生成し、発光強度の低下を引き起こしてしまうため、前述の大気環境下で常圧加熱乾燥以外の乾燥工程を有することが好ましい。 When the first layer is dried by heating in an atmospheric environment, the oxidation of the light-emitting compound A proceeds excessively, producing a by-product involved in the quenching of the light-emitting compound A, which causes a decrease in the emission intensity. Therefore, it is preferable to have a drying process other than normal pressure heat drying under the atmospheric environment described above.

その他の好ましい製造方法としては、基材上に、大気環境下で、発光性化合物Aを含有する塗布液Aを用いて第1塗膜を形成する工程Aと、前記工程Aの後に、前記第1塗膜上に、大気環境下で、前記塗布液Aとは異なる塗布液Bを用いて第2塗膜を形成する工程Bと、前記工程Bの後に、大気環境下で乾燥を行う工程Cによって形成される積層膜の製造方法である。この積層膜の製造方法においては、第1塗膜と第2塗膜を大気環境下で連続塗布積層した後、一括で大気乾燥しているため、乾燥時に第1塗膜が第2塗膜で保護された状態で乾燥される。この乾燥方法により、大気が第1塗膜に触れない状態で乾燥されるため、発光性化合物Aの過剰の酸化を抑制し、発光性化合物Aの消光に関与する分解物生成を抑制できる。言い換えれば、第1塗膜の発光性を維持したまま酸化物Bを生成させ、好適に大気安定性に優れる発光性積層膜を作製することができる。 Another preferred manufacturing method includes a step A of forming a first coating film on a substrate using a coating liquid A containing a luminescent compound A in an atmospheric environment, and after the step A, the first A step B of forming a second coating film on the first coating film using a coating liquid B different from the coating liquid A in an atmospheric environment, and a step C of drying in an atmospheric environment after the step B. A method for manufacturing a laminated film formed by In this method for producing a laminated film, the first coating film and the second coating film are continuously applied and laminated in an atmospheric environment, and then air-dried all at once. Dried in a protected manner. By this drying method, the first coating film is dried without being exposed to the air, so excessive oxidation of the luminescent compound A can be suppressed, and generation of decomposition products involved in quenching of the luminescent compound A can be suppressed. In other words, it is possible to generate the oxide B while maintaining the luminescence of the first coating film, and to produce a luminous laminated film that is suitably excellent in atmospheric stability.

特に、前記塗布液Bが前記フッ素溶媒を含有することが好ましい。前記第1塗膜がフッ素溶媒を含む第2塗膜で保護された状態で乾燥されるため、より発光性化合物A由来の分解物生成を抑制できるためである。 In particular, it is preferable that the coating liquid B contains the fluorine solvent. This is because the first coating film is dried while being protected by the second coating film containing the fluorine solvent, so that the generation of decomposition products derived from the luminescent compound A can be further suppressed.

〈塗布液の調液〉
塗布液A及び塗布液Bを調液する環境は、特に制限はないが、塗膜を形成する工程と同様に、大気環境下であることが生産プロセス効率の観点から好ましい。
<Preparation of coating solution>
Although the environment in which the coating liquid A and the coating liquid B are prepared is not particularly limited, an atmospheric environment is preferable from the viewpoint of production process efficiency, as in the process of forming the coating film.

〈塗膜の形成〉
本発明に係る第1塗膜を形成するための塗布液A及び第2塗膜を形成するための塗布液Bの塗布方法としては、特に制限はなく、例えばスピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、ノズルプリンティング法、インクジェット印刷法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法等が挙げられる。
<Formation of coating>
The coating method of the coating liquid A for forming the first coating film and the coating liquid B for forming the second coating film according to the present invention is not particularly limited, for example, spin coating, dip coating, die coating. method, bar coating method, blade coating method, roll coating method, spray coating method, capillary coating method, nozzle printing method, inkjet printing method, screen printing method, gravure printing method, flexographic printing method, offset printing method and the like.

これらの中でも、インクジェット印刷法を適用する場合、本発明の効果を有効に得ることができるため好ましい。インクジェット印刷法を実施する際は、通常高粘度の溶媒が好まれて使用されるため、塗布液が高沸点化しやすい。そのため、塗膜の乾燥工程の時間が長くなる、又は乾燥温度の上昇などが必要となり、公知の大気環境下で乾燥工程を行った場合、膜の機能が低下しやすくなる。しかしながら、上記本発明の発光性積層膜の製造方法を用いれば、公知の大気環境下で乾燥工程を行った場合でも膜の機能の低下を抑制できるため、インクジェット印刷法を好適に用いることができる。 Among these, when the inkjet printing method is applied, the effect of the present invention can be effectively obtained, so it is preferable. When the inkjet printing method is carried out, a solvent having a high viscosity is usually preferred and used, so the coating liquid tends to have a high boiling point. Therefore, the time required for the drying process of the coating film becomes longer, or the drying temperature needs to be increased, and when the drying process is performed under a known atmospheric environment, the function of the film tends to deteriorate. However, by using the method for producing a luminescent laminated film of the present invention, it is possible to suppress deterioration of the film function even when the drying process is performed in a known atmospheric environment, so the inkjet printing method can be preferably used. .

加えて、インクジェット 印刷法を適用する場合、大気圧下での製造が必要となり、かつ、大気圧下で液滴が射出されることにより外気に接触する表面積が増加するので、他の塗布方法などに比較して水分や酸素の影響を受けやすくなる。したがって、インクジェット印刷法においては、大気中の酸素や水分による悪影響を低減することが望ましい。しかしながら、インクジェット印刷法において前記酸素や水分による悪影響を低減する課題についても、上記本発明の発光性積層膜の製造方法を用いれば、公知の大気環境下で製造した場合でも膜の機能の低下を抑制できるため、当該課題は本発明の発光性薄膜を組み合わせることで解決することが可能である。 In addition, when applying the inkjet printing method, production under atmospheric pressure is required, and the surface area in contact with the outside air increases due to the ejection of droplets under atmospheric pressure, so other coating methods such as more susceptible to moisture and oxygen than Therefore, in inkjet printing, it is desirable to reduce the adverse effects of atmospheric oxygen and moisture. However, regarding the problem of reducing the adverse effects of oxygen and moisture in the inkjet printing method, if the method for producing a luminescent laminated film of the present invention is used, the function of the film will not deteriorate even if it is produced in a known atmospheric environment. Since it can be suppressed, the problem can be solved by combining the light-emitting thin film of the present invention.

(大気環境)
本発明において、塗布液A及び塗布液Bの塗布を実施する「大気環境」とは、酸素含有ガス雰囲気のことをいい、例えば、気体の割合が、窒素(N)78%、酸素(O)21%、水分(HO)0~4体積%であるガス雰囲気である。
(atmospheric environment)
In the present invention, the “atmospheric environment” in which the coating liquid A and the coating liquid B are applied refers to an oxygen - containing gas atmosphere. 2 ) A gas atmosphere containing 21% and 0-4% by volume of water (H 2 O).

(温度)
塗布液A及び塗布液Bの塗布する際の温度は、塗布液中に結晶が生じにくい温度であり、本発明の効果を著しく損なわない限り限定されないが、10~50℃の範囲内が好ましく、13~40℃の範囲内がより好ましく、16~30℃の範囲内がさらに好ましい。
(temperature)
The temperature at which the coating liquids A and B are applied is a temperature at which crystals are unlikely to form in the coating liquids, and is not limited as long as the effects of the present invention are not significantly impaired. The range of 13 to 40°C is more preferable, and the range of 16 to 30°C is even more preferable.

(湿度)
塗布液A及び塗布液Bの塗布する際の相対湿度は、本発明の効果を著しく損なわない限り限定されないが、下限としては、通常0.01ppm以上、好ましくは0.05ppm以上、より好ましくは0.1ppm以上である。また、相対湿度の上限としては、通常80%以下、好ましくは60%以下、より好ましくは15%以下、更に好ましくは1%以下、特に好ましくは100ppm以下である。上記範囲内であると、湿式成膜法における成膜条件の制御が容易であり、また有機層への水分吸着がし難い点で好ましい。
(humidity)
The relative humidity at which the coating solution A and the coating solution B are applied is not limited as long as it does not significantly impair the effects of the present invention. .1 ppm or more. The upper limit of relative humidity is usually 80% or less, preferably 60% or less, more preferably 15% or less, still more preferably 1% or less, and particularly preferably 100 ppm or less. Within the above range, the film formation conditions in the wet film formation method can be easily controlled, and the organic layer is less likely to adsorb moisture, which is preferable.

(圧力)
塗布液A及び塗布液Bの塗布する塗布工程における圧力は、通常90000~110000Paの範囲内、好ましくは95000~105000Paの範囲内である。上記範囲内であると、一般的な大気圧の範囲内のため、大面積を容易に塗布できる点で好ましい。
(pressure)
The pressure in the coating step of applying the coating solution A and the coating solution B is usually in the range of 90000-110000 Pa, preferably in the range of 95000-105000 Pa. When the pressure is within the above range, it is within the range of the general atmospheric pressure, which is preferable in that a large area can be easily coated.

(照明)
大気環境下での塗布時の照明は、特に制限はないが、塗布液中に含有する材料が吸収を持たない波長を有する照明であることが好ましい。例えば、イエローライトなどを用いることができる。
(illumination)
Although there are no particular restrictions on the illumination during coating in an atmospheric environment, illumination having a wavelength at which materials contained in the coating liquid do not absorb is preferred. For example, yellow light or the like can be used.

〈乾燥工程(工程C)〉
(乾燥方法)
本発明でいう乾燥とは、工程A及び工程Bの後の第1塗膜及び第2塗膜の溶媒含有量を100%とした場合に、当該溶媒含有量が10%以下であることをいい、より好ましくは1%以下まで低減されることをいう。
<Drying step (step C)>
(Drying method)
Drying in the present invention means that the solvent content is 10% or less when the solvent content of the first coating film and the second coating film after step A and step B is 100%. , more preferably to be reduced to 1% or less.

本発明における大気環境下での乾燥工程では、乾燥の手段として一般的に汎用されているものを使用でき、加熱乾燥、送風乾燥、IR乾燥及び電磁波による乾燥などが挙げられる。また、これらの中でも、プロセス容易性の観点から加熱乾燥が好ましい。 In the drying step in the atmospheric environment in the present invention, commonly used drying means can be used, such as heat drying, air drying, IR drying, and drying by electromagnetic waves. Among these, drying by heating is preferable from the viewpoint of process easiness.

(加熱乾燥)
加熱乾燥における温度は、特に制限はないが、塗布液に用いる溶媒の沸点以上の温度であることが乾燥時間の短縮の面から好ましい。加熱工程において、加熱時間は限定されないが、好ましくは10秒以上、通常180分以下である。加熱手段の例を挙げると、クリーンオーブン、ホットプレート、赤外線、ハロゲンヒーター、マイクロ波照射などが挙げられる。これらの中でも、膜全体に均等に熱を与えるためには、クリーンオーブン及びホットプレートが好ましい。
(Heat drying)
The temperature in the heat drying is not particularly limited, but it is preferably at the boiling point of the solvent used in the coating liquid or higher from the viewpoint of shortening the drying time. In the heating step, the heating time is not limited, but is preferably 10 seconds or more and usually 180 minutes or less. Examples of heating means include clean ovens, hot plates, infrared rays, halogen heaters, and microwave irradiation. Among these, a clean oven and a hot plate are preferred in order to evenly apply heat to the entire film.

さらには積層膜中に含有する材料のTgの中で最も低Tgである材料の(Tg+20℃)より低い温度で保持することが好ましい。 Furthermore, it is preferable to hold at a temperature lower than (Tg+20° C.) of the material having the lowest Tg among the materials contained in the laminated film.

(塗布液Bに用いる溶媒)
塗布液Bに用いる溶媒としては前記塗布液Aと同様に特に制限はなく、前記必要材料を溶解できる溶媒であることが好ましい。さらには、塗布液Aとの混合抑制のために、塗布液Aの溶媒と塗布液Bの溶媒は非相溶性であることが好ましい。
(Solvent used for coating liquid B)
As with the coating liquid A, the solvent used for the coating liquid B is not particularly limited, and is preferably a solvent capable of dissolving the necessary materials. Furthermore, in order to suppress mixing with the coating liquid A, the solvent of the coating liquid A and the solvent of the coating liquid B are preferably incompatible.

前記塗布液Bが前記フッ素溶媒を含有するとさらに好ましい。前記第1塗膜がフッ素溶媒を含む第2塗膜で保護された状態で乾燥されるため、より発光性材料A由来の分解物生成を抑制できるためである。 It is more preferable that the coating liquid B contains the fluorine solvent. This is because the first coating film is dried while being protected by the second coating film containing the fluorine solvent, so that the generation of decomposition products derived from the luminescent material A can be further suppressed.

〔2.3〕発光性積層膜の用途
本発明の発光性積層膜の製造方法によって製造された積層膜は、様々な製品で用いられる積層膜に対して適用可能であり、例えば、有機エレクトロルミネッセンス素子や、有機薄膜太陽電池等の種々の電子デバイスに適用することができる。
[2.3] Uses of luminescent laminated film The laminated film produced by the method for producing a luminescent laminated film of the present invention can be applied to laminated films used in various products, for example, organic electroluminescence. It can be applied to various electronic devices such as elements and organic thin film solar cells.

以下、本発明の発光性積層膜の製造方法によって形成された積層膜を好適に適用可能である有機エレクトロルミネッセンス素子(以下、有機EL素子という。)について説明する。 An organic electroluminescence device (hereinafter referred to as an organic EL device) to which the laminated film formed by the method for producing a luminescent laminated film of the present invention can be suitably applied will be described below.

本発明の有機EL素子は、基材上に陽極及び陰極を有し、発光層を含む有機構成層が陽極及び陰極の間に挟持されている。更に、封止層やバリアー層、光取出し層などを適宜組み合わせて構成してよい。 The organic EL device of the present invention has an anode and a cathode on a substrate, and an organic constituent layer including a light-emitting layer is sandwiched between the anode and the cathode. Furthermore, a sealing layer, a barrier layer, a light extraction layer, and the like may be combined as appropriate.

本発明の有機EL素子における代表的な有機構成層としては、以下の構成を挙げることができるが、これらに限定されるものではない。 Typical organic constituent layers in the organic EL element of the present invention include the following constructions, but are not limited to these.

〔2.3.1〕有機EL素子
図7に示すとおり、例えば、有機EL素子100は、可撓性支持基板110を有している。可撓性支持基板110上には陽極120が形成され、陽極120上には有機機能層200が形成され、有機機能層200上には陰極180が形成されている。
[2.3.1] Organic EL Element As shown in FIG. 7 , for example, the organic EL element 100 has a flexible support substrate 110 . An anode 120 is formed on the flexible support substrate 110 , an organic functional layer 200 is formed on the anode 120 , and a cathode 180 is formed on the organic functional layer 200 .

有機機能層200とは、陽極120と陰極180との間に設けられている有機EL素子100を構成する各層をいう。 The organic functional layer 200 refers to each layer constituting the organic EL element 100 provided between the anode 120 and the cathode 180 .

有機機能層200には、例えば、正孔注入層130、正孔輸送層140、発光層150、電子輸送層160、電子注入層170が含まれ、そのほかに正孔ブロック層や電子ブロック層等が含まれてもよい。 The organic functional layer 200 includes, for example, a hole injection layer 130, a hole transport layer 140, a light emitting layer 150, an electron transport layer 160, an electron injection layer 170, and a hole blocking layer, an electron blocking layer, and the like. may be included.

可撓性支持基板110上の陽極120、有機機能層200、陰極180は封止接着剤190を介して可撓性封止部材210によって封止されている。 Anode 120 , organic functional layer 200 , and cathode 180 on flexible support substrate 110 are sealed by flexible sealing member 210 via sealing adhesive 190 .

本発明の発光性積層膜の製造方法を有機EL素子の製造方法に適用する場合は、例えば、可撓性支持基板110上の発光層150及び電子輸送層160の積層膜形成する際に用いることができる。 When the method for producing a luminescent laminated film of the present invention is applied to a method for producing an organic EL element, for example, it can be used when forming a laminated film of the luminescent layer 150 and the electron transport layer 160 on the flexible support substrate 110. can be done.

具体的には、例えば、塗布液Aにより形成する第1塗膜を乾燥した層が発光層150となり、塗布液Bにより形成する第2塗膜を乾燥した層が電子輸送層160となるように、本発明の発光性積層膜の製造方法によって発光層150及び電子輸送層160を形成することができる。 Specifically, for example, the layer obtained by drying the first coating film formed with the coating liquid A becomes the light-emitting layer 150, and the layer obtained by drying the second coating film formed with the coating liquid B becomes the electron transport layer 160. , the light-emitting layer 150 and the electron transport layer 160 can be formed by the method for manufacturing a light-emitting laminated film of the present invention.

また、これに限られず、本発明の効果を得られる範囲で、発光層150を含む複数の層を形成する際に、本発明の発光性積層膜の製造方法を用いて、有機EL素子に用いられる積層膜を形成することができる。 Further, without being limited to this, when forming a plurality of layers including the light-emitting layer 150 within the range where the effect of the present invention can be obtained, the method for manufacturing a light-emitting laminated film of the present invention can be used for an organic EL element. can form a stacked film.

なお、図7に示した有機EL素子100の層構造は、単に好ましい具体例を示したものであり、その他、例えば、以下の(i)~(viii)の層構造を有していてもよい。
(i)可撓性支持基板/陽極/発光層/電子輸送層/陰極/熱伝導層/封止用接着剤/封止部材
(ii)可撓性支持基板/陽極/正孔輸送層/発光層/電子輸送層/陰極/熱伝導層/封止用接着剤/封止部材
(iii)可撓性支持基板/陽極/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極/熱伝導層/封止用接着剤/封止部材
(iv)可撓性支持基板/陽極/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極バッファー層/陰極/熱伝導層/封止用接着剤/封止部材
(v)可撓性支持基板/陽極/陽極バッファー層/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極バッファー層/陰極/熱伝導層/封止用接着剤/封止部材
(vi)ガラス支持体/陽極/正孔注入層/発光層/電子注入層/陰極/封止部材
(vii)ガラス支持体/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極/封止部材
(viii)ガラス支持体/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極/封止部材
本発明の有機EL素子に関して、上述した詳細説明の構成以外の各構成や製法、用途等は特に限定は無く、公知の構成や材料、また製法を適用することができる。例えば国際公開第2012/077431号、特開2013-089608号公報、特開2014-120334号公報、及び特開2015-201508号公報などを参照して作製することができる。
Note that the layer structure of the organic EL element 100 shown in FIG. 7 merely shows a preferred specific example, and in addition, for example, it may have the following layer structures (i) to (viii). .
(i) Flexible support substrate/anode/light-emitting layer/electron transport layer/cathode/thermal conductive layer/sealing adhesive/sealing member (ii) Flexible support substrate/anode/hole transport layer/light emission Layer/electron-transporting layer/cathode/thermally-conductive layer/sealing adhesive/sealing member (iii) flexible support substrate/anode/hole-transporting layer/luminescent layer/hole-blocking layer/electron-transporting layer/cathode /Heat conductive layer/sealing adhesive/sealing member (iv) flexible support substrate/anode/hole transport layer/light emitting layer/hole blocking layer/electron transport layer/cathode buffer layer/cathode/heat conduction Layer/sealing adhesive/sealing member (v) flexible support substrate/anode/anode buffer layer/hole transport layer/light-emitting layer/hole blocking layer/electron transport layer/cathode buffer layer/cathode/heat Conductive layer/sealing adhesive/sealing member (vi) glass support/anode/hole injection layer/luminescent layer/electron injection layer/cathode/sealing member (vii) glass support/anode/hole injection Layer/hole transport layer/light emitting layer/electron injection layer/cathode/sealing member (viii) glass support/anode/hole injection layer/hole transport layer/light emitting layer/electron transport layer/electron injection layer/cathode /Sealing member Regarding the organic EL element of the present invention, there are no particular limitations on the configuration, manufacturing method, application, etc. other than the configuration described in detail above, and known configurations, materials, and manufacturing methods can be applied. For example, it can be produced with reference to WO 2012/077431, JP 2013-089608, JP 2014-120334, JP 2015-201508, and the like.

本発明では、前記電極(陽極、陰極)の少なくとも一方が、仕事関数4.2eV以上の電極であることが好ましく、銀、金、コバルトを用いることが、さらに高寿命の有機EL素子を得る観点から、好ましい。これは、電極の大気安定性を向上させたことにより、有機EL素子の駆動安定性の向上に効果があるものと推定される。 In the present invention, at least one of the electrodes (anode, cathode) is preferably an electrode having a work function of 4.2 eV or more, and using silver, gold, or cobalt is a viewpoint of obtaining an organic EL device with a longer life. Therefore, it is preferable. This is presumed to be effective in improving the driving stability of the organic EL element by improving the atmospheric stability of the electrodes.

有機EL素子は、照明装置、ディスプレイ、各種発光光源として用いることができる。 Organic EL elements can be used as illumination devices, displays, and various light sources.

また、発光光源として、例えば、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源、さらには表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられるが、特にカラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。 In addition, as a light source, for example, home lighting, car interior lighting, backlight for clocks and liquid crystals, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copiers, light sources for optical communication processors, and optical sensors. light source, and a wide range of applications such as general household electrical appliances that require a display device. be able to.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these. In the examples, "parts" or "%" is used, but "% by mass" is indicated unless otherwise specified.

実施例で用いた化合物を以下に示す。 Compounds used in Examples are shown below.

Figure 0007207331000015
Figure 0007207331000015

Figure 0007207331000016
Figure 0007207331000016

Figure 0007207331000017
Figure 0007207331000017

Figure 0007207331000018
Figure 0007207331000018

Figure 0007207331000019
Figure 0007207331000019

[実施例1]
実施例1では、本発明の発光性薄膜を形成し、大気環境下で保存した際の発光強度変化について評価した。
[Example 1]
In Example 1, the luminescent thin film of the present invention was formed and evaluated for changes in luminous intensity when stored in an atmospheric environment.

<評価用単膜1-1の形成>
縦50mm、横50mm、厚さ0.7mmの石英基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
<Formation of Evaluation Single Film 1-1>
A quartz substrate having a length of 50 mm, a width of 50 mm, and a thickness of 0.7 mm was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaned for 5 minutes.

窒素雰囲気下、酢酸ノルマルブチルに、ホスト化合物H-1、〔化1〕に記載の例示発光性化合物A-1(H-1/A-1=80質量%/20質量%)を1.0質量%の濃度で溶解させた。得られた酢酸ノルマルブチル溶液を用いて、石英基板上にスピンコート法により50nmの厚さで成膜し、窒素ガス雰囲気下において、120℃、30分乾燥して評価用単膜1-1を形成した。 In a nitrogen atmosphere, n-butyl acetate, host compound H-1, and exemplified light-emitting compound A-1 (H-1/A-1=80% by mass/20% by mass) described in [Chemical Formula 1] are added at 1.0%. It was dissolved at a concentration of % by mass. Using the obtained n-butyl acetate solution, a film having a thickness of 50 nm was formed on a quartz substrate by spin coating, and dried at 120° C. for 30 minutes in a nitrogen gas atmosphere to obtain a single film for evaluation 1-1. formed.

<評価用単膜1-2~1-18の形成>
評価用単膜1-1の形成において、ホスト化合物H-1の一部を酸化物C-1に置き換えた(H-1/A-1/C-1=70質量%/20質量%/10質量%)以外は同様にして評価用単膜1-2の形成を行った。なお、表中「酸化物」は「酸化防止剤」と表記した(実施例2~13についても同様。)
<Formation of Evaluation Single Films 1-2 to 1-18>
In the formation of single film 1-1 for evaluation, part of host compound H-1 was replaced with oxide C-1 (H-1/A-1/C-1 = 70 mass%/20 mass%/10 mass%), a single film for evaluation 1-2 was formed in the same manner. In the table, "oxide" is written as "antioxidant" (the same applies to Examples 2 to 13) .

さらに、評価用単膜1-2の形成において、酸化物C-1を表1に記載の酸化物に置き換えた以外は同様にして評価用単膜1-3~1-18の作製を行った。 Further, single films for evaluation 1-3 to 1-18 were produced in the same manner except that oxide C-1 was replaced with the oxide shown in Table 1 in the formation of single film for evaluation 1-2. .

<評価用単膜の大気保存安定性の評価>
下記測定方法に従って、発光スペクトルの測定を行い、各評価用単膜の発光強度を評価した。
<Evaluation of atmospheric storage stability of single film for evaluation>
The emission spectrum was measured according to the following measurement method, and the emission intensity of each evaluation single film was evaluated.

各評価用単膜を大気環境下に搬出後すぐ、励起波長300nmの光を照射して、室温状態(23℃・55%RH)の発光スペクトル、発光強度を測定した。ここで、発光スペクトルの測定はF-7000((株)日立ハイテクノロジーズ製)を用いて行った。測定後、遮光下/大気環境下/室温状態で24時間保存し、再度発光強度を測定した。大気環境下24時間保存前後の発光強度を用い、保存後の発光残存率(=24時間大気保存後の発光強度/搬出直後の発光強度)を算出した。 Immediately after carrying out each single film for evaluation into an atmospheric environment, it was irradiated with light having an excitation wavelength of 300 nm, and the emission spectrum and emission intensity at room temperature (23° C./55% RH) were measured. Here, the emission spectrum was measured using F-7000 (manufactured by Hitachi High-Technologies Corporation). After the measurement, the sample was stored for 24 hours under the conditions of light shielding/air environment/room temperature, and the luminescence intensity was measured again. Using the luminescence intensity before and after storage for 24 hours in an atmospheric environment, the residual luminescence rate after storage (=luminescence intensity after 24-hour storage in air/luminescence intensity immediately after carrying out) was calculated.

ここで、評価用単膜1-1を相対値1.00としたときの、各評価用単膜の発光残存率の比率を相対値として算出した。1.00よりも大きいほど、大気環境下保存時の発光残存率が高く大気保存安定性に優れることを意味する。 Here, the ratio of the luminescence residual rate of each evaluation single film was calculated as a relative value when the evaluation single film 1-1 was set to a relative value of 1.00. A value greater than 1.00 means that the luminescence retention rate during storage in an atmospheric environment is high and the storage stability in the atmospheric environment is excellent.

Figure 0007207331000020
Figure 0007207331000020

表Iに示すように、本発明に係る酸化物Bを含有している薄膜1-9~1-18ほど大気保存安定性に優れた発光性薄膜であることが分かった。また、本発明に係る酸化物B-1-1及びB-1-5の配位子や一部構造を変更したC-5~C-7においては大気保存安定性向上の効果が見られなかったことから、本発明には、本発明に係る発光性材料Aの酸化物Bが必要であることが分かる。さらに、酸化物Bの置換基としては、ヒドロキシ基、フェノール性ヒドロキシ基、エポキシ基、カルボニル基を有しているとき、より大気保存安定の効果が顕著であることが分かる。 As shown in Table I, it was found that the thin films 1-9 to 1-18 containing the oxide B according to the present invention are luminescent thin films with excellent atmospheric storage stability. In addition, in C-5 to C-7 in which the ligands and partial structures of the oxides B-1-1 and B-1-5 according to the present invention are changed, the effect of improving the atmospheric storage stability is not observed. Therefore, it can be seen that the present invention requires the oxide B of the luminescent material A according to the present invention. Further, when the oxide B has a hydroxy group, a phenolic hydroxy group, an epoxy group, or a carbonyl group as a substituent, it is found that the atmospheric storage stability effect is more remarkable.

[実施例2]
続いて、実施例2では、本発明に係る発光性化合物A及び酸化物Bを各種変更した単膜を作製し、大気環境下で保存した際の発光強度変化について評価した。ただし、評価用単膜2-1~2-3及び2-6は、参考例である。
[Example 2]
Subsequently, in Example 2, single films were prepared by changing the luminescent compound A and oxide B according to the present invention in various ways, and changes in emission intensity when stored in an atmospheric environment were evaluated. However, evaluation single films 2-1 to 2-3 and 2-6 are reference examples.

石英基盤の準備は、実施例1と同様にして行った。次に、この石英基板を市販の真空蒸着装置の基板ホルダーに固定した。真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に素子作製に最適の量を充填した。蒸着用抵抗加熱ボートはモリブデン製又はタングステン製を用いた。 Preparation of the quartz substrate was carried out in the same manner as in Example 1. Next, this quartz substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus. Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the optimum amount for device fabrication. A resistance heating boat made of molybdenum or tungsten was used for vapor deposition.

<評価用単膜2-1の形成>
真空度1×10-4Paまで減圧した後、ホスト化合物H-2、発光性化合物A-6、酸化物B-6-2の入った抵抗加熱ボートに通電して加熱し、ホスト化合物、発光性化合物A-6、酸化物B-6-2がそれぞれ88体積%、10体積%、2体積%になるように共蒸着し、膜厚50nmの発光膜を形成した。
<Formation of Evaluation Single Film 2-1>
After reducing the pressure to a degree of vacuum of 1×10 −4 Pa, the resistance heating boat containing the host compound H-2, the light-emitting compound A-6, and the oxide B-6-2 is energized to heat, and the host compound emits light. 88% by volume, 10% by volume, and 2% by volume of oxide B-6-2, respectively, were co-deposited to form a light-emitting film having a thickness of 50 nm.

<評価用単膜2-2~2-6の形成>
評価用単膜2-1の形成において、発光性化合物A及び酸化物Bを表IIに記載のとおりに変更した以外は同様にして、評価用単膜2-2~2-6の形成を行った。
<Formation of Evaluation Single Films 2-2 to 2-6>
Evaluation single films 2-2 to 2-6 were formed in the same manner except that the luminescent compound A and oxide B were changed as shown in Table II in the formation of evaluation single film 2-1. rice field.

<評価用単膜の大気保存安定性の評価>
各評価用単膜2-1~2-6を真空蒸着機から大気環境に搬出した後、実施例1に記載の方法と同様にして、大気保存安定性の評価を行った。ここで、評価用単膜2-1を相対値1.00としたときの、各評価用単膜の発光残存率の比率を相対値として算出した。1.00よりも大きいほど、大気保存時の発光残存率が高く大気保存安定性に優れることを意味する。
<Evaluation of atmospheric storage stability of single film for evaluation>
After carrying out each single film for evaluation 2-1 to 2-6 from the vacuum deposition machine to the atmospheric environment, the atmospheric storage stability was evaluated in the same manner as in Example 1. Here, the ratio of the luminescence residual rate of each evaluation single film was calculated as a relative value when the relative value of the evaluation single film 2-1 was set to 1.00. A value greater than 1.00 means that the luminescence retention rate during storage in the atmosphere is high and the storage stability in the atmosphere is excellent.

Figure 0007207331000021
Figure 0007207331000021

表IIに示すように、発光性化合物AがTADF材料であるA-8、リン光発光性材料であるA-1、A-2及びA-9を用いた際に大気保存安定性の効果が大きいことが分かった。これは、TADF材料やリン光発光性材料の発光寿命(τ)が長く、大気により消光しやすい材料であるため、本発明に係る気保存安定性向上の効果がより顕在したものと推定される。 As shown in Table II, when A-8, which is a TADF material, and A-1, A-2, and A-9, which are phosphorescent materials, are used as the light-emitting compound A, the effect of atmospheric storage stability is observed. It turned out to be big. This is because the TADF material and phosphorescent material have a long emission lifetime (τ) and are easily quenched by the atmosphere, so it is presumed that the effect of improving gas storage stability according to the present invention is more apparent. .

[実施例3]
実施例3では、本発明に係るリン光発光性化合物の配位子骨格を変更した発光性薄膜を各種成膜し、大気環境下で保存した際の発光強度変化について評価した。ただし、評価用単膜3-1及び3-2は、参考例である。
[Example 3]
In Example 3, various luminescent thin films were formed by changing the ligand skeleton of the phosphorescent compound according to the present invention, and the change in emission intensity when stored in an atmospheric environment was evaluated. However, single films for evaluation 3-1 and 3-2 are reference examples.

<評価用単膜3-1の形成>
石英基盤の準備は、実施例1と同様にして行った。酢酸ノルマルブチルに、ホスト化合物H-3、発光性化合物A-5、酸化物B-5-1(H-3/A-5/B-5-1=80質量%/15質量%/5質量%)を1.0質量%の濃度で溶解させた。得られた酢酸ノルマルブチル溶液を用いて、石英基板上にスピンコート法により50nmの厚さで成膜し、窒素ガス雰囲気下において、120℃、30分乾燥して評価用単膜3-1を形成した。
<Formation of Evaluation Single Film 3-1>
Preparation of the quartz substrate was carried out in the same manner as in Example 1. Normal-butyl acetate, host compound H-3, luminescent compound A-5, oxide B-5-1 (H-3/A-5/B-5-1 = 80 mass%/15 mass%/5 mass %) was dissolved at a concentration of 1.0% by weight. Using the obtained n-butyl acetate solution, a film having a thickness of 50 nm was formed on a quartz substrate by a spin coating method, and dried at 120° C. for 30 minutes in a nitrogen gas atmosphere to obtain a single film for evaluation 3-1. formed.

<評価用単膜3-2~3-4の形成>
評価用単膜3-1の形成において、発光性化合物A-5及び酸化物B-5-1の組み合わせを、表IIIに記載のとおりに変更した以外は同様にして評価用単膜3-2~3-4の作製を行った。
<Formation of Evaluation Single Films 3-2 to 3-4>
Evaluation single film 3-2 was prepared in the same manner except that the combination of luminescent compound A-5 and oxide B-5-1 was changed as shown in Table III in the formation of evaluation single film 3-1. ~ 3-4 was produced.

<評価用単膜の大気保存安定性の評価>
作製した各評価用単膜3-1~3-4に対し、実施例1と同様にして大気保存安定性の評価を行った。ここで、評価用単膜3-1を相対値1.00としたときの、各評価用単膜の発光残存率の比率を相対値として算出した。1.00よりも大きいほど、大気保存時の発光残存率が高く大気保存安定性に優れることを意味する。
<Evaluation of atmospheric storage stability of single film for evaluation>
The atmospheric storage stability was evaluated in the same manner as in Example 1 for each of the produced evaluation single films 3-1 to 3-4. Here, the ratio of the luminescence residual rate of each evaluation single film was calculated as a relative value when the relative value of the evaluation single film 3-1 was set to 1.00. A value greater than 1.00 means that the luminescence retention rate during storage in the atmosphere is high and the storage stability in the atmosphere is excellent.

Figure 0007207331000022
Figure 0007207331000022

表IIIに示すように、発光性化合物Aがリン光錯体で比較した際、5員芳香族複素環骨格を有するA-2及びA-3を用いた際に本発明に係る大気保存安定化の効果が大きいことが分かった。これは、5員芳香族複素環骨格が酸化されやすく大気保存性が不安定であるため、本発明に係る大気保存安定化の効果がより顕在したものと推定される。 As shown in Table III, when the luminescent compound A is compared with a phosphorescent complex, the atmospheric storage stabilization according to the present invention when using A-2 and A-3 having a 5-membered aromatic heterocyclic skeleton It was found to be highly effective. It is presumed that this is because the 5-membered aromatic heterocyclic skeleton is easily oxidized and the storage stability in the atmosphere is unstable, so that the effect of stabilizing the storage in the atmosphere according to the present invention is more conspicuous.

[実施例4]
実施例4では、本発明に係る発光性薄膜上に第2層を設けた発光性積層膜において、第2層中の材料を各種変更した際の大気保存安定性について評価を行った。
[Example 4]
In Example 4, the luminescent laminated film according to the present invention, in which the second layer was provided on the luminescent thin film, was evaluated for atmospheric storage stability when various materials in the second layer were changed.

<評価用単膜4-1の形成>
石英基盤の準備は、実施例1と同様にして行った。次に、この石英基板を市販の真空蒸着装置の基板ホルダーに固定した。真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に素子作製に最適の量を充填した。蒸着用抵抗加熱ボートはモリブデン製又はタングステン製を用いた。
<Formation of Evaluation Single Film 4-1>
Preparation of the quartz substrate was carried out in the same manner as in Example 1. Next, this quartz substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus. Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the optimum amount for device fabrication. A resistance heating boat made of molybdenum or tungsten was used for vapor deposition.

評価用単膜4-1の形成は、ホスト化合物をH-2からH-4に変更した以外は評価用単膜2-4と同様にして作製を行った。 The single film for evaluation 4-1 was formed in the same manner as the single film for evaluation 2-4, except that the host compound was changed from H-2 to H-4.

<評価用積層膜4-2の形成>
評価用積層膜4-2は、単膜4-1を形成後、保護層に用いる化合物PT-1の入った抵抗加熱ボートに通電して加熱し、膜厚30nmの保護膜を形成し、積層層とした。
<Formation of laminated film 4-2 for evaluation>
After forming the single film 4-1, the laminated film 4-2 for evaluation was heated by energizing the resistance heating boat containing the compound PT-1 used for the protective layer to form a protective film with a thickness of 30 nm, and laminated. layered.

<評価用積層膜4-3~4-11の形成>
評価用積層膜4-2の形成において、保護層に用いる化合物PT-1を表IVに記載のとおりに変更した以外は同様にして、評価用単膜4-3~4-11の形成を行った。
<Formation of laminated films 4-3 to 4-11 for evaluation>
Evaluation single films 4-3 to 4-11 were formed in the same manner except that the compound PT-1 used for the protective layer was changed as shown in Table IV in the formation of the laminated film for evaluation 4-2. rice field.

<評価用積層膜の大気保存安定性の評価>
各評価用単膜/積層膜4-1~4-11を真空蒸着機から大気環境に搬出した後、実施例1に記載の方法と同様にして、大気保存安定性の評価を行った。ただし、積層膜の発光強度変化の算出は保護層の発光影響を防ぐため、発光性化合物Aの発光極大ピーク強度の変化を測定した。
<Evaluation of atmospheric storage stability of laminated film for evaluation>
After each evaluation single film/laminate film 4-1 to 4-11 was carried out from the vacuum deposition machine to the atmospheric environment, the atmospheric storage stability was evaluated in the same manner as in Example 1. However, in order to calculate the change in the emission intensity of the laminated film, the change in the maximum emission peak intensity of the luminescent compound A was measured in order to prevent the influence of the emission of the protective layer.

Figure 0007207331000023
Figure 0007207331000023

表IVに示すように、本発明に係る発光性薄膜上に保護層を設け発光性積層膜とすることで、大気保存安定性向上の効果が大きいことが分かった。また、孤立電子対を有する化合物PT-2及びPT-3を保護層に設けた場合大気保存安定化の効果がより高まり、さらには含窒素化合物PT-4~PT-10を保護層に用いた際にはその効果が顕著に高まることが分かった。 As shown in Table IV, it was found that providing a protective layer on the light-emitting thin film according to the present invention to form a light-emitting laminated film has a large effect of improving atmospheric storage stability. In addition, when compounds PT-2 and PT-3 having a lone pair of electrons are provided in the protective layer, the effect of stabilizing atmospheric storage is enhanced, and nitrogen-containing compounds PT-4 to PT-10 are used in the protective layer. It was found that the effect was remarkably enhanced in some cases.

[実施例5]
実施例5(参考例)では、本発明に係る発光性薄膜上に第2層を設けた発光性積層膜において、第2層中の材料及び塗布溶媒を各種変更した際の大気保存安定性について評価を行った。
[Example 5]
In Example 5 (reference example) , in the luminescent laminated film in which the second layer is provided on the luminescent thin film according to the present invention, the atmospheric storage stability when various materials and coating solvents in the second layer are changed. made an evaluation.

<評価用単膜5-1の形成>
石英基盤の準備は、実施例1と同様にして行った。評価用単膜5-1の形成は、ホスト化合物をH-3からH-5に、発光性化合物A-5をA-4に、酸化物B-5-1をB-4-3に置き換えた以外は評価用単膜3-1と同様にして形成を行った。
<Formation of Evaluation Single Film 5-1>
Preparation of the quartz substrate was carried out in the same manner as in Example 1. Formation of the evaluation single film 5-1 is performed by replacing the host compound with H-3 to H-5, the luminescent compound A-5 with A-4, and the oxide B-5-1 with B-4-3. It was formed in the same manner as the evaluation single film 3-1, except for the above.

<評価用積層膜5-2の形成>
評価用積層膜5-2は、評価用単膜5-1を形成後、保護層を塗布積層することにより形成した。アセトニトリルに、PT-11を0.6質量%で溶解させた。得られたアセトニトリル溶液を用いて、石英基板上にスピンコート法により30nmの厚さで成膜し、窒素ガス雰囲気下において、100℃、30分乾燥して評価用積層膜5-2を形成した。
<Formation of laminated film 5-2 for evaluation>
The laminate film for evaluation 5-2 was formed by coating and laminating a protective layer after forming the single film for evaluation 5-1. 0.6% by mass of PT-11 was dissolved in acetonitrile. Using the obtained acetonitrile solution, a film having a thickness of 30 nm was formed on a quartz substrate by a spin coating method, and dried at 100° C. for 30 minutes in a nitrogen gas atmosphere to form a laminated film for evaluation 5-2. .

<保護層中の残溶媒定量>
評価用積層膜5-2の保護層中に残存するアセトニトリル溶媒の定量をGC-MSを用いて実施したところ、アセトニトリルが0.1質量%残存していることが分かった。
<Quantitative determination of residual solvent in protective layer>
When the acetonitrile solvent remaining in the protective layer of the laminated film for evaluation 5-2 was quantified using GC-MS, it was found that 0.1% by mass of acetonitrile remained.

<評価用積層膜5-3~5-18の形成>
評価用積層膜5-2の形成において、保護層に用いる化合物PT-11を表Vに記載のとおりに変更し、保護層を塗布する溶媒をアセトニトリルから表Vに記載のとおりに変更し、乾燥後の保護層の残溶媒量が表Vに記載のとおりになるように適宜加熱乾燥条件を変更した以外は同様にして、評価用積層膜5-3~5-18を形成した。
<Formation of laminated films 5-3 to 5-18 for evaluation>
In the formation of the laminated film for evaluation 5-2, the compound PT-11 used for the protective layer was changed as described in Table V, the solvent for applying the protective layer was changed from acetonitrile as described in Table V, and dried. Laminated films 5-3 to 5-18 for evaluation were formed in the same manner, except that the heat drying conditions were appropriately changed so that the amount of residual solvent in the subsequent protective layer was as shown in Table V.

表V中、LiFはフッ化リチウム、CaFはフッ化カルシウム、TFPOは、1H,1H,3H-テトラフルオロプロパノール、OFPOは、1H,1H,5H-オクタフルオロペンタノールをそれぞれ表す。 In Table V, LiF represents lithium fluoride, CaF represents calcium fluoride, TFPO represents 1H,1H,3H-tetrafluoropropanol, and OFPO represents 1H,1H,5H-octafluoropentanol.

<評価用積層膜の大気保存安定性の評価>
各評価用単膜/積層膜5-1~5-18を窒素雰囲気下から大気環境に搬出した後、実施例1に記載の方法と同様にして、大気保存安定性の評価を行った。ただし、積層膜の発光強度変化の算出は保護層の発光影響を防ぐため、発光性化合物Aの発光極大ピーク強度の変化を測定した。
<Evaluation of atmospheric storage stability of laminated film for evaluation>
After carrying out each evaluation single film/laminate film 5-1 to 5-18 from the nitrogen atmosphere to the atmospheric environment, the atmospheric storage stability was evaluated in the same manner as in Example 1. However, in order to calculate the change in the emission intensity of the laminated film, the change in the maximum emission peak intensity of the luminescent compound A was measured in order to prevent the influence of the emission of the protective layer.

Figure 0007207331000024
Figure 0007207331000024

表Vに示すように、本発明の発光性薄膜上に保護層を設け発光性積層膜とすることで、大気保存安定性の効果が大きいことが分かった。また、含フッ素化合物を保護層に含有する評価用単膜5-4~5-7において大気安定の効果がより高まり、さらには保護層をフッ素溶媒で塗布した評価用単膜5-8~5-18においては顕著に大気安定の効果が高まることが分かった。また、保護層中のフッ素溶媒の含有量は、0.01質量%を下回ると、効果が薄れることが分かった。 As shown in Table V, it was found that providing a protective layer on the light-emitting thin film of the present invention to form a light-emitting laminated film has a large effect on atmospheric storage stability. In addition, evaluation single films 5-4 to 5-7 containing a fluorine-containing compound in the protective layer have a further enhanced effect of atmospheric stability, and evaluation single films 5-8 to 5 in which the protective layer is coated with a fluorine solvent. At -18, it was found that the effect of stabilizing the atmosphere remarkably increases. Moreover, it was found that the effect diminishes when the content of the fluorine solvent in the protective layer is less than 0.01% by mass.

[実施例6]
実施例6(参考例)では、本発明に係る発光性薄膜上に第2層を設けた積層膜において、塗布プロセス及び第2層中の材料及び塗布溶媒を各種変更した際の大気保存安定性について評価を行った。
[Example 6]
In Example 6 (reference example) , in the laminated film in which the second layer was provided on the light-emitting thin film according to the present invention, the atmospheric storage stability when various coating processes, materials in the second layer, and coating solvents were changed. was evaluated.

<評価用単膜6-1の形成>
石英基盤の準備は、実施例1と同様にして行った。評価用単膜6-1の形成は、ホスト化合物をH-1からH-5、発光性化合物A-1をA-4に置き換え、塗布・乾燥環境を大気環境下に変更し、乾燥時間を120℃、1分乾燥に変更した以外は評価用単膜1-1と同様にして形成を行った。
<Formation of evaluation single film 6-1>
Preparation of the quartz substrate was carried out in the same manner as in Example 1. Formation of the single film for evaluation 6-1 is performed by replacing the host compound from H-1 to H-5, replacing the luminescent compound A-1 with A-4, changing the coating/drying environment to an atmospheric environment, and changing the drying time. A single film for evaluation 1-1 was formed in the same manner, except that drying was performed at 120° C. for 1 minute.

<評価用単膜6-2、6-3の形成>
評価用単膜6-2、6-3は、塗布方法をそれぞれダイコート法、インクジェット法に変更した以外は評価用単膜6-1と同様にして形成を行った。
<Formation of Evaluation Single Films 6-2 and 6-3>
Single films for evaluation 6-2 and 6-3 were formed in the same manner as for single film for evaluation 6-1, except that the coating method was changed to a die coating method and an inkjet method, respectively.

<評価用単膜6-4~6-6の形成>
評価用単膜6-1~6-3において、ホスト化合物H-5の一部を酸化物B-4-2に置き換えた(H-5/A-4/B-4-2=75質量%/20質量%/5質量%)以外は同様にして評価用単膜6-4~6-6の形成を行った。
<Formation of single films 6-4 to 6-6 for evaluation>
In evaluation single films 6-1 to 6-3, part of the host compound H-5 was replaced with oxide B-4-2 (H-5/A-4/B-4-2 = 75 mass% /20% by mass/5% by mass), single films 6-4 to 6-6 for evaluation were formed in the same manner.

<評価用積層膜6-7の形成>
評価用積層膜6-7は、評価用単膜6-4を形成後、保護層を塗布積層することにより形成した。アセトニトリルに、PT-5を0.6質量%で溶解させた。得られたアセトニトリル溶液を用いて、石英基板上にスピンコート法により30nmの厚さで成膜し、大気雰囲気下において、100℃、30分乾燥して評価用積層膜6-7を形成した。なお、乾燥後の保護層の残溶媒量は0.1質量%であった。
<評価用積層膜6-8~6-18の形成>
評価用積層膜6-7の形成において、発光層及び保護層の塗布方法をスピンコート法から表VIに記載のとおりに変更し、保護層に用いる化合物PT-5を表VIに記載のとおりに変更し、保護層を塗布する溶媒をアセトニトリルから表VIに記載のとおりに変更し、乾燥後の保護層の残溶媒量が0.1質量%になるように適宜加熱乾燥条件を変更した以外は同様にして、評価用積層膜6-8~6-18を形成した。
<Formation of laminated film 6-7 for evaluation>
The laminated film for evaluation 6-7 was formed by coating and laminating a protective layer after forming the single film for evaluation 6-4. 0.6% by mass of PT-5 was dissolved in acetonitrile. Using the obtained acetonitrile solution, a film having a thickness of 30 nm was formed on a quartz substrate by spin coating, and dried at 100° C. for 30 minutes in an air atmosphere to form a laminated film for evaluation 6-7. The residual solvent content of the protective layer after drying was 0.1% by mass.
<Formation of laminated films 6-8 to 6-18 for evaluation>
In the formation of the laminated film 6-7 for evaluation, the coating method of the light emitting layer and the protective layer was changed from the spin coating method as described in Table VI, and the compound PT-5 used for the protective layer was changed as described in Table VI. changed, the solvent for coating the protective layer was changed from acetonitrile as shown in Table VI, and the heat drying conditions were appropriately changed so that the residual solvent amount of the protective layer after drying was 0.1% by mass. Laminated films for evaluation 6-8 to 6-18 were formed in the same manner.

表VI中、LiFはフッ化リチウム、CaFはフッ化カルシウム、TFPOは、1H,1H,3H-テトラフルオロプロパノール、OFPOは、1H,1H,5H-オクタフルオロペンタノールをそれぞれ表す。 In Table VI, LiF represents lithium fluoride, CaF calcium fluoride, TFPO 1H,1H,3H-tetrafluoropropanol, and OFPO 1H,1H,5H-octafluoropentanol.

<評価用積層膜の大気保存安定性の評価>
各評価用単膜/積層膜6-1~6-18を乾燥工程後より、実施例1に記載の方法と同様にして、大気保存安定性の評価を行った。ただし、積層膜の発光強度変化の算出は保護層の発光影響を防ぐため、発光性化合物Aの発光極大ピーク強度の変化を測定した。
<Evaluation of atmospheric storage stability of laminated film for evaluation>
After the drying step, each single film/laminated film for evaluation 6-1 to 6-18 was evaluated for atmospheric storage stability in the same manner as in Example 1. However, in order to calculate the change in the emission intensity of the laminated film, the change in the maximum emission peak intensity of the luminescent compound A was measured in order to prevent the influence of the emission of the protective layer.

Figure 0007207331000025
Figure 0007207331000025



表VIに示すように、スピンコート法以外の塗布プロセスで作製した場合においても、本発明に係る酸化物Bを含有している発光性薄膜は大気保存安定性に優れた発光性薄膜であることが分かった。さらに、大気環境下インクジェット法で発光性薄膜を塗布した6-3においては、他の塗布方法よりも大気保存安定性が低下することが分かった。これは、液滴が射出されることにより外気に接触する表面積が増加するので、他の塗布方法などに比して水分や酸素の影響を受けやすくなるためだと推定される。しかしながら、インクジェット印刷法によってより大きくなる酸素や水分による影響についても、本発明の発光性薄膜を適用することで解決できることが分かった。特に、保護層中にフッ素化合物を含有している膜においては、インクジェット印刷法を用いてもスピンコート法と同等の大気保存性を確保できることが分かる。 As shown in Table VI, the luminescent thin film containing oxide B according to the present invention is a luminescent thin film with excellent atmospheric storage stability even when it is produced by a coating process other than the spin coating method. I found out. Furthermore, it was found that 6-3, in which the light-emitting thin film was applied by the inkjet method under an atmospheric environment, had lower atmospheric storage stability than other coating methods. It is presumed that this is because the ejected droplets increase the surface area in contact with the air, making them more susceptible to moisture and oxygen than other coating methods. However, it was found that the luminescent thin film of the present invention can solve the effect of oxygen and moisture, which is increased by the inkjet printing method. In particular, for a film containing a fluorine compound in the protective layer, it can be seen that the ink-jet printing method can ensure atmospheric storage stability equivalent to that of the spin coating method.

[実施例7]
実施例7では、本発明の発光性薄膜を発光性化合物Aから酸化物Bを生成させる方法を用いた塗布プロセスの検証を行った。
[Example 7]
In Example 7, the coating process of the luminescent thin film of the present invention using a method of generating oxide B from luminescent compound A was verified.

<比較の評価用単膜7-1の形成>
石英基盤の準備は、実施例1と同様にして行った。比較の評価用単膜7-1は、ホスト化合物をH-1からH-3に変更した以外は評価用単膜1-1と同様にして、形成を行った。
<Formation of Comparative Evaluation Single Film 7-1>
Preparation of the quartz substrate was carried out in the same manner as in Example 1. A comparative single film for evaluation 7-1 was formed in the same manner as the single film for evaluation 1-1 except that the host compound was changed from H-1 to H-3.

<評価用単膜7-2~7-6の形成>
評価用単膜7-2~7-6は、比較の評価用単膜7-1の成膜において、塗布環境及び乾燥条件を表VIIに記載のとおりに変更した以外は同様にして、形成を行った。
<Formation of Evaluation Single Films 7-2 to 7-6>
Evaluation single films 7-2 to 7-6 were formed in the same manner as in the formation of the comparative evaluation single film 7-1, except that the coating environment and drying conditions were changed as shown in Table VII. went.

<評価用単膜7-1~7-6の成分分析>
各評価用単膜7-1~7-6を高速液体クロマトグラフ質量分析計(LC-MS島津製作所製)により含有量及び成分分析を実施した。含有量分析は、液体クロマトグラフィー(LC-UV)で予め測定した検量線に基づき、含有量を算出した。その結果、比較の評価用単膜7-1では検出されなかった、式(1)を満たす酸化物Bの成分が評価用単膜7-3~7-6において検出された。合わせて、発光性化合物由来と推定されるその他の成分を合わせて検出した。
<Component Analysis of Evaluation Single Films 7-1 to 7-6>
The contents and components of each evaluation single film 7-1 to 7-6 were analyzed using a high-performance liquid chromatograph mass spectrometer (LC-MS manufactured by Shimadzu Corporation). For content analysis, the content was calculated based on a calibration curve previously measured by liquid chromatography (LC-UV). As a result, the component of oxide B satisfying the formula (1), which was not detected in the comparative evaluation single film 7-1, was detected in the evaluation single films 7-3 to 7-6. In addition, other components presumed to be derived from the luminescent compound were also detected.

その他の成分としては、LC-MSによって検出されたMSスペクトルから、下記構造に示すような分解物が推定された。下記D-1~D-7は、本実施例7で検出された発光性材料A-1由来のその他の成分の例である。 From the MS spectrum detected by LC-MS, the other components were presumed to be decomposition products shown in the structure below. D-1 to D-7 below are examples of other components derived from the luminescent material A-1 detected in Example 7.

Figure 0007207331000026
Figure 0007207331000026

Figure 0007207331000027
Figure 0007207331000027

ここで、mは1~3の整数、nは0~2の整数であり、m+n=3を満たす。 Here, m is an integer of 1 to 3, n is an integer of 0 to 2, and satisfies m+n=3.

<評価用単膜7-1~7-6の発光性の評価>
作成した各評価用単膜7-1~7-6に対し、生成した成分の影響を把握するため、乾燥工程後すぐ室温状態(23℃・55%RH)に搬出し、励起波長300nmの光を照射して、室温状態の発光スペクトル、発光強度を測定した。ここで、評価用単膜7-1を相対値1.00としたときの、各評価用単膜の初期発光強度の比率を相対値として算出した。1.00に近いほど、生成した成分による消光影響が少ないことを意味する。
<Evaluation of Luminescent Properties of Evaluation Single Films 7-1 to 7-6>
In order to grasp the influence of the generated components on each of the prepared evaluation single films 7-1 to 7-6, immediately after the drying process, they were transported to room temperature (23 ° C., 55% RH) and exposed to light with an excitation wavelength of 300 nm. was irradiated, and the emission spectrum and emission intensity at room temperature were measured. Here, the ratio of the initial emission intensity of each evaluation single film was calculated as a relative value when the evaluation single film 7-1 was set to a relative value of 1.00. Closer to 1.00 means less quenching effect by the generated component.

<評価用単膜7-1~7-6の大気保存安定性の評価>
各評価用単膜7-1~7-6を発光スペクトル測定後、実施例1に記載の方法と同様にして、大気保存安定性の評価を行った。
<Evaluation of atmospheric storage stability of evaluation single films 7-1 to 7-6>
After measuring the emission spectrum of each single film for evaluation 7-1 to 7-6, the atmospheric storage stability was evaluated in the same manner as in Example 1.

Figure 0007207331000028
Figure 0007207331000028

表VIIに示すように、大気塗布プロセスを実施した評価用単膜7-3~7-6では本発明に係る酸化物Bが新たに生成し、その効果として大気保存安定性が向上していることが分かった。さらに、好ましい大気塗布プロセスとしては、大気下での加熱乾燥を実施しない評価用単膜7-4~7-6のプロセスであり、副生成する分解物などのその他成分の生成が抑えられ、初期の発光強度が維持できていることが分かる。一方、大気下で加熱乾燥した評価用単膜7-3は過剰に酸化が進行し、その他成分の量が増大、初期の発光強度低下を併発してしまうことが分かる。 As shown in Table VII, in the evaluation single films 7-3 to 7-6 subjected to the air coating process, the oxide B according to the present invention is newly generated, and as an effect, the air storage stability is improved. I found out. Furthermore, a preferable atmospheric coating process is a process for evaluation single films 7-4 to 7-6 that does not heat and dry in the atmosphere. can be maintained. On the other hand, it can be seen that the evaluation single film 7-3 heat-dried in the air is excessively oxidized, the amount of other components increases, and the emission intensity decreases in the initial stage.

このような大気塗布プロセスを実施することにより、酸化物Bをあらかじめ合成する必要がなく、かつ不活性ガス環境や真空蒸着環境による成膜プロセスが不要となり、低コストで大気安定な発光性薄膜を製造することができる。 By carrying out such an atmospheric coating process, there is no need to synthesize the oxide B in advance, and a film formation process in an inert gas environment or a vacuum deposition environment becomes unnecessary, so that a low-cost, air-stable luminescent thin film can be obtained. can be manufactured.

[実施例8]
実施例8では、実施例7に記載した発光性化合物Aから酸化物Bを生成させる方法を用い、さらに発光性薄膜上に保護層を積層した発光性積層膜の塗布プロセスの検証を行った。
[Example 8]
In Example 8, the method of producing oxide B from luminescent compound A described in Example 7 was used, and a coating process for a luminescent laminated film in which a protective layer was laminated on the luminescent thin film was verified.

<比較の評価用積層膜8-1の形成>
石英基盤の準備は、実施例1と同様にして行った。比較の評価用積層膜8-1は、発光性薄膜としてホスト化合物をH-3からH-1に変更した以外は同様にして評価用単膜7-1を形成後、保護層を塗布積層することにより形成した。TFPOに、PT-6を0.5質量%で溶解させた。得られたTFPO溶液を用いて、石英基板上にスピンコート法により30nmの厚さで成膜し、窒素ガス雰囲気下において、120℃、30分乾燥して比較の評価用積層膜8-1を形成した。保護層中のTFPOの残溶媒量は0.1質量%であった。
<Formation of laminated film 8-1 for comparative evaluation>
Preparation of the quartz substrate was carried out in the same manner as in Example 1. A laminated film for evaluation 8-1 for comparison is formed by applying and laminating a protective layer after forming a single film for evaluation 7-1 in the same manner except that the host compound is changed from H-3 to H-1 as a light-emitting thin film. It was formed by 0.5% by mass of PT-6 was dissolved in TFPO. Using the obtained TFPO solution, a film having a thickness of 30 nm was formed on a quartz substrate by a spin coating method, and dried at 120° C. for 30 minutes in a nitrogen gas atmosphere to obtain a laminated film 8-1 for comparison evaluation. formed. The remaining solvent amount of TFPO in the protective layer was 0.1% by mass.

<評価用積層膜8-2~8-7の形成>
評価用積層膜8-2~8-7は、比較の評価用積層膜8-1の成膜において、塗布環境及び乾燥条件を表VIIIに記載のとおりに変更した以外は同様にして、作製を行った。
<Formation of laminated films 8-2 to 8-7 for evaluation>
Evaluation laminated films 8-2 to 8-7 were produced in the same manner as in the film formation of comparative evaluation laminated film 8-1, except that the coating environment and drying conditions were changed as shown in Table VIII. went.

<評価用積層膜8-1~8-7の成分分析>
各評価用積層膜8-1~8-7をLC-MSにより含有量及び成分分析を実施した。
その結果、比較の評価用積層膜8-1、8-2では検出されなかった、式(1)を満たす酸化物Bの成分が評価用単膜8-3~8-7において検出された。合わせて、発光性化合物由来と推定されるその他の成分を合わせて検出した。
<Component Analysis of Evaluation Laminated Films 8-1 to 8-7>
Content and component analysis was performed on each evaluation laminated film 8-1 to 8-7 by LC-MS.
As a result, the component of oxide B satisfying the formula (1) was detected in the evaluation single films 8-3 to 8-7, which was not detected in the comparative evaluation laminated films 8-1 and 8-2. In addition, other components presumed to be derived from the luminescent compound were also detected.

その他の成分としては、検出されたMSスペクトルから、実施例7に記載のものと同様の成分を含有していることが推定された。 As other components, it was presumed to contain components similar to those described in Example 7 from the detected MS spectrum.

<評価用積層膜8-1~8-7の発光性の評価>
作成した各評価用積層膜8-1~8-7に対し、生成した成分の影響を把握するため、大気環境下に搬出後すぐ、励起波長300nmの光を照射して、室温状態(23℃・55%RH)の発光スペクトル、及び発光性化合物Aの発光強度を測定した。ここで、評価用積層膜8-1を相対値1.00としたときの、各評価用単膜の初期発光強度の比率を相対値として算出した。1.00に近いほど、生成した成分による消光影響が少ないことを意味する。
<Evaluation of luminescence properties of evaluation laminated films 8-1 to 8-7>
In order to grasp the influence of the generated components on each of the prepared evaluation laminated films 8-1 to 8-7, immediately after carrying out into the atmospheric environment, light with an excitation wavelength of 300 nm was irradiated, and the room temperature state (23 ° C. - The emission spectrum at 55% RH) and the emission intensity of the luminescent compound A were measured. Here, the ratio of the initial emission intensity of each evaluation single film was calculated as a relative value when the evaluation laminated film 8-1 was set to a relative value of 1.00. Closer to 1.00 means less quenching effect by the generated component.

<評価用積層膜8-1~8-7の大気保存安定性の評価>
各評価用単膜8-1~8-7を発光スペクトル測定後、実施例1に記載の方法と同様にして、大気保存安定性の評価を行った。
<Evaluation of atmospheric storage stability of laminated films 8-1 to 8-7 for evaluation>
After measuring the emission spectrum of each single film for evaluation 8-1 to 8-7, the atmospheric storage stability was evaluated in the same manner as in Example 1.

Figure 0007207331000029
Figure 0007207331000029

表VIIIに示すように、大気塗布プロセスを実施した評価用積層膜8-3~8-7では酸化物Bが新たに生成し、その効果として大気保存安定性が向上していることが分かった。さらに、好ましい大気塗布プロセスとしては、発光層成膜時に大気下で加熱乾燥を実施しない評価用積層膜8-4~8-7のプロセスであり、副生成する分解物などのその他成分の生成が抑えられ、初期の発光強度が維持できていることが分かる。とりわけ、評価用積層膜8-4のプロセスにおいては、不活性ガス環境や真空/減圧環境を用いていない最も低コストのプロセスにもかかわらず、その他成分の生成が抑制され、高い初期発光と大気保存安定性を両立していることが分かる。この結果は、評価用積層膜8-4のプロセスにおいて発光膜が保護層で覆われた状態で乾燥されるため、乾燥中に大気の発光層への侵入が抑制され、発光性化合物Aの過剰の酸化を抑制し、発光性化合物Aの消光に関与する分解物生成を抑制できるためだと推定している。 As shown in Table VIII, it was found that oxide B was newly generated in the evaluation laminated films 8-3 to 8-7 subjected to the air coating process, and as an effect thereof, the air storage stability was improved. . Furthermore, a preferable atmospheric coating process is a process for evaluation laminated films 8-4 to 8-7 in which heat drying is not performed in the atmosphere during the formation of the light-emitting layer, and other components such as by-product decomposition products are generated. It can be seen that the emission intensity is suppressed and the initial emission intensity is maintained. In particular, in the process of the laminated film for evaluation 8-4, although it is the lowest cost process that does not use an inert gas environment or a vacuum/reduced pressure environment, the generation of other components is suppressed, and high initial luminescence and atmospheric It can be seen that both storage stability is achieved. As a result, since the light-emitting film is dried while being covered with a protective layer in the process of the laminated film for evaluation 8-4, the penetration of the atmosphere into the light-emitting layer is suppressed during drying, and the excess of the light-emitting compound A It is presumed that this is because the oxidation of the light-emitting compound A can be suppressed, and the generation of decomposition products involved in the quenching of the light-emitting compound A can be suppressed.

[実施例9]
実施例9では、本発明に係る大気安定性に優れる発光性薄膜を塗布膜として組み込んだ照明装置(及び素子)の駆動安定性について評価した。
[Example 9]
In Example 9, driving stability of a lighting device (and an element) in which the luminescent thin film of the present invention, which is excellent in atmospheric stability, is incorporated as a coating film was evaluated.

<評価用照明装置9-1の作製>
(基材の準備)
まず、ポリエチレンナフタレートフィルム(PEN:帝人デュポンフィルム株式会社製)の陽極を形成する側の全面に、特開2004-68143号公報に記載の構成の大気圧プラズマ放電処理装置を用いて、SiOxからなる無機物のガスバリアー層を層厚500nmとなるように形成した。これにより、酸素透過度0.001mL/(m・24h・atom)以下、水蒸気透過度0.001g/(m・24h)以下のガスバリアー性を有する可撓性の基材を作製した。
<Production of Evaluation Lighting Device 9-1>
(Preparation of base material)
First, using an atmospheric pressure plasma discharge treatment apparatus having the configuration described in Japanese Patent Application Laid-Open No. 2004-68143, the entire surface of a polyethylene naphthalate film (PEN: manufactured by Teijin DuPont Films Co., Ltd.) on the side where the anode is formed is treated from SiOx. A gas barrier layer made of an inorganic substance was formed so as to have a layer thickness of 500 nm. As a result, a flexible substrate having gas barrier properties with an oxygen permeability of 0.001 mL/(m 2 ·24 h·atom) or less and a water vapor permeability of 0.001 g/(m 2 ·24 h) or less was produced.

(陽極の形成)
上記基材上に厚さ120nmのITO(インジウム・スズ酸化物)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、陽極を形成した。なお、パターンは発光領域の面積が5cm×5cmになるようなパターンとした。
(Formation of anode)
A film of ITO (indium tin oxide) having a thickness of 120 nm was formed on the substrate by sputtering, and patterning was performed by photolithography to form an anode. The pattern was such that the area of the light emitting region was 5 cm×5 cm.

(正孔注入層の形成)
陽極を形成した基材をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。そして、陽極を形成した基材上に、特許第4509787号公報の実施例16と同様に調製したポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート(PEDOT/PSS)の分散液をイソプロピルアルコールで希釈した2質量%溶液をダイコート法にて塗布、自然乾燥し、層厚40nmの正孔注入層を形成した。
(Formation of hole injection layer)
The substrate on which the anode was formed was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaned for 5 minutes. Then, a dispersion of poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT/PSS) prepared in the same manner as in Example 16 of Japanese Patent No. 4509787 was applied to the substrate on which the anode was formed, and isopropyl alcohol. was applied by a die coating method and air dried to form a hole injection layer having a layer thickness of 40 nm.

(正孔輸送層の形成)
次に、正孔注入層を形成した基材を、窒素雰囲気下、下記組成の正孔輸送層形成用塗布液を用いて、ダイコート法にて5m/minで塗布、自然乾燥した後に、130℃で30分間保持し、層厚30nmの正孔輸送層を形成した。
(Formation of hole transport layer)
Next, the substrate on which the hole injection layer was formed was coated with a coating solution for forming a hole transport layer having the following composition under a nitrogen atmosphere by a die coating method at 5 m/min. for 30 minutes to form a hole transport layer having a layer thickness of 30 nm.

〈正孔輸送層形成用塗布液〉
正孔輸送材料(上記例示化合物HT-1)(重量平均分子量Mw=80000)
10質量部
クロロベンゼン 3000質量部
(発光層の形成)
次に、正孔輸送層を形成した基材に対し、窒素環境下で、実施例1に記載の方法で評価用単膜1-1を形成し、発光層を得た。
<Coating solution for forming hole transport layer>
Hole-transporting material (exemplified compound HT-1 above) (weight average molecular weight Mw = 80000)
10 parts by mass Chlorobenzene 3000 parts by mass (Formation of light-emitting layer)
Next, a single film for evaluation 1-1 was formed on the base material on which the hole transport layer was formed, in a nitrogen environment by the method described in Example 1, to obtain a light emitting layer.

(電子輸送層の形成)
次に、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
(Formation of electron transport layer)
Next, this transparent substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus.

真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用抵抗加熱ボートはモリブデン製又はタングステン製を用いた。 Each resistive heating boat for vapor deposition in a vacuum vapor deposition apparatus was filled with the constituent material of each layer in the optimum amount for device fabrication. A resistance heating boat made of molybdenum or tungsten was used for vapor deposition.

真空度1×10-4Paまで減圧した後、PT-5の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で発光層上に蒸着し、層厚40nmの電子輸送層を形成した。その上に、フッ化リチウムを層厚0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、評価用の有機EL素子を作製した。After reducing the pressure to a degree of vacuum of 1×10 −4 Pa, a resistance heating boat containing PT-5 was energized to heat, and deposited on the light-emitting layer at a deposition rate of 0.1 nm/sec to transport electrons with a layer thickness of 40 nm. formed a layer. Lithium fluoride was vapor-deposited thereon so as to have a layer thickness of 0.5 nm, and then aluminum was vapor-deposited to a thickness of 100 nm to form a cathode, thereby producing an organic EL device for evaluation.

(封止)
以上の工程により形成した積層体に対し、市販のロールラミネート装置を用いて封止基材を接着した。
(sealing)
A sealing substrate was adhered to the laminate formed by the above steps using a commercially available roll laminator.

封止基材として、可撓性を有する厚さ30μmのアルミニウム箔(東洋アルミニウム(株)製)に、ドライラミネーション用の2液反応型のウレタン系接着剤を用いて層厚1.5μmの接着剤層を設け、厚さ12μmのポリエチレンテレフタレート(PET)フィルムをラミネートしたものを作製した。 As a sealing base material, a 1.5 μm layer thickness is adhered to a flexible 30 μm thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.) using a two-liquid reaction type urethane adhesive for dry lamination. An agent layer was provided, and a polyethylene terephthalate (PET) film having a thickness of 12 μm was laminated.

封止用接着剤として熱硬化性接着剤を、ディスペンサーを使用して封止基材のアルミニウム箔の接着面(つや面)に沿って厚さ20μmで均一に塗布した。これを100Pa以下の真空下で12時間乾燥させた。更に、その封止基材を露点温度-80℃以下、酸素濃度0.8ppmの窒素雰囲気下へ移動して、12時間以上乾燥させ、封止用接着剤の含水率が100ppm以下となるように調整した。 A thermosetting adhesive as a sealing adhesive was uniformly applied to a thickness of 20 μm along the bonding surface (glossy surface) of the aluminum foil of the sealing substrate using a dispenser. This was dried under a vacuum of 100 Pa or less for 12 hours. Furthermore, the sealing base material is moved to a nitrogen atmosphere with a dew point temperature of −80° C. or less and an oxygen concentration of 0.8 ppm and dried for 12 hours or more so that the moisture content of the sealing adhesive is 100 ppm or less. It was adjusted.

熱硬化性接着剤としては下記の(A)~(C)を混合したエポキシ系接着剤を用いた。 As the thermosetting adhesive, an epoxy-based adhesive obtained by mixing the following (A) to (C) was used.

(A)ビスフェノールAジグリシジルエーテル(DGEBA)
(B)ジシアンジアミド(DICY)
(C)エポキシアダクト系硬化促進剤
上記封止基材を上記積層体に対して密着・配置して、圧着ロールを用いて、圧着ロール温度100℃、圧力0.5MPa、装置速度0.3m/minの圧着条件で密着封止し、評価用照明装置9-1を作製した。
(A) bisphenol A diglycidyl ether (DGEBA)
(B) Dicyandiamide (DICY)
(C) Epoxy Adduct Curing Accelerator Adhere and dispose the above-mentioned sealing base material on the above-mentioned laminate, and using a pressure roll, press roll temperature 100° C., pressure 0.5 MPa, device speed 0.3 m/ A lighting device for evaluation 9-1 was produced by tightly sealing under a pressure bonding condition of min.

<評価用照明装置9-2~9-18の作製>
上記のとおり、評価用照明装置9-1の発光層の形成は、実施例1の評価用単膜1-1と同様の方法で行った。評価用照明装置9-2~9-18の作製では、評価用照明装置9-1の作製方法において、発光層の形成方法を実施例1の評価用単膜1-2~1-18と同様の方法に変更した以外は同様にして作製した。
<Production of evaluation lighting devices 9-2 to 9-18>
As described above, the light-emitting layer of the lighting device for evaluation 9-1 was formed in the same manner as for the single film for evaluation 1-1 of Example 1. In the production of the evaluation lighting devices 9-2 to 9-18, in the method of producing the evaluation lighting device 9-1, the method of forming the light-emitting layer was the same as that of the evaluation single films 1-2 to 1-18 of Example 1. It was prepared in the same manner except that the method was changed to .

<連続起動安定性(発光寿命)の評価>
下記測定法に従って、連続起動安定性(発光寿命)として、半減寿命の評価を行った。
<Evaluation of continuous startup stability (luminescence life)>
The half-life was evaluated as continuous activation stability (luminescence life) according to the following measurement method.

各照明装置を、85℃、85%RHの環境下で初期輝度4000cd/mを与える電流で定電流駆動して、初期輝度の1/2になる時間を求め、これを半減寿命として発光寿命の尺度とした。なお、発光寿命は照明装置9-1を相対値1.00とする相対比(LT比)で表した。なお、値が大きい方が照明装置9-1に対して連続起動安定性(発光寿命)に優れていることを示す。Each lighting device is driven at a constant current with a current that gives an initial luminance of 4000 cd/m 2 in an environment of 85° C. and 85% RH, and the time to reach 1/2 of the initial luminance is obtained. was used as a measure of The light emission lifetime is expressed as a relative ratio (LT ratio) with the lighting device 9-1 having a relative value of 1.00. A larger value indicates that the lighting device 9-1 is superior in continuous activation stability (luminescence life).

Figure 0007207331000030
Figure 0007207331000030

表IXに示すとおり、本発明の大気保存安定性に優れる発光性薄膜を発光層に用いた、照明装置9-9~9-18については、大気が素子中に侵入し発光阻害を引き起こしやすい85℃、85%RHの環境下において高寿命の照明装置を作製できていることが分かった。 As shown in Table IX, for the lighting devices 9-9 to 9-18, in which the luminescent thin film of the present invention with excellent atmospheric storage stability is used as the luminescent layer, the atmosphere easily penetrates into the element and causes luminescence inhibition. C. and 85% RH, it was found that a long-life lighting device could be produced.

[実施例10]
実施例10では、本発明の大気保存安定性に優れる発光性薄膜を蒸着膜として組み込み、適宜電極を変更した際の照明装置(及び素子)の駆動安定性について評価した。
[Example 10]
In Example 10, the luminescent thin film of the present invention, which is excellent in atmospheric storage stability, was incorporated as a deposited film, and the driving stability of the lighting device (and the device) was evaluated when the electrodes were appropriately changed.

<評価用照明装置10-1の作製>
基材の準備、陽極の形成、正孔注入層の形成は、実施例9と同様にして行った。
<Production of Evaluation Lighting Device 10-1>
Preparation of the substrate, formation of the anode, and formation of the hole injection layer were carried out in the same manner as in Example 9.

次に、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。 Next, this transparent substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus.

真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用抵抗加熱ボートはモリブデン製又はタングステン製を用いた。 Each resistive heating boat for vapor deposition in a vacuum vapor deposition apparatus was filled with the constituent material of each layer in the optimum amount for device fabrication. A resistance heating boat made of molybdenum or tungsten was used for vapor deposition.

真空度1×10-4Paまで減圧した後、HT-2の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で正孔注入層上に蒸着し、層厚20nmの正孔輸送層を形成した。After reducing the pressure to a degree of vacuum of 1×10 −4 Pa, a resistance heating boat containing HT-2 was energized to heat, vapor-deposit on the hole injection layer at a vapor deposition rate of 0.1 nm/sec, and obtain a layer thickness of 20 nm. A hole transport layer was formed.

次いで、ホスト化合物H-2、発光性化合物A-3の入った抵抗加熱ボートに通電して加熱し、ホスト化合物H-2、発光性化合物A-3がそれぞれ85体積%、15体積%になるように共蒸着し、膜厚50nmの発光層を形成した。 Then, the resistance heating boat containing the host compound H-2 and the luminescent compound A-3 is energized and heated, and the host compound H-2 and the luminescent compound A-3 become 85% by volume and 15% by volume, respectively. were co-deposited to form a light-emitting layer with a film thickness of 50 nm.

次いで、PT-6を蒸着速度0.1nm/秒で蒸着し、層厚40nmの電子輸送層を形成した。 Then, PT-6 was deposited at a deposition rate of 0.1 nm/sec to form an electron transport layer with a layer thickness of 40 nm.

その上に、フッ化リチウムを層厚0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、評価用の有機EL素子を作製した。 Lithium fluoride was vapor-deposited thereon so as to have a layer thickness of 0.5 nm, and then aluminum was vapor-deposited to a thickness of 100 nm to form a cathode, thereby producing an organic EL device for evaluation.

封止工程は、実施例9に記載の方法と同様の方法を用いて封止し、評価用照明装置10-1を作製した。 In the sealing process, the same method as that described in Example 9 was used to manufacture the evaluation lighting device 10-1.

<評価用照明装置10-2の作製>
評価用照明装置10-1の発光層の形成において、ホスト化合物H-2の一部を酸化物B-3-2に置き換え、ホスト化合物H-2、発光性化合物A-3、酸化物B-3-2がそれぞれ84体積%、15体積%、1体積%になるように共蒸着した以外は同様にして、評価用照明装置10-2を作製した。
<Production of Evaluation Lighting Device 10-2>
In forming the light-emitting layer of the evaluation lighting device 10-1, part of the host compound H-2 was replaced with the oxide B-3-2, and the host compound H-2, the light-emitting compound A-3, the oxide B- A lighting device 10-2 for evaluation was produced in the same manner, except that 3-2 was co-evaporated so as to be 84% by volume, 15% by volume, and 1% by volume, respectively.

<評価用照明装置10-3~10-6の作製>
評価用照明装置10-2の作製において、陰極を表Xに記載のとおり変更した以外は同様にして、評価用照明装置10-3~10-6の作製を行った。
<Production of evaluation lighting devices 10-3 to 10-6>
Evaluation lighting devices 10-3 to 10-6 were fabricated in the same manner as in the preparation of evaluation lighting device 10-2, except that the cathode was changed as shown in Table X.

また、本発明の説明における金属の仕事関数の値としては、文献公知の値を用いることができる(例えば、Herbert B. Michaelson, 「The work function of the elements and its periodicity」, Journal of Applied Physics, November 1977, Vol.48, No.11, p.4729-p.4733)。 In addition, as the value of the work function of the metal in the description of the present invention, a value known in literature can be used (for example, Herbert B. Michaelson, "The work function of the elements and its periodicity", Journal of Applied Physics, November 1977, Vol.48, No.11, p.4729-4733).

<連続起動安定性(発光寿命)の評価>
実施例9に記載の方法に従って、半減寿命の評価を行った。なお、半減寿命は照明装置10-1を相対値1.00とする相対比(LT比)で表した。なお、値が大きいほうが照明装置10-1に対して連続起動安定性(発光寿命)に優れていることを示す。
<Evaluation of continuous startup stability (luminescence life)>
A half-life evaluation was performed according to the method described in Example 9. The half-life is represented by a relative ratio (LT ratio) with the lighting device 10-1 having a relative value of 1.00. A larger value indicates that the lighting device 10-1 is superior in continuous activation stability (luminescence life).

Figure 0007207331000031
Figure 0007207331000031

表Xに示すように、本発明の大気保存安定性に優れる発光性薄膜を発光層に用いた、照明装置10-2~10-6については、大気が素子中に侵入し発光阻害を引き起こしやすい85℃、85%RHの環境下において高寿命の照明装置を作製できていることが分かった。さらには、素子に使用した電極の仕事関数が4.2eV以上のアルミニウム、銀、金、コバルトを用いた照明装置10-2、10-4~10-6では、さらに高寿命の照明装置になっていることが分かった。特に、銀、金、コバルトを用いた照明装置が、より高寿命の照明装置になり、好ましいことが分かった。これは、電極の大気安定性を向上させたことにより、照明装置の起動安定性の向上に効果があったものと推定される。 As shown in Table X, in the lighting devices 10-2 to 10-6, in which the luminescent thin film of the present invention with excellent atmospheric storage stability is used as the luminescent layer, the atmosphere easily penetrates into the element and causes luminescence inhibition. It was found that a long-life lighting device could be produced under the environment of 85° C. and 85% RH. Furthermore, the illumination devices 10-2, 10-4 to 10-6 using aluminum, silver, gold, and cobalt whose electrodes have a work function of 4.2 eV or more used in the elements have a longer life. I found out that In particular, it has been found that a lighting device using silver, gold, or cobalt is preferable because it has a longer life. It is presumed that the improvement in the atmospheric stability of the electrodes was effective in improving the start-up stability of the lighting device.

[実施例11]
実施例11では、本発明に係る大気安定の発光性薄膜を塗布膜として組み込み、酸化物Bの含有量を適宜変更した際の白色照明装置(及び素子)の駆動安定性について評価した。
[Example 11]
In Example 11, the driving stability of a white lighting device (and an element) was evaluated when the air-stable luminescent thin film according to the present invention was incorporated as a coating film and the content of oxide B was appropriately changed.

<評価用照明装置11-1の作製>
基材の準備、陽極の形成、正孔注入層、正孔輸送層の形成は、実施例9と同様にして行った。
<Production of Evaluation Lighting Device 11-1>
Preparation of the substrate, formation of the anode, formation of the hole injection layer and the hole transport layer were carried out in the same manner as in Example 9.

(発光層の形成)
酢酸ノルマルブチルに、ホスト化合物H-1、発光性化合物A-2、A-4、A-5(H-1/A-2/A-4/A-5=89.4質量%/10質量%/0.3質量%/0.3質量%)を1.0質量%の濃度で溶解させた。得られた酢酸ノルマルブチル溶液を用いて、石英基板上にスピンコート法により50nmの厚さで成膜し、窒素ガス雰囲気下において、120℃、30分乾燥して発光層を形成した。
(Formation of light-emitting layer)
Normal-butyl acetate, host compound H-1, luminescent compounds A-2, A-4, A-5 (H-1/A-2/A-4/A-5 = 89.4 mass%/10 mass %/0.3 wt%/0.3 wt%) was dissolved at a concentration of 1.0 wt%. Using the obtained n-butyl acetate solution, a film having a thickness of 50 nm was formed on a quartz substrate by a spin coating method, and dried at 120° C. for 30 minutes in a nitrogen gas atmosphere to form a light-emitting layer.

(電子輸送層の形成)
TFPOに、PT-9を0.5質量%で溶解させた。得られたTFPO溶液を用いて、石英基板上にスピンコート法により30nmの厚さで成膜し、窒素ガス雰囲気下において、120℃、30分乾燥して電子輸送層を形成した。
(Formation of electron transport layer)
0.5% by mass of PT-9 was dissolved in TFPO. Using the obtained TFPO solution, a film having a thickness of 30 nm was formed on a quartz substrate by spin coating, and dried at 120° C. for 30 minutes in a nitrogen gas atmosphere to form an electron transport layer.

(陰極の形成)
次に、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
(Formation of cathode)
Next, this transparent substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus.

真空度1×10-4Paまで減圧した後、銀100nmを蒸着して陰極を形成し、評価用の有機EL素子を作製した。封止工程は、実施例9に記載の方法と同様の方法を用いて封止し、評価用照明装置11-1を作製した。After reducing the pressure to a degree of vacuum of 1×10 −4 Pa, 100 nm of silver was vapor-deposited to form a cathode, and an organic EL device for evaluation was produced. In the sealing process, a method similar to that described in Example 9 was used to fabricate an evaluation lighting device 11-1.

<評価用照明装置11-2~11-13の作製>
評価用照明装置11-1の発光層の形成において、ホスト化合物H-1の一部を酸化物B-2-6に置き換え、表XIに記載のとおりホスト化合物H-1、酸化物B-2-6がそれぞれ89.4-X質量%、X質量%になるように含有させ発光層を形成した以外は同様にして、評価用照明装置11-2~11-13の作製を行った。
<Production of Evaluation Lighting Devices 11-2 to 11-13>
In forming the light-emitting layer of the evaluation lighting device 11-1, part of the host compound H-1 was replaced with oxide B-2-6, and host compound H-1 and oxide B-2 were used as described in Table XI. Evaluation lighting devices 11-2 to 11-13 were produced in the same manner except that the light-emitting layers were formed by containing 89.4-X mass % and X mass % of -6, respectively.

<外部取り出し量子効率(EQE)の評価>
各照明装置を室温(約23℃)、2.5mA/cmの定電流条件下による通電を行い、発光開始直後の発光輝度(L0)[cd/m]を測定することにより、外部取り出し量子効率(EQE)を算出した。
<Evaluation of external extraction quantum efficiency (EQE)>
Each lighting device was energized under a constant current condition of 2.5 mA/cm 2 at room temperature (approximately 23° C.), and the light emission luminance (L0) [cd/m 2 ] immediately after the start of light emission was measured. Quantum efficiency (EQE) was calculated.

ここで、発光輝度の測定はCS-2000(コニカミノルタ(株)製)を用いて行い、外部取り出し量子効率は、照明装置11-1を相対値1.00とする相対比で表した。なお、値が大きいほうが発光効率に優れていることを示す。 Here, the emission luminance was measured using CS-2000 (manufactured by Konica Minolta, Inc.), and the external extraction quantum efficiency was expressed as a relative ratio with the lighting device 11-1 having a relative value of 1.00. In addition, it shows that the one where a value is large is excellent in luminous efficiency.

<連続起動安定性(発光寿命)の評価>
実施例8に記載の方法に従って、半減寿命の評価を行った。なお、半減寿命は照明装置11-1を相対値1.00とする相対比(LT比)で表した。なお、値が大きいほうが照明装置11-1に対して(発光寿命)に優れていることを示す。
<Evaluation of continuous startup stability (luminescence life)>
A half-life evaluation was performed according to the method described in Example 8. The half-life is represented by a relative ratio (LT ratio) with the lighting device 11-1 having a relative value of 1.00. It should be noted that a larger value indicates superiority (luminescence life) to the lighting device 11-1.

<評価用単膜11-1~11-13の形成>
各照明装置11-1~11-13の各発光層の形成方法と同様にして、各照明装置の発光層をそれぞれ石英基板上に成膜し、評価用単膜11-1~11-13とした。
<Formation of Evaluation Single Films 11-1 to 11-13>
In the same manner as the formation method of each light-emitting layer of each lighting device 11-1 to 11-13, the light-emitting layer of each lighting device was formed on a quartz substrate, and the evaluation single films 11-1 to 11-13 were formed. bottom.

<評価用単膜11-1~11-13の大気保存性の評価>
形成した各評価用単膜11-1~11-13に対し、実施例1と同様にして大気保存安定性の評価を行った。ここで、評価用単膜11-1を相対値1.00としたときの、各評価用単膜の発光残存率の比率を相対値として算出した。1.00よりも大きいほど、大気保存時の発光残存率が高く大気保存安定性に優れることを意味する。
<Evaluation of Atmospheric Preservability of Evaluation Single Films 11-1 to 11-13>
The atmospheric storage stability was evaluated in the same manner as in Example 1 for each evaluation single film 11-1 to 11-13 thus formed. Here, the ratio of the luminescence residual rate of each evaluation single film was calculated as a relative value when the relative value of the evaluation single film 11-1 was set to 1.00. A value greater than 1.00 means that the luminescence retention rate during storage in the atmosphere is high and the storage stability in the atmosphere is excellent.

Figure 0007207331000032
Figure 0007207331000032

表XIに示すように、本発明の大気保存安定性に優れる発光性薄膜を発光層に用いた、白色照明装置11-2~11-13については、大気が素子中に侵入し発光阻害を引き起こしやすい85℃、85%RHの環境下において高寿命の照明装置を作製できていることが分かった。 As shown in Table XI, in the white lighting devices 11-2 to 11-13, in which the light-emitting layer of the light-emitting thin film of the present invention having excellent atmospheric storage stability is used, air penetrates into the element and causes light emission inhibition. It was found that a long-life lighting device could be manufactured under an environment of 85° C. and 85% RH, which is easy to manufacture.

さらに、酸化防止剤Bの発光性材料Aに対する含有量は、100質量%以下にすることがEQE維持する上で好ましいことが分かった。これは、酸化防止剤Bの含有量が発光性材料Aの含有量を上回ると、通電時に酸化防止剤Bにキャリヤトラップしやすくなるため、発光効率の低下を引き起こすためだと推定される。 Furthermore, it was found that the content of the antioxidant B with respect to the luminescent material A is preferably 100% by mass or less for maintaining EQE. It is presumed that this is because when the content of the antioxidant B exceeds the content of the luminescent material A, carriers tend to be trapped in the antioxidant B when energized, resulting in a decrease in luminous efficiency.

また、本発明に係る大気安定な発光特性を示すために、酸化防止剤Bの含有比は0.001質量%以上が好ましく、さらに好ましくは0.01質量%以上が好ましいことが分かった。 In addition, it was found that the content ratio of antioxidant B is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, in order to exhibit atmospheric stable light emission properties according to the present invention.

[実施例12]
実施例12では、本発明の発光性薄膜を、発光性化合物Aから酸化物Bを生成させる大気下塗布方法を用い製造した際の照明装置(及び素子)の駆動安定性について評価した。
[Example 12]
In Example 12, the driving stability of a lighting device (and an element) when the luminescent thin film of the present invention was manufactured using an atmospheric coating method in which oxide B was generated from luminescent compound A was evaluated.

<評価用照明装置12-1の作製>
窒素雰囲気下パラキシレンに、HT-1を0.7質量%で溶解させた。得られたキシレン溶液を用いて、石英基板上にスピンコート法により30nmの厚さで成膜し、窒素ガス雰囲気下において、120℃、30分乾燥して正孔輸送層を形成した。
<Production of Evaluation Lighting Device 12-1>
0.7% by mass of HT-1 was dissolved in paraxylene under a nitrogen atmosphere. Using the obtained xylene solution, a film having a thickness of 30 nm was formed on a quartz substrate by a spin coating method, and dried at 120° C. for 30 minutes in a nitrogen gas atmosphere to form a hole transport layer.

(発光層、電子輸送層の形成)
発光層、電子輸送層の形成は、電子輸送層としてPT-6からPT-9に置き換えた以外は、実施例8の比較の評価用積層膜8-1と同様にして行った。
(Formation of light emitting layer and electron transport layer)
The light emitting layer and the electron transport layer were formed in the same manner as in the comparative evaluation laminated film 8-1 of Example 8, except that PT-6 was replaced with PT-9 as the electron transport layer.

(陰極の形成)
次に、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
(Formation of cathode)
Next, this transparent substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus.

真空度1×10-4Paまで減圧した後、銀100nmを蒸着して陰極を形成し、評価用の有機EL素子を作製した。封止工程は、実施例9に記載の方法と同様の方法を用いて封止し、評価用照明装置12-1を作製した。After reducing the pressure to a degree of vacuum of 1×10 −4 Pa, 100 nm of silver was vapor-deposited to form a cathode, and an organic EL device for evaluation was produced. In the sealing step, a method similar to that described in Example 9 was used to produce a lighting device for evaluation 12-1.

<評価用照明装置12-2~12-7の作製>
評価用照明装置12-1の発光層、電子輸送層の形成において、塗布環境及び乾燥条件を表XIIに記載のとおりに変更した以外は同様にして、作製を行った。
<Production of evaluation lighting devices 12-2 to 12-7>
The evaluation lighting device 12-1 was fabricated in the same manner as in the formation of the light emitting layer and the electron transport layer, except that the coating environment and drying conditions were changed as shown in Table XII.

<照明装置12-1~12-7中の発光層成分分析>
各評価用照明装置12-1~12-7中の発光層成分をLC-MSにより含有量及び成分分析を実施した。その結果、比較の照明装置12-1、12-2では検出されなかった、式(1)を満たす酸化物Bの成分が評価用照明装置12-3~12-7において検出された。合わせて、発光性材料由来と推定されるその他の成分を合わせて検出した。
<Emitting layer component analysis in lighting devices 12-1 to 12-7>
The light-emitting layer components in each evaluation lighting device 12-1 to 12-7 were subjected to content and component analysis by LC-MS. As a result, the component of oxide B satisfying formula (1), which was not detected in the comparative lighting devices 12-1 and 12-2, was detected in the evaluation lighting devices 12-3 to 12-7. In addition, other components presumed to be derived from the luminescent material were also detected.

<外部取り出し量子効率(EQE)の評価>
実施例11に記載の方法に従って、外部取り出し量子効率の評価を行った。外部取り出し量子効率は、照明装置12-1を相対値1.00とする相対比で表した。なお、値が大きいほうが発光効率に優れていることを示す。
<Evaluation of external extraction quantum efficiency (EQE)>
Evaluation of external extraction quantum efficiency was performed according to the method described in Example 11. The external extraction quantum efficiency is expressed as a relative ratio with the lighting device 12-1 having a relative value of 1.00. In addition, it shows that the one where a value is large is excellent in luminous efficiency.

<連続起動安定性(発光寿命)の評価>
実施例9に記載の方法に従って、半減寿命の評価を行った。なお、半減寿命は照明装置12-1を相対値1.00とする相対比(LT比)で表した。なお、値が大きいほうが照明装置12-1に対して連続起動安定性(発光寿命)に優れていることを示す。
<Evaluation of continuous startup stability (luminescence life)>
A half-life evaluation was performed according to the method described in Example 9. The half-life is represented by a relative ratio (LT ratio) with the lighting device 12-1 having a relative value of 1.00. A larger value indicates that the lighting device 12-1 is superior in continuous activation stability (luminescence life).

Figure 0007207331000033
Figure 0007207331000033

表XIIに示すように、大気塗布プロセスを用い酸化物Bを生成させた照明装置12-3~12-7については、大気が素子中に侵入し発光阻害を引き起こしやすい85℃、85%RHの環境下において高寿命の照明装置を作製できていることが分かった。さらに、発光層成膜時に大気下での加熱乾燥を実施しない照明装置12-4~12-7においては、副生成する分解物などのその他成分の生成が抑えられ、EQEが維持できていることが分かる。とりわけ、照明装置12-4のプロセスにおいては、不活性ガス環境や真空/減圧環境を用いていない最も低コストのプロセスにもかかわらず、その他成分の生成が抑制され、高い初期発光と大気保存安定性を両立していることが分かる。 As shown in Table XII, for the lighting devices 12-3 to 12-7 in which the oxide B was generated using the atmospheric coating process, the atmospheric air penetrated into the element and caused light emission inhibition at 85° C. and 85% RH. It was found that a long-life lighting device could be produced under the environment. Furthermore, in the lighting devices 12-4 to 12-7 that do not heat and dry in the atmosphere when the light-emitting layer is formed, the generation of other components such as by-product decomposition products is suppressed, and the EQE can be maintained. I understand. In particular, in the process of the lighting device 12-4, despite the lowest cost process that does not use an inert gas environment or a vacuum/reduced pressure environment, the generation of other components is suppressed, and high initial luminescence and atmospheric storage stability are achieved. It turns out that they are compatible with each other.

[実施例13]
実施例13では、本発明の発光性薄膜を、発光性化合物Aから酸化物Bを生成させる大気下塗布方法を用い、正孔輸送層から陰極までインクジェット塗布で製造した際の照明装置(及び素子)の駆動安定性について評価した。
[Example 13]
In Example 13, the lighting device (and the device) was manufactured by inkjet coating the luminescent thin film of the present invention from the hole transport layer to the cathode using an atmospheric coating method in which the oxide B is generated from the luminescent compound A. ) was evaluated for driving stability.

<評価用照明装置13-1の作製>
基材の準備、陽極の形成は実施例9と同様にして行った。正孔注入層の形成は、塗布方法をインクジェット印刷法に変更した以外は、実施例9と同様にして行った。また、正孔輸送層の形成は、塗布方法をインクジェット印刷法に変更した以外は、実施例12と同様にして実施した。
<Production of evaluation lighting device 13-1>
Preparation of the substrate and formation of the anode were carried out in the same manner as in Example 9. A hole injection layer was formed in the same manner as in Example 9, except that the coating method was changed to an inkjet printing method. Formation of the hole transport layer was carried out in the same manner as in Example 12, except that the coating method was changed to an inkjet printing method.

(発光層、電子輸送層の形成)
発光層、電子輸送層の形成は、発光性材料をA-1から、A-3に置き換え、電子輸送層としてPT-6からPT-9に置き換え、塗布方法をインクジェット印刷法に変更した以外は、実施例8の比較の評価用積層膜8-1と同様にして行った。
(Formation of light emitting layer and electron transport layer)
The light-emitting layer and the electron-transporting layer were formed except that the light-emitting material was replaced with A-3 from A-1, the electron-transporting layer was replaced with PT-6 from PT-9, and the coating method was changed to the inkjet printing method. , was carried out in the same manner as the laminated film 8-1 for comparison in Example 8.

(陰極形成)
次に、大気環境下で水系銀インクをインクジェット法で塗布し、大気環境下で120℃・60分で乾燥し、厚さ100nmの陰極を形成した。
(Cathode formation)
Next, a water-based silver ink was applied by an inkjet method in an atmospheric environment and dried at 120° C. for 60 minutes in an atmospheric environment to form a cathode with a thickness of 100 nm.

<評価用照明装置13-2~13-14の作製>
評価用照明装置13-1の正孔輸送層、発光層、電子輸送層、陰極の形成において、塗布環境及び乾燥条件を表XIIIに記載のとおりに変更した以外は同様にして、作製を行った。
<照明装置13-1~13-14中の発光層成分分析>
各評価用照明装置13-1~13-14中の発光層成分をLC-MSにより含有量及び成分分析を実施した。その結果、比較の評価用照明装置13-1~13-7では検出されなかった、発光性化合物A-3に対し式(1)を満たす酸化物Bの成分が評価用照明装置13-8~13-14において検出された。合わせて、発光性材料由来と推定されるその他の成分を検出した。
<Production of evaluation lighting devices 13-2 to 13-14>
Fabrication was carried out in the same manner as in the formation of the hole transport layer, light emitting layer, electron transport layer, and cathode of the evaluation lighting device 13-1, except that the coating environment and drying conditions were changed as shown in Table XIII. .
<Emitting layer component analysis in lighting devices 13-1 to 13-14>
The light-emitting layer components in each evaluation lighting device 13-1 to 13-14 were subjected to content and component analysis by LC-MS. As a result, the component of the oxide B that satisfies the formula (1) for the luminescent compound A-3, which was not detected in the comparative evaluation lighting devices 13-1 to 13-7, was found in the evaluation lighting devices 13-8 to 13-8. Detected in 13-14. In addition, other components presumed to be derived from the luminescent material were detected.

<外部取り出し量子効率(EQE)の評価>
実施例11に記載の方法に従って、外部取り出し量子効率の評価を行った。外部取り出し量子効率は、照明装置13-1を相対値1.00とする相対比で表した。なお、値が大きいほうが発光効率に優れていることを示す。
<Evaluation of external extraction quantum efficiency (EQE)>
Evaluation of external extraction quantum efficiency was performed according to the method described in Example 11. The external extraction quantum efficiency was expressed as a relative ratio with the lighting device 13-1 having a relative value of 1.00. In addition, it shows that the one where a value is large is excellent in luminous efficiency.

<連続起動安定性(発光寿命)の評価>
実施例9に記載の方法に従って、半減寿命の評価を行った。なお、半減寿命は照明装置13-1を相対値1.00とする相対比(LT比)で表した。なお、値が大きいほうが照明装置13-1に対して連続起動安定性(発光寿命)に優れていることを示す。
<Evaluation of continuous startup stability (luminescence life)>
A half-life evaluation was performed according to the method described in Example 9. Note that the half-life is represented by a relative ratio (LT ratio) with the lighting device 13-1 having a relative value of 1.00. A larger value indicates that the lighting device 13-1 is superior in continuous activation stability (luminescence life).

Figure 0007207331000034
Figure 0007207331000034

表XIIIに示すように、大気塗布プロセスを用い酸化物Bを生成させた、照明装置13-8~13-14については、大気が素子中に侵入し発光阻害を引き起こしやすい85℃、85%RHの環境下において高寿命の照明装置を作製できていることが分かった。さらに、発光層成膜時に大気下での加熱乾燥を実施しない照明装置13-9~13-14においては、副生成する分解物などのその他成分の生成が抑えられ、EQEが維持できていることが分かる。とりわけ、照明装置13-9及び13-10のプロセスにおいては、不活性ガス環境や減圧環境を用いていない最も低コストのプロセスにもかかわらず、その他成分の生成が抑制され、高い初期発光と大気保存安定性を両立していることが分かる。 As shown in Table XIII, for the lighting devices 13-8 to 13-14 in which the oxide B was generated using the atmospheric coating process, the atmospheric air penetrated into the element and caused light emission inhibition at 85 ° C. and 85% RH. It was found that a long-life lighting device could be manufactured under the environment of Furthermore, in the lighting devices 13-9 to 13-14 that do not heat and dry in the atmosphere when the light-emitting layer is formed, the generation of other components such as by-product decomposition products is suppressed, and the EQE can be maintained. I understand. In particular, in the process of the lighting devices 13-9 and 13-10, despite the lowest cost process that does not use an inert gas environment or a reduced pressure environment, the production of other components is suppressed, resulting in high initial luminescence and atmospheric It can be seen that both storage stability is achieved.

本発明の発光性薄膜及び発光性積層膜は、発光特性が大気下での保存安定性に優れることにより、照明装置、ディスプレイ、各種発光光源用途の有機EL素子に好適に具備することができ、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源、カラーフィルターと組み合わせた液晶表示装置のバックライトなどの用途に有効に用いることができる。 The light-emitting thin film and the light-emitting laminated film of the present invention have excellent light-emitting properties and excellent storage stability in the atmosphere, so that they can be suitably provided in organic EL devices for lighting devices, displays, and various light-emitting light source applications. Home lighting, car interior lighting, backlight for clocks and LCDs, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copiers, light sources for optical communication processors, light sources for optical sensors, combined with color filters It can be effectively used for applications such as a backlight of a liquid crystal display device.

10 積層膜
20 基材
30 第1塗膜
40 第2塗膜
100 有機EL素子
110 可撓性支持基板
120 陽極
130 正孔注入層
140 正孔輸送層
150 発光層
160 電子輸送層
170 電子注入層
180 陰極
190 封止接着剤
200 有機機能層
210 可撓性封止部材
REFERENCE SIGNS LIST 10 laminated film 20 substrate 30 first coating film 40 second coating film 100 organic EL element 110 flexible support substrate 120 anode 130 hole injection layer 140 hole transport layer 150 light emitting layer 160 electron transport layer 170 electron injection layer 180 Cathode 190 Sealing adhesive 200 Organic functional layer 210 Flexible sealing member

Claims (16)

発光性化合物Aを含有する発光性薄膜であって、
前記発光性化合物Aの酸化物Bを、当該発光性化合物Aに対して0.001~100質量%の範囲内で含有し、
前記発光性化合物Aが、イミダゾール環を含むリン光発光性錯体であり、かつ
前記酸化物Bが、前記発光性化合物Aと同じ骨格を有し、かつ、当該骨格内に酸素又は酸素含有置換基を有し、酸化防止剤として機能する酸化物である
ことを特徴とする発光性薄膜。
A luminescent thin film containing a luminescent compound A,
The oxide B of the luminescent compound A is contained within the range of 0.001 to 100% by mass with respect to the luminescent compound A ,
The light-emitting compound A is a phosphorescent complex containing an imidazole ring, and
The oxide B is an oxide that has the same skeleton as the luminescent compound A, has oxygen or an oxygen-containing substituent in the skeleton, and functions as an antioxidant.
A luminescent thin film characterized by:
前記酸化物Bの分子量が、下記式(1)を満たすことを特徴とする請求項1に記載の発光性薄膜。
式(1) Mw(B)=Mw(A)+(16m+18n)
(式中、Mw(A)は発光性化合物Aの分子量を表す。Mw(B)は酸化物Bの分子量を表す。m、nはそれぞれ0又は整数を表す。ただし、m+n≧1である。
2. The luminescent thin film according to claim 1, wherein the molecular weight of said oxide B satisfies the following formula (1).
Formula (1) Mw(B)=Mw(A)+(16m+18n)
(In the formula, Mw (A) represents the molecular weight of the luminescent compound A. Mw (B) represents the molecular weight of the oxide B. m and n each represent 0 or an integer, provided that m+n≧1.
前記発光性化合物Aの酸化物Bを、当該発光性化合物Aに対して0.001~5質量%の範囲内で含有することを特徴とする請求項1又は請求項2に記載の発光性薄膜。 3. The light-emitting thin film according to claim 1 , wherein the oxide B of the light-emitting compound A is contained within a range of 0.001 to 5% by mass with respect to the light-emitting compound A. . 前記酸化物Bが、ヒドロキシ基、フェノール性ヒドロキシ基、エポキシ基又はカルボニル基のいずれかを有することを特徴とする請求項1から請求項3までのいずれか一項に記載の発光性薄膜。 4. The luminescent thin film according to any one of claims 1 to 3, wherein said oxide B has any one of a hydroxy group, a phenolic hydroxy group, an epoxy group and a carbonyl group. 第1層及び第2層をこの順に備える発光性積層膜であって、前記第1層が請求項1から請求項までのいずれか一項に記載の発光性薄膜であることを特徴とする発光性積層膜。 A luminescent laminated film comprising a first layer and a second layer in this order, wherein the first layer is the luminescent thin film according to any one of claims 1 to 4 . Luminous laminated film. 前記第2層が、孤立電子対を有する化合物を含有することを特徴とする請求項に記載の発光性積層膜。 6. The luminescent laminated film according to claim 5 , wherein the second layer contains a compound having a lone electron pair. 前記孤立電子対を有する化合物が、含窒素化合物であることを特徴とする請求項に記載の発光性積層膜。 7. The luminescent laminated film according to claim 6 , wherein the compound having the lone pair of electrons is a nitrogen-containing compound. 前記第2層が、フッ素化合物を含有することを特徴とする請求項に記載の発光性積層膜。 6. The luminescent laminated film according to claim 5 , wherein the second layer contains a fluorine compound. 前記フッ素化合物が、常温・常圧下でフッ素溶媒として機能することを特徴とする請求項に記載の発光性積層膜。 9. The luminescent laminated film according to claim 8 , wherein the fluorine compound functions as a fluorine solvent under normal temperature and pressure. 前記フッ素溶媒の含有量が、0.01~10質量%の範囲内であることを特徴とする請求項に記載の発光性積層膜。 10. The luminescent laminated film according to claim 9 , wherein the content of the fluorine solvent is in the range of 0.01 to 10 mass %. 1対の電極の間に請求項1から請求項までのいずれか一項に記載の発光性薄膜、又は請求項から請求項10までのいずれか一項に記載の発光性積層膜を有することを特徴とする有機エレクトロルミネッセンス素子。 It has the luminescent thin film according to any one of claims 1 to 4 or the luminescent laminated film according to any one of claims 5 to 10 between a pair of electrodes. An organic electroluminescence device characterized by: 前記電極の少なくとも一方の仕事関数が、4.2eV以上であることを特徴とする請求項11に記載の有機エレクトロルミネッセンス素子。 12. The organic electroluminescence device according to claim 11 , wherein at least one of said electrodes has a work function of 4.2 eV or more. 請求項1から請求項までのいずれか一項に記載の発光性薄膜を製造する発光性薄膜の製造方法であって、
基材上に、大気環境下で、塗布液Aを用いて第1塗膜を形成する工程Aと、
前記工程Aの後に大気環境下での常圧加熱乾燥以外の乾燥工程を有することを特徴とする発光性薄膜の製造方法。
A method for producing a luminescent thin film for producing the luminescent thin film according to any one of claims 1 to 4 ,
A step A of forming a first coating film using the coating liquid A on the substrate in an atmospheric environment;
A method for producing a light-emitting thin film, comprising a drying step other than drying by heating under normal pressure in an atmospheric environment after the step A.
請求項から請求項10までのいずれか一項に記載の発光性積層膜を製造する発光性積層膜の製造方法であって、
基材上に、大気環境下で、塗布液Aを用いて第1塗膜を形成する工程Aと、
前記工程Aの後に大気環境下で常圧加熱乾燥以外の乾燥工程を経て、
前記第1塗膜上に大気環境下で前記塗布液Aとは異なる塗布液Bを用いて第2塗膜を形成する工程Bと、
前記工程Bの後に、大気環境下で乾燥を行う工程Cを有し、かつ、
前記第1塗膜及び前記第2塗膜をこの順に備えることを特徴とする発光性積層膜の製造方法。
A method for producing a luminescent laminated film for producing the luminescent laminated film according to any one of claims 5 to 10 ,
A step A of forming a first coating film using the coating liquid A on the substrate in an atmospheric environment;
After the step A, through a drying step other than normal pressure heat drying in an atmospheric environment,
A step B of forming a second coating film on the first coating film using a coating liquid B different from the coating liquid A in an atmospheric environment;
After the step B, having a step C of drying in an atmospheric environment, and
A method for producing a luminescent laminated film, comprising: providing the first coating film and the second coating film in this order.
請求項から請求項10までのいずれか一項に記載の発光性積層膜を製造する発光性積層膜の製造方法であって、
基材上に、大気環境下で、塗布液Aを用いて第1塗膜を形成する工程Aと、前記工程Aの後に、
前記第1塗膜上に大気環境下で、前記塗布液Aとは異なる塗布液Bを用いて第2塗膜を形成する工程Bと、
前記工程Bの後に、大気環境下で乾燥を行う工程Cを有し、かつ、
前記第1塗膜及び前記第2塗膜をこの順に備えることを特徴とする発光性積層膜の製造方法。
A method for producing a luminescent laminated film for producing the luminescent laminated film according to any one of claims 5 to 10 ,
After the step A of forming a first coating film using the coating liquid A on the substrate in an atmospheric environment, and the step A,
A step B of forming a second coating film on the first coating film in an atmospheric environment using a coating liquid B different from the coating liquid A;
After the step B, having a step C of drying in an atmospheric environment, and
A method for producing a luminescent laminated film, comprising: providing the first coating film and the second coating film in this order.
有機エレクトロルミネッセンス素子の製造方法であって、
請求項13に記載の発光性薄膜の製造工程、又は請求項14若しくは請求項15に記載の発光性積層膜の製造工程のいずれかを含むことを特徴とする有機エレクトロルミネッセンス素子の製造方法。
A method for producing an organic electroluminescence device, comprising:
16. A method for producing an organic electroluminescence device, comprising either the step of producing the light-emitting thin film according to claim 13 or the step of producing the light-emitting laminated film according to claim 14 or 15 .
JP2019567956A 2018-01-24 2019-01-09 Light-emitting thin film, light-emitting laminated film, organic electroluminescence element, and method for producing the same Active JP7207331B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018009291 2018-01-24
JP2018009291 2018-01-24
PCT/JP2019/000267 WO2019146396A1 (en) 2018-01-24 2019-01-09 Luminescent thin film, luminescent multilayered film, and organic electroluminescent device, and production method therefor

Publications (2)

Publication Number Publication Date
JPWO2019146396A1 JPWO2019146396A1 (en) 2021-01-28
JP7207331B2 true JP7207331B2 (en) 2023-01-18

Family

ID=67396040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019567956A Active JP7207331B2 (en) 2018-01-24 2019-01-09 Light-emitting thin film, light-emitting laminated film, organic electroluminescence element, and method for producing the same

Country Status (4)

Country Link
US (1) US11539027B2 (en)
JP (1) JP7207331B2 (en)
CN (1) CN111656550B (en)
WO (1) WO2019146396A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111372918B (en) 2018-07-27 2023-09-05 出光兴产株式会社 Compound, material for organic electroluminescent element, and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060024A (en) 2006-09-04 2008-03-13 Seiko Epson Corp Method of manufacturing organic light emitting device and apparatus of manufacturing organic thin film
WO2009063850A1 (en) 2007-11-12 2009-05-22 Konica Minolta Holdings, Inc. Method for manufacturing organic electronic element
JP2011216473A (en) 2010-03-15 2011-10-27 Mitsubishi Chemicals Corp Method for manufacturing organic electroluminescent element, organic electroluminescent element, organic el lighting, organic el display device, and manufacturing device of organic electroluminescent element
JP2012178328A (en) 2010-07-21 2012-09-13 Sumitomo Chemical Co Ltd Manufacturing method of organic light emitting device
WO2013105557A1 (en) 2012-01-11 2013-07-18 コニカミノルタ株式会社 Electrostatic spray device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7273643B2 (en) * 2003-06-24 2007-09-25 Eastman Kodak Company Article having multiple spectral deposits
US7371906B2 (en) * 2004-08-24 2008-05-13 Eastman Kodak Company Process for photo-oxidative stability improvements
JP5483962B2 (en) * 2008-09-04 2014-05-07 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
US9716238B2 (en) * 2013-02-28 2017-07-25 Nippon Steel & Sumikin Chemical Co., Ltd. Boron compound for organic electroluminescent elements, and organic electroluminescent element
JP2015093938A (en) 2013-11-12 2015-05-18 三菱化学株式会社 Composition for organic electroluminescent element, organic electroluminescent element, display device, and illumination device
JP5874860B1 (en) * 2015-03-24 2016-03-02 三菱化学株式会社 Composition for organic electroluminescent device and method for producing organic electroluminescent device
WO2019028243A1 (en) * 2017-08-02 2019-02-07 Rutgers, The State University Of New Jersey Phosphorescent emitters and extrinsic method for increasing stability thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060024A (en) 2006-09-04 2008-03-13 Seiko Epson Corp Method of manufacturing organic light emitting device and apparatus of manufacturing organic thin film
WO2009063850A1 (en) 2007-11-12 2009-05-22 Konica Minolta Holdings, Inc. Method for manufacturing organic electronic element
JP2011216473A (en) 2010-03-15 2011-10-27 Mitsubishi Chemicals Corp Method for manufacturing organic electroluminescent element, organic electroluminescent element, organic el lighting, organic el display device, and manufacturing device of organic electroluminescent element
JP2012178328A (en) 2010-07-21 2012-09-13 Sumitomo Chemical Co Ltd Manufacturing method of organic light emitting device
WO2013105557A1 (en) 2012-01-11 2013-07-18 コニカミノルタ株式会社 Electrostatic spray device

Also Published As

Publication number Publication date
US11539027B2 (en) 2022-12-27
CN111656550A (en) 2020-09-11
WO2019146396A1 (en) 2019-08-01
JPWO2019146396A1 (en) 2021-01-28
US20200388787A1 (en) 2020-12-10
CN111656550B (en) 2023-04-04

Similar Documents

Publication Publication Date Title
US11910628B2 (en) Luminescent film, organic electroluminescent element, organic material composition and method for producing organic electroluminescent element
JP6307993B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE
KR20180105234A (en) A luminescent thin film and an organic electroluminescence element
KR20170082447A (en) Organic electroluminescent element, method for manufacturing the same, display device, and lighting device
JP6217642B2 (en) Transparent electrode, electronic device, and method of manufacturing transparent electrode
WO2014084170A1 (en) Transparent electrode, electronic device, and organic electroluminescence element
CN111937174A (en) Luminescent film, organic electroluminescent element, and method for manufacturing organic electroluminescent element
WO2014112410A1 (en) Transparent electrode, electronic device, and organic electroluminescence element
WO2014129381A1 (en) Transparent electrode, electronic device and organic electroluminescent element
JP6197404B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE
JP7207331B2 (en) Light-emitting thin film, light-emitting laminated film, organic electroluminescence element, and method for producing the same
JP6941160B2 (en) Manufacturing method of organic electroluminescence device and organic electroluminescence device
JP2016157639A (en) Transparent electrode substrate and method for producing the same, electronic device and organic el device
JP2016058205A (en) Transparent electrode, electronic device and organic electroluminescent element
JP6519139B2 (en) Transparent electrode, electronic device and organic electroluminescent device
JP2018195521A (en) Organic electroluminescent element
JP2022099677A (en) Organic electroluminescent element, method for manufacturing the same, display, and lighting device
JP2017079181A (en) Light conversion material, light conversion film, and light emitting element
JPWO2019059056A1 (en) Manufacturing method of laminated film and manufacturing method of electronic device
WO2018116923A1 (en) Transparent electrode and electronic device
JP7334577B2 (en) Method for producing organic electroluminescence element
JP7060490B2 (en) Solutions for making nonionic organic electronics materials, electronic devices, organic electroluminescent devices and organic electroluminescent devices
JP7416079B2 (en) Method for manufacturing organic electroluminescent device and organic electroluminescent device
JP6314839B2 (en) Transparent electrode, electronic device, and organic electroluminescent element
JP2021068679A (en) Electronic device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R150 Certificate of patent or registration of utility model

Ref document number: 7207331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150