[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7205470B2 - Window materials, optical packages - Google Patents

Window materials, optical packages Download PDF

Info

Publication number
JP7205470B2
JP7205470B2 JP2019525695A JP2019525695A JP7205470B2 JP 7205470 B2 JP7205470 B2 JP 7205470B2 JP 2019525695 A JP2019525695 A JP 2019525695A JP 2019525695 A JP2019525695 A JP 2019525695A JP 7205470 B2 JP7205470 B2 JP 7205470B2
Authority
JP
Japan
Prior art keywords
solder
layer
circuit board
inorganic material
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019525695A
Other languages
Japanese (ja)
Other versions
JPWO2018235925A1 (en
Inventor
淳平 滝川
圭輔 花島
信也 菊川
幸一 渋谷
誠 平本
朋美 安部
優梨子 城戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2018235925A1 publication Critical patent/JPWO2018235925A1/en
Application granted granted Critical
Publication of JP7205470B2 publication Critical patent/JP7205470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)
  • Glass Compositions (AREA)
  • Eyeglasses (AREA)
  • Wrappers (AREA)

Description

本発明は、窓材、光学パッケージに関する。 The present invention relates to window materials and optical packages.

従来から発光ダイオード等の光学素子を回路基板の凹部内に配置後、該凹部の開口部を、透明樹脂基材等を備えた窓材により封止し、光学パッケージとして用いる場合があった。 Conventionally, after placing an optical element such as a light emitting diode in a concave portion of a circuit board, the opening of the concave portion is sometimes sealed with a window material having a transparent resin base material or the like, and used as an optical package.

この場合、窓材は樹脂製の接着剤等により回路基板と接合されていたが、光学素子の種類等によっては気密封止性の向上が求められていた。このため、回路基板と窓材とを樹脂製の接着剤に代えて、金属材料により接合することが検討されてきた。 In this case, the window material is bonded to the circuit board with a resin adhesive or the like, but depending on the type of the optical element, etc., there has been a demand for improved airtightness. For this reason, it has been studied to join the circuit board and the window material with a metal material instead of using a resin adhesive.

例えば特許文献1には、実装基板と、前記実装基板に実装された紫外線発光素子と、前記実装基板上に配置され前記紫外線発光素子を露出させる貫通孔が形成されたスペーサと、前記スペーサの前記貫通孔を塞ぐように前記スペーサ上に配置されたカバーと、を備え前記スペーサは、Siにより形成されたスペーサ本体と、前記スペーサ本体における前記実装基板との対向面側で前記実装基板の前記第1接合用金属層に対向しており前記対向面における外周縁の全周に沿って形成されている第2接合用金属層と、を備え、前記貫通孔は、前記スペーサ本体に形成されており、前記貫通孔は、前記実装基板から離れるにつれて開口面積が漸次増加しており、前記カバーは、前記紫外線発光素子から放射される紫外線を透過するガラスにより形成され、前記スペーサと前記カバーとが直接接合されており、前記スペーサの第2接合用金属層と前記実装基板の前記第1接合用金属層とが前記第2接合用金属層の全周に亘ってAuSnにより接合されている、ことを特徴とする発光装置が開示されている For example, Patent Document 1 discloses a mounting substrate, an ultraviolet light emitting element mounted on the mounting substrate, a spacer provided on the mounting substrate and having a through hole for exposing the ultraviolet light emitting element, and and a cover arranged on the spacer so as to close the through hole. a second bonding metal layer facing the first bonding metal layer and formed along the entire circumference of the outer peripheral edge of the facing surface, wherein the through hole is formed in the spacer main body; The opening area of the through hole gradually increases as the distance from the mounting substrate increases, the cover is formed of glass that transmits ultraviolet rays emitted from the ultraviolet light emitting element, and the spacer and the cover are directly connected to each other. wherein the second bonding metal layer of the spacer and the first bonding metal layer of the mounting substrate are bonded by AuSn over the entire circumference of the second bonding metal layer; Disclosed is a light emitting device characterized by

日本国特許第5877487号Japanese Patent No. 5877487

しかしながら、特許文献1に開示された発光装置で用いたカバーは、スペーサを介してAuSnにより実装基板と接合されており、金(Au)の使用量が多いため、コストの観点から問題があった。 However, the cover used in the light-emitting device disclosed in Patent Document 1 is bonded to the mounting substrate with AuSn via a spacer, and a large amount of gold (Au) is used, which poses a problem from the viewpoint of cost. .

上記従来技術が有する問題に鑑み、本発明の一側面では、コストを抑制した窓材を提供することを目的とする。 SUMMARY OF THE INVENTION In view of the above problems of the prior art, it is an object of one aspect of the present invention to provide a window material at a reduced cost.

上記課題を解決するため本発明の一態様では、光学素子を備えた光学パッケージ用の窓材であって、
無機材料の基体と、
前記無機材料の基体の一方の面上に配置された接合層とを有し、
前記接合層は、下地金属層と、半田層とを有し、
前記接合層中の金の体積割合が10%以下であり、
前記半田層の厚みの平均値が5μm以上50μm以下であり、
前記半田層を構成する半田のヤング率が50GPa以下であり、
前記半田層を構成する半田がスズ、ゲルマニウム、及びニッケルを含有し、
前記ゲルマニウムの含有量が10質量%以下であって、
前記ゲルマニウムの含有量と、前記ニッケルの含有量とが、以下の式(1)を満たし、かつ前記ゲルマニウムの含有量と、前記ニッケルの含有量との合計が1.2質量%より多い窓材を提供する。
[Ni]≦2.8×[Ge]0.3 ・・・(1)
(ただし、[Ni]は質量%換算での前記ニッケルの含有量、[Ge]は質量%換算での前記ゲルマニウムの含有量を示す。)


In order to solve the above problems, in one aspect of the present invention, there is provided a window material for an optical package having an optical element, comprising:
a substrate of inorganic material;
a bonding layer disposed on one surface of the substrate of the inorganic material;
The bonding layer has a base metal layer and a solder layer,
The volume ratio of gold in the bonding layer is 10% or less,
The average value of the thickness of the solder layer is 5 μm or more and 50 μm or less,
The Young's modulus of the solder constituting the solder layer is 50 GPa or less,
The solder constituting the solder layer contains tin, germanium, and nickel,
The germanium content is 10% by mass or less,
A window in which the germanium content and the nickel content satisfy the following formula (1), and the total of the germanium content and the nickel content is more than 1.2% by mass provide materials.
[Ni]≦2.8×[Ge] 0.3 (1)
(However, [Ni] indicates the content of nickel in terms of mass%, and [Ge] indicates the content of germanium in terms of mass%.)


本発明の一態様によれば、コストを抑制した窓材を提供することができる。 According to one aspect of the present invention, it is possible to provide a window material with reduced cost.

本実施形態の窓材の構成説明図。FIG. 2 is an explanatory diagram of the configuration of the window member of the embodiment; 無機材料の基体の側面の構成例の説明図。Explanatory drawing of the structural example of the side surface of the base|substrate of an inorganic material. 窓材の半田層の厚み測定点の位置の説明図。FIG. 4 is an explanatory view of positions of thickness measurement points of the solder layer of the window material; 本実施形態の光学パッケージの構成説明図。FIG. 2 is an explanatory diagram of the configuration of the optical package according to the embodiment; 実施例における個片化前の無機材料の基体の切断前資材の説明図。FIG. 4 is an explanatory diagram of a material before cutting of an inorganic material substrate before singulation in an example. 実施例1におけるリフロー試験の温度プロファイルの説明図。FIG. 4 is an explanatory diagram of a temperature profile of a reflow test in Example 1; 実施例2における接合工程の温度プロファイル。The temperature profile of the joining process in Example 2. 実施例4における個片化後の無機材料の基体の側面に生じた線状の模様の説明図。FIG. 10 is an explanatory diagram of a linear pattern formed on the side surface of the inorganic material substrate after singulation in Example 4;

以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。
[窓材]
本実施形態の窓材の一構成例について説明を行う。
Hereinafter, the embodiments for carrying out the present invention will be described with reference to the drawings. Various modifications and substitutions can be made to.
[Window material]
A configuration example of the window material of the present embodiment will be described.

本実施形態の窓材は、光学素子を備えた光学パッケージ用の窓材に関し、無機材料の基体と、無機材料の基体の一方の面上に配置された接合層とを有し、接合層中の金の体積割合が10%以下である。 The window material of the present embodiment relates to a window material for an optical package provided with an optical element, and has an inorganic material substrate and a bonding layer disposed on one surface of the inorganic material substrate. The volume ratio of gold in is 10% or less.

本実施形態の窓材の構成例について、図1(A)、図1(B)を用いながら、以下に具体的に説明する。図1(A)は、本実施形態の窓材10の無機材料の基体11と、接合層12との積層方向と平行な面での断面図を模式的に示している。また、図1(B)は、図1(A)中に示したブロック矢印Aに沿って、図1(A)に示した窓材10を見た場合の構造を示している。すなわち、図1(A)に示した窓材10の底面図を示している。 A configuration example of the window material of the present embodiment will be specifically described below with reference to FIGS. 1(A) and 1(B). FIG. 1A schematically shows a cross-sectional view of the inorganic material substrate 11 and the bonding layer 12 of the window material 10 of the present embodiment along a plane parallel to the stacking direction. 1(B) shows the structure of the window material 10 shown in FIG. 1(A) along the block arrow A shown in FIG. 1(A). That is, the bottom view of the window member 10 shown in FIG. 1(A) is shown.

本実施形態の窓材10は、無機材料の基体11と、接合層12とを有する。そして、接合層12は、無機材料の基体11の一方の面11a上に配置することができる。 The window material 10 of this embodiment has a substrate 11 made of an inorganic material and a bonding layer 12 . The bonding layer 12 can be arranged on one surface 11a of the substrate 11 made of inorganic material.

ここで、無機材料の基体11の一方の面11aとは、光学パッケージを製造する際に、光学素子を備えた回路基板と接合する側の面に当たる。すなわち、無機材料の基体11の一方の面11aとは、光学素子と対向する側の面ともいえる。 Here, the one surface 11a of the substrate 11 made of an inorganic material corresponds to the surface to be bonded to the circuit board having the optical element when manufacturing the optical package. That is, the one surface 11a of the inorganic material substrate 11 can also be said to be the surface facing the optical element.

そして、無機材料の基体11の一方の面11aと反対側に位置する他方の面11bは、光学パッケージとした場合に、外部に露出する側の面となる。 One surface 11a of the substrate 11 made of inorganic material and the other surface 11b opposite to the other surface 11b are exposed to the outside in the case of an optical package.

なお、図1では無機材料の基体11が板状形状の場合を例に示しているが、係る形状に限定されるものではない。 Although FIG. 1 shows an example in which the substrate 11 made of an inorganic material has a plate-like shape, the shape is not limited to such a shape.

ここで、本実施形態の窓材に含まれる各部材について説明する。
(無機材料の基体)
無機材料の基体11は特に限定されるものではなく、任意の材料を用い、任意の形状とすることができる。
Here, each member included in the window material of this embodiment will be described.
(Inorganic material substrate)
The substrate 11 made of an inorganic material is not particularly limited, and can be made of any material and have any shape.

ただし、無機材料の基体11は、光学パッケージとした場合に、回路基板が備える光学素子に関する光のうち、特に透過することが求められる波長領域の光(以下、「所望の波長領域の光」と記載する)について、透過率が十分に高くなるように、材料や、その厚み等を選択することが好ましい。例えば所望の波長領域の光について、透過率は50%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましく、90%以上が特に好ましい。 However, when the substrate 11 made of an inorganic material is used as an optical package, light in a wavelength region that is particularly required to be transmitted (hereinafter referred to as “light in a desired wavelength region”) among light related to optical elements provided on a circuit board. described), it is preferable to select the material, thickness, etc. so that the transmittance is sufficiently high. For example, for light in a desired wavelength range, the transmittance is preferably 50% or higher, more preferably 70% or higher, still more preferably 80% or higher, and particularly preferably 90% or higher.

無機材料の基体11は、所望の波長領域の光が赤外領域の光の場合、例えば波長が0.7μm以上1mm以下の範囲の光について、透過率は50%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましく、90%以上が特に好ましい。 The substrate 11 made of inorganic material preferably has a transmittance of 50% or more, more preferably 70% or more, for light in a wavelength range of 0.7 μm or more and 1 mm or less, for example, when light in a desired wavelength region is infrared light. More preferably, 80% or more is even more preferable, and 90% or more is particularly preferable.

また、無機材料の基体11は、所望の波長領域の光が可視領域の光(青~緑~赤)の場合、例えば波長が380nm以上800nm以下の範囲の光について、透過率は50%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましく、90%以上が特に好ましい。 Further, when the light in the desired wavelength region is light in the visible region (blue to green to red), the substrate 11 made of an inorganic material has a transmittance of 50% or more for light having a wavelength in the range of 380 nm to 800 nm, for example. It is preferably 70% or more, more preferably 80% or more, and particularly preferably 90% or more.

無機材料の基体11は、所望の波長領域の光が紫外領域の光の場合、例えば波長が200nm以上380nm以下の範囲の光について、透過率は50%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましく、90%以上が特に好ましい。 The substrate 11 made of an inorganic material preferably has a transmittance of 50% or more, more preferably 70% or more, for light having a wavelength of 200 nm or more and 380 nm or less, when the light in the desired wavelength region is light in the ultraviolet region. 80% or more is more preferable, and 90% or more is particularly preferable.

無機材料の基体11は、所望の波長領域の光が紫外領域のUV-Aの光の場合、例えば波長が315nm以上380nm以下の範囲の光について、透過率は50%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましく、90%以上が特に好ましい。 When the light in the desired wavelength region is UV-A light in the ultraviolet region, for example, the transmittance of the inorganic material substrate 11 is preferably 50% or more, and preferably 70% or more, for light with a wavelength of 315 nm or more and 380 nm or less. is more preferable, 80% or more is more preferable, and 90% or more is particularly preferable.

無機材料の基体11は、所望の波長領域の光が紫外領域のUV-Bの光の場合、例えば波長が280nm以上315nm以下の範囲の光について、透過率は50%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましく、90%以上が特に好ましい。 When the light in the desired wavelength region is UV-B light in the ultraviolet region, for example, the transmittance of the substrate 11 made of inorganic material is preferably 50% or more, and preferably 70% or more, for light with a wavelength of 280 nm or more and 315 nm or less. is more preferable, 80% or more is more preferable, and 90% or more is particularly preferable.

無機材料の基体11は、所望の波長領域の光が紫外領域のUV-Cの光の場合、例えば波長が200nm以上280nm以下の範囲の光について、透過率は50%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましく、90%以上が特に好ましい。 When the light in the desired wavelength region is UV-C light in the ultraviolet region, for example, the transmittance of the substrate 11 made of an inorganic material is preferably 50% or more, and preferably 70% or more, for light with a wavelength in the range of 200 nm or more and 280 nm or less. is more preferable, 80% or more is more preferable, and 90% or more is particularly preferable.

なお、無機材料の基体11の透過率は、JIS K 7361-1(1997)に準じて測定を行うことができる。 The transmittance of the substrate 11 made of an inorganic material can be measured according to JIS K 7361-1 (1997).

無機材料の基体11の材料としては、既述の様に任意に選択することができ、特に限定されるものではないが、気密封止性や、耐久性を特に高める観点から、例えば石英や、ガラス等を好ましく用いることができる。石英には、石英ガラスや、SiOを90質量%以上含有したものが含まれる。ガラスとしては、例えばソーダライムガラス、アルミノシリケートガラス、ボロシリケートガラス、無アルカリガラス、結晶化ガラス、および高屈折率ガラス(nd≧1.5)が挙げられる。なお、無機材料の基体の材料としては1種類に限定されるものではなく、2種類以上の材料を組み合わせて用いることもできる。このため、例えば無機材料の基体11の材料としては、例えば石英、ソーダライムガラス、アルミノシリケートガラス、ボロシリケートガラス、無アルカリガラス、結晶化ガラスおよび高屈折率ガラス(nd≧1.5)から選択された1種類以上の材料を好ましく用いることができる。The material of the substrate 11 made of an inorganic material can be arbitrarily selected as described above, and is not particularly limited. Glass or the like can be preferably used. Quartz includes quartz glass and those containing 90% by mass or more of SiO 2 . Examples of glass include soda lime glass, aluminosilicate glass, borosilicate glass, alkali-free glass, crystallized glass, and high refractive index glass (nd≧1.5). The material of the inorganic substrate is not limited to one type, and two or more types of materials can be used in combination. For this reason, for example, the material of the substrate 11 made of an inorganic material is selected from, for example, quartz, soda lime glass, aluminosilicate glass, borosilicate glass, alkali-free glass, crystallized glass, and high refractive index glass (nd≧1.5). One or more materials described above can preferably be used.

無機材料の基体11の材料としてガラスを用いる場合、該無機材料の基体11は化学強化処理が施されていても良い。 When glass is used as the material of the substrate 11 of inorganic material, the substrate 11 of inorganic material may be chemically strengthened.

無機材料の基体11の厚みについても特に限定されるものではないが、例えば0.03mm以上とすることが好ましく、0.05mm以上とすることがより好ましく、0.1mm以上とすることがさらに好ましく、0.3mm以上とすることが特に好ましい。 The thickness of the inorganic material substrate 11 is also not particularly limited, but is preferably 0.03 mm or more, more preferably 0.05 mm or more, and even more preferably 0.1 mm or more. , 0.3 mm or more.

無機材料の基体11の厚みを0.03mm以上とすることで、光学パッケージに要求される強度を十分に発揮しつつ、窓材の無機材料の基体11の面を介して水分等が光学素子を配置した側にまで透過することを特に抑制できる。上述のように無機材料の基体11の厚みを0.3mm以上とすることで、光学パッケージについて特に強度を高めることができ、好ましい。 By setting the thickness of the inorganic material substrate 11 to 0.03 mm or more, the strength required for the optical package is sufficiently exhibited, and moisture or the like penetrates the optical element through the surface of the inorganic material substrate 11 of the window material. It is particularly possible to suppress transmission to the arranged side. By setting the thickness of the inorganic material substrate 11 to 0.3 mm or more as described above, the strength of the optical package can be particularly increased, which is preferable.

無機材料の基体11の厚みの上限値についても特に限定されないが、例えば5mm以下とすることが好ましく、3mm以下とすることがより好ましく、1mm以下とすることがさらに好ましい。これは無機材料の基体11の厚みを5mm以下とすることで所望の波長領域の光の透過率を十分に高くすることができるからである。無機材料の基体11の厚みを1mm以下とすることで、特に光学パッケージの低背化を図ることができるため、さらに好ましい。 The upper limit of the thickness of the substrate 11 made of inorganic material is also not particularly limited, but is preferably 5 mm or less, more preferably 3 mm or less, and even more preferably 1 mm or less. This is because the transmittance of light in a desired wavelength region can be sufficiently increased by setting the thickness of the inorganic material substrate 11 to 5 mm or less. It is more preferable to set the thickness of the substrate 11 made of inorganic material to 1 mm or less, because it is possible to reduce the height of the optical package.

なお、無機材料の基体11の形状は特に限定されるものではなく、厚みは均一である必要はない。このため、無機材料の基体の厚みが均一ではない場合、無機材料の基体のうち、少なくとも光学パッケージとした場合に光学素子に関する光の光路上にある部分の厚みが上記範囲にあることが好ましく、無機材料の基体の厚みがいずれの部分でも上記範囲にあることがより好ましい。 The shape of the inorganic substrate 11 is not particularly limited, and the thickness need not be uniform. Therefore, when the thickness of the inorganic material substrate is not uniform, the thickness of at least the portion of the inorganic material substrate on the optical path of the optical element in the optical package is preferably within the above range. It is more preferable that the thickness of the substrate of the inorganic material is within the above range at any portion.

無機材料の基体11の形状は上述の様に特に限定されるものではない。例えば板状形状や、レンズが一体となった形状、すなわちレンズに由来する凹部や凸部を含む形状とすることができる。具体的には、例えば無機材料の基体11の一方の面11aが平坦面であり、他方の面11bが凸部や凹部を有する形態や、一方の面11aの形状と他方の面11bの形状とが係る形態と逆となった形態が挙げられる。また、無機材料の基体11の一方の面11aが凸部を有し、他方の面11bが凹部を有する形態や、一方の面11aの形状と他方の面11bの形状が係る形態と逆となった形態が挙げられる。さらに、無機材料の基体11の一方の面11aと他方の面11bとのそれぞれが、凸部または凹部を有する形態が挙げられる。 The shape of the substrate 11 made of inorganic material is not particularly limited as described above. For example, a plate-like shape or a shape in which a lens is integrated, that is, a shape including concave portions and convex portions derived from the lens can be used. Specifically, for example, one surface 11a of the substrate 11 made of an inorganic material is a flat surface, and the other surface 11b has a convex portion or a concave portion. A form in which is reversed from the form in which . In addition, one surface 11a of the inorganic material substrate 11 has convex portions and the other surface 11b has concave portions. form. Furthermore, there is a form in which each of the one surface 11a and the other surface 11b of the inorganic material base 11 has a convex portion or a concave portion.

なお、無機材料の基体11の一方の面11aが凸部や凹部を有する場合であっても、無機材料の基体11の一方の面11aの接合層12を配置する部分は、例えば複数の窓材10を製造した場合等に、窓材10間の接合層12の形状のバラツキを抑えるために平坦であることが好ましい。 Even if the one surface 11a of the inorganic material substrate 11 has a convex portion or a concave portion, the portion of the one surface 11a of the inorganic material substrate 11 where the bonding layer 12 is arranged may be formed by, for example, a plurality of window materials. It is preferable that the bonding layer 12 be flat in order to suppress variations in the shape of the bonding layer 12 between the window materials 10 when the window material 10 is manufactured.

無機材料の基体11の側面は、一方の面11aの外周に沿った線状の模様を有することができる。 The side surface of the inorganic material substrate 11 can have a linear pattern along the outer periphery of one surface 11a.

本実施形態の窓材は、例えば光学素子を配置した回路基板上に配置し、光学パッケージとすることができる。このため、光学パッケージの形態によっては、窓材のサイズが非常に小さくなる場合がある。そこで、無機材料の基体11の切断前資材を所望のサイズに切断する際に、レーザー光を用いた切断方法を採用することが好ましい。 The window material of the present embodiment can be arranged, for example, on a circuit board on which optical elements are arranged to form an optical package. Therefore, depending on the form of the optical package, the size of the window material may be very small. Therefore, it is preferable to adopt a cutting method using a laser beam when cutting the pre-cut material of the substrate 11 of inorganic material into a desired size.

係るレーザー光を用いた切断方法は、例えばまずレーザー光の焦点位置が無機材料の基体の切断前資材の厚さ方向の任意の位置となるように設定し、レーザー光の照射位置が切断線に沿うようにして、レーザー光の照射位置および/または無機材料の基体の切断前資材を移動させる。その後、切断線が支点となるように力を加えることで、もしくは自然に係る力が加わることで、切断線に沿って無機材料の基体の切断前資材を任意の形状に切断できる。 In such a cutting method using a laser beam, for example, the focal position of the laser beam is set to an arbitrary position in the thickness direction of the inorganic material substrate before cutting, and the irradiation position of the laser beam is on the cutting line. Along the line, the irradiation position of the laser beam and/or the pre-cut material of the inorganic material substrate is moved. After that, by applying a force so that the cutting line serves as a fulcrum, or by applying a natural force, the pre-cut material of the inorganic material substrate can be cut into an arbitrary shape along the cutting line.

上記切断方法では、レーザー光の焦点位置を無機材料の基体の切断前資材の厚さ方向の任意の位置に設定し、レーザー光の照射位置等を移動させることで、無機材料の基体の切断前資材のレーザー光の焦点位置が通過した場所について無機材料の結合状態に変化が生じていると考えられる。このため、その後、力が加わることで、無機材料の結合状態に変化が生じた部分を起点に無機材料の基体の切断前資材を容易に切断することができると推認される。 In the above cutting method, the focal position of the laser beam is set at an arbitrary position in the thickness direction of the material before cutting the inorganic material substrate, and by moving the irradiation position of the laser beam, etc., the inorganic material substrate is cut. It is thought that the bonding state of the inorganic material changes at the location through which the laser beam focal position of the material passes. For this reason, it is presumed that the pre-cut material of the inorganic material base can be easily cut starting from the portion where the bonding state of the inorganic material has changed due to the subsequent application of force.

なお、無機材料の基体の切断前資材の厚みによっては、無機材料の基体の切断前資材の厚さ方向におけるレーザー光の焦点位置を変更し、切断線に沿って複数回レーザー光を照射することもできる。このように、レーザー光の焦点位置を変更し、切断線に沿って複数回レーザー光を照射する場合、レーザー光の照射回毎に、無機材料の基体の切断前資材の厚さ方向において、レーザー光入射面から遠い位置から、近い位置にレーザー光の焦点位置を変化させることが好ましい。 Depending on the thickness of the material of the inorganic material substrate before cutting, it is possible to change the focal position of the laser beam in the thickness direction of the material of the inorganic material substrate before cutting, and irradiate the laser beam multiple times along the cutting line. can also In this way, when the focal position of the laser beam is changed and the laser beam is irradiated multiple times along the cutting line, the laser is It is preferable to change the focal position of the laser light from a position far from the light incident surface to a position close to it.

切断面の欠け、割れ、チッピング等の不良の発生を抑制できることから、レーザー光の照射回数は、2回以上が好ましく、3回以上がより好ましく、5回以上がさらに好ましい。レーザー光の照射回数の上限は特に限定されないが、10回を超える場合、コストアップとなるため10回以下が好ましい。 The number of times of laser light irradiation is preferably 2 or more, more preferably 3 or more, and even more preferably 5 or more, since the occurrence of defects such as chipping, cracking, and chipping of the cut surface can be suppressed. Although the upper limit of the number of times of laser light irradiation is not particularly limited, if it exceeds 10 times, the cost increases, so 10 times or less is preferable.

そして、係る切断方法により切断した場合、レーザー光の焦点位置が通過した位置に、無機材料の結合状態が変化することで生じたと考えられる線状の模様が残る。レーザー光の焦点位置は無機材料の基体の切断前資材の厚さ方向の任意の位置になるように設定しているため、例えば図2に示したように、無機材料の基体11の一方の面11aや他方の面11bの外周に沿った線状の模様111とすることができる。切断時の欠け、割れ、チッピング等の不良の発生の抑制の観点から、この線状の模様111は、無機材料の基体11の一方の面11aや他方の面11bに平行な線状の模様であるほうが好ましいが、必ずしも平行である必要はない。 When the material is cut by such a cutting method, a linear pattern, which is thought to be caused by a change in the bonding state of the inorganic material, remains at the position through which the focal position of the laser beam passes. Since the focal position of the laser beam is set to an arbitrary position in the thickness direction of the inorganic material substrate before cutting, for example, as shown in FIG. A linear pattern 111 along the outer circumference of the surface 11a or the other surface 11b can be used. From the viewpoint of suppressing defects such as chipping, cracking, and chipping during cutting, the linear pattern 111 is a linear pattern parallel to one surface 11a and the other surface 11b of the substrate 11 made of an inorganic material. It is preferable to have them, but they do not necessarily have to be parallel.

そして、上述のように、切断線に沿って複数回レーザー光を照射する場合には、得られた無機材料の基体の側面、すなわち切断面には照射回数と同数の線状の模様が残る。また、複数できる線状の模様同士の間隔はほぼ同一であることが、切断面の欠け等の不良の発生を抑える点で好ましい。具体的には例えば、切断後に得られる無機材料の基体の側面に含まれる線状の模様間の幅が、中央値の20%以内の誤差に収まっていることが好ましい。線状の模様はレーザー光の焦点位置に対応した位置に生じるため、線状の模様間の間隔は、レーザー光の焦点位置で制御できる。 As described above, when the laser beam is irradiated a plurality of times along the cutting line, the same number of linear patterns as the number of times of irradiation remain on the side surface, that is, the cut surface of the substrate of the obtained inorganic material. Further, it is preferable that the intervals between the plural linear patterns are substantially the same from the viewpoint of suppressing the occurrence of defects such as chipping of the cut surface. Specifically, for example, it is preferable that the width between the linear patterns included in the side surface of the inorganic material substrate obtained after cutting is within 20% of the median value. Since the linear pattern is generated at a position corresponding to the focal position of the laser beam, the interval between the linear patterns can be controlled by the focal position of the laser beam.

なお、無機材料の基体11の切断方法は上述の例に限定されるものではなく、任意の方法により切断することができる。上述の切断方法以外の方法で切断を行った場合、無機材料の基体11の側面、すなわち切断面は、上述の場合と異なる断面形状を有していても良い。他の切断方法としては、例えば、ダイシングソーやワイヤーソーが挙げられる。これらの切断方法は無機材料の基体の切断前資材の厚みが1mm以上の場合に有効である。 The method for cutting the substrate 11 of inorganic material is not limited to the above example, and any method can be used for cutting. When cutting is performed by a method other than the cutting method described above, the side surface of the substrate 11 of inorganic material, that is, the cut surface may have a cross-sectional shape different from that in the above case. Other cutting methods include, for example, a dicing saw and a wire saw. These cutting methods are effective when the thickness of the inorganic material substrate before cutting is 1 mm or more.

無機材料の基体11の表面には反射防止膜を配置しておくこともできる。反射防止膜を配置することで、光学パッケージとした場合に、光学素子、もしくは外部からの光が無機材料の基体11の表面で反射されることを抑制し、光学素子、もしくは外部からの光の透過率を高めることができ、好ましい。反射防止膜としては特に限定されるものではないが、例えば多層膜を用いることができ、多層膜は、アルミナ(酸化アルミニウム、Al)、酸化ハフニウム(HfO)、酸化チタン(TiO)等から選択される1種類以上の材料の層である第1の層と、シリカ(酸化ケイ素、SiO)の層である第2の層とを交互に積層した膜とすることができる。多層膜を構成する層の数は特に限定されないが、例えば上記第1の層と、第2の層とを1組として、多層膜は第1の層と、第2の層との組を1組以上有することが好ましく、2組以上有することがより好ましい。これは多層膜が第1の層と、第2の層とを1組以上有することで、無機材料の基体11の表面で光が反射されることを特に抑制できるからである。An antireflection film may be arranged on the surface of the substrate 11 made of an inorganic material. By arranging the antireflection film, when an optical package is formed, light from the optical element or the outside is suppressed from being reflected on the surface of the substrate 11 made of an inorganic material, and light from the optical element or the outside is suppressed. It is preferable because it can increase the transmittance. Although the antireflection film is not particularly limited , for example, a multilayer film can be used. ) and the like and a second layer of silica (silicon oxide, SiO 2 ) alternately laminated. The number of layers constituting the multilayer film is not particularly limited. It is preferable to have at least one pair, and more preferably to have two or more pairs. This is because the multilayer film having one or more sets of the first layer and the second layer can particularly suppress reflection of light on the surface of the substrate 11 made of an inorganic material.

多層膜を構成する層の数の上限についても特に限定されないが、例えば生産性等の観点から、上記第1の層と、第2の層との組を4組以下有することが好ましい。 Although the upper limit of the number of layers constituting the multilayer film is not particularly limited, it is preferable to have four or less pairs of the first layer and the second layer, for example, from the viewpoint of productivity.

反射防止膜を有する場合、反射防止膜は無機材料の基体11の少なくとも一方の面11a上に配置することが好ましく、一方の面11a及び他方の面11bの両面に配置することがより好ましい。一方の面11a及び他方の面11bの両面に反射防止膜を配置する場合、両反射防止膜の構成は異なっていても良いが、生産性等の観点から、同じ構成の反射防止膜を有することが好ましい。 When an antireflection film is provided, the antireflection film is preferably arranged on at least one surface 11a of the substrate 11 made of inorganic material, and more preferably on both the one surface 11a and the other surface 11b. When the antireflection films are arranged on both the one surface 11a and the other surface 11b, the structures of the two antireflection films may be different, but from the viewpoint of productivity, etc., the antireflection films with the same structure should be provided. is preferred.

反射防止膜として、上述の多層膜を用いる場合、最表面にシリカの第2の層が位置することが好ましい。反射防止膜の最表面にシリカの第2の層が位置することで、反射防止膜の表面がガラス基板の表面と類似の組成になり、耐久性や、接合層12との密着性が特に高くなり、好ましいからである。
(接合層)
接合層12は、光学パッケージとした場合に、無機材料の基体11と、光学素子を備えた回路基板とを接合する部材に当たる。このため、接合層12は、無機材料の基体11と、光学素子を備えた回路基板とを接合することができる部材であればよく、その具体的な構成は特に限定されるものではない。ただし、光学パッケージとした際の気密性を高める観点から接合層12は金属材料により構成されていることが好ましい。また、接合層12は接合層12中の金の体積割合が10%以下であることが好ましい。接合層12中の金の体積割合を10%以下とすることで、接合層中に含まれる金の割合を十分に抑制し、窓材のコストを抑制できる。接合層12中の金の体積割合は、より好ましくは8%以下であり、さらに好ましくは6%以下である。
When the above multilayer film is used as the antireflection film, it is preferable that the second layer of silica is positioned on the outermost surface. Since the second layer of silica is positioned on the outermost surface of the antireflection film, the surface of the antireflection film has a composition similar to that of the surface of the glass substrate, and the durability and adhesion to the bonding layer 12 are particularly high. This is because it is preferable.
(bonding layer)
The bonding layer 12 corresponds to a member for bonding the substrate 11 made of an inorganic material and a circuit board having an optical element in the case of an optical package. For this reason, the bonding layer 12 is not particularly limited as long as it is a member capable of bonding the substrate 11 made of inorganic material and the circuit board provided with the optical element. However, the bonding layer 12 is preferably made of a metal material from the viewpoint of improving the airtightness of the optical package. Also, the bonding layer 12 preferably has a gold volume ratio of 10% or less. By setting the volume ratio of gold in the bonding layer 12 to 10% or less, the ratio of gold contained in the bonding layer can be sufficiently suppressed, and the cost of the window material can be suppressed. The volume ratio of gold in the bonding layer 12 is more preferably 8% or less, and even more preferably 6% or less.

なお、接合層12は金を含有しないこともできることから、接合層12中の金の体積割合は0以上とすることができる。 Since the bonding layer 12 may not contain gold, the volume ratio of gold in the bonding layer 12 may be 0 or more.

接合層12は、含有する、後述する半田層等の各層を略均一な厚さとすることができる。このため、例えば接合層12中に金を含有する層が、金からなる金層として存在する場合には、金の体積割合とは、金層の厚みが接合層12の厚みに占める割合とすることもできる。また、金を含有する層が、金以外の成分も含有する場合には、金を含有する層の厚みが接合層12の厚みに占める割合に、金を含有する層中の金の体積含有割合を掛け合わせた値とすることもできる。 In the bonding layer 12, each layer such as a solder layer, which will be described later, can have a substantially uniform thickness. Therefore, for example, when a layer containing gold is present as a gold layer made of gold in the bonding layer 12 , the volume ratio of gold is defined as the ratio of the thickness of the gold layer to the thickness of the bonding layer 12 . can also Further, when the layer containing gold also contains components other than gold, the volume content ratio of gold in the layer containing gold to the ratio of the thickness of the layer containing gold to the thickness of the bonding layer 12 can also be a value obtained by multiplying

なお、上述のように各層の厚みを用いて接合層中の金の体積割合を算出する場合、後述する半田層の厚みとしては、単純平均の平均値を用いることができる。 When the volume ratio of gold in the bonding layer is calculated using the thickness of each layer as described above, an average value of simple averages can be used as the thickness of the solder layer, which will be described later.

接合層12は、例えば図1(A)に示すように、下地金属層121と、半田層122とを有することが好ましい。 The bonding layer 12 preferably has an underlying metal layer 121 and a solder layer 122, as shown in FIG. 1A, for example.

下地金属層121は、無機材料の基体11と、半田層122との密着性を高める機能を有することができる。下地金属層121の構成は特に限定されないが、図1(A)に示す様に複数の層から構成されていることが好ましい。 The base metal layer 121 can have a function of enhancing adhesion between the inorganic material base 11 and the solder layer 122 . Although the structure of the base metal layer 121 is not particularly limited, it is preferably composed of a plurality of layers as shown in FIG. 1(A).

下地金属層121の構成は特に限定されないが、例えば2層、もしくは3層から構成することができる。具体的には例えば無機材料の基体11側から順に第1下地金属層121Aと、第2下地金属層121Bとを有することができる。また、第2下地金属層121Bと半田層122との間にさらに図示しない第3下地金属層を配置することもできる。 Although the configuration of the underlying metal layer 121 is not particularly limited, it can be composed of, for example, two layers or three layers. Specifically, for example, it can have a first base metal layer 121A and a second base metal layer 121B in order from the substrate 11 side of the inorganic material. Further, a third base metal layer (not shown) can be arranged between the second base metal layer 121B and the solder layer 122. FIG.

第1下地金属層121Aは、無機材料の基体11と他の層との密着性を高める機能を有することができる。第1下地金属層121Aの材料は、無機材料の基体11と他の層との密着性を高めることができる材料が好ましく、気密性も高められる材料がより好ましい。第1下地金属層121Aは、例えばクロム(Cr)、チタン(Ti)、タングステン(W)、パラジウム(Pd)から選択された1種類以上を含有する層とすることが好ましい。第1下地金属層121Aは、例えばクロム(Cr)、チタン(Ti)、タングステン(W)、パラジウム(Pd)から選択された1種類以上の材料からなる層とすることもできる。なお、この場合でも第1下地金属層121Aが不可避不純物を含むことを排除するものではない。 The first base metal layer 121A can have a function of enhancing adhesion between the base 11 made of inorganic material and other layers. The material of the first base metal layer 121A is preferably a material capable of enhancing adhesion between the substrate 11 made of an inorganic material and another layer, and more preferably a material capable of enhancing airtightness. The first base metal layer 121A is preferably a layer containing one or more selected from, for example, chromium (Cr), titanium (Ti), tungsten (W), and palladium (Pd). The first base metal layer 121A can also be a layer made of one or more materials selected from, for example, chromium (Cr), titanium (Ti), tungsten (W), and palladium (Pd). Even in this case, it is not excluded that the first base metal layer 121A contains unavoidable impurities.

第1下地金属層121Aは、クロム(Cr)、チタン(Ti)、及びタングステン(W)、パラジウム(Pd)から選択された1種類以上の金属の金属膜または金属酸化物膜とすることがより好ましい。 More preferably, the first base metal layer 121A is a metal film or a metal oxide film of one or more metals selected from chromium (Cr), titanium (Ti), tungsten (W), and palladium (Pd). preferable.

第2下地金属層121Bは、半田層と他の層との密着性を高める機能を有しており、例えばニッケル(Ni)、銅(Cu)、白金(Pt)、銀(Ag)から選択された1種類以上の金属を含有する層とすることが好ましい。コストを特に抑制する観点からは、第2下地金属層121Bはニッケル(Ni)、銅(Cu)から選択された1種類以上の金属を含有する層とすることがより好ましい。 The second base metal layer 121B has a function of enhancing adhesion between the solder layer and other layers, and is selected from, for example, nickel (Ni), copper (Cu), platinum (Pt), and silver (Ag). It is preferable to use a layer containing one or more kinds of metals. From the viewpoint of particularly reducing costs, the second base metal layer 121B is more preferably a layer containing one or more metals selected from nickel (Ni) and copper (Cu).

なお、第2下地金属層121Bは、例えばニッケル(Ni)、銅(Cu)、白金(Pt)、銀(Ag)から選択された1種類以上の金属からなる層とすることもできる。この場合もコストの観点からは、第2下地金属層121Bは、ニッケル(Ni)、銅(Cu)から選択された1種類以上の金属からなる層とすることが好ましい。なお、上記いずれの場合でも、第2下地金属層121Bが不可避不純物を含むことを排除するものではない。 The second base metal layer 121B can also be a layer made of one or more metals selected from, for example, nickel (Ni), copper (Cu), platinum (Pt), and silver (Ag). Also in this case, from the viewpoint of cost, the second base metal layer 121B is preferably a layer made of one or more metals selected from nickel (Ni) and copper (Cu). In any of the above cases, the inclusion of unavoidable impurities in the second base metal layer 121B is not excluded.

また、第3下地金属層をさらに設ける場合、第3下地金属層は、例えばニッケル(Ni)、金(Au)から選択された1種類以上を含有する層とすることが好ましい。特に第3下地金属層をニッケル(Ni)を含有する層とする場合は、半田の濡れ性を向上させるためニッケル-ホウ素合金(Ni-B)を含有する層、もしくはNi-Bからなる層とすることが好ましい。第3下地金属層を設けることで、例えば下地金属層121と、半田層122とが反応することを特に抑制することができる。第3下地金属層はニッケル(Ni)、金(Au)から選択された1種類以上の金属からなる層とすることもできる。この場合でも、第3下地金属層が不可避不純物を含むことを排除するものではない。 Further, when a third base metal layer is further provided, the third base metal layer preferably contains one or more selected from, for example, nickel (Ni) and gold (Au). In particular, when the third base metal layer is a layer containing nickel (Ni), a layer containing a nickel-boron alloy (Ni--B) or a layer made of Ni--B is used to improve solder wettability. preferably. By providing the third base metal layer, for example, reaction between the base metal layer 121 and the solder layer 122 can be particularly suppressed. The third base metal layer can also be a layer made of one or more metals selected from nickel (Ni) and gold (Au). Even in this case, it is not excluded that the third base metal layer contains unavoidable impurities.

下地金属層121を構成する各層の厚みは特に限定されるものではなく任意に選択することができる。 The thickness of each layer constituting the base metal layer 121 is not particularly limited and can be arbitrarily selected.

例えば第1下地金属層121Aの厚みは、無機材料の基体11との密着性を特に高める観点から0.03μm以上が好ましい。第1下地金属層121Aの厚みの上限についても特に限定されるものではないが、コストを十分に低減する観点から0.2μm以下が好ましい。 For example, the thickness of the first base metal layer 121A is preferably 0.03 μm or more from the viewpoint of particularly enhancing the adhesion of the inorganic material to the substrate 11 . Although the upper limit of the thickness of the first base metal layer 121A is not particularly limited, it is preferably 0.2 μm or less from the viewpoint of sufficiently reducing the cost.

第2下地金属層121Bの厚みについては、半田層122との密着性を特に高める観点から0.1μm以上が好ましい。第2下地金属層121Bの厚みの上限についても特に限定されるものではないが、コストを十分に低減する観点から2.0μm以下が好ましい。 The thickness of the second base metal layer 121B is preferably 0.1 μm or more from the viewpoint of particularly enhancing the adhesion to the solder layer 122 . Although the upper limit of the thickness of the second base metal layer 121B is not particularly limited, it is preferably 2.0 μm or less from the viewpoint of sufficiently reducing the cost.

第3下地金属層も設ける場合、その厚みは特に限定されないが、下地金属層121と半田層122との反応を特に抑制する観点から、例えば0.05μm以上とすることが好ましい。第3下地金属層の厚みの上限についても特に限定されるものではないが、コストを十分に低減する観点から1.0μm以下が好ましい。 When the third base metal layer is also provided, its thickness is not particularly limited, but from the viewpoint of particularly suppressing the reaction between the base metal layer 121 and the solder layer 122, it is preferably 0.05 μm or more, for example. Although the upper limit of the thickness of the third base metal layer is not particularly limited, it is preferably 1.0 μm or less from the viewpoint of sufficiently reducing the cost.

次に半田層122について説明する。 Next, the solder layer 122 will be explained.

半田層122は、光学パッケージを製造する際に、無機材料の基体11と、光学素子を備えた回路基板とを接合する機能を有し、その構成については特に限定されるものではない。 The solder layer 122 has a function of joining the substrate 11 made of inorganic material and the circuit board having the optical element when manufacturing the optical package, and its configuration is not particularly limited.

ただし、半田層122の厚みの平均値は5μm以上が好ましく、15μm以上がより好ましい。これは半田層122の厚みの平均値を5μm以上とすることで、例えば接合する回路基板の、接合層12との接合面に凹凸が含まれていたとしてもその凹部を半田層の材料により充填し、特に気密封止性を高めることができるからである。 However, the average thickness of the solder layer 122 is preferably 5 μm or more, more preferably 15 μm or more. By setting the average thickness of the solder layer 122 to 5 μm or more, for example, even if the bonding surface of the circuit board to be bonded with the bonding layer 12 includes unevenness, the unevenness is filled with the material of the solder layer. This is because the airtightness can be particularly improved.

なお、ここでの平均値は単純平均(算術平均や、相加平均と呼ばれる場合もある)の値を意味する。以下、単に「平均」という場合には単純平均を意味する。 Note that the average value here means a value of a simple average (sometimes called an arithmetic average or an arithmetic average). Hereinafter, when simply referred to as "average", it means a simple average.

また、半田層122の厚みの平均値の上限についても特に限定されないが、50μm以下が好ましく、30μm以下がより好ましい。半田層122の厚みの平均値が50μmを超え過度に厚くなっても気密封止性の効果について大きな変化は生じないからである。 The upper limit of the average thickness of the solder layer 122 is also not particularly limited, but is preferably 50 μm or less, more preferably 30 μm or less. This is because even if the average thickness of the solder layer 122 exceeds 50 μm and becomes excessively thick, the airtight sealing effect does not change significantly.

なお、半田層122の厚みの平均値は、窓材10の半田層122について任意の複数の測定点で厚みをレーザー顕微鏡(キーエンス社製、型式VK-8510)で測定し、平均値を求めることで算出できる。平均値を算出するために半田層122の厚みを測定する測定点の数は特に限定されないが、例えば2点以上が好ましく、4点以上がより好ましい。測定点の数の上限値についても特に限定されないが、効率性の観点から10点以下が好ましく、8点以下がより好ましい。 The average value of the thickness of the solder layer 122 is obtained by measuring the thickness of the solder layer 122 of the window material 10 at a plurality of arbitrary measurement points with a laser microscope (manufactured by Keyence Corporation, model VK-8510) and obtaining the average value. can be calculated by The number of measurement points for measuring the thickness of the solder layer 122 to calculate the average value is not particularly limited, but is preferably two or more, more preferably four or more. Although the upper limit of the number of measurement points is not particularly limited, it is preferably 10 points or less, more preferably 8 points or less, from the viewpoint of efficiency.

半田層122の厚みの平均値を算出する場合、例えば図3に示した測定点Z1~Z8において厚みを測定し、平均値を算出することがより好ましい。 When calculating the average value of the thickness of the solder layer 122, it is more preferable to measure the thickness at measurement points Z1 to Z8 shown in FIG. 3, for example, and calculate the average value.

なお、図3は測定点の例を示すために示した図であり、図1(B)に対応する図である。図3、および図1(B)は、窓材10の接合層12を形成した側から見た場合の図、すなわち底面図であり、半田層122を含む接合層12が無機材料の基体11の外周に沿って配置された形状となっている。そして、半田層122を含む接合層12は中央部に開口部を有し、該開口部から無機材料の基体11が見える形状とすることができる。 FIG. 3 is a diagram showing an example of measurement points, and corresponds to FIG. 1(B). FIG. 3 and FIG. 1B are views of the window material 10 viewed from the side where the bonding layer 12 is formed, that is, bottom views. It has a shape arranged along the outer circumference. The bonding layer 12 including the solder layer 122 has an opening in the center, and the base 11 made of the inorganic material can be seen through the opening.

図3に示すように、半田層122が中央に四角形の開口部を備え、外形が四角形を有する場合、その4つの辺301~304の角部31A~31Dの中心位置の測定点Z1、Z3、Z5、Z7と、辺部32A~32Dの中心位置の測定点Z2、Z4、Z6、Z8とにおいて半田層の最大高さである厚みを測定し、その平均値を半田層122の厚みの平均値とすることが好ましい。 As shown in FIG. 3, when the solder layer 122 has a square opening in the center and has a square outer shape, measurement points Z1, Z3, The thickness, which is the maximum height of the solder layer, is measured at Z5, Z7 and the measurement points Z2, Z4, Z6, and Z8 at the center positions of the side portions 32A to 32D, and the average value thereof is the average value of the thickness of the solder layer 122. It is preferable to

なお、半田層の底面形状は図1(B)、図3に示した形態に限定されるものではなく、任意の形状とすることができ、例えば外形が四角形以外の多角形形状等を有し、開口部もこれに対応した形状とすることもできる。この場合も例えば各辺の角部、辺部の各中心位置で厚みを測定し、測定した厚みの平均値を半田層の厚みとすることができる。角部、辺部については、後述する。 The shape of the bottom surface of the solder layer is not limited to those shown in FIGS. 1(B) and 3, and may be any shape. , the opening may also have a corresponding shape. Also in this case, for example, the thickness can be measured at the corners of each side and at each central position of the side, and the average value of the measured thicknesses can be used as the thickness of the solder layer. Corners and sides will be described later.

半田層122は、厚みの偏差、すなわち厚みの単純平均値との偏差は±20μm以内が好ましく、±10μm以内がより好ましい。 The thickness deviation of the solder layer 122, that is, the deviation from the simple average thickness is preferably within ±20 μm, more preferably within ±10 μm.

これは半田層122の厚みの偏差を±20μm以内とすることで、光学パッケージを製造する際に、窓材と、光学素子を配置した回路基板との間の気密封止性を特に高めることができ、好ましいからである。 By setting the deviation of the thickness of the solder layer 122 within ±20 μm, it is possible to particularly improve the hermetic sealing between the window material and the circuit board on which the optical element is arranged when manufacturing the optical package. Because it is possible and desirable.

なお、半田層122の厚みの偏差が±20μm以内とは、偏差が-20μm以上+20μm以下の範囲に分布することを意味する。 The thickness deviation of the solder layer 122 within ±20 μm means that the deviation is distributed in the range of −20 μm or more and +20 μm or less.

なお、半田層122の厚みの偏差は、上述の半田層の厚みの平均値と、平均値を算出する際に用いた測定値とから算出できる。 The deviation of the thickness of the solder layer 122 can be calculated from the average value of the thickness of the solder layer described above and the measured value used when calculating the average value.

また、半田層122はその形成方法により、半田層の角部と辺部とで厚みに微小ではあるものの、ばらつきが生じる場合がある。このため、半田層122の厚みについて加重平均も併せて算出し、評価の指標に用いても良い。半田層122の厚みについて加重平均を算出する場合、半田層に含まれる各辺の厚みの加重平均を算出し、全ての辺の厚みの加重平均の平均(単純平均)を半田層122の厚みの加重平均とすることができる。 In addition, the thickness of the solder layer 122 may vary, albeit minutely, between the corners and sides of the solder layer depending on the method of forming the solder layer. Therefore, a weighted average of the thickness of the solder layer 122 may also be calculated and used as an evaluation index. When calculating the weighted average of the thickness of the solder layer 122 , the weighted average of the thickness of each side included in the solder layer is calculated, and the average (simple average) of the weighted averages of the thicknesses of all the sides is the thickness of the solder layer 122 . It can be a weighted average.

各辺の厚みの加重平均は、各辺に含まれる角部および辺部の中心位置においてそれぞれ厚みを測定し、測定点が角部の場合には、該角部の加重平均を算出する辺の長手方向の長さにより、測定点が辺部の場合には、該辺部の加重平均を算出する辺の長手方向の長さにより重みをつけることができる。 The weighted average of the thickness of each side is obtained by measuring the thickness at the corner and the center position of the side included in each side, and when the measurement point is the corner, the weighted average of the corner is calculated. Depending on the length in the longitudinal direction, when the measurement point is a side portion, the weight can be added by the longitudinal length of the side for calculating the weighted average of the side portion.

なお、角部とは半田層の辺が重複している部分を指し、辺部とはそれ以外の場所を指す。例えば図3に示した半田層122の場合、半田層122は中央に四角形の開口部を備え、外形が四角形であり、辺301~辺304の四辺を有している。そして、図3に示した半田層122は、辺301~辺304が互いに重複する角部31A~角部31Dを有している。 In addition, the corner refers to the portion where the sides of the solder layer overlap, and the side refers to the other portion. For example, in the case of the solder layer 122 shown in FIG. 3, the solder layer 122 has a square opening in the center, has a square outer shape, and has four sides 301 to 304 . Solder layer 122 shown in FIG. 3 has corners 31A to 31D where sides 301 to 304 overlap each other.

具体的には、角部31Aは、辺301と辺304とが重複する直線A1、A2、B1、B2で囲まれた領域となる。角部31Bは、辺301と辺302が重複する直線A3、A4、B1、B2で囲まれた領域となる。角部31Cは、辺302と辺303が重複する直線A3、A4、B3、B4で囲まれた領域となる。角部31Dは、辺303と辺304が重複する直線A1、A2、B3、B4で囲まれた領域となる。 Specifically, the corner portion 31A is an area surrounded by straight lines A1, A2, B1, and B2 where the side 301 and the side 304 overlap. The corner portion 31B is an area surrounded by straight lines A3, A4, B1, and B2 where the side 301 and the side 302 overlap. The corner 31C is an area surrounded by straight lines A3, A4, B3, and B4 where the sides 302 and 303 overlap. The corner 31D is an area surrounded by straight lines A1, A2, B3, and B4 where the sides 303 and 304 overlap.

また、図3に示した半田層122は、辺部32A~辺部32Dを有している。具体的には、辺部32Aは、直線A2、A3、B1、B2で囲まれた領域となる。また、辺部32Bは、直線A3、A4、B2、B3で囲まれた領域となる。辺部32Cは、直線A2、A3、B3、B4で囲まれた領域となる。辺部32Dは、直線A1、A2、B2、B3で囲まれた領域となる。 Also, the solder layer 122 shown in FIG. 3 has side portions 32A to 32D. Specifically, the side portion 32A is a region surrounded by straight lines A2, A3, B1, and B2. Also, the side portion 32B is a region surrounded by straight lines A3, A4, B2, and B3. The side portion 32C is a region surrounded by straight lines A2, A3, B3, and B4. The side portion 32D is a region surrounded by straight lines A1, A2, B2, and B3.

辺301について加重平均を出す場合には、以下の手順により角部31A、31B、および辺部32Aでの厚みを、各領域の辺301の長手方向の長さで重みづけして算出することができる。角部31Aの中心位置の測定点Z1で測定した厚みTZ1に対して、角部31Aにおける辺301の長手方向の長さW1により重みづけを行う。辺部32Aの中心位置の測定点Z2で測定した厚みTZ2に対して、辺部32Aにおける辺301の長手方向の長さL1により重みづけを行う。角部31Bの中心位置の測定点Z3で測定した厚みTZ3に対して、角部31Bにおける辺301の長手方向の長さW2により重みづけを行う。そして、算出結果を合計したものを、重みづけに用いたW1、L1、W2の合計により割ることで、辺301の加重平均を算出できる。When the weighted average is obtained for the side 301, the thicknesses at the corners 31A, 31B, and the side 32A can be calculated by weighting the length of the side 301 of each region in the longitudinal direction according to the following procedure. can. The thickness TZ1 measured at the measurement point Z1 at the center position of the corner 31A is weighted by the longitudinal length W1 of the side 301 of the corner 31A. The thickness TZ2 measured at the measuring point Z2 at the center position of the side portion 32A is weighted by the length L1 of the side 301 in the side portion 32A in the longitudinal direction. The thickness TZ3 measured at the measuring point Z3 at the center position of the corner 31B is weighted by the longitudinal length W2 of the side 301 of the corner 31B. Then, the weighted average of the side 301 can be calculated by dividing the sum of the calculation results by the sum of W1, L1, and W2 used for weighting.

同様にして、他の辺についても加重平均を算出し、その平均値を求めることで半田層の加重平均を求めることができる。 Similarly, the weighted average is calculated for the other sides, and the weighted average of the solder layers can be obtained by calculating the average value.

図4に示した半田層122の場合、以下の式(1)により算出できる。
加重平均値=[(W1×TZ1+L1×TZ2+W2×TZ3)/(W1+L1+W2)+(W3×TZ3+L2×TZ4+W4×TZ5)/(W3+L2+W4)+(W2×TZ5+L1×TZ6+W1×TZ7)/(W1+L1+W2)+(W4×TZ7+L2×TZ8+W3×TZ1)/(W3+L2+W4)]/4・・・(1)
なお、上記式(1)中のTZxは、各測定点Zx(xは1~8のいずれか)で測定した半田層の厚みを意味し、以下同様に表記する。上記式(1)中のL1、L2は、図3に示すように、半田層122の中央に設けられた開口部の各辺の長さとなる。L1、L2は任意の位置で測定した長さとすることもできるが、複数箇所で測定した平均値を用いることが好ましい。例えばL1については開口部の両端部および中央で測定した、すなわち例えば直線B2、B3、B5に沿って測定した開口部の一辺の長さの平均値とすることが好ましい。また、L2についても同様に開口部の両端部および中央で測定した、すなわち例えば直線A2、A3、A5に沿って測定した開口部の一辺の長さの平均値とすることが好ましい。
In the case of the solder layer 122 shown in FIG. 4, it can be calculated by the following formula (1).
Weighted average value = [(W1 x T Z1 + L1 x T Z2 + W2 x T Z3 ) / (W1 + L1 + W2) + (W3 x T Z3 + L2 x T Z4 + W4 x T Z5 ) / (W3 + L2 + W4) + (W2 x T Z5 + L1 x T Z6 + W1 x T Z7 )/(W1 + L1 + W2) + (W4 x T Z7 + L2 x T Z8 + W3 x T Z1 )/(W3 + L2 + W4)]/4 (1)
Note that T Zx in the above formula (1) means the thickness of the solder layer measured at each measurement point Zx (where x is any one of 1 to 8), and is similarly expressed hereinafter. L1 and L2 in the above formula (1) are the lengths of the sides of the opening provided in the center of the solder layer 122, as shown in FIG. Although L1 and L2 can be lengths measured at arbitrary positions, it is preferable to use average values measured at a plurality of positions. For example, L1 is preferably the average value of the length of one side of the opening measured at both ends and the center of the opening, that is, measured along straight lines B2, B3, and B5, for example. Similarly, L2 is preferably the average value of the length of one side of the opening measured at both ends and the center of the opening, that is, measured along straight lines A2, A3, and A5, for example.

半田層122の線幅W1~W4についても任意の位置で測定した長さとすることもできるが、複数箇所で測定した平均値を用いることが好ましい。例えば線幅W1の場合、辺304の長手方向の中心を通る直線B5に沿って測定した値と、開口部の両端部を通る直線B2、B3に沿って測定した値との3点での測定値の平均値を用いることが好ましい。 The line widths W1 to W4 of the solder layer 122 may also be lengths measured at arbitrary positions, but it is preferable to use average values measured at a plurality of positions. For example, in the case of the line width W1, the value measured along the straight line B5 passing through the longitudinal center of the side 304 and the value measured along the straight lines B2 and B3 passing through both ends of the opening are measured at three points. It is preferred to use the mean value of the values.

半田層の形成方法によっては、例えば厚みが左右対称になる場合もある。例えば半田層をディップ法により形成し、そのディップ方向が分かっている場合、ディップ方向を中心として、半田層の厚みが左右対称になる。例えば図3中の直線B5に沿ってディップを行った場合、直線B5を中心として、半田層122の厚みは左右対称になる。このため、係る場合、測定点Z7、Z6、Z5における半田層122の厚みはそれぞれ、順に測定点Z1、Z2、Z3における半田層122の厚みと同値なるため、全ての測定点Z1~Z8で厚みを測定する必要はない。例えば測定点Z1~Z4、Z8の測定点5点にて厚みを測定し、TZ1=TZ7、TZ2=TZ6、TZ3=TZ5として、半田層122の厚みの加重平均を算出できる。なお、単純平均の場合も同じ測定点のみの値から平均値を求めることもできる。Depending on the method of forming the solder layer, for example, the thickness may be bilaterally symmetrical. For example, when a solder layer is formed by a dipping method and the dipping direction is known, the thickness of the solder layer is symmetrical with respect to the dipping direction. For example, when dipping is performed along the straight line B5 in FIG. 3, the thickness of the solder layer 122 becomes symmetrical with respect to the straight line B5. Therefore, in this case, the thickness of the solder layer 122 at the measurement points Z7, Z6, and Z5 is the same as the thickness of the solder layer 122 at the measurement points Z1, Z2, and Z3, respectively. need not be measured. For example, the thickness is measured at five measurement points Z1 to Z4 and Z8, and the weighted average of the thickness of the solder layer 122 can be calculated with T Z1 =T Z7 , T Z2 =T Z6 and T Z3 =T Z5 . . In the case of simple averaging, the average value can also be obtained from the values of the same measurement points only.

半田層の加重平均値は特に限定されないが、4μm以上であることが好ましく、13μm以上であることがより好ましい。また、半田層の加重平均値の上限も特に限定されないが、例えば70μm以下が好ましく、60μm以下がより好ましい。 Although the weighted average value of the solder layer is not particularly limited, it is preferably 4 μm or more, more preferably 13 μm or more. The upper limit of the weighted average value of the solder layer is also not particularly limited, but is preferably 70 μm or less, more preferably 60 μm or less.

また、半田層の加重平均値との偏差、すなわち各測定点における厚みと、算出した加重平均値との差は±30μm以内とすることが好ましい。 Moreover, the deviation from the weighted average value of the solder layer, that is, the difference between the thickness at each measurement point and the calculated weighted average value is preferably within ±30 μm.

加重平均値と、加重平均値との偏差について、好ましい理由は平均値の場合と同様であるので省略する。 The reason why the weighted average value and the deviation of the weighted average value are preferable is the same as in the case of the average value, so the description thereof will be omitted.

なお、半田層の底面形状は図1(B)、図3に示した形態に限定されるものではなく、例えば外形が四角形以外の多角形形状等を有し、開口部もこれに対応した形状とすることもできる。この場合も例えば各辺に含まれる角部、辺部の中心位置において厚みを測定し、各領域の加重平均を算出する辺の長手方向の長さにより重みをつけ、各辺の加重平均を算出し、全ての辺の厚みの加重平均の平均を求めることで半田層の加重平均を算出することができる。 The shape of the bottom surface of the solder layer is not limited to those shown in FIGS. can also be Also in this case, for example, the thickness is measured at the center position of the corners and sides included in each side, and the weighted average of each area is calculated. Then, the weighted average of the solder layers can be calculated by finding the average of the weighted averages of the thicknesses of all the sides.

なお、本実施形態の窓材は、光学素子を備えた回路基板と接合して用いることができ、半田層122は、係る回路基板と窓材とを接合することができる。 The window material of this embodiment can be used by bonding to a circuit board having an optical element, and the solder layer 122 can bond the circuit board and the window material.

そして、半田層122の表面には酸化膜が存在することが一般的であるが、回路基板と接合し易くするために、半田層122の下面、すなわち回路基板と対向する側の面の表面に存在する酸化膜は、加熱により溶融した半田層122の内部に溶け込み、回路基板の上面に対して、溶融した半田層122が接することができる程度に薄いことが好ましい。具体的な半田層の表面の酸化膜の厚さは限定されないが、酸化膜の厚さは10nm以下が好ましく、5nm以下がより好ましい。 In general, an oxide film is present on the surface of the solder layer 122. However, in order to facilitate bonding with the circuit board, the lower surface of the solder layer 122, that is, the surface of the side facing the circuit board, may be oxidized. It is preferable that the existing oxide film melts into the solder layer 122 melted by heating and is thin enough to allow the melted solder layer 122 to come into contact with the upper surface of the circuit board. Although the thickness of the oxide film on the surface of the solder layer is not specifically limited, the thickness of the oxide film is preferably 10 nm or less, more preferably 5 nm or less.

係る酸化膜は少ない方が好ましいことから、酸化膜の厚さは0以上とすることができる。 Since it is preferable that the oxide film is small, the thickness of the oxide film can be set to 0 or more.

半田層122は各種半田(接合用組成物)により構成することができる。 The solder layer 122 can be composed of various solders (composition for bonding).

半田層122に用いる半田としては特に限定されないが、例えばヤング率が50GPa以下の材料が好ましく、40GPa以下の材料がより好ましく、30GPa以下の材料がさらに好ましい。 The solder used for the solder layer 122 is not particularly limited, but for example, a material with a Young's modulus of 50 GPa or less is preferable, a material with a Young's modulus of 40 GPa or less is more preferable, and a material with 30 GPa or less is even more preferable.

既述のように、本実施形態の窓材は、光学パッケージの部材として用いることができるが、光学パッケージとした後、例えば光学素子を発光、消灯等した場合に、半田層に温度変化を生じる場合がある。そして、半田層に用いる半田のヤング率を50GPa以下とすることで、半田層部分に温度変化が生じ、膨張、収縮した場合でも、他の部材を破壊等することを特に抑制することができ好ましいからである。 As described above, the window material of the present embodiment can be used as a member of an optical package. However, after the optical package is formed, for example, when the optical element is turned on or off, temperature changes occur in the solder layer. Sometimes. Further, by setting the Young's modulus of the solder used for the solder layer to 50 GPa or less, even if the solder layer portion undergoes a temperature change and expands or contracts, damage to other members can be particularly suppressed, which is preferable. It is from.

また、半田のヤング率が50GPa以下の場合、光学パッケージとした際に、無機材料の基体11と、光学素子を備えた回路基板との熱膨張差により生じる応力を、両部材を接合する半田層122内で吸収でき、好ましいからである。 Further, when the Young's modulus of solder is 50 GPa or less, the stress generated by the difference in thermal expansion between the substrate 11 made of an inorganic material and the circuit board provided with the optical element is applied to the solder layer that joins both members when an optical package is formed. This is because it can be absorbed within 122, which is preferable.

半田層122に用いる半田のヤング率の好適な範囲の下限値は特に限定されないが、例えば0より大きければよく、気密封止性を高める観点から10GPa以上が好ましい。 The lower limit of the preferred range of the Young's modulus of the solder used for the solder layer 122 is not particularly limited.

半田のヤング率は、半田について引張試験を行い、その結果から算出することができる。 The Young's modulus of solder can be calculated from the results of a tensile test performed on the solder.

また、半田層122に用いる半田の融点は200℃以上が好ましく、230℃以上がより好ましい。これは半田の融点が200℃以上の場合、光学パッケージとした際の耐熱性を十分に高めることができるからである。ただし、半田層122に用いる半田の融点は280℃以下が好ましい。これは、光学パッケージを製造する際に熱処理を行い、半田層122の少なくとも一部を溶融させることになるが、半田の融点が280℃以下の場合、熱処理の温度を低く抑制できるため、光学素子等にダメージが生じることを特に抑制できるからである。 Also, the melting point of the solder used for the solder layer 122 is preferably 200° C. or higher, more preferably 230° C. or higher. This is because when the melting point of the solder is 200° C. or higher, the heat resistance of the optical package can be sufficiently improved. However, the melting point of the solder used for the solder layer 122 is preferably 280° C. or less. This means that at least a portion of the solder layer 122 is melted by performing heat treatment when manufacturing the optical package. This is because it is possible to particularly suppress the occurrence of damage to, for example.

半田層122に用いる半田は密度が6.0g/cm以上が好ましく、7.0g/cm以上がより好ましい。これは半田層122に用いる半田の密度を6.0g/cm以上とすることで、特に気密封止性を高めることができるからである。半田層122に用いる半田の密度の上限値は特に限定されないが、例えば10g/cm以下が好ましい。The solder used for the solder layer 122 preferably has a density of 6.0 g/cm 3 or more, more preferably 7.0 g/cm 3 or more. This is because by setting the density of the solder used for the solder layer 122 to 6.0 g/cm 3 or more, it is possible to particularly improve airtightness. Although the upper limit of the density of the solder used for the solder layer 122 is not particularly limited, it is preferably 10 g/cm 3 or less, for example.

半田層122に用いる半田の熱膨張率は30ppm以下が好ましく、25ppm以下がより好ましい。これは半田の熱膨張率が30ppm以下の場合、光学パッケージとし、光学素子の発光等の際に生じる熱による形状変化が抑制され、光学パッケージが破損等することをより確実に防止できるからである。半田層122に用いる半田の熱膨張率の下限値は特に限定されないが、例えば0.5ppm以上が好ましい。 The thermal expansion coefficient of the solder used for the solder layer 122 is preferably 30 ppm or less, more preferably 25 ppm or less. This is because when the thermal expansion coefficient of the solder is 30 ppm or less, it is used as an optical package, and shape change due to heat generated when the optical element emits light is suppressed, and damage to the optical package can be more reliably prevented. . Although the lower limit of the thermal expansion coefficient of the solder used for the solder layer 122 is not particularly limited, it is preferably 0.5 ppm or more, for example.

半田層122に用いる半田の銅食われ性は、15%以下が好ましく、10%以下がより好ましい。これは、半田層122に用いる半田の銅食われ性が15%以下の場合、下地金属層121等との反応を抑制でき、好ましいからである。半田層122に用いる半田の銅食われ性の下限値は特に限定されないが、0以上が好ましい。なお、半田の銅食われ性は、銅食われ性評価により評価することができる。 The copper erosion resistance of the solder used for the solder layer 122 is preferably 15% or less, more preferably 10% or less. This is because when the solder used for the solder layer 122 has a copper corrosion resistance of 15% or less, the reaction with the base metal layer 121 and the like can be suppressed, which is preferable. Although the lower limit of the copper erosion resistance of the solder used for the solder layer 122 is not particularly limited, it is preferably 0 or more. The copper erosion resistance of the solder can be evaluated by evaluating the copper erosion resistance.

銅食われ性は、例えば以下の手順により評価することができる。 Copper erosion resistance can be evaluated, for example, by the following procedure.

直径0.5mmの銅ワイヤーを3mm程度の長さに2本切断し、2本の銅ワイヤーの表面をRMA(Rosin Midly activated、弱活性ロジン系)タイプのフラックスに浸漬して酸化膜を除去する。 Two copper wires with a diameter of 0.5 mm are cut to a length of about 3 mm, and the surfaces of the two copper wires are immersed in RMA (Rosin Midly activated) type flux to remove the oxide film. .

酸化膜を除去した1本目の銅ワイヤーをエタノールで洗浄し、1本目の銅ワイヤーの断面積Sを測定する。なお、銅ワイヤーの断面積とは、銅ワイヤーの長手方向と垂直な面での断面積を意味する。The first copper wire from which the oxide film has been removed is washed with ethanol, and the cross-sectional area S1 of the first copper wire is measured. In addition, the cross-sectional area of a copper wire means the cross-sectional area in the surface perpendicular|vertical to the longitudinal direction of a copper wire.

次に酸化膜を除去した2本目の銅ワイヤーを、評価を行う半田を入れ、湯温が400℃となるように加熱された半田槽に60秒間浸漬する。この時、銅ワイヤーの酸化膜の再発生を防ぐため、フラックスにより酸化膜を除去してから60秒以内に半田槽に浸漬する。半田槽への浸漬後、銅ワイヤーを引き上げ、半田槽に浸漬した側の端部より、銅ワイヤーを研磨し、銅断面が確認できる位置にて、銅ワイヤーの断面積Sを測定する。Next, the second copper wire from which the oxide film has been removed is dipped in a solder bath heated to 400° C. for 60 seconds with solder to be evaluated. At this time, in order to prevent re-generation of the oxide film on the copper wire, the copper wire is immersed in a solder bath within 60 seconds after removing the oxide film with the flux. After being immersed in the solder bath, pull up the copper wire, polish the copper wire from the end of the side immersed in the solder bath, and measure the cross - sectional area S2 of the copper wire at a position where the copper cross section can be confirmed.

半田槽への浸漬前の銅ワイヤーの断面積Sに対する、半田槽への浸漬後の銅ワイヤーの断面積Sを比較し、断面積減少の割合を算出する。具体的には以下の式により算出することができる。
(銅食われ性)=(S-S)/S×100
半田層を構成する半田は上述のように特に限定されないが、例えば、スズ、ゲルマニウム、及びニッケルを含有し、ゲルマニウムの含有量が10質量%以下であって、ゲルマニウムの含有量と、ニッケルの含有量とが、以下の式(1)を満たすことが好ましい。
The cross - sectional area S2 of the copper wire after being immersed in the solder bath is compared with the cross - sectional area S1 of the copper wire before being immersed in the solder bath, and the ratio of reduction in the cross-sectional area is calculated. Specifically, it can be calculated by the following formula.
(Copper erosion resistance) = (S 1 - S 2 )/S 1 × 100
The solder constituting the solder layer is not particularly limited as described above, but for example, it contains tin, germanium, and nickel, the germanium content is 10% by mass or less, and the germanium content and the nickel content are The amount preferably satisfies the following formula (1).

[Ni]≦2.8×[Ge]0.3 ・・・(1)
(ただし、[Ni]は質量%換算でのニッケルの含有量、[Ge]は質量%換算でのゲルマニウムの含有量を示す。)
上述の半田によれば、該半田を被接合部材上に配置した後、酸化膜除去を要さずに容易に被接合物と接合できるからである。
[Ni]≦2.8×[Ge] 0.3 (1)
(However, [Ni] indicates the content of nickel in terms of mass%, and [Ge] indicates the content of germanium in terms of mass%.)
This is because the solder described above can be easily joined to the object to be joined without removing the oxide film after the solder is placed on the member to be joined.

以下に半田層に好適に用いることができる上記半田が含有する成分について説明する。
(スズ)
上述の半田は、スズ(Sn)を含有する。
Components contained in the solder that can be preferably used in the solder layer are described below.
(tin)
The solder mentioned above contains tin (Sn).

スズは、回路基板や下地金属層等の被接合部材と、半田との熱膨張差を緩和することができる。さらに、スズを半田の主成分として含有することで、半田の融点温度をスズの融点温度である230℃程度とすることができる。 Tin can reduce the difference in thermal expansion between solder and members to be joined such as a circuit board and a base metal layer. Furthermore, by containing tin as a main component of the solder, the melting point temperature of the solder can be set to about 230° C., which is the melting point temperature of tin.

上述の半田は、スズを主成分として含有することができる。主成分として含有するとは、例えば半田中に最も多く含まれている成分を意味しており、半田中に60質量%以上含有されている成分が好ましい。 The solder described above may contain tin as a main component. Containing as a main component means, for example, a component contained in the solder in the largest amount, and a component contained in the solder in an amount of 60% by mass or more is preferable.

特に、半田のスズの含有量は、例えば、85.9質量%以上がより好ましく、87.0質量%以上がさらに好ましく、88.0質量%以上が特に好ましい。 In particular, the content of tin in the solder is, for example, more preferably 85.9% by mass or more, still more preferably 87.0% by mass or more, and particularly preferably 88.0% by mass or more.

これは半田中のスズの含有量が85.9質量%以上の場合、被接合部材と、半田との熱膨張差の緩和、及び半田の溶融温度の低下について、特に高い効果を示すからである。 This is because when the content of tin in the solder is 85.9% by mass or more, it exhibits a particularly high effect of mitigating the difference in thermal expansion between the member to be joined and the solder and lowering the melting temperature of the solder. .

半田中のスズの含有量の上限値は特に限定されるものではないが例えば、99.9質量%以下が好ましく、99.5質量%以下がより好ましく、99.3質量%以下がさらに好ましい。 The upper limit of the tin content in the solder is not particularly limited.

上述の半田はスズ以外にゲルマニウム、及びニッケルも含有する。そして、これらの成分を含有することにより、被接合部材に塗布した際に半田の表面に酸化被膜が生じることを抑制できる。また、上述の半田は、ゲルマニウム、ニッケル以外にも後述する任意の成分を含有することもできる。このため、これらのスズ以外の成分の含有量を十分に確保するため、上述のように、スズの含有量は99.9質量%以下が好ましい。 In addition to tin, the solders mentioned also contain germanium and nickel. By containing these components, it is possible to suppress the formation of an oxide film on the surface of the solder when it is applied to the members to be joined. In addition to germanium and nickel, the above-mentioned solder can also contain arbitrary components described later. Therefore, in order to ensure a sufficient content of these components other than tin, the tin content is preferably 99.9% by mass or less, as described above.

なお、後述のようにゲルマニウム等の含有量によっては被接合部材間の気密封止性を特に高めることができる。気密封止性を高める観点からは、半田中の、スズ以外のゲルマニウム等の成分の含有量が一定量以上あることが好ましい。このため、気密封止性を特に高めることが要求される場合等には、スズの含有量の上限値は98.8質量%以下とすることが特に好ましい。
(ゲルマニウム)
上述の半田は、ゲルマニウムを含有する。
As will be described later, depending on the content of germanium or the like, it is possible to particularly improve the hermetic sealing between the members to be joined. From the viewpoint of improving hermetic sealing properties, it is preferable that the content of components other than tin, such as germanium, in the solder is at least a certain amount. Therefore, when it is required to particularly improve airtightness, it is particularly preferable that the upper limit of the tin content is 98.8% by mass or less.
(germanium)
The solder mentioned above contains germanium.

ゲルマニウムは、被接合部材の接合面に半田を塗布した際に半田の表面に酸化被膜が生じることを抑制できる。これは、半田を塗布するために溶融した際、半田に含まれるゲルマニウムが優先的に酸化して、半田中のニッケルが酸化することを抑制することができるためである。 Germanium can suppress the formation of an oxide film on the solder surface when the solder is applied to the joint surfaces of the members to be joined. This is because when the solder is melted for application, germanium contained in the solder is preferentially oxidized, and oxidation of nickel in the solder can be suppressed.

上述の半田のゲルマニウムの含有量は特に限定されるものではないが、10質量%以下が好ましく、8質量%以下がより好ましい。 Although the content of germanium in the above solder is not particularly limited, it is preferably 10% by mass or less, more preferably 8% by mass or less.

これは半田のゲルマニウムの含有量が10質量%を超えると、ゲルマニウム自身が過度に酸化物を形成することになり、かえって、被接合部材との接合を妨げるおそれがあるからである。 This is because if the germanium content of the solder exceeds 10% by mass, the germanium itself will excessively form an oxide, which may rather interfere with the joining to the member to be joined.

ゲルマニウムの含有量の下限値は特に限定されるものではないが、例えば0.5質量%より多いことが好ましく、0.7質量%以上がより好ましい。 Although the lower limit of the content of germanium is not particularly limited, it is preferably more than 0.5% by mass, more preferably 0.7% by mass or more.

半田は溶融した際に、過剰となった酸素がガス化することで半田内に空隙を生じる場合がある。特に真空環境下で接合のために半田を溶融した際には、上述の酸素等のガスが膨張し半田内に空隙を生じやすくなる。そして、該空隙により、被接合部材間の気密封止性が低下する場合がある。 When the solder is melted, excess oxygen gasifies to form voids in the solder. In particular, when solder is melted for bonding in a vacuum environment, the gas such as oxygen expands and tends to form voids in the solder. The air gap may reduce the airtightness between the members to be joined.

これに対して、半田のゲルマニウムの含有量を0.5質量%より多くすることで、上述の様な過剰の酸素に起因する半田内の空隙の発生を抑制し、被接合部材間の気密封止性を特に高めることができるため好ましい。
(ニッケル)
上述の半田は、上述のようにニッケル(Ni)を含有する。
On the other hand, by increasing the content of germanium in the solder to more than 0.5% by mass, the generation of voids in the solder due to excess oxygen as described above is suppressed, and the members to be joined are hermetically sealed. It is preferable because it can particularly improve the stopping property.
(nickel)
The above solder contains nickel (Ni) as described above.

半田を溶融した際に半田に含まれるニッケルは酸化物となる傾向が強い。このため、被接合部材の接合部分、例えば回路基板の接合面に酸化物が含まれている場合に、該接合部分の酸化物と半田とが結合しやすくなり、半田と、酸化物を含む該接合部分との濡れ性が向上し、高い接合強度を発揮することが可能になるからである。 Nickel contained in the solder has a strong tendency to become an oxide when the solder is melted. Therefore, when an oxide is contained in a joint portion of a member to be joined, for example, a joint surface of a circuit board, the oxide of the joint portion and the solder are easily combined, and the solder and the oxide-containing oxide are easily combined. This is because the wettability with the joint portion is improved, and high joint strength can be exhibited.

上述の半田のニッケルの含有量は特に限定されるものではないが、ゲルマニウムの含有量と一定の関係を有することが好ましい。 Although the content of nickel in the above solder is not particularly limited, it is preferable to have a certain relationship with the content of germanium.

具体的には、質量%換算でのニッケルの含有量[Ni]と、質量%換算でのゲルマニウムの含有量[Ge]とは、以下の式(1)を満たすことが好ましい。 Specifically, the nickel content [Ni] in terms of mass % and the germanium content [Ge] in terms of mass % preferably satisfy the following formula (1).

[Ni]≦2.8×[Ge]0.3 ・・・(1)
これは、半田の質量%換算でのニッケルの含有量[Ni]が2.8×[Ge]0.3を超えると、該半田を被接合部材の接合面に塗布するため溶融した際に、半田の一部が粒子状に溶け残り、接合できなくなる場合があるためである。
[Ni]≦2.8×[Ge] 0.3 (1)
This is because when the nickel content [Ni] in terms of mass % of the solder exceeds 2.8×[Ge] 0.3 , when the solder is melted to apply it to the joint surface of the member to be joined, This is because part of the solder may remain undissolved in the form of particles, making it impossible to join.

特に、質量%換算でのニッケルの含有量[Ni]と、質量%換算でのゲルマニウムの含有量[Ge]とは、[Ni]≦2.4×[Ge]0.3を満たすことがより好ましく、[Ni]≦2.0×[Ge]0.3を満たすことがさらに好ましい。In particular, the nickel content [Ni] in terms of mass% and the germanium content [Ge] in terms of mass% satisfy [Ni] ≤ 2.4 × [Ge] 0.3 . Preferably, [Ni]≦2.0×[Ge] 0.3 is more preferably satisfied.

上述の半田のニッケルの含有量の下限値は特に限定されるものではなく、0質量%よりも多ければ良い。 The lower limit of the content of nickel in the solder is not particularly limited, and should be greater than 0% by mass.

また、質量%換算でのニッケルの含有量[Ni]を、質量%換算でのゲルマニウムの含有量[Ge]で除した値は2.0未満が好ましく、1.5未満がより好ましい。すなわち[Ni]/[Ge]<2.0が好ましく、[Ni]/[Ge]<1.5がより好ましい。 Also, the value obtained by dividing the nickel content [Ni] in terms of mass % by the germanium content [Ge] in terms of mass % is preferably less than 2.0, more preferably less than 1.5. That is, [Ni]/[Ge]<2.0 is preferable, and [Ni]/[Ge]<1.5 is more preferable.

これは、[Ni]/[Ge]が、2.0以上の場合、被接合部材の接合面に塗布するために溶融させた半田の表面に、ニッケルの酸化被膜が発生する場合があり、接合を阻害する恐れがあるためである。なお、ニッケルの酸化被膜は、金属成分のうちニッケルが相対的に多く含まれる酸化被膜のことを意味する。 This is because when [Ni]/[Ge] is 2.0 or more, a nickel oxide film may occur on the surface of the solder melted for application to the bonding surface of the member to be bonded. This is because there is a risk of hindering Note that the nickel oxide film means an oxide film containing a relatively large amount of nickel among the metal components.

また、質量%換算でのニッケルの含有量[Ni]を、質量%換算でのゲルマニウムの含有量[Ge]で除した値は0.005以上が好ましく、0.01以上がより好ましい。すなわち0.005≦[Ni]/[Ge]が好ましく、0.01≦[Ni]/[Ge]がより好ましい。 Further, the value obtained by dividing the nickel content [Ni] in terms of mass % by the germanium content [Ge] in terms of mass % is preferably 0.005 or more, more preferably 0.01 or more. That is, 0.005≦[Ni]/[Ge] is preferable, and 0.01≦[Ni]/[Ge] is more preferable.

これは[Ni]/[Ge]が0.005未満の場合、半田が、十分な酸素を保持できず、被接合部材の接合部分に酸化物が含まれている場合に、該接合部分の酸化物に対する濡れ性が低下し、被接合部材間の気密封止性を損なう恐れがあるからである。 This is because when [Ni]/[Ge] is less than 0.005, the solder cannot retain sufficient oxygen, and when the joint portion of the member to be joined contains oxides, the joint portion is oxidized. This is because the wettability with respect to objects may decrease, and the hermetic sealing between members to be joined may be impaired.

さらに、ゲルマニウムの含有量と、ニッケルの含有量との合計は1.2質量%より多いことが好ましい。これは、半田中のゲルマニウムの含有量と、ニッケルの含有量との合計が1.2質量%よりも多い場合、被接合部材間の気密封止性を特に高めることができるからである。
(イリジウム)
上述の半田は、さらにイリジウム(Ir)を含有することもできる。
Furthermore, the sum of the germanium content and the nickel content is preferably greater than 1.2% by mass. This is because when the total content of germanium and nickel in the solder is more than 1.2% by mass, the hermetic sealing between the members to be joined can be particularly enhanced.
(iridium)
The solder described above may also contain iridium (Ir).

上述の半田がイリジウムを含有することで、半田を溶融した際に、半田内の空隙の発生を低減することができる。半田がイリジウムを含有することで、半田を溶融した際に空隙の発生を抑制できる理由については明らかではないが、溶融金属の表面張力を低下させ、ガスの巻き込みを低減できるためと推認される。 By containing iridium in the solder described above, it is possible to reduce the occurrence of voids in the solder when the solder is melted. It is not clear why the presence of iridium in the solder suppresses the formation of voids when the solder is melted.

このように半田を溶融した際に空隙の発生を低減できることで、被接合部材との接合面積を十分に確保できるため、接合強度を高めることが可能となる。また、リーク経路の発生を抑制できるため、被接合部材間の気密封止性を高めることができる。 By reducing the occurrence of air gaps when the solder is melted in this way, it is possible to secure a sufficient bonding area with the member to be bonded, so that the bonding strength can be increased. In addition, since it is possible to suppress the occurrence of leak paths, it is possible to improve the airtightness between the members to be joined.

また、半田中の共晶物の結晶の粗大化は、半田を溶融し、凝固させて、被接合部材間を接合する接合部を形成した際、該接合部の伸びや強度を低下させ、接合部におけるクラック発生の原因となる場合がある。しかし、半田がイリジウムを含有することで、共晶物の結晶の粗大化を抑制でき、気密性低下の原因となるクラックの発生を抑えることができる。 In addition, the coarsening of the eutectic crystals in the solder reduces the elongation and strength of the joint when the solder is melted and solidified to form a joint for joining the members to be joined. It may cause cracks in the part. However, by containing iridium in the solder, it is possible to suppress the coarsening of the eutectic crystals, thereby suppressing the occurrence of cracks that cause a decrease in airtightness.

なお、半田は、線状に加工して線状はんだとして使用されることが一般的であるが、粗大な結晶を含む線状はんだは脆く、使いにくい。これに対して、上述の半田はイリジウムを含有することで、半田中の共晶物の結晶の粗大化を抑制できる。このため、上述の半田は、イリジウムを含有することで線状はんだとした場合でも取扱い性が低下することを抑制できる。 Solder is generally processed into a linear shape and used as linear solder, but linear solder containing coarse crystals is fragile and difficult to use. On the other hand, by containing iridium in the above solder, it is possible to suppress coarsening of eutectic crystals in the solder. For this reason, the above-mentioned solder containing iridium can suppress deterioration in handleability even when formed into a linear solder.

ここでいう半田に含まれる共晶物とは、例えばゲルマニウムと、ニッケルとで形成されるGe-Ni共晶物が挙げられる。 The eutectic contained in the solder mentioned here is, for example, a Ge—Ni eutectic formed of germanium and nickel.

上述の半田のイリジウムの含有量は特に限定されるものではないが、例えば0.1質量%以下が好ましく、0.025質量%以下がより好ましく、0.005質量%以下がさらに好ましい。 Although the content of iridium in the solder is not particularly limited, it is preferably 0.1% by mass or less, more preferably 0.025% by mass or less, and even more preferably 0.005% by mass or less.

これは半田中のイリジウムの含有量が0.1質量%を超える場合、該半田を溶融した際に、その表面に酸化被膜が発生する場合があり、被接合部材の接合を阻害する恐れがあるためである。 This is because if the iridium content in the solder exceeds 0.1% by mass, when the solder is melted, an oxide film may be generated on the surface, which may interfere with the joining of the members to be joined. It's for.

また、半田中のイリジウムの含有量が0.025質量%以下の場合、被接合部材間の気密封止性を特に高めることができるため、より好ましい。 Moreover, when the content of iridium in the solder is 0.025% by mass or less, the hermetic sealing property between the members to be joined can be particularly enhanced, which is more preferable.

イリジウムの含有量の下限値についても特に限定されるものではなく、例えば0質量%以上とすることができ、0.0005質量%以上が好ましい。
(亜鉛)
上述の半田は、さらに亜鉛(Zn)を含有することもできる。
The lower limit of the iridium content is also not particularly limited, and can be, for example, 0% by mass or more, preferably 0.0005% by mass or more.
(zinc)
The solder described above may also contain zinc (Zn).

半田が亜鉛を含有する場合、該半田を溶融した際に亜鉛は酸化物となる傾向が強い。このため、被接合部材の接合部分に酸化物が含まれている場合に、該接合部分の酸化物と半田とが結合しやすくなり、半田と、酸化物を含む該接合部分との濡れ性が向上し、高い接合強度を発揮することが可能になる。 When solder contains zinc, zinc has a strong tendency to become an oxide when the solder is melted. Therefore, when the joint portion of the member to be joined contains an oxide, the oxide of the joint portion and the solder are easily combined, and the wettability between the solder and the joint portion containing the oxide is improved. It becomes possible to improve and exhibit high joint strength.

上述の半田の亜鉛の含有量は特に限定されるものではないが、0.5質量%以下が好ましい。 Although the content of zinc in the above solder is not particularly limited, it is preferably 0.5% by mass or less.

これは半田中の亜鉛の含有量が0.5質量%を超える場合、該半田を溶融した際に、その表面に酸化被膜が発生する場合があり、被接合部材の接合を阻害する恐れがあるためである。 This is because if the zinc content in the solder exceeds 0.5% by mass, when the solder is melted, an oxide film may be generated on the surface, which may hinder the joining of the members to be joined. It's for.

亜鉛の含有量の下限値についても特に限定されるものではなく、例えば0質量%以上とすることができる。
(酸素)
そして、上述の半田はさらに、酸素を含有することができる。
The lower limit of the content of zinc is also not particularly limited, and can be, for example, 0% by mass or more.
(oxygen)
And the above solder can further contain oxygen.

半田中の酸素は、被接合部材の接合部分に酸化物が含まれている場合に、半田と、該酸化物を含有する接合部分との接合を促進する成分となる。 Oxygen in the solder is a component that promotes bonding between the solder and the joint portion containing the oxide when the joint portion of the member to be joined contains an oxide.

半田中に含まれる酸素の状態は特に限定されるものではないが、例えば酸素は半田の金属材料中に溶融した形で含有されていることが好ましい。これは、半田と、被接合部材との界面において、被接合部材の接合部分の酸化物と、半田中の金属材料との間の酸素濃度の傾斜が滑らかになり、接合界面が強固になるからである。 Although the state of oxygen contained in the solder is not particularly limited, oxygen is preferably contained in a molten form in the metallic material of the solder, for example. This is because at the interface between the solder and the member to be joined, the gradient of oxygen concentration between the oxide of the jointed part of the member to be joined and the metal material in the solder becomes smooth, and the joint interface becomes strong. is.

半田中に酸素を含有させる方法は特に限定されるものではないが、例えば、酸素を含む雰囲気下で半田を溶融、製造する方法、および/または酸素を含む雰囲気下で被接合部材との接合作業を行う方法が挙げられる。 The method of adding oxygen to the solder is not particularly limited, but for example, a method of melting and manufacturing solder in an oxygen-containing atmosphere, and/or a bonding operation with a member to be joined in an oxygen-containing atmosphere. There is a method of performing

なお、被接合部材を接合する前の半田は、後述する半田中の酸素の含有量を充足していることが好ましい。このため、酸素を含む雰囲気下で半田を溶融、製造する方法により酸素濃度を調整することが好ましい。 In addition, it is preferable that the solder before joining the member to be joined satisfies the content of oxygen in the solder, which will be described later. Therefore, it is preferable to adjust the oxygen concentration by a method of melting and manufacturing solder in an oxygen-containing atmosphere.

特に、被接合部材を接合する前の半田、および接合後の半田いずれの状態においても、後述する半田中の酸素の含有量を充足していることがより好ましい。 In particular, it is more preferable that the oxygen content in the solder, which will be described later, is satisfied in both the state of the solder before joining the members to be joined and the state of the solder after joining.

半田中の酸素の含有量は特に限定されるものではないが、例えば0.0001質量%以上とすることができ、好ましくは0.0007質量%以上である。 Although the content of oxygen in the solder is not particularly limited, it can be, for example, 0.0001% by mass or more, preferably 0.0007% by mass or more.

これは酸素の含有量を0.0001質量%以上とすることで、接合強度を高める効果を十分に発揮できるためである。 This is because the oxygen content of 0.0001% by mass or more can sufficiently exhibit the effect of increasing the bonding strength.

半田中の酸素の含有量の上限値は特に限定されるものではないが、例えば2質量%以下とすることができ、好ましくは1質量%以下である。 Although the upper limit of the oxygen content in the solder is not particularly limited, it can be, for example, 2% by mass or less, preferably 1% by mass or less.

これは半田が含有する酸素の量が多くなりすぎると、半田内部に酸化物の析出が生じやすくなり、かえって接合強度が低下する恐れがあるためである。このため、上述のように半田中の酸素の含有量は2質量%以下が好ましい。 This is because if the amount of oxygen contained in the solder becomes too large, oxides are likely to precipitate inside the solder, which may rather reduce the bonding strength. Therefore, as described above, the oxygen content in the solder is preferably 2% by mass or less.

なお、ここでいう半田中の酸素の含有量とは、半田内部に含まれる酸素の含有量を意味している。すなわち、半田表面に酸化被膜が形成されている場合には、該酸化被膜を除去した後の半田中の酸素含有量を示している。 The content of oxygen in the solder referred to here means the content of oxygen contained inside the solder. That is, when an oxide film is formed on the solder surface, it indicates the oxygen content in the solder after removing the oxide film.

半田中の酸素量を測定する際に、酸化被膜の除去方法は特に限定されるものではなく、例えば酸等により半田の表面を処理することにより除去することができる。 When measuring the amount of oxygen in the solder, the method of removing the oxide film is not particularly limited, and the oxide film can be removed, for example, by treating the surface of the solder with acid or the like.

半田中の酸素含有量の測定は、例えば以下の(1)~(3)の手順により測定できる。
(1)分析用の試料として、作製した半田の小片を0.5g用意する。
(2)(1)で用意した半田の小片の表面に含まれる酸化被膜の影響を除くため化学エッチングを実施する。
The oxygen content in solder can be measured, for example, by the following procedures (1) to (3).
(1) Prepare 0.5 g of a small piece of the produced solder as a sample for analysis.
(2) Chemical etching is performed to eliminate the influence of the oxide film contained on the surface of the solder pieces prepared in (1).

具体的には、半田の小片と、2倍希釈した塩酸と、を入れたビーカーをウォーターバスにセットし、80℃で12分間加熱する。その後、脱気水でデカンテーションを行い、次いでエタノールでデカンテーションを行う。
(3)(2)で酸化被膜の除去を行った半田の試料について酸素濃度を測定する。酸素濃度の測定は、例えば酸素・水素分析計を用いて行うことができる。
Specifically, a beaker containing a small piece of solder and twice-diluted hydrochloric acid is set in a water bath and heated at 80° C. for 12 minutes. After that, decantation is performed with degassed water, followed by decantation with ethanol.
(3) Measure the oxygen concentration of the solder sample from which the oxide film was removed in (2). The oxygen concentration can be measured using, for example, an oxygen/hydrogen analyzer.

ここまで、上述の半田が含有することができる各成分について説明したが、係る材料に限定されるものではない。また、上述の半田は、例えば半田を調製する際に発生する不可避成分を含有していてもよい。不可避成分としては特に限定されるものではない。ただし、不可避成分として、Fe、Co、Cr、V、Mn、Sb、Pb、Bi、Zn、As、Cdからなる群から選択される1種類以上の元素を含有する場合、上記元素の含有量は合計で1質量%以下が好ましく、合計で500ppm以下がより好ましい。 So far, each component that can be contained in the above-described solder has been described, but the material is not limited to such materials. Moreover, the above-mentioned solder may contain unavoidable components that are generated, for example, when preparing the solder. The inevitable component is not particularly limited. However, when containing one or more elements selected from the group consisting of Fe, Co, Cr, V, Mn, Sb, Pb, Bi, Zn, As, and Cd as inevitable components, the content of the above elements is The total content is preferably 1% by mass or less, more preferably 500 ppm or less in total.

これは、上記元素は、半田の被接合部材に対する濡れ性を低下させる働きがあり、上記元素の合計含有量を1質量%以下とすることで、半田の被接合部材に対する濡れ性が低下することを抑制できるからである。 This is because the above elements have the function of reducing the wettability of the solder to the member to be joined, and by setting the total content of the above elements to 1% by mass or less, the wettability of the solder to the member to be joined is reduced. can be suppressed.

そして、Ga、P、Bはボイド発生の原因となるため、Ga、P、Bからなる群から選択される1種類以上の元素を不可避成分として含有する場合、その含有量は合計で500ppm以下が好ましく、合計で100ppm以下がより好ましい。 And since Ga, P, and B cause void generation, when one or more elements selected from the group consisting of Ga, P, and B are contained as inevitable components, the total content is 500 ppm or less. Preferably, 100 ppm or less in total is more preferable.

また、上述の半田は、銀(Ag)を含有しないことが好ましい。 Also, the above solder preferably does not contain silver (Ag).

これは、銀はスズとの間で金属間化合物(AgSn)を生成する。そして、AgSnは融点が高いため、半田表面に存在すると、被接合部材との濡れ性を若干ではあるが、低下させる恐れがあるからである。This is because silver forms an intermetallic compound (Ag 3 Sn) with tin. Also, since Ag 3 Sn has a high melting point, if it exists on the solder surface, it may slightly reduce the wettability with the member to be joined.

係る被接合部材との濡れ性低下の現象は従来の超音波半田ごて等を用いて、酸化被膜を除去しながら接合する半田であれば問題とはならない。しかしながら、超音波はんだごて等を用いず、酸化被膜の除去作用が働かない環境下で接合を行う場合には、接合を阻害する要因となるためである。 The phenomenon of decreased wettability with the member to be joined does not pose a problem if the solder is joined while removing the oxide film using a conventional ultrasonic soldering iron or the like. However, if the bonding is performed in an environment in which an ultrasonic soldering iron or the like is not used and the action of removing the oxide film does not work, the bonding may be hindered.

なお、半田が銀を含有しないとは、半田を酸で溶解してICP発光分光分析法により分析した場合に、検出限界以下を意味している。 It should be noted that the fact that the solder does not contain silver means that it is below the detection limit when the solder is dissolved in acid and analyzed by ICP emission spectrometry.

そして、上述の半田は、半田の断面中、任意の位置における面積が1.0×10μmの領域内に存在する共晶物について、共晶物がその内部に含まれる最小サイズの円を共晶物毎に形成した場合に、直径が220μm以上の円が2個以下、または直径が350μm以上の円は1個以下が好ましい。Then, the above-mentioned solder is a circle of the minimum size in which the eutectic exists within a region having an area of 1.0×10 6 μm 2 at an arbitrary position in the cross section of the solder. is formed for each eutectic, the number of circles having a diameter of 220 μm or more is preferably two or less, or the number of circles having a diameter of 350 μm or more is preferably one or less.

また、上述の半田は、半田の断面中、任意の位置における面積が1.0×10μmの領域内に存在する共晶物について、面積が2000μm以上の共晶物が2個以下、または4000μm以上の共晶物は1個以下が好ましい。Further, in the above-mentioned solder, the eutectic existing in a region having an area of 1.0×10 6 μm 2 at any position in the cross section of the solder has two or less eutectic having an area of 2000 μm 2 or more. , or one or less eutectic having a size of 4000 μm 2 or more is preferable.

なお、上述の半田は、少なくとも被接合部材を接合する前において、半田の断面の所定の領域内の共晶物についての上述の規定のいずれか、または両方を充足することが好ましい。特に、上述の半田は、被接合部材を接合する前、及び被接合部材を接合した後の両方において、半田の断面の所定の領域内の共晶物についての上述の規定のいずれか、または両方を充足していることがより好ましい。すなわち、上述の半田は、任意のタイミングで、半田の断面の所定の領域内の共晶物について評価を行った場合に、上述の規定のいずれか、または両方を充足していることがより好ましい。 The above-mentioned solder preferably satisfies either or both of the above-mentioned regulations regarding the eutectic in a predetermined region of the cross section of the solder, at least before joining the members to be joined. In particular, the solder described above has any or both of the above provisions for eutectic within a given region of the cross-section of the solder both before joining the members to be joined and after joining the members to be joined. is more preferably satisfied. That is, it is more preferable that the above solder satisfies either or both of the above provisions when the eutectic within a predetermined region of the cross section of the solder is evaluated at an arbitrary timing. .

上述の任意の位置における面積が1.0×10μmの領域の形状は特に限定されるものではなく、任意の形状とすることができる。上記領域の形状としては、例えば正方形、長方形、多角形等が挙げられる。正方形の領域とする場合、例えば一辺の長さを1.0×10μmとすることができる。また、長方形の領域とする場合、上記面積を確保できるように各辺の長さを選択でき、例えば400μm×2500μmの長方形とすることもできる。多角形の領域とする場合にも、上記面積を確保できるように各辺の長さを選択でき、多角形を構成する各辺の長さは限定されるものではない。The shape of the region having an area of 1.0×10 6 μm 2 at any position described above is not particularly limited, and can be any shape. Examples of the shape of the area include a square, rectangle, polygon, and the like. In the case of a square area, the length of one side can be set to 1.0×10 3 μm, for example. In the case of a rectangular region, the length of each side can be selected so as to secure the above area. Even in the case of a polygonal region, the length of each side can be selected so as to secure the above area, and the length of each side constituting the polygon is not limited.

上述した半田に含まれる共晶物としては、例えばゲルマニウムと、ニッケルとで形成されるGe-Ni共晶物が挙げられる。 The eutectic contained in the above-described solder includes, for example, a Ge—Ni eutectic formed of germanium and nickel.

既述のように、半田中の共晶物の結晶の粗大化は、半田を溶融し、凝固させて、被接合部材間を接合する接合部を形成した際、該接合部の伸びや強度を低下させ、接合部におけるクラック発生の原因となる場合がある。しかし、半田の断面における共晶物が上記条件を充足する場合、共晶物の結晶の粗大化を抑制できているといえ、気密性低下の原因となるクラックの発生を抑えることができる。 As described above, the coarsening of the eutectic crystals in the solder reduces the elongation and strength of the joint when the solder is melted and solidified to form a joint that joins the members to be joined. can cause cracks to occur in joints. However, when the eutectic in the cross section of the solder satisfies the above conditions, it can be said that the coarsening of the eutectic crystal can be suppressed, and the occurrence of cracks that cause a decrease in airtightness can be suppressed.

また、半田は、線状に加工して線状はんだとして使用することができるが、半田の断面における共晶物が上記条件を充足する場合、半田中の共晶物の結晶の粗大化を抑制できており、線状はんだとした場合に十分な取扱い性を有することができる。 In addition, solder can be processed into a linear shape and used as linear solder, but if the eutectic in the cross section of the solder satisfies the above conditions, coarsening of eutectic crystals in the solder is suppressed. It is possible to have sufficient handleability when it is made into linear solder.

半田層122に好適に用いることができる半田としては、上述の半田以外にも、例えばスズ(Sn)-アンチモン(Sb)系の半田等を挙げることもできる。 Solders that can be suitably used for the solder layer 122 include, for example, tin (Sn)-antimony (Sb)-based solders, etc., in addition to the solders described above.

スズ-アンチモン系の半田の各成分の含有量は特に限定されないが、例えばアンチモンの含有量が1質量%以上であることが好ましい。アンチモンは、スズ-アンチモン系半田において固相線温度を上昇させる働きがあり、アンチモンの含有量を1質量%以上とすることで、係る効果を特に発揮することができ、好ましいからである。 Although the content of each component in the tin-antimony solder is not particularly limited, it is preferable that the content of antimony is, for example, 1% by mass or more. This is because antimony has the function of increasing the solidus temperature in the tin-antimony solder, and when the content of antimony is 1% by mass or more, such an effect can be particularly exhibited, which is preferable.

アンチモンの含有量の上限は特に限定されないが、例えば40質量%以下とすることが好ましい。これは、アンチモンの含有量を40質量%以下とすることで、固相線温度が過度に高くなることを防ぎ、電子部品の実装に適した半田とすることができるからである。 Although the upper limit of the content of antimony is not particularly limited, it is preferably 40% by mass or less, for example. This is because an antimony content of 40% by mass or less prevents the solidus temperature from becoming excessively high, making it possible to obtain a solder suitable for mounting electronic components.

スズ-アンチモン系の半田は、スズを含有することができる。スズは、回路基板や下地金属層等の被接合部材と、半田との熱膨張差を緩和することができる。さらに、スズを半田の主成分として含有することで、半田の融点温度をスズの融点温度である230℃程度とすることができる。 Tin-antimony based solders may contain tin. Tin can reduce the difference in thermal expansion between solder and members to be joined such as a circuit board and a base metal layer. Furthermore, by containing tin as a main component of the solder, the melting point temperature of the solder can be set to about 230° C., which is the melting point temperature of tin.

スズ-アンチモン系の半田は、アンチモンとスズとから構成することもでき、この場合、アンチモンを除いた残部をスズにより構成することができる。 The tin-antimony solder can also be composed of antimony and tin, and in this case, the remainder excluding antimony can be composed of tin.

スズ-アンチモン系の半田は、アンチモンとスズ以外にも任意の添加成分を含有することができ、例えば銀(Ag)、銅(Cu)等から選択された1種類以上を含有することもできる。銀や銅は、アンチモンと同様に半田の固相線温度を上昇させる働きを有する。この場合、アンチモンと任意の添加成分以外の残部をスズにより構成することができる。 The tin-antimony-based solder can contain arbitrary additive components other than antimony and tin, and can contain, for example, one or more selected from silver (Ag), copper (Cu), and the like. Silver and copper have the function of increasing the solidus temperature of the solder, like antimony. In this case, the balance other than antimony and optional additive components can be made up of tin.

半田層122に好適に用いることができる半田の構成例について説明したが、本実施形態の窓材10の半田層122に用いる半田は係る半田に限定されるものではないのは既述のとおりである。 Although a configuration example of solder that can be suitably used for the solder layer 122 has been described, the solder used for the solder layer 122 of the window member 10 of the present embodiment is not limited to such solder as described above. be.

接合層12の形状は特に限定されるものではないが、例えば図1(B)に示すように、窓材10の接合層12を形成した側から見た場合の図、すなわち底面図において半田層122を含む接合層12が無機材料の基体11の外周に沿って配置された形状とすることができる。そして、半田層122を含む接合層12は中央部に開口部を有し、該開口部から無機材料の基体11が見える形状とすることができる。図1(B)では、無機材料の基体11の方が、半田層122を含む接合層12よりも大きくなっているが、係る形態に限定されない。例えば無機材料の基材11の外周と、半田層122を含む接合層12の外周とが一致するように構成することもできる。 Although the shape of the bonding layer 12 is not particularly limited, for example, as shown in FIG. The bonding layer 12 including 122 can be arranged along the outer periphery of the inorganic material substrate 11 . The bonding layer 12 including the solder layer 122 has an opening in the center, and the base 11 made of the inorganic material can be seen through the opening. In FIG. 1B, the substrate 11 made of inorganic material is larger than the bonding layer 12 including the solder layer 122, but the configuration is not limited to this. For example, the outer periphery of the base material 11 made of an inorganic material and the outer periphery of the bonding layer 12 including the solder layer 122 may be configured to coincide with each other.

なお、図1(B)では接合層12のうち、最表面に位置する半田層122を示しているが、接合層12の各層の積層方向(図1(A)における上下方向)と垂直な面での接合層12の断面形状は、層によらず同じ形状とすることが好ましい。 Although FIG. 1B shows the solder layer 122 positioned on the outermost surface of the bonding layer 12, the surface perpendicular to the stacking direction of each layer of the bonding layer 12 (vertical direction in FIG. 1A) is shown. The cross-sectional shape of the bonding layer 12 in 3 is preferably the same regardless of the layer.

本実施形態の窓材の製造方法は特に限定されるものではないが、例えば以下の工程を有することができる。 The method for manufacturing the window material of the present embodiment is not particularly limited, but may include, for example, the following steps.

無機材料の基体を用意する基体準備工程。
無機材料の基体の一方の面上に接合層を形成する接合層形成工程。
基体準備工程の具体的な操作は特に限定されないが、例えば無機材料の基体を所望のサイズとなるように切断したり、無機材料の基体の形状が所望の形状となるように加工することができる。なお、無機材料の基体の表面に反射防止膜を配置する場合は、本工程で反射防止膜を形成することもできる。反射防止膜の成膜方法は特に限定されるものではなく、例えば乾式法や、湿式法により成膜することができ、乾式法の場合であれば、蒸着法、スパッタリング法、イオンプレーティング法等から選択された1種類以上の方法により成膜することができる。湿式法の場合であれば、浸漬法や、スプレー塗布法等から選択された1種類以上の方法により成膜することができる。
A substrate preparation step of preparing a substrate of an inorganic material.
a bonding layer forming step of forming a bonding layer on one surface of the inorganic material substrate;
Although the specific operation of the substrate preparation step is not particularly limited, for example, the inorganic material substrate can be cut to a desired size, or the inorganic material substrate can be processed to have a desired shape. . In addition, when an antireflection film is arranged on the surface of a substrate made of an inorganic material, the antireflection film can also be formed in this step. The method for forming the antireflection film is not particularly limited, and for example, it can be formed by a dry method or a wet method. In the case of a dry method, a vapor deposition method, a sputtering method, an ion plating method, or the like can be used. The film can be formed by one or more methods selected from. In the case of the wet method, the film can be formed by one or more methods selected from immersion methods, spray coating methods, and the like.

接合層形成工程は、例えば下地金属層を形成する下地金属層形成ステップと、半田層形成ステップとを有することができる。 The bonding layer forming process can have, for example, a base metal layer forming step for forming a base metal layer and a solder layer forming step.

下地金属層形成ステップは、無機材料の基体の一方の面上に下地金属層を形成することができる。下地金属層を形成する方法は特に限定されず、成膜する下地金属層の種類等に応じて任意に選択することができる。例えば乾式法や、湿式法により成膜することができ、乾式法の場合であれば、蒸着法、スパッタリング法、イオンプレーティング法等から選択された1種類以上の方法により成膜することができる。湿式法の場合であれば、電解めっき法や、無電解めっき法、印刷法等から選択された1種類以上の方法により成膜することができる。 The base metal layer forming step can form a base metal layer on one surface of the inorganic material base. The method for forming the underlying metal layer is not particularly limited, and can be arbitrarily selected according to the type of the underlying metal layer to be formed. For example, a film can be formed by a dry method or a wet method. In the case of a dry method, the film can be formed by one or more methods selected from a vapor deposition method, a sputtering method, an ion plating method, and the like. . In the case of the wet method, the film can be formed by one or more methods selected from electrolytic plating, electroless plating, printing, and the like.

なお、既述のように下地金属層は複数の層から構成することもでき、層毎に任意の方法により成膜することができる。 As described above, the base metal layer can also be composed of a plurality of layers, and each layer can be formed by an arbitrary method.

半田層形成ステップでは、無機材料の基体の一方の面上、もしくは下地金属層上に半田層を形成することができる。半田層を形成する方法は特に限定されず、例えばディップ法や、ディスペンサーを使った塗布法、印刷法、レーザーメタルデポジション法、半田ワイヤを用いた方法等から選択された1種類以上が挙げられる。 In the solder layer forming step, a solder layer can be formed on one surface of the substrate of inorganic material or on the base metal layer. The method of forming the solder layer is not particularly limited, and examples thereof include one or more selected from dipping, coating using a dispenser, printing, laser metal deposition, and soldering wire. .

ディップ法は、半田溶融槽内で半田層の原料となる半田を溶融させておき、半田層を形成する部材、例えば下地金属層を配置した無機材料の基体の半田層を形成する部分を、半田溶融槽内の溶融半田にディップし、半田層を形成する方法である。 In the dipping method, the solder, which is the raw material of the solder layer, is melted in a solder melting tank, and the part of the member that forms the solder layer, for example, the base of an inorganic material on which the base metal layer is arranged, is melted. It is a method of forming a solder layer by dipping in molten solder in a melting tank.

ディスペンサーを用いた塗布法は、例えばシリンジが接続されたディスペンサーから、半田層を形成する部材、例えば下地金属層を配置した無機材料の基体の半田層を形成する部分に溶融した半田を供給し、半田層を形成する方法である。 In the coating method using a dispenser, for example, molten solder is supplied from a dispenser connected to a syringe to a portion of a member forming a solder layer, such as a base made of an inorganic material on which a base metal layer is arranged, where the solder layer is to be formed, A method of forming a solder layer.

印刷法は、半田層を形成する部材、例えば下地金属層を配置した無機材料の基体の半田層を形成する部分に対してペースト状にした半田を印刷し、半田層を形成する方法である。なお、印刷後必要に応じて熱処理を行うこともできる。 The printing method is a method of forming a solder layer by printing paste-like solder on a portion of a member on which a solder layer is to be formed, for example, a base made of an inorganic material on which a base metal layer is arranged, where the solder layer is to be formed. In addition, after printing, heat treatment can be performed as necessary.

レーザーメタルデポジション法は、半田層を形成する部材、例えば下地金属層を配置した無機材料の基体の半田層を形成する部分に対して粉体状の半田を供給し、レーザーで半田を溶融後、冷却することで半田層を形成する方法である。 In the laser metal deposition method, powdery solder is supplied to the part of the base metal base on which the solder layer is to be formed, for example, the part of the base made of an inorganic material on which the underlying metal layer is to be formed. , is a method of forming a solder layer by cooling.

半田ワイヤを用いた方法は、ワイヤ状、すなわち線状に加工した半田を用い、例えば自動半田付けロボット等により、半田層を形成する部材、例えば下地金属層を配置した無機材料の基体の半田層を形成する部分に対して溶融した半田を供給し、半田層を形成する方法である。 The method using a solder wire uses solder processed into a wire shape, that is, a linear shape, and for example, an automatic soldering robot or the like is used to form a member that forms a solder layer, for example, a solder layer of an inorganic material substrate on which a base metal layer is arranged. In this method, a solder layer is formed by supplying melted solder to the portion where the is to be formed.

本実施形態の窓材の製造方法は、必要に応じてさらに任意のステップを有することもできる。 The method for manufacturing the window material of the present embodiment may further have optional steps as required.

接合層は図1(A)、図1(B)を用いて説明したように無機材料の基体11の一方の面11a上に所望の形状となるように形成することができる。 As described with reference to FIGS. 1A and 1B, the bonding layer can be formed in a desired shape on one surface 11a of the substrate 11 made of an inorganic material.

このため、本実施形態の窓材の製造方法は、例えば下地金属層形成ステップと、半田層形成ステップとにより接合層を形成した後、該接合層が所望の形状となるようにパターン化するパターン化ステップを有することもできる。パターン化ステップでは、例えば、半田層の露出した面上に、形成するパターンに対応したレジストを配置し、エッチング等により、半田層及び下地金属層のうちレジストに覆われていない部分を除去してパターン化することができる。パターン化ステップの後にレジストを除去するレジスト除去ステップを実施することもできる。 For this reason, in the method for manufacturing a window material of the present embodiment, for example, after forming a bonding layer by a base metal layer forming step and a solder layer forming step, the bonding layer is patterned into a desired shape. It can also have a transformation step. In the patterning step, for example, a resist corresponding to a pattern to be formed is placed on the exposed surface of the solder layer, and portions of the solder layer and underlying metal layer not covered with the resist are removed by etching or the like. Can be patterned. A resist removal step can also be performed after the patterning step to remove the resist.

なお、下地金属層が複数の層を含む場合において、下地金属層に含まれる層の一部を成膜後、パターン化ステップを実施し、該成膜した下地金属層に含まれる層の一部をパターン化することもできる。そして、該パターン化ステップの後に、レジストを除去するレジスト除去ステップを実施した後、パターン化された下地金属層上に、さらに残りの下地金属層を形成することもできる。 In the case where the base metal layer includes a plurality of layers, after forming a part of the layer included in the base metal layer, a patterning step is performed, and the part of the layer included in the deposited base metal layer is formed. can also be patterned. After the patterning step, a resist removing step for removing the resist may be performed, and then a remaining underlying metal layer may be formed on the patterned underlying metal layer.

また、例えば本実施形態の窓材の製造方法は、下地金属層形成ステップと、半田層形成ステップとを実施する前に、下地金属層、及び半田層を形成しない部分にレジストを配置するレジスト配置ステップを有することもできる。レジスト形成後に、下地金属層、及び半田層を形成することで、形成するパターンに対応した部分にのみ下地金属層、及び半田層を形成することができる。この場合、半田層形成ステップの後にレジストを除去するレジスト除去ステップを有することもできる。 Further, for example, in the method for manufacturing a window material of the present embodiment, before performing the base metal layer forming step and the solder layer forming step, a resist arrangement is performed in which a resist is arranged in a portion where the base metal layer and the solder layer are not formed. It can also have steps. By forming the underlying metal layer and the solder layer after forming the resist, it is possible to form the underlying metal layer and the solder layer only on the portions corresponding to the patterns to be formed. In this case, it is also possible to have a resist removing step for removing the resist after the solder layer forming step.

また、複数の窓材を同時に製造できるように、複数個分のサイズの無機材料の基体(切断前資材)上に、各窓材に対応した接合層を複数形成した場合には、無機材料の基体を切断する切断工程を有することもできる。切断方法は特に限定されるものではなく、既述のレーザー光を用いた切断方法等、無機材料の基体にあわせた切断方法を採用することができる。なお、隣接する窓材において接合層が連続して形成されている場合、すなわち切断線上に接合層が配置されている場合には、切断工程において、接合層もあわせて切断することもできる。 In addition, in order to simultaneously manufacture a plurality of window materials, when a plurality of bonding layers corresponding to each window material are formed on a substrate (material before cutting) of an inorganic material having a size corresponding to a plurality of pieces, it is possible to manufacture a plurality of window materials at the same time. It can also have a cutting step for cutting the substrate. The cutting method is not particularly limited, and a cutting method suitable for the base of the inorganic material, such as the cutting method using the laser beam described above, can be employed. When the bonding layer is continuously formed on adjacent window materials, that is, when the bonding layer is arranged on the cutting line, the bonding layer can also be cut together in the cutting step.

なお、光学パッケージとしてから、回路基板と共に無機材料の基体等の切断も行い、個片化することもできる。 It should be noted that after forming the optical package, it is also possible to cut the substrate of the inorganic material together with the circuit board to separate it into individual pieces.

以上に説明した本実施形態の窓材によれば、接合層中の金の体積割合を抑制しているため、コストを抑制した窓材とすることができる。
[光学パッケージ]
次に、本実施形態の光学パッケージの一構成例について説明する。
According to the window material of the present embodiment described above, since the volume ratio of gold in the bonding layer is suppressed, the window material can be manufactured at a reduced cost.
[Optical package]
Next, a configuration example of the optical package of this embodiment will be described.

本実施形態の光学パッケージは、既述の窓材と、光学素子を備えた回路基板とを有することができる。 The optical package of this embodiment can have the aforementioned window material and a circuit board having an optical element.

本実施形態の光学パッケージの構成例について、図4を用いて説明する。 A configuration example of the optical package of this embodiment will be described with reference to FIG.

図4は、本実施形態の光学パッケージの窓材と光学素子を備えた回路基板との積層方向と平行な面での断面図を模式的に示したものである。なお、図4中では窓材10と、回路基板41とを区別できるように分けて記載しているが、光学パッケージ40において両部材は接合され、一体化している。 FIG. 4 schematically shows a cross-sectional view of the window material of the optical package of the present embodiment and the circuit board having the optical element on a plane parallel to the lamination direction. Although the window member 10 and the circuit board 41 are shown separately in FIG. 4 so as to be distinguished from each other, both members are joined and integrated in the optical package 40 .

上述のように、本実施形態の光学パッケージ40は、既述の窓材10と、光学素子42を備えた回路基板41とを有する。 As described above, the optical package 40 of this embodiment has the window member 10 described above and the circuit board 41 having the optical element 42 .

窓材10については既に説明したため、図1の場合と同じ番号を付して、説明を省略する。 Since the window material 10 has already been described, the same numbers as in FIG. 1 are given and the description is omitted.

回路基板41については特に限定されず、絶縁性基材411と、光学素子42に対して電力を供給する図示しない配線とを備えた各種回路基板を用いることができる。 The circuit board 41 is not particularly limited, and various circuit boards having an insulating base material 411 and wiring (not shown) for supplying power to the optical element 42 can be used.

ただし、窓材10を接合した場合に、窓材10と、回路基板41とで囲まれた空間内の気密封止性を高めるため、回路基板41はセラミックス製の絶縁性基材411を有することが好ましい。 However, when the window material 10 is joined, the circuit board 41 must have an insulating base material 411 made of ceramics in order to improve the airtightness of the space surrounded by the window material 10 and the circuit board 41. is preferred.

ここで、回路基板41の絶縁性基材411に用いるセラミックス材料としては特に限定されないが、例えばアルミナ(酸化アルミニウム、Al)や、窒化アルミニウム(AlN)、LTCC(Low Temperature Co-fired Ceramics)等から選択された1種類以上が挙げられる。Here , the ceramic material used for the insulating base material 411 of the circuit board 41 is not particularly limited. ) and the like.

回路基板41の絶縁性基材411の形状は特に限定されないが、光学パッケージ40とした場合に、無機材料の基体11と絶縁性基材411と、後述する接合部とで、光学素子42を配置する部分に閉鎖された空間を形成できるように構成されていることが好ましい。このため、絶縁性基材411は、その上面411aの中央部に開口部を有し、該開口部を含む非貫通孔である凹部411Aを有することが好ましい。なお、絶縁性基材411の上面とは、光学パッケージとする場合に窓材10と対向する面であり、窓材10と接合する側の面ともいえる。 The shape of the insulating base material 411 of the circuit board 41 is not particularly limited, but in the case of the optical package 40, the optical element 42 is arranged by the inorganic material base 11, the insulating base material 411, and the joint portion described later. It is preferable to be configured so that a closed space can be formed in the portion to be closed. For this reason, it is preferable that the insulating base material 411 has an opening in the central portion of its upper surface 411a and has a concave portion 411A that is a non-through hole including the opening. The upper surface of the insulating base material 411 is the surface facing the window material 10 when used as an optical package, and can be said to be the surface on the side that is joined to the window material 10 .

係る凹部411Aを囲む壁部411Bは、光学パッケージとした場合に、窓材10の接合層12と、後述する回路基板用下地金属層とを、共に支持するため、該接合層12や、回路基板用下地金属層に対応した形状を有することができる。 The wall portion 411B surrounding the concave portion 411A supports both the bonding layer 12 of the window member 10 and a base metal layer for a circuit board, which will be described later, in the case of an optical package. It can have a shape corresponding to the underlying metal layer.

さらに、回路基板41は、絶縁性基材411の上面411aであって、壁部411Bの上面に回路基板用下地金属層412を有することができる。 Further, the circuit board 41 can have a circuit board base metal layer 412 on the upper surface 411a of the insulating base material 411 and on the upper surface of the wall portion 411B.

回路基板用下地金属層412は、回路基板41の絶縁性基材411と、窓材10との密着性を高める働きを有することができる。回路基板用下地金属層412の具体的な構成は特に限定されないが、例えば回路基板41の絶縁性基材411側から、第1回路基板用下地金属層412A、第2回路基板用下地金属層412B、第3回路基板用下地金属層412Cの順に積層した層構造を有することができる。なお、ここでは回路基板用下地金属層412が三層から構成される例を示したが、係る形態に限定されず、一層もしくは、二層、もしくは四層以上の層から構成することもできる。 The circuit board base metal layer 412 can function to increase the adhesion between the insulating base material 411 of the circuit board 41 and the window member 10 . The specific configuration of the circuit board base metal layer 412 is not particularly limited. , and the base metal layer 412C for the third circuit board. Although an example in which the circuit board base metal layer 412 is composed of three layers is shown here, it is not limited to such a configuration, and may be composed of one layer, two layers, or four or more layers.

上述のように回路基板用下地金属層412を三層から構成する場合、例えば第1回路基板用下地金属層412Aは回路基板41において配線(回路)を形成するために用いた金属と同じ金属から構成することが好ましい。例えば第1回路基板用下地金属層412Aは、銅(Cu)、銀(Ag)、タングステン(W)から選択された1種類以上の金属を含む層とすることができる。第1回路基板用下地金属層412Aは、銅(Cu)、銀(Ag)、タングステン(W)から選択された1種類以上の金属からなる層とすることもできる。なお、この場合でも第1回路基板用下地金属層412Aが不可避不純物を含むことを排除するものではない。 When the circuit board base metal layer 412 is composed of three layers as described above, for example, the first circuit board base metal layer 412A is made of the same metal as the metal used to form the wiring (circuit) on the circuit board 41. preferably configured. For example, the first circuit board base metal layer 412A can be a layer containing one or more metals selected from copper (Cu), silver (Ag), and tungsten (W). The first circuit board base metal layer 412A can also be a layer made of one or more metals selected from copper (Cu), silver (Ag), and tungsten (W). Even in this case, it is not excluded that the underlying metal layer 412A for the first circuit board contains unavoidable impurities.

第2回路基板用下地金属層412Bは、後述する第3回路基板用下地金属層412Cと、第1回路基板用下地金属層412Aとが合金化することを防ぐ層とすることができ、例えばニッケル(Ni)を含む層とすることができる。第2回路基板用下地金属層412Bは、ニッケル(Ni)からなる層とすることもできる。なお、この場合でも第2回路基板用下地金属層412Bが不可避不純物を含むことを排除するものではない。 The second circuit board base metal layer 412B can be a layer that prevents the third circuit board base metal layer 412C and the first circuit board base metal layer 412A, which will be described later, from being alloyed. It can be a layer containing (Ni). The base metal layer 412B for the second circuit board can also be a layer made of nickel (Ni). Even in this case, it is not excluded that the underlying metal layer 412B for the second circuit board contains unavoidable impurities.

第3回路基板用下地金属層412Cは、第2回路基板用下地金属層412Bが酸化することを防止するための層とすることができ、例えば金(Au)を含む層とすることができる。第3回路基板用下地金属層412Cは、金(Au)からなる層とすることもできる。なお、この場合でも第3回路基板用下地金属層412Cが不可避不純物を含むことを排除するものではない。 The base metal layer 412C for the third circuit board can be a layer for preventing the base metal layer 412B for the second circuit board from being oxidized, and can be a layer containing gold (Au), for example. The base metal layer 412C for the third circuit board can also be a layer made of gold (Au). Even in this case, it is not excluded that the base metal layer 412C for the third circuit board contains unavoidable impurities.

回路基板用下地金属層412を構成する各層の厚みは特に限定されるものではなく任意に選択することができる。 The thickness of each layer constituting the circuit board underlying metal layer 412 is not particularly limited and can be selected arbitrarily.

第1回路基板用下地金属層412Aの厚みは、例えば1μm以上とすることが好ましい。第1回路基板用下地金属層412Aの厚みの上限についても特に限定されるものではないが、コストを十分に低減する観点から20μm以下が好ましい。 The thickness of the base metal layer 412A for the first circuit board is preferably 1 μm or more, for example. The upper limit of the thickness of the base metal layer 412A for the first circuit board is also not particularly limited, but from the viewpoint of sufficiently reducing the cost, it is preferably 20 μm or less.

第2回路基板用下地金属層412Bの厚みについては、第1回路基板用下地金属層412Aと、第3回路基板用下地金属層412Cとの合金化を特に抑制する観点から1μm以上が好ましい。第2回路基板用下地金属層412Bの厚みの上限についても特に限定されるものではないが、コストを十分に低減する観点から20μm以下が好ましい。 The thickness of the second circuit board base metal layer 412B is preferably 1 μm or more from the viewpoint of particularly suppressing alloying between the first circuit board base metal layer 412A and the third circuit board base metal layer 412C. The upper limit of the thickness of the base metal layer 412B for the second circuit board is also not particularly limited, but from the viewpoint of sufficiently reducing the cost, it is preferably 20 μm or less.

第3回路基板用下地金属層412Cの厚みは、他の回路基板用下地金属層の酸化を特に防止する観点から0.03μm以上が好ましい。第3回路基板用下地金属層412Cの厚みの上限についても特に限定されるものではないが、コストを十分に低減する観点から2.0μm以下が好ましく、0.5μm以下がより好ましい。 The thickness of the third circuit board base metal layer 412C is preferably 0.03 μm or more from the viewpoint of particularly preventing oxidation of other circuit board base metal layers. Although the upper limit of the thickness of the base metal layer 412C for the third circuit board is not particularly limited, it is preferably 2.0 μm or less, more preferably 0.5 μm or less, from the viewpoint of sufficiently reducing the cost.

回路基板用下地金属層412の形状についても特に限定されないが、光学パッケージ40とした場合に、窓材10の接合層12と共に後述する接合部43を構成するため、窓材10の接合層12に対応した形状を有することが好ましい。具体的には、窓材10の接合層12と、回路基板用下地金属層412とは、光学パッケージとする際の両部材の積層方向(図4における上下方向)と垂直な面における断面形状が同じ形状が好ましい。 The shape of the circuit board base metal layer 412 is also not particularly limited. It is preferred to have a corresponding shape. Specifically, the bonding layer 12 of the window member 10 and the base metal layer 412 for the circuit board have a cross-sectional shape in a plane perpendicular to the lamination direction (vertical direction in FIG. 4) of both members when forming an optical package. The same shape is preferred.

回路基板用下地金属層412の成膜方法は特に限定されず、例えば成膜する回路基板用下地金属層412の種類等に応じて任意に選択することができる。例えば乾式法や、湿式法により成膜することができ、乾式法の場合であれば、蒸着法、スパッタリング法、イオンプレーティング法等から選択された1種類以上の方法により成膜することができる。湿式法の場合であれば、電解めっき法や、無電解めっき法、印刷法等から選択された1種類以上の方法により成膜することができる。 The method for forming the circuit board base metal layer 412 is not particularly limited, and can be arbitrarily selected according to, for example, the type of the circuit board base metal layer 412 to be formed. For example, a film can be formed by a dry method or a wet method. In the case of a dry method, the film can be formed by one or more methods selected from a vapor deposition method, a sputtering method, an ion plating method, and the like. . In the case of the wet method, the film can be formed by one or more methods selected from electrolytic plating, electroless plating, printing, and the like.

なお、既述のように回路基板用下地金属層は複数の層から構成することもでき、層毎に任意の方法により成膜することができる。 As described above, the underlying metal layer for a circuit board can be composed of a plurality of layers, and each layer can be formed by an arbitrary method.

回路基板41に配置する光学素子42については特に限定されるものではなく、例えば発光ダイオード等の発光素子や、受光素子等を用いることができる。 The optical element 42 arranged on the circuit board 41 is not particularly limited, and for example, a light-emitting element such as a light-emitting diode, or a light-receiving element or the like can be used.

なお、光学素子42が発光素子の場合、該発光素子が発する光の波長領域は特に限定されない。このため、例えば紫外光から赤外光の範囲内から選択された任意の波長領域の光、すなわち例えば波長が200nm以上1mm以下の範囲内から選択された任意の波長領域の光を発する発光素子を用いることができる。 In addition, when the optical element 42 is a light emitting element, the wavelength region of the light emitted by the light emitting element is not particularly limited. For this reason, for example, a light emitting element that emits light in an arbitrary wavelength range selected from the range of ultraviolet light to infrared light, that is, light in an arbitrary wavelength range selected from the wavelength range of 200 nm or more and 1 mm or less is used. can be used.

ただし、本実施形態の光学パッケージによれば、発光素子からの光を透過させる部材である窓材の基体は、透明樹脂の基体ではなく、無機材料の基体11である。このため、窓材の上記基体に透明樹脂の基体を用いた場合と比較して、気密封止性を高めることができ、さらには該発光素子からの光による窓材の劣化を抑制できる。このため、光学素子が発光素子の場合、気密性が特に要求される発光素子や、樹脂の劣化が進行し易い光を発する発光素子を用いた場合に、特に本実施形態の光学パッケージは高い効果を発揮することができ好ましい。気密性が特に要求される発光素子としては、例えば波長が200nm以上280nm以下の波長領域の光であるUV-Cを発する発光素子が挙げられる。また、樹脂の劣化が進行し易い光を発する発光素子としては、レーザー等の出力の高い光を発する発光素子が挙げられる。従って、光学素子42が発光素子の場合、該発光素子として、UV-Cを発する発光素子や、レーザー等を、特に高い効果を発揮する観点から好ましく用いることができる。 However, according to the optical package of the present embodiment, the base of the window member, which is a member for transmitting light from the light emitting element, is not the base of transparent resin but the base 11 of inorganic material. Therefore, as compared with the case where a transparent resin substrate is used as the substrate of the window material, the hermetic sealing performance can be improved, and deterioration of the window material due to the light from the light emitting element can be suppressed. Therefore, when the optical element is a light-emitting element, the optical package of the present embodiment is particularly effective when using a light-emitting element that particularly requires airtightness or a light-emitting element that emits light whose resin is likely to deteriorate. It is preferable because it can demonstrate A light-emitting element that particularly requires airtightness includes, for example, a light-emitting element that emits UV-C, which is light in a wavelength range of 200 nm or more and 280 nm or less. Further, light-emitting elements that emit high-output light, such as lasers, can be used as light-emitting elements that cause deterioration of the resin to progress easily. Therefore, when the optical element 42 is a light-emitting element, a light-emitting element that emits UV-C, a laser, or the like can be preferably used as the light-emitting element from the viewpoint of exhibiting a particularly high effect.

そして、窓材10の無機材料の基体11と、回路基板41の絶縁性基材411とは接合部43により接合することができる。接合部43は、図4に示すように、窓材10の接合層12と、回路基板41の回路基板用下地金属層412とを有することができる。なお、接合部43は、接合層12と、回路基板用下地金属層412とから構成することもできる。 The base 11 of the inorganic material of the window member 10 and the insulating base 411 of the circuit board 41 can be joined together by the joining portion 43 . As shown in FIG. 4 , the joint portion 43 can have the joint layer 12 of the window member 10 and the circuit board underlying metal layer 412 of the circuit board 41 . The bonding portion 43 can also be composed of the bonding layer 12 and the base metal layer 412 for the circuit board.

接合部43の構成は特に限定されないが、コストの観点から、接合部中の金の体積割合が5%以下が好ましく、4%以下がより好ましい。 The structure of the joint portion 43 is not particularly limited, but from the viewpoint of cost, the volume ratio of gold in the joint portion is preferably 5% or less, more preferably 4% or less.

接合部43は金を含まないこともできることから、接合部中の金の体積割合は0以上とすることができる。 Since the joint 43 may not contain gold, the volume ratio of gold in the joint may be 0 or more.

接合部43に含まれる既述の半田層や、下地金属層等の各層は略均一な厚さで形成することができる。このため、例えば接合部43中に金を含有する層が、金からなる金層として存在する場合には、金の体積割合とは、金層の厚みが接合部43の厚みに占める割合とすることもできる。また、金を含有する層が、金以外の成分も含有する場合には、金を含有する層の厚みが接合部43の厚みに占める割合に、金を含有する層中の金の体積含有割合を掛け合わせた値とすることもできる。 Each layer such as the already-described solder layer and base metal layer included in the joint portion 43 can be formed with a substantially uniform thickness. Therefore, for example, when a layer containing gold exists as a gold layer made of gold in the joint portion 43, the volume ratio of gold is defined as the ratio of the thickness of the gold layer to the thickness of the joint portion 43. can also Further, when the layer containing gold also contains components other than gold, the volume content ratio of gold in the layer containing gold to the ratio of the thickness of the layer containing gold to the thickness of the joint portion 43 can also be a value obtained by multiplying

なお、上述のように各層の厚みを用いて接合部中の金の体積割合を算出する場合、半田層の厚みとしては、単純平均の平均値を用いることができる。 When the volume ratio of gold in the joint is calculated using the thickness of each layer as described above, an average value of simple averages can be used as the thickness of the solder layer.

以上に説明した本実施形態の光学パッケージによれば、既述の窓材を用いているため、コストを抑制した光学パッケージとすることができる。 According to the optical package of this embodiment described above, since the above-described window material is used, the optical package can be made at a reduced cost.

本実施形態の光学パッケージの製造方法は特に限定されるものではなく、任意の方法により製造することができる。 The method for manufacturing the optical package of this embodiment is not particularly limited, and the optical package can be manufactured by any method.

本実施形態の光学パッケージの製造方法は、例えば以下の工程を有することができる。 The method for manufacturing the optical package of this embodiment can have, for example, the following steps.

光学素子を備えた回路基板を準備する回路基板準備工程。 A circuit board preparation step of preparing a circuit board having an optical element.

回路基板上に窓材を配置して、窓材と回路基板とを接合する接合工程。 A joining step of placing a window material on a circuit board and joining the window material and the circuit board.

回路基板準備工程では、常法により製造された回路基板上に光学素子を配置し、光学素子を備えた回路基板を準備することができる。なお、接合工程終了後に個片化する場合には、回路基板準備工程では、複数の回路基板が一体化した、切断前の回路基板を準備することができる。 In the circuit board preparation step, an optical element can be arranged on a circuit board manufactured by a conventional method, and a circuit board provided with the optical element can be prepared. In addition, in the case of separating into individual pieces after the joining step is finished, in the circuit board preparation step, a circuit board before cutting, in which a plurality of circuit boards are integrated, can be prepared.

そして、接合工程では回路基板上に窓材を配置して、窓材と回路基板とを接合することができる。接合の具体的な方法は特に限定されないが、例えばまず、図4に示した光学パッケージ40において、接合層12の露出した下面12aと、回路基板用下地金属層412の露出した上面412aとが直接接触するように重ね合せることができる。そして、例えば窓材10の、無機材料の基体11の他方の面11b上から、回路基板41側に向かって、すなわち図中のブロック矢印Bに沿って押圧しながら加熱することで、半田層122の少なくとも一部を溶融させ、その後冷却することで、窓材10と回路基板41とを接合することができる。 Then, in the bonding step, the window material can be placed on the circuit board and the window material and the circuit board can be bonded. Although the specific bonding method is not particularly limited, for example, in the optical package 40 shown in FIG. They can be superimposed so as to be in contact. Then, for example, the window material 10 is heated from the other surface 11b of the substrate 11 made of an inorganic material toward the circuit board 41 side, that is, while being pressed along the block arrow B in the drawing, thereby forming the solder layer 122. is melted and then cooled, the window material 10 and the circuit board 41 can be joined.

接合工程において、接合層12の下面12aの表面に存在する酸化膜は、加熱により溶融した半田層122の内部に溶け込み、回路基板用下地金属層412の上面412aに対して、溶融した半田層122が接することができる程度に薄いことが好ましい。具体的な酸化膜の厚さは限定されないが、酸化膜の厚さは10nm以下が好ましく、5nm以下がより好ましい。 In the bonding process, the oxide film present on the lower surface 12a of the bonding layer 12 melts into the melted solder layer 122 due to heating, and the melted solder layer 122 adheres to the upper surface 412a of the circuit board base metal layer 412. It is preferably thin enough to be in contact with. Although the thickness of the oxide film is not specifically limited, the thickness of the oxide film is preferably 10 nm or less, more preferably 5 nm or less.

なお、無機材料の基体11を押圧する方法は特に限定されず、例えば無機材料の基体11と接する押圧部材と、押圧部材に圧力を加えるばね等の弾性体とを有する押圧手段を用いる方法や、錘を用いる方法等が挙げられる。 The method of pressing the inorganic material substrate 11 is not particularly limited. A method using a weight and the like can be mentioned.

接合工程後に得られる光学パッケージにおいて、窓材10と回路基板41とで封止された領域内について、所定の雰囲気とする場合には、熱処理を行う際の雰囲気を該所定の雰囲気としておくことが好ましい。例えば大気雰囲気や、真空雰囲気、不活性雰囲気等から選択された雰囲気とすることができる。不活性雰囲気としては、窒素、ヘリウム、アルゴン等から選択された1種類以上のガスを含有する雰囲気とすることができる。 In the optical package obtained after the bonding step, when the region sealed by the window material 10 and the circuit board 41 is to be in a predetermined atmosphere, the atmosphere in performing the heat treatment may be set to the predetermined atmosphere. preferable. For example, an atmosphere selected from an air atmosphere, a vacuum atmosphere, an inert atmosphere, and the like can be used. The inert atmosphere can be an atmosphere containing one or more gases selected from nitrogen, helium, argon, and the like.

接合工程において、熱処理を行う際の条件は特に限定されるものではなく、例えば半田層の半田の溶融温度以上に加熱することが好ましい。ただし、急激に加熱を行うと無機材料の基体に熱応力がかかり、割れ等を生じることがあるため、例えばまず50℃以上、半田層の半田の融点未満である第1熱処理温度まで昇温後、第1熱処理温度で一定時間保持することが好ましい。第1熱処理温度での保持時間は特に限定さないが、例えば30秒以上が好ましく、60秒以上がより好ましい。ただし、生産性の観点から、第1熱処理温度での保持時間は600秒以下が好ましい。 In the bonding step, the conditions for the heat treatment are not particularly limited, and, for example, it is preferable to heat the solder layer to a temperature higher than the melting temperature of the solder. However, if the heating is performed rapidly, thermal stress may be applied to the substrate of the inorganic material, and cracks may occur. , the temperature of the first heat treatment is preferably maintained for a certain period of time. The holding time at the first heat treatment temperature is not particularly limited, but is preferably 30 seconds or longer, more preferably 60 seconds or longer. However, from the viewpoint of productivity, the retention time at the first heat treatment temperature is preferably 600 seconds or less.

第1熱処理温度で一定時間保持後、さらに昇温を行い、半田層の半田の融点以上の温度である第2熱処理温度まで昇温することが好ましい。なお、第2熱処理温度は窓材10と回路基板41とを十分に接合するため、半田の融点+20℃以上が好ましく、また、第2熱処理温度が過度に高温である場合、回路基板上に配置した光学素子が熱により破損する場合があることから、第2熱処理温度は例えば300℃以下が好ましい。第2熱処理温度で保持する時間は特に限定されないが、窓材10と回路基板41とを十分に接合するため、20秒以上が好ましい。ただし、光学素子への熱による悪影響をより確実に抑制するため、第2熱処理温度で保持する時間は1分以下が好ましい。 After the first heat treatment temperature is maintained for a certain period of time, the temperature is preferably further increased to the second heat treatment temperature, which is a temperature equal to or higher than the melting point of the solder of the solder layer. The temperature of the second heat treatment is preferably the melting point of the solder plus 20° C. or higher in order to sufficiently bond the window material 10 and the circuit board 41. If the temperature of the second heat treatment is too high, the second heat treatment temperature is set on the circuit board. The temperature of the second heat treatment is preferably 300° C. or less, for example, because the optical element may be damaged by heat. The time for holding at the second heat treatment temperature is not particularly limited, but is preferably 20 seconds or more in order to sufficiently bond the window material 10 and the circuit board 41 . However, in order to more reliably suppress the adverse effects of heat on the optical element, the holding time at the second heat treatment temperature is preferably 1 minute or less.

第2熱処理温度での熱処理後は、室温、例えば23℃まで冷却し、接合工程を終えることができる。 After heat treatment at the second heat treatment temperature, the bonding process can be completed by cooling to room temperature, for example, 23°C.

本実施形態の光学パッケージの製造方法は必要に応じて任意の工程を有することができる。例えば、複数の回路基板が一体となった個片化していない回路基板を接合工程に供した場合には、切断工程を有することもできる。切断工程で用いる切断方法は特に限定されず、任意の方法により切断することができる。窓材に関する説明で記述のレーザー光を用いた切断方法により、回路基板と、窓材とを同時に切断し、個片化することもできる。また、複数の切断方法を組み合わせることもできる。 The method for manufacturing the optical package of this embodiment can have arbitrary steps as required. For example, when a circuit board in which a plurality of circuit boards are integrated and not singulated is subjected to the joining process, a cutting process may be included. The cutting method used in the cutting step is not particularly limited, and any method can be used. It is also possible to simultaneously cut the circuit board and the window material into individual pieces by the cutting method using a laser beam described in the description of the window material. Also, a plurality of cutting methods can be combined.

以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。 Although specific examples will be given below, the present invention is not limited to these examples.

まず、以下の実施例において製造した窓材、光学パッケージの評価方法について説明する。
(気密性試験)
以下の実施例で作製した窓材を用いた光学パッケージについて、作製直後、もしくはリフロー処理や、ヒートサイクル試験を所定の条件で行った後気密性試験を行い、気密封止特性の評価を行った。
First, methods for evaluating window materials and optical packages manufactured in the following examples will be described.
(Airtightness test)
An airtightness test was conducted on the optical packages using the window materials produced in the following examples, immediately after production, or after reflow treatment or heat cycle testing under predetermined conditions, to evaluate the hermetic sealing characteristics. .

気密性試験はJIS Z 2331:2006に準じて実施しており、具体的には以下の手順で行った。 The airtightness test was carried out in accordance with JIS Z 2331:2006, specifically in the following procedure.

まず、評価の対象となる光学パッケージを、加圧容器内に入れ、加圧容器内でヘリウム(He)が5.1気圧となるように加圧した条件下で2時間保持した(加圧工程)。
加圧工程終了後、加圧容器内から、評価の対象となる光学パッケージを取り出し、取り出し後1時間以内に真空容器内でヘリウム(He)のリーク量を測定した(ヘリウムリーク量測定工程)。
ヘリウムリーク量測定工程において測定されたヘリウムのリークレート(Heリークレート)が4.9×10-9Pa・m/s以下の場合に合格と判定した(判定工程)。なお、判定工程では、Heリークレートが4.9×10-9Pa・m/sより大きい場合には不合格と判定する。
[実施例1]
(窓材)
図1(A)、図1(B)に示した窓材を作製した。
First, the optical package to be evaluated was placed in a pressurized container and held for 2 hours under the condition that helium (He) was pressurized to 5.1 atm in the pressurized container (pressurization step ).
After the pressurization step, the optical package to be evaluated was taken out from the pressurized container, and the leak amount of helium (He) was measured in the vacuum container within one hour after taking it out (helium leak amount measurement step).
When the helium leak rate (He leak rate) measured in the helium leak amount measurement step was 4.9×10 −9 Pa·m 3 /s or less, it was determined to be acceptable (determination step). In the judging step, if the He leak rate is greater than 4.9×10 −9 Pa·m 3 /s, it is judged to be unacceptable.
[Example 1]
(Window material)
A window material shown in FIGS. 1A and 1B was produced.

具体的には、無機材料の基体の切断前資材として、φ100mm、厚みが0.5mmの石英製の円板形状の板を用意した(基体準備工程)。 Specifically, a disk-shaped plate made of quartz having a diameter of 100 mm and a thickness of 0.5 mm was prepared as a pre-cutting material for the substrate of inorganic material (substrate preparation step).

そして、以下の手順により無機材料の基体の切断前資材の一方の面上に接合層を形成した(接合層形成工程)。 Then, a bonding layer was formed on one surface of the material before cutting of the inorganic substrate by the following procedure (bonding layer forming step).

まず、イオンビーム蒸着により、無機材料の基体の切断前資材の一方の面上の全面に、無機材料の基体の切断前資材側から順に、第1下地金属層、及び第2下地金属層を成膜した(下地金属層形成ステップ)。 First, by ion beam vapor deposition, a first base metal layer and a second base metal layer are formed in order from the side of the inorganic material base before cutting on the entire surface of the inorganic material base before cutting. A film was formed (underlying metal layer forming step).

第1下地金属層としては、厚みが0.03μmのクロム(Cr)層を、第2下地金属層としては厚みが0.2μmの銅(Cu)層を成膜した。 A chromium (Cr) layer with a thickness of 0.03 μm was formed as the first base metal layer, and a copper (Cu) layer with a thickness of 0.2 μm was formed as the second base metal layer.

次に、第2下地金属層の第1下地金属層と対向する面とは反対側の面、すなわち露出した面上の全面にレジストを塗布した後、紫外線を用いてレジストを露光し、さらに現像することにより、パターン化されたレジストを配置した(レジスト配置ステップ)。パターン化されたレジストは、無機材料の基体の切断前資材の一方の面と平行な面での断面において、四角形状を有しており、中央に四角形状の開口部を有する形状とした。 Next, after applying a resist to the surface of the second metal underlayer opposite to the surface facing the first metal underlayer, that is, the entire exposed surface, the resist is exposed using ultraviolet rays, and then developed. By doing so, the patterned resist was arranged (resist arrangement step). The patterned resist had a quadrangular cross section in a plane parallel to one side of the inorganic material substrate before cutting, and had a quadrangular opening in the center.

そして、第1下地金属層、及び第2下地金属層のうち、レジストにより覆われていない部分をエッチング液によりエッチングし、パターン化を行った後、レジストを除去した(レジスト除去ステップ)。 Then, portions of the first base metal layer and the second base metal layer, which were not covered with the resist, were etched with an etchant, patterned, and then the resist was removed (resist removing step).

次に、パターン化された第1下地金属層、及び第2下地金属層上に、無電解Niめっきにより第3下地金属層として厚みが0.8μmのニッケル(Ni)層を成膜した。これにより、第1下地金属層、第2下地金属層、及び第3下地金属層を含む、パターン化された下地金属層を形成した。 Next, a nickel (Ni) layer having a thickness of 0.8 μm was formed as a third base metal layer by electroless Ni plating on the patterned first base metal layer and second base metal layer. This formed a patterned underlying metal layer including a first underlying metal layer, a second underlying metal layer, and a third underlying metal layer.

次に、下地金属層上に、半田層を形成した。半田層に用いる半田は以下の手順により予め製造しておいた。 Next, a solder layer was formed on the base metal layer. The solder used for the solder layer was prepared in advance by the following procedure.

半田に含まれる成分について、Snが97.499質量%、Geが1.5質量%、Niが1.0質量%、Irが0.001質量%となるように秤量、混合し、溶融をして一旦原料合金を作成する。そして、この原料合金を溶融後、鋳型に流し込み、半田を作製した。 The components contained in the solder are weighed so that Sn is 97.499% by mass, Ge is 1.5% by mass, Ni is 1.0% by mass, and Ir is 0.001% by mass, mixed and melted. to create a raw material alloy. After the raw material alloy was melted, it was poured into a mold to prepare solder.

そして、半田溶融槽内で半田層の原料となる半田を溶融させておき、上述の下地金属層を配置した無機材料の基体の半田層を形成する部分を、半田溶融槽内に溶融させた半田にディップした後、冷却することで半田層を形成した(半田層形成ステップ)。 Then, the solder, which is the raw material of the solder layer, is melted in the solder melting tank, and the portion of the inorganic material substrate on which the base metal layer is arranged, which forms the solder layer, is melted in the solder melting tank. After dipping, the solder layer was formed by cooling (solder layer forming step).

なお、半田層を形成する際に用いた上記半田は融点が230℃、密度が7.3g/cm、熱膨張率が22.9ppmであった。また、銅食われ性は7.47%であった。The solder used to form the solder layer had a melting point of 230° C., a density of 7.3 g/cm 3 , and a coefficient of thermal expansion of 22.9 ppm. Also, the copper erosion resistance was 7.47%.

融点はDSC(島津製作所製 型式:DSC-60)を用いて、10℃/minで昇温することで測定を行った。密度はアルキメデス法により測定を行った。 The melting point was measured by using a DSC (manufactured by Shimadzu Corporation, model: DSC-60) by raising the temperature at 10°C/min. The density was measured by the Archimedes method.

熱膨張率は、縦型熱膨張計(真空理工製 型式:DL-7000型)を用いて測定を行った。測定に当たっては、アルゴン雰囲気下、23℃から200℃までの温度範囲で、5℃/minで昇温することで測定を行った。 The coefficient of thermal expansion was measured using a vertical thermal expansion meter (manufactured by Shinku Riko, model: DL-7000). In the measurement, the temperature was raised at a rate of 5°C/min within the temperature range from 23°C to 200°C in an argon atmosphere.

銅食われ性は、以下の手順により評価した。 Copper erosion resistance was evaluated by the following procedure.

直径0.5mmの銅ワイヤーを3mm程度の長さに2本切断し、2本の銅ワイヤーをRMA(Rosin Midly activated、弱活性ロジン系)タイプのフラックスに浸漬して表面の酸化膜を除去する。 Two copper wires with a diameter of 0.5 mm are cut to a length of about 3 mm, and the two copper wires are immersed in RMA (Rosin Midly activated) type flux to remove the surface oxide film. .

酸化膜を除去した1本目の銅ワイヤーをエタノールで洗浄し、1本目の銅ワイヤーの断面積Sを測定する。なお、銅ワイヤーの断面積とは、銅ワイヤーの長手方向と垂直な面での断面積を意味する。The first copper wire from which the oxide film has been removed is washed with ethanol, and the cross-sectional area S1 of the first copper wire is measured. In addition, the cross-sectional area of a copper wire means the cross-sectional area in the surface perpendicular|vertical to the longitudinal direction of a copper wire.

次に酸化膜を除去した2本目の銅ワイヤーを、上記半田が入れられ、湯温が400℃となるように加熱された半田槽に60秒間浸漬する。この時、銅ワイヤーの酸化膜の再発生を防ぐため、フラックスにより酸化膜を除去してから60秒以内に半田槽に浸漬する。半田槽への浸漬後、銅ワイヤーを引き上げ、半田槽に浸漬した側の端部より、銅ワイヤーを研磨し、銅断面が確認できる位置にて、銅ワイヤーの断面積Sを測定する。Next, the second copper wire from which the oxide film has been removed is immersed in a solder bath heated to 400° C. for 60 seconds. At this time, in order to prevent re-generation of the oxide film on the copper wire, the copper wire is immersed in a solder bath within 60 seconds after removing the oxide film with the flux. After being immersed in the solder bath, pull up the copper wire, polish the copper wire from the end of the side immersed in the solder bath, and measure the cross - sectional area S2 of the copper wire at a position where the copper cross section can be confirmed.

半田槽への浸漬前の銅ワイヤーの断面積Sに対する、半田槽への浸漬後の銅ワイヤーの断面積Sを比較し、断面積減少の割合を算出する。具体的には以下の式により算出した。
(銅食われ性)=(S-S)/S×100
銅食われ性評価を行う際、銅ワイヤーの断面積の測定には、デジタルマイクロスコープ(キーエンス株式会社製 型式:VHX-900)、及び該デジタルマイクロスコープに添付された画像処理ソフトを用いた。
The cross - sectional area S2 of the copper wire after being immersed in the solder bath is compared with the cross - sectional area S1 of the copper wire before being immersed in the solder bath, and the ratio of reduction in the cross-sectional area is calculated. Specifically, it was calculated by the following formula.
(Copper erosion resistance) = (S 1 - S 2 )/S 1 × 100
When evaluating copper erosion resistance, a digital microscope (manufactured by Keyence Corporation, model: VHX-900) and image processing software attached to the digital microscope were used to measure the cross-sectional area of the copper wire.

また、得られた上記半田について、ヤング率を引張試験結果より算出したところ、20GPaであることが確認できた。引張試験については、引張試験機(島津製作所製 オートグラフ AGX-100kN)を用い、JIS14A号の試験片を引張速度3mm/minにて試験を実施した。 Moreover, when the Young's modulus of the obtained solder was calculated from the results of the tensile test, it was confirmed to be 20 GPa. For the tensile test, a tensile tester (Autograph AGX-100 kN manufactured by Shimadzu Corporation) was used, and a test piece of JIS No. 14A was tested at a tensile speed of 3 mm/min.

半田層の厚みの平均値、および加重平均値の算出方法について図3を用いながら説明する。図3は測定点を説明するために示した図であり、図1(B)に対応する図となる。本実施例では、既述の様に無機材料の基体の切断前資材の一方の面上に複数の窓材に対応するように半田層を含む接合層を形成している。このため、半田層の厚みは、切断し、個片化することで1個の窓材に含まれる半田層を任意に選択して評価した。従って、図3では、測定に用いた個片化した後の1個の窓材に含まれる半田層122、及び無機材料の基体11を示している。 A method for calculating the average value of the thickness of the solder layer and the weighted average value will be described with reference to FIG. FIG. 3 is a diagram for explaining the measurement points, and corresponds to FIG. 1(B). In this embodiment, as described above, a bonding layer including a solder layer is formed on one surface of the inorganic material substrate before cutting so as to correspond to a plurality of window materials. Therefore, the thickness of the solder layer was evaluated by arbitrarily selecting the solder layer included in one window material by cutting and dividing into individual pieces. Therefore, FIG. 3 shows the solder layer 122 and the inorganic material substrate 11 included in one window material after being separated into pieces used for the measurement.

個片化した場合、無機材料の基体11と、半田層122との積層方向と垂直な断面において、半田層122は、無機材料の基体11の外周に沿って帯状の形状を有している。 When separated into individual pieces, the solder layer 122 has a belt-like shape along the outer circumference of the inorganic material substrate 11 in a cross section perpendicular to the lamination direction of the inorganic material substrate 11 and the solder layer 122 .

そして、半田層は、上述のようにディップ法で形成しており、図3における直線B5に沿って半田溶融槽内に導入して形成した。このため、半田層の厚みは直線B5を中心として左右対称となっている。 The solder layer was formed by the dipping method as described above, and was formed by introducing it into the solder melting bath along the straight line B5 in FIG. Therefore, the thickness of the solder layer is symmetrical with respect to the straight line B5.

このため、半田層の厚みを、レーザー顕微鏡(株式会社キーエンス製 型式:VK-8510)を用いて図3の測定点Z1、Z2、Z3、Z4、Z8の5箇所で測定し、測定点Z5~Z7での厚みTZxについては、TZ1=TZ7、TZ2=TZ6、TZ3=TZ5とした。そして、測定点Z1~Z8の8点分の厚みの平均値を算出したところ、単純平均で29.31μmとなった。For this reason, the thickness of the solder layer is measured at five measurement points Z1, Z2, Z3, Z4, and Z8 in FIG. Regarding the thickness T Zx at Z7, T Z1 =T Z7 , T Z2 =T Z6 and T Z3 =T Z5 . Then, when the average value of the thickness of the eight measurement points Z1 to Z8 was calculated, the simple average was 29.31 μm.

また、測定点Z1、Z2、Z3、Z4、Z8での厚みTZ1~TZ4、TZ8での測定値を用いて、既述の式(1)により半田層122の加重平均値を算出したところ、加重平均で20.14μmであることが確認できた。Also, the weighted average value of the solder layer 122 was calculated by the above-described formula (1) using the measured values at the thicknesses T Z1 to T Z4 and T Z8 at the measurement points Z1, Z2, Z3, Z4, and Z8. By the way, it was confirmed that the weighted average was 20.14 μm.

なお、上述のように、直線B5を中心として半田層の厚みが左右対称となっていることから、加重平均を算出する際も、TZ1=TZ7、TZ2=TZ6、TZ3=TZ5として計算を行っている。式(1)については既に説明したため、ここでは説明を省略する。As described above, since the thickness of the solder layer is bilaterally symmetrical about the straight line B5, T Z1 =T Z7 , T Z2 =T Z6 ,T Z3 =T Calculation is performed as Z5 . Since formula (1) has already been explained, the explanation is omitted here.

また、開口部の一辺の長さL1については開口部の両端部および中央で測定した、すなわち直線B2、B3、B5に沿って測定した開口部の一辺の長さの平均を用いた。開口部の一辺の長さL2についても同様に開口部の両端部および中央で測定した、すなわち直線A2、A3、A5に沿って測定した開口部の一辺の長さの平均値を用いた。 As for the length L1 of one side of the opening, the average of the lengths of one side of the opening measured along the straight lines B2, B3, and B5 was used. Similarly, the length L2 of one side of the opening was measured at both ends and the center of the opening, that is, the average value of the lengths of one side of the opening measured along the straight lines A2, A3, and A5 was used.

半田層の各線幅W1~W4についても複数点で測定した線幅の平均値を用いた。線幅W1、W2の場合、辺304、302の長手方向の中心を通る直線B5に沿って測定した値と、開口部の両端部を通る直線B2、B3に沿って測定した値との3点での測定値の平均値をそれぞれ用いた。線幅W3、W4の場合、辺301、303の長手方向の中心を通る直線A5に沿って測定した値と、開口部の両端部を通る直線A2、A3に沿って測定した値との3点での測定値の平均値をそれぞれ用いた。 The average value of the line widths measured at a plurality of points was also used for each line width W1 to W4 of the solder layer. In the case of the line widths W1 and W2, the values measured along the straight line B5 passing through the longitudinal center of the sides 304 and 302 and the values measured along the straight lines B2 and B3 passing through both ends of the opening are three points. The average value of the measured values at was used. In the case of the line widths W3 and W4, the values measured along the straight line A5 passing through the longitudinal centers of the sides 301 and 303 and the values measured along the straight lines A2 and A3 passing through both ends of the opening are measured at three points. The average value of the measured values at was used.

以上の手順により算出したところ、半田層の厚みの単純平均値との偏差の最大値、すなわち最大偏差は10μm、加重平均値との偏差の最大値、すなわち最大偏差は19μmであることが確認できた。 As a result of the above calculations, it was confirmed that the maximum deviation of the thickness of the solder layer from the simple average was 10 μm, and the maximum deviation from the weighted average was 19 μm. rice field.

半田層122を形成後、図5に示すように、無機材料の基体の切断前資材51の一方の面上に、複数個の窓材に対応するように、パターン化された接合層52が形成された基板50を得た。そして無機材料の基体の切断前資材51の厚さ方向の任意の位置にレーザー光の焦点を合わせ、パターン化された接合層52の外形に沿ってレーザー光の照射位置を走査した後、レーザー光の焦点位置が通過した場所が支点となるように力を加えることで無機材料の基体の切断前資材51を切断した。なお、レーザー光は切断予定線に沿って1回走査した。このため、図2に示したように、個片化した無機材料の基体11の側面は、一方の面11a、及び他方の面11bの外周に沿った線状の模様111を有していた。 After the solder layer 122 is formed, as shown in FIG. 5, a patterned bonding layer 52 is formed on one surface of the pre-cut material 51 of the inorganic material substrate so as to correspond to the plurality of window materials. A substrate 50 was obtained. Then, the laser beam is focused on an arbitrary position in the thickness direction of the pre-cutting material 51 of the substrate of inorganic material, and after scanning the irradiation position of the laser beam along the contour of the patterned bonding layer 52, the laser beam The pre-cutting material 51 of the substrate of inorganic material was cut by applying a force so that the place where the focal position of . The laser beam was scanned once along the planned cutting line. Therefore, as shown in FIG. 2, the side surfaces of the individualized inorganic material substrate 11 had a linear pattern 111 along the outer peripheries of one surface 11a and the other surface 11b.

以上の工程により、図1(B)に示すように、窓材10の接合層12を形成した側から見た場合の図、すなわち底面図において半田層122が無機材料の基体11の外周に沿って配置され、中央部に四角形状の開口部を有し、該開口部から無機材料の基体11が見える形状とした。なお、図1(B)では最表面に位置する半田層122を示しているが、無機材料の基体11の一方の面11aと平行な面での接合層12の断面形状は、図1(B)に示した半田層122と同じ形状になっている。 As a result of the above steps, as shown in FIG. 1B, the solder layer 122 is formed along the outer circumference of the base 11 made of inorganic material in a bottom view of the window material 10 when viewed from the side on which the bonding layer 12 is formed. , and has a rectangular opening in the center, through which the substrate 11 made of an inorganic material can be seen. Although FIG. 1B shows the solder layer 122 located on the outermost surface, the cross-sectional shape of the bonding layer 12 in a plane parallel to one surface 11a of the substrate 11 made of inorganic material is shown in FIG. ) has the same shape as the solder layer 122 shown in FIG.

そして、下地金属層121、及び半田層122から構成される接合層12は、上述の様に無機材料の基体11の外周に沿って形成され、その外形が5mm角であり、線幅全周同値であり、線幅W1~W4(図3を参照)はいずれも0.65mmとなっている。 The bonding layer 12 composed of the base metal layer 121 and the solder layer 122 is formed along the outer periphery of the inorganic material substrate 11 as described above, and has an outer shape of 5 mm square and a line width of the same value all around. , and the line widths W1 to W4 (see FIG. 3) are all 0.65 mm.

以上の工程により窓材を製造した。 A window material was manufactured by the above steps.

なお、窓材10は、金を含有する層を含まないことから、接合層中の金の体積割合は0となっている。このため、従来のAuSn合金を用いた窓材と比較して接合材料コストを25%程度にまで大幅に低減できていることが確認できた。 Since the window material 10 does not include a layer containing gold, the volume ratio of gold in the bonding layer is zero. For this reason, it was confirmed that the bonding material cost could be significantly reduced to about 25% compared to the conventional window material using an AuSn alloy.

また、窓材10の半田層122の表面の酸化膜の厚みをXPS測定器(Quantera SXM(アルバック・ファイ社製))を用いて、測定したところ、その酸化膜の厚みは5nmであることが確認できた。
(光学パッケージ)
上記窓材と、光学素子42を備えた回路基板41とを用いて図4に示した光学パッケージ40を製造した。
Further, when the thickness of the oxide film on the surface of the solder layer 122 of the window member 10 was measured using an XPS measuring device (Quantera SXM (manufactured by Ulvac-Phi)), the thickness of the oxide film was found to be 5 nm. It could be confirmed.
(optical package)
The optical package 40 shown in FIG. 4 was manufactured using the window material and the circuit board 41 having the optical element 42 .

回路基板41としては、絶縁性基材411が外形が5.8mm角で、高さが1.28mmの直方体形状であるアルミナ(酸化アルミニウム)製であって、図示しない配線を有しているものを用いた。なお、回路基板41の絶縁性基材411は、その上面411aの中央部に開口部が形成されており、該開口部を含む非貫通孔である凹部411Aを有している。凹部411Aは、その底部に光学素子42を配置できるように構成されている。なお、絶縁性基材411の上面411aとは、光学パッケージ40とする場合に窓材10と対向する面となる。また、開口部は四角形であり、凹部411Aは壁部411Bで囲まれた四角柱状の空洞(角筒)となっている。 As the circuit board 41, the insulating base material 411 is made of alumina (aluminum oxide) and has a rectangular parallelepiped shape of 5.8 mm square and 1.28 mm in height, and has wiring (not shown). was used. The insulating base material 411 of the circuit board 41 has an opening formed in the central portion of its upper surface 411a, and has a concave portion 411A which is a non-through hole including the opening. The recess 411A is configured so that the optical element 42 can be placed on its bottom. The upper surface 411a of the insulating base material 411 is the surface facing the window material 10 when the optical package 40 is formed. The opening is square, and the recess 411A is a square columnar cavity (square tube) surrounded by walls 411B.

そして、回路基板41は、絶縁性基材411の上面411aに、上記開口部を囲むように、かつ絶縁性基材411の上面411aの外周に沿うように回路基板用下地金属層412を有している。 The circuit board 41 has a circuit board base metal layer 412 on the upper surface 411a of the insulating base material 411 so as to surround the opening and along the outer circumference of the upper surface 411a of the insulating base material 411. ing.

回路基板用下地金属層412としては、絶縁性基材411側から、第1回路基板用下地金属層412A、第2回路基板用下地金属層412B、第3回路基板用下地金属層412Cの順に積層した層構造とした。 As the circuit board base metal layer 412, a first circuit board base metal layer 412A, a second circuit board base metal layer 412B, and a third circuit board base metal layer 412C are laminated in this order from the insulating substrate 411 side. layered structure.

第1回路基板用下地金属層412Aとしては厚みが10μmの銀(Ag)層を、第2回路基板用下地金属層412Bとしては厚みが5μmのニッケル(Ni)層を、第3回路基板用下地金属層412Cとしては厚みが0.4μmの金(Au)層を形成した。 A silver (Ag) layer with a thickness of 10 μm as the base metal layer 412A for the first circuit board, a nickel (Ni) layer with a thickness of 5 μm as the base metal layer 412B for the second circuit board, and a base for the third circuit board. A gold (Au) layer having a thickness of 0.4 μm was formed as the metal layer 412C.

回路基板用下地金属層412は、窓材10の接合層12に対応した形状とした。具体的には、窓材10の接合層12と、回路基板用下地金属層412との積層方向(図4における上下方向)と垂直な面における断面形状が、接合層12と、回路基板用下地金属層412とで同じ形状となるように構成した。このため、回路基板用下地金属層412は、外形が5mm角であり、線幅は0.65mmとした。 The base metal layer 412 for circuit board has a shape corresponding to the bonding layer 12 of the window member 10 . Specifically, the cross-sectional shape of the bonding layer 12 of the window material 10 and the base metal layer 412 for the circuit board in a plane perpendicular to the lamination direction (vertical direction in FIG. 4) is It was configured to have the same shape as the metal layer 412 . Therefore, the base metal layer 412 for the circuit board had an outer shape of 5 mm square and a line width of 0.65 mm.

上記凹部411Aの底部には、光学素子(OptoSupply社製 型式:OSBL1608C1A)を配置し、図示しない配線と接続しておいた。 An optical element (manufactured by OptoSupply, model: OSBL1608C1A) was placed on the bottom of the recess 411A and connected to wiring (not shown).

そして、以下の手順により、窓材10と光学素子42を備えた回路基板41とを接合し、光学パッケージ40を製造した(接合工程)。 Then, the window member 10 and the circuit board 41 having the optical element 42 were joined together according to the following procedure to manufacture the optical package 40 (joining step).

まず、上記光学素子42を備えた回路基板41の回路基板用下地金属層412の上面412aと、窓材10の接合層12の半田層122側の下面12aとが向かい合い、かつ接触するように配置した。 First, the upper surface 412a of the circuit board base metal layer 412 of the circuit board 41 provided with the optical element 42 and the lower surface 12a of the bonding layer 12 of the window material 10 on the solder layer 122 side are arranged to face each other and be in contact with each other. bottom.

そして、窓材10の無機材料の基体11の他方の面11b上から、無機材料の基体11に接する押圧部材と、押圧部材に圧力を加えるばねとを備えた押圧手段により、ブロック矢印Bに沿って圧力を加えた状態で熱処理炉内に配置した。 Then, from the other surface 11b of the inorganic material substrate 11 of the window member 10, a pressing means having a pressing member in contact with the inorganic material substrate 11 and a spring for applying pressure to the pressing member is applied along the block arrow B. It was placed in a heat treatment furnace while being pressurized.

次いで、熱処理炉内の雰囲気を真空雰囲気とし、23℃から第1熱処理温度である80℃まで昇温後、300秒間保持した。次に、第2熱処理温度である280℃まで昇温し、30秒間保持した後、ヒーターを切り、23℃まで冷却した。 Next, the atmosphere in the heat treatment furnace was changed to a vacuum atmosphere, and the temperature was raised from 23° C. to 80° C., which is the first heat treatment temperature, and then held for 300 seconds. Next, the temperature was raised to 280°C, which is the second heat treatment temperature, and after holding for 30 seconds, the heater was turned off and the temperature was cooled to 23°C.

以上の手順により、光学パッケージを製造した。 An optical package was manufactured by the above procedure.

得られた光学パッケージの接合部43は、金を含有する層として、第3回路基板用下地金属層412Cを有するのみであり、接合部43の厚みと、第3回路基板用下地金属層412Cの厚みとから算出した接合部43に占める金の体積割合は0.87%であった。 The joint portion 43 of the obtained optical package only has the third circuit board base metal layer 412C as a layer containing gold. The volume ratio of gold in the joint portion 43 calculated from the thickness was 0.87%.

なお、以下のリフロー試験、及びヒートサイクル試験を実施するため、同じ条件で7個の光学パッケージを製造した。
(評価)
(1)熱処理なしでの気密性試験
1つの光学パッケージについては、製造後、既述の気密性試験を実施したところ、合格と判定された。
(2)リフロー試験後の気密性試験
また、3つの光学パッケージについてはそれぞれ以下のリフロー試験1~3を実施した。
Seven optical packages were manufactured under the same conditions in order to conduct the following reflow test and heat cycle test.
(evaluation)
(1) Airtightness test without heat treatment One optical package was passed the airtightness test described above after manufacturing.
(2) Airtightness test after reflow test Further, the following reflow tests 1 to 3 were performed for each of the three optical packages.

リフロー試験1として、1つの光学パッケージをリフロー炉内に配置し、図6に示す温度プロファイルで1回加熱した。 As reflow test 1, one optical package was placed in a reflow oven and heated once with the temperature profile shown in FIG.

リフロー試験2として、1つの光学パッケージをリフロー炉内に配置し、図6に示す温度プロファイルで3回繰り返し加熱した。 As reflow test 2, one optical package was placed in a reflow oven and heated three times repeatedly with the temperature profile shown in FIG.

リフロー試験3として、1つの光学パッケージをリフロー炉内に配置し、図6に示す温度プロファイルで5回繰り返し加熱した。 As reflow test 3, one optical package was placed in a reflow oven and heated repeatedly five times with the temperature profile shown in FIG.

以上のリフロー試験1~3後の光学パッケージについて、それぞれ気密性試験を実施したところ、いずれの光学パッケージについても合格となった。
(3)ヒートサイクル試験後の気密性試験
3つの光学パッケージについては、それぞれ以下のヒートサイクル試験1~3を実施した。
An airtightness test was conducted on each of the optical packages after reflow tests 1 to 3, and all optical packages passed.
(3) Airtightness test after heat cycle test The following heat cycle tests 1 to 3 were performed for each of the three optical packages.

ヒートサイクル試験1として、1つの光学パッケージについて、-40℃で30分間保持した後、85℃で30分間保持するヒートサイクルを100サイクル行った。 As heat cycle test 1, one optical package was subjected to 100 cycles of heat cycles in which it was held at −40° C. for 30 minutes and then at 85° C. for 30 minutes.

ヒートサイクル試験2として、1つの光学パッケージについて、-40℃で30分間保持した後、85℃で30分間保持するヒートサイクルを500サイクル行った。 As a heat cycle test 2, one optical package was subjected to 500 heat cycles of holding at −40° C. for 30 minutes and then holding at 85° C. for 30 minutes.

ヒートサイクル試験3として、1つの光学パッケージについて、-40℃で30分間保持した後、100℃で30分間保持するヒートサイクルを200サイクル行った。 As a heat cycle test 3, one optical package was subjected to 200 heat cycles of holding at −40° C. for 30 minutes and then holding at 100° C. for 30 minutes.

以上のヒートサイクル試験1~3後の光学パッケージについて、それぞれ気密性試験を実施したところ、いずれの光学パッケージについても合格となった。 An airtightness test was conducted on each of the optical packages after the above heat cycle tests 1 to 3, and all of the optical packages passed.

本実施形態の光学パッケージによれば、接合部に占める金の割合を抑制しているため、コストを低減した光学パッケージとすることができる。 According to the optical package of this embodiment, since the proportion of gold in the joint portion is suppressed, the optical package can be manufactured at a reduced cost.

また、上述のように、製造直後だけではなく、リフロー試験や、ヒートサイクル試験を実施した場合でも、高い気密性を維持できていることを確認できた。これは、窓材の半田層に用いた半田のヤング率が20GPaと低いことから、無機材料の基体11のクラックの発生や無機材料の基体11と回路基板41の剥離などを発生させなかったためと考えられる。
[実施例2]
(窓材)
以下の手順に従って、図1(A)、図1(B)に示した窓材を作製し、評価を行った。
Moreover, as described above, it was confirmed that high airtightness was maintained not only immediately after manufacturing, but also when a reflow test and a heat cycle test were performed. This is because the solder used for the solder layer of the window material has a low Young's modulus of 20 GPa, so that cracks in the inorganic material base 11 and separation between the inorganic material base 11 and the circuit board 41 do not occur. Conceivable.
[Example 2]
(Window material)
The window materials shown in FIGS. 1A and 1B were produced and evaluated according to the following procedure.

本実施例においても、実施例1の場合と同様に、無機材料の基体の切断前資材として、石英製の円板形状の板を用意した(基体準備工程)。 Also in this example, as in the case of Example 1, a disk-shaped plate made of quartz was prepared as a pre-cutting material for the substrate of inorganic material (substrate preparation step).

次いで以下の手順により無機材料の基体の切断前資材の一方の面上に接合層を形成した(接合層形成ステップ)。 Next, a bonding layer was formed on one surface of the material before cutting of the inorganic material substrate by the following procedure (bonding layer forming step).

無機材料の基体の切断前資材の一方の面上に、イオンビーム蒸着、または無電解めっきにより、格子状パターンの下地金属層を形成した(下地金属層形成ステップ)。 An underlying metal layer having a lattice pattern was formed on one surface of the inorganic material substrate before cutting by ion beam vapor deposition or electroless plating (underlying metal layer forming step).

具体的には、まず無機材料の基体11側から順に第1下地金属層121Aとして厚みが0.2μmのクロム(Cr)層を、第2下地金属層121Bとして厚みが0.2μmの銅(Cu)層をイオンビーム蒸着により形成した。 Specifically, first, a chromium (Cr) layer having a thickness of 0.2 μm as the first base metal layer 121A and a copper (Cu) layer having a thickness of 0.2 μm as the second base metal layer 121B are sequentially formed from the base 11 side of the inorganic material. ) layer was formed by ion beam evaporation.

次に、第2下地金属層の第1下地金属層と対向する面とは反対側の面、すなわち露出した面上の全面にレジストを塗布した後、紫外線を用いてレジストを露光し、さらに現像することにより、パターン化されたレジストを配置した(レジスト配置ステップ)。パターン化されたレジストは、無機材料の基体の切断前資材の一方の面と平行な面での断面において、四角形状を有しており、中央に四角形状の開口部を有する形状とした。 Next, after applying a resist to the surface of the second metal underlayer opposite to the surface facing the first metal underlayer, that is, the entire exposed surface, the resist is exposed using ultraviolet rays, and then developed. By doing so, the patterned resist was arranged (resist arrangement step). The patterned resist had a quadrangular cross section in a plane parallel to one side of the inorganic material substrate before cutting, and had a quadrangular opening in the center.

そして、第1下地金属層、及び第2下地金属層のうち、レジストにより覆われていない部分をエッチング液によりエッチングし、パターン化を行った後、レジストを除去した(レジスト除去ステップ)。 Then, portions of the first base metal layer and the second base metal layer, which were not covered with the resist, were etched with an etchant, patterned, and then the resist was removed (resist removing step).

次いで、パターン化された第1下地金属層、及び第2下地金属層上に、無電解ニッケル-ホウ素合金めっきにより、第3下地金属層として厚みが0.8μmのニッケル-ホウ素合金(Ni-B)層を形成した。 Next, a nickel-boron alloy (Ni—B alloy) having a thickness of 0.8 μm is formed as a third base metal layer by electroless nickel-boron alloy plating on the patterned first base metal layer and the second base metal layer. ) formed a layer.

次に実施例1と同様にして、下地金属層121上に半田層122を形成した。なお、半田層122には実施例1と同じ半田を用いている。 Next, in the same manner as in Example 1, a solder layer 122 was formed on the underlying metal layer 121 . The solder layer 122 uses the same solder as in the first embodiment.

そして、実施例1の場合と同様にして、無機材料の基体の切断前資材51(図5を参照)を切断し、個片化を行った。これにより、無機材料の基体が5mm角である窓材を得た。 Then, in the same manner as in Example 1, the pre-cut material 51 (see FIG. 5) of the inorganic material substrate was cut into individual pieces. As a result, a window material having an inorganic substrate of 5 mm square was obtained.

得られた窓材は金を含有する層を含まないことから、接合層中の金の体積割合は0となっている。個片化後の無機材料の基体の側面は図2のように、線状の模様111が無機材料の基体11の一方の面11aおよび他方の面11bに平行な線状の模様となっていた。 Since the obtained window material does not contain a gold-containing layer, the volume ratio of gold in the bonding layer is zero. As shown in FIG. 2, the side surface of the inorganic material substrate after singulation had a linear pattern 111 parallel to one surface 11a and the other surface 11b of the inorganic material substrate 11. .

窓材10の半田層122の線幅と一辺の長さを、光学顕微鏡(オリンパス製BX51TRF)を用いて測定したところ、線幅W1~W4は0.3mm、開口部の一辺の長さL1、L2は3.0mmであった。 The line width and the length of one side of the solder layer 122 of the window material 10 were measured using an optical microscope (BX51TRF manufactured by Olympus). L2 was 3.0 mm.

線幅W1~W4、および開口部の一辺の長さL1、L2は実施例1の場合と同様にして測定、算出したため、ここでは説明を省略する。 Since the line widths W1 to W4 and the lengths L1 and L2 of the sides of the openings were measured and calculated in the same manner as in Example 1, description thereof is omitted here.

半田層の厚みをレーザー顕微鏡(株式会社キーエンス製 型式:VK-8510)を用いて、同じ無機材料の基体の切断前資材から切り出した、サンプル1~サンプル3の3個の窓材について、図3に示す測定点Z1~Z8の8点の測定を行った。そして、得られた測定値を用いて、各サンプルについて半田層の厚みの平均値(単純平均値)、および既述の式(1)を用いて加重平均値を求めた。その結果を表1に示す。 Using a laser microscope (manufactured by Keyence Corporation, model: VK-8510), the thickness of the solder layer was cut out from the same inorganic material substrate before cutting. Eight measurement points Z1 to Z8 shown in FIG. Then, using the obtained measured values, the average value (simple average value) of the thickness of the solder layer for each sample and the weighted average value using the above-described formula (1) were obtained. Table 1 shows the results.

Figure 0007205470000001
(光学パッケージ)
上記窓材を用いて図4に示した光学パッケージを作製した。
Figure 0007205470000001
(optical package)
An optical package shown in FIG. 4 was produced using the above window material.

回路基板41としては、絶縁性基材411が外形が5.8mm角で、高さが1.28mmの直方体形状であるアルミナ(酸化アルミニウム)製であって、図示しない配線を有しているものを用いた。なお、回路基板41の絶縁性基材411は、その上面411aの中央部に開口部が形成されており、該開口部を含む非貫通孔である凹部411Aを有している。凹部411Aは、その底部に光学素子42を配置できるように構成されている。なお、絶縁性基材411の上面411aとは、光学パッケージ40とする場合に窓材10と対向する面となる。また、開口部は四角形であり、凹部411Aは壁部411Bで囲まれた四角柱状の空洞(角筒)となっている。 As the circuit board 41, the insulating base material 411 is made of alumina (aluminum oxide) having a rectangular parallelepiped shape with an outer shape of 5.8 mm square and a height of 1.28 mm, and has wiring (not shown). was used. The insulating base material 411 of the circuit board 41 has an opening formed in the central portion of its upper surface 411a, and has a concave portion 411A which is a non-through hole including the opening. The recess 411A is configured so that the optical element 42 can be placed on its bottom. The upper surface 411a of the insulating base material 411 is the surface facing the window material 10 when the optical package 40 is formed. The opening is square, and the recess 411A is a square columnar cavity (square cylinder) surrounded by walls 411B.

そして、回路基板41は、絶縁性基材411の上面411aに、上記開口部を囲むように、かつ絶縁性基材411の上面411aの外周に沿うように回路基板用下地金属層412を有している。 The circuit board 41 has a circuit board base metal layer 412 on the upper surface 411a of the insulating base material 411 so as to surround the opening and along the outer circumference of the upper surface 411a of the insulating base material 411. ing.

回路基板用下地金属層412としては、絶縁性基材411側から、第1回路基板用下地金属層412A、第2回路基板用下地金属層412B、第3回路基板用下地金属層412Cの順に積層した層構造とした。 As the circuit board base metal layer 412, a first circuit board base metal layer 412A, a second circuit board base metal layer 412B, and a third circuit board base metal layer 412C are laminated in this order from the insulating substrate 411 side. layered structure.

第1回路基板用下地金属層412Aとしては厚みが10μmのタングステン(W)層を、第2回路基板用下地金属層412Bとしては厚みが3μmのニッケル(Ni)層を、第3回路基板用下地金属層412Cとしては厚みが2μmの金(Au)層を形成した。 A tungsten (W) layer having a thickness of 10 μm as the first circuit board base metal layer 412A, a nickel (Ni) layer having a thickness of 3 μm as the second circuit board base metal layer 412B, and a third circuit board base metal layer 412B. A gold (Au) layer having a thickness of 2 μm was formed as the metal layer 412C.

回路基板用下地金属層412は、窓材10の接合層12に対応した形状とした。具体的には、窓材10の接合層12と、回路基板用下地金属層412との積層方向(図4における上下方向)と垂直な面における断面形状が、接合層12と、回路基板用下地金属層412とで同じ形状となるように構成した。このため、回路基板用下地金属層412は、外形が3.6mm角であり、線幅は0.3mmとした。 The base metal layer 412 for circuit board has a shape corresponding to the bonding layer 12 of the window member 10 . Specifically, the cross-sectional shape of the bonding layer 12 of the window material 10 and the base metal layer 412 for the circuit board in a plane perpendicular to the lamination direction (vertical direction in FIG. 4) is It was configured to have the same shape as the metal layer 412 . For this reason, the base metal layer 412 for circuit board had an outer shape of 3.6 mm square and a line width of 0.3 mm.

上記凹部411Aの底部には、光学素子(OptoSupply社製 型式:OSBL1608C1A)を配置し、図示しない配線と接続しておいた。 An optical element (manufactured by OptoSupply, model: OSBL1608C1A) was placed on the bottom of the recess 411A and connected to wiring (not shown).

そして、以下の手順により、窓材10と光学素子42を備えた回路基板41とを接合し、光学パッケージ40を製造した(接合工程)。 Then, the window member 10 and the circuit board 41 having the optical element 42 were joined together according to the following procedure to manufacture the optical package 40 (joining step).

まず、上記光学素子42を備えた回路基板41の回路基板用下地金属層412の上面412aと、窓材10の接合層12の半田層122側の下面12aとが向かい合い、かつ接触するように配置した。 First, the upper surface 412a of the circuit board base metal layer 412 of the circuit board 41 provided with the optical element 42 and the lower surface 12a of the bonding layer 12 of the window material 10 on the solder layer 122 side are arranged to face each other and be in contact with each other. bottom.

そして、窓材10の無機材料の基体11の他方の面11b上から、無機材料の基体11に接する押圧部材と、押圧部材に圧力を加えるばねとを備えた押圧手段により、ブロック矢印Bに沿って圧力(200g)を加えた状態で熱処理炉内(N雰囲気下)に配置した。そして、図7に示した温度プロファイルで、窓材10とこの回路基板41とを溶融接合し光学パッケージとした。Then, from the other surface 11b of the inorganic material substrate 11 of the window member 10, a pressing means having a pressing member in contact with the inorganic material substrate 11 and a spring for applying pressure to the pressing member is applied along the block arrow B. It was placed in a heat treatment furnace (under N2 atmosphere) while applying pressure (200 g). Then, the window material 10 and the circuit board 41 are fusion-bonded with the temperature profile shown in FIG. 7 to form an optical package.

具体的には、23℃から第1熱処理温度である80℃まで昇温後、300秒間保持した。次に、第2熱処理温度である280℃まで昇温し、60秒間保持した後、ヒーターを切り、23℃まで冷却した。 Specifically, the temperature was raised from 23° C. to 80° C., which is the first heat treatment temperature, and then held for 300 seconds. Next, the temperature was raised to 280°C, which is the second heat treatment temperature, and after holding for 60 seconds, the heater was turned off and cooled to 23°C.

得られた光学パッケージの接合部43は、金を含有する層として、第3回路基板用下地金属層412Cを有するのみであり、接合部43の厚みと、第3回路基板用下地金属層412Cの厚みとから算出した接合部43に占める金の体積割合は3.0%~3.4%であった。
(評価)
得られた光学パッケージについて、気密性試験を実施したところ、合格であった。
[実施例3]
窓材10と回路基板41とを接合する際に熱処理炉内の雰囲気をN雰囲気に替えて、大気雰囲気(空気雰囲気)とした点以外は実施例2と同様にして光学パッケージを作製した。
The joint portion 43 of the obtained optical package only has the third circuit board base metal layer 412C as a layer containing gold. The volume ratio of gold in the joint portion 43 calculated from the thickness was 3.0% to 3.4%.
(evaluation)
The obtained optical package passed an airtightness test.
[Example 3]
An optical package was fabricated in the same manner as in Example 2 , except that the atmosphere in the heat treatment furnace was changed to an air atmosphere (air atmosphere) when the window material 10 and the circuit board 41 were joined.

得られた光学パッケージについて、気密性試験を実施したところ、合格であった。
[実施例4]
窓材を製造する際、半田層122を形成後、個片化する際に、レーザー光の走査回数を2回にした点以外は実施例2と同様にして、窓材、及び光学パッケージを作製した。
The obtained optical package passed an airtightness test.
[Example 4]
A window material and an optical package were manufactured in the same manner as in Example 2, except that when the window material was manufactured, the laser beam was scanned twice after the solder layer 122 was formed and then the individual pieces were separated. bottom.

具体的には、レーザー光の1回目の照射の際には、無機材料の基体の切断前資材の厚さ方向において、レーザー光入射面から遠い位置に設定して切断予定線に沿ってレーザー光の照射位置を移動させた。そして、レーザー光の2回目の照射の際には、1回目よりもレーザー光の入射面に近い位置にレーザー光の焦点位置を変化させて、同様に切断予定線に沿ってレーザー光の照射位置を移動させた。 Specifically, in the first irradiation of the laser beam, in the thickness direction of the material before cutting of the substrate of the inorganic material, the laser beam is set at a position far from the laser beam incident surface and along the planned cutting line. The irradiation position of was moved. Then, in the second irradiation of the laser beam, the focal position of the laser beam is changed to a position closer to the incident surface of the laser beam than in the first irradiation, and the irradiation position of the laser beam is similarly along the planned cutting line. was moved.

2回目のレーザー光の照射後は、レーザー光の焦点位置が通過した場所が支点となるように力を加えることで無機材料の基体の切断前資材を切断した。 After the second irradiation with the laser beam, a force was applied so that the place where the focal position of the laser beam passed was a fulcrum, thereby cutting the pre-cutting material of the inorganic material substrate.

これにより、図8に示すように、個片化した無機材料の基体11の側面には、無機材料の結合状態が変化することで生じたと考えられる2本の線状の模様811、812が生じていることが確認できた。なお、2本の線状の模様811、812は、一方の面11a、及び他方の面11bの外周に沿った形状を有していた。 As a result, as shown in FIG. 8, two linear patterns 811 and 812 are formed on the side surfaces of the individualized inorganic material substrate 11, which are considered to be caused by changes in the bonding state of the inorganic material. It was confirmed that The two linear patterns 811 and 812 had shapes along the outer peripheries of the one surface 11a and the other surface 11b.

なお、レーザーの出力を変更した場合においても、その切断面には同様の形状の模様が得られることも確認できた。 It was also confirmed that patterns of similar shapes were obtained on the cut surface even when the output of the laser was changed.

この場合においても、無機材料の基体11に欠け、割れ、チッピング等の不良を発生することなく、個片化することができた。 In this case also, the substrate 11 made of the inorganic material could be singulated without defects such as chipping, cracking, and chipping.

このときに発生した線状の模様811、812の表面粗さをレーザー顕微鏡(株式会社キーエンス製 型式:VK-8510)を用いて測定したところ、表面粗さRaは0.3μmであり、線状の模様811と面11aの間の領域82の表面粗さを測定したところ、表面粗さRaは1.1μmであった。係る表面粗さの評価結果からも、線状の模様811と、それ以外の部分とで無機材料の結合状態に変化が起きていることが確認できた。 When the surface roughness of the linear patterns 811 and 812 generated at this time was measured using a laser microscope (manufactured by Keyence Corporation, model: VK-8510), the surface roughness Ra was 0.3 μm. When the surface roughness of the region 82 between the pattern 811 and the surface 11a was measured, the surface roughness Ra was 1.1 μm. From the evaluation result of the surface roughness, it was confirmed that the bonding state of the inorganic material changed between the linear pattern 811 and the other portions.

得られた窓材を用いた点以外は実施例2と同様にして光学パッケージを作製した。 An optical package was produced in the same manner as in Example 2, except that the obtained window material was used.

得られた光学パッケージについて気密性試験を実施したところ、合格であった。 An airtightness test was conducted on the obtained optical package, and it passed.

以上に窓材、光学パッケージを、実施形態および実施例等で説明したが、本発明は上記実施形態および実施例等に限定されない。特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。 Although the window material and the optical package have been described above with the embodiments and examples, the present invention is not limited to the above-described embodiments and examples. Various modifications and changes are possible within the scope of the present invention described in the claims.

本出願は、2017年6月22日に日本国特許庁に出願された特願2017-122542号に基づく優先権を主張するものであり、特願2017-122542号の全内容を本国際出願に援用する。 This application claims priority based on Japanese Patent Application No. 2017-122542 filed with the Japan Patent Office on June 22, 2017. invoke.

10 窓材
11 無機材料の基体
111、811、812 線状の模様
12、52 接合層
121 下地金属層
122 半田層
40 光学パッケージ
41 回路基板
411 絶縁性基材
42 光学素子
43 接合部
REFERENCE SIGNS LIST 10 window material 11 inorganic material substrate 111, 811, 812 linear pattern 12, 52 bonding layer 121 underlying metal layer 122 solder layer 40 optical package 41 circuit board 411 insulating substrate 42 optical element 43 bonding portion

Claims (6)

光学素子を備えた光学パッケージ用の窓材であって、
無機材料の基体と、
前記無機材料の基体の一方の面上に配置された接合層とを有し、
前記接合層は、下地金属層と、半田層とを有し、
前記接合層中の金の体積割合が10%以下であり、
前記半田層の厚みの平均値が5μm以上50μm以下であり、
前記半田層を構成する半田のヤング率が50GPa以下であり、
前記半田層を構成する半田がスズ、ゲルマニウム、及びニッケルを含有し、
前記ゲルマニウムの含有量が10質量%以下であって、
前記ゲルマニウムの含有量と、前記ニッケルの含有量とが、以下の式(1)を満たし、かつ前記ゲルマニウムの含有量と、前記ニッケルの含有量との合計が1.2質量%より多い窓材。
[Ni]≦2.8×[Ge]0.3 ・・・(1)
(ただし、[Ni]は質量%換算での前記ニッケルの含有量、[Ge]は質量%換算での前記ゲルマニウムの含有量を示す。)
A window material for an optical package having an optical element,
a substrate of inorganic material;
a bonding layer disposed on one surface of the substrate of the inorganic material;
The bonding layer has a base metal layer and a solder layer,
The volume ratio of gold in the bonding layer is 10% or less,
The average value of the thickness of the solder layer is 5 μm or more and 50 μm or less,
The Young's modulus of the solder constituting the solder layer is 50 GPa or less,
The solder constituting the solder layer contains tin, germanium, and nickel,
The germanium content is 10% by mass or less,
A window in which the germanium content and the nickel content satisfy the following formula (1), and the total of the germanium content and the nickel content is more than 1.2% by mass material.
[Ni]≦2.8×[Ge] 0.3 (1)
(However, [Ni] indicates the content of nickel in terms of mass%, and [Ge] indicates the content of germanium in terms of mass%.)
前記半田層の厚みの偏差が±20μm以内である請求項1に記載の窓材。 2. The window material according to claim 1, wherein the thickness deviation of said solder layer is within ±20 μm. 前記無機材料の基体の側面は、前記一方の面の外周に沿った線状の模様を有する請求項1または請求項2に記載の窓材。 3. The window material according to claim 1, wherein the side surface of the substrate of the inorganic material has a linear pattern along the outer periphery of the one surface. 請求項1から請求項3のいずれか一項に記載の窓材と、光学素子を備えた回路基板とを有する光学パッケージ。 An optical package comprising the window material according to any one of claims 1 to 3 and a circuit board provided with an optical element. 前記回路基板はセラミックス製の絶縁性基材を有する請求項4に記載の光学パッケージ。 5. The optical package according to claim 4, wherein said circuit board has an insulating substrate made of ceramics. 前記窓材の前記無機材料の基体と、前記回路基板の絶縁性基材とは少なくとも前記接合層を含む接合部により接合されており、
前記接合部中の金の体積割合が5%以下である請求項4または請求項5に記載の光学パッケージ。
the base of the inorganic material of the window material and the insulating base of the circuit board are bonded by a bonding portion including at least the bonding layer,
6. The optical package according to claim 4 or 5, wherein the volume fraction of gold in said joint is 5% or less.
JP2019525695A 2017-06-22 2018-06-21 Window materials, optical packages Active JP7205470B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017122542 2017-06-22
JP2017122542 2017-06-22
PCT/JP2018/023703 WO2018235925A1 (en) 2017-06-22 2018-06-21 Window material, and optical package

Publications (2)

Publication Number Publication Date
JPWO2018235925A1 JPWO2018235925A1 (en) 2020-05-21
JP7205470B2 true JP7205470B2 (en) 2023-01-17

Family

ID=64735981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019525695A Active JP7205470B2 (en) 2017-06-22 2018-06-21 Window materials, optical packages

Country Status (4)

Country Link
JP (1) JP7205470B2 (en)
KR (1) KR102563840B1 (en)
TW (1) TWI784013B (en)
WO (1) WO2018235925A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7532011B2 (en) * 2018-03-01 2024-08-13 キヤノン株式会社 Manufacturing method of optical components, optical equipment
JP2021012961A (en) * 2019-07-08 2021-02-04 スタンレー電気株式会社 Light-emitting device and manufacturing method
WO2021014925A1 (en) * 2019-07-25 2021-01-28 株式会社大真空 Lid material for light-emitting device and method for manufacturing lid material
JP7173347B2 (en) * 2019-07-25 2022-11-16 株式会社大真空 Lid material for light-emitting device, method for manufacturing lid material, and light-emitting device
JP7091303B2 (en) * 2019-09-27 2022-06-27 Dowaエレクトロニクス株式会社 Manufacturing method of optical semiconductor device and optical semiconductor device
KR20230012024A (en) * 2020-12-25 2023-01-25 쿠어스택 가부시키가이샤 Silica member and LED device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053290A (en) 2006-08-22 2008-03-06 Rohm Co Ltd Optical semiconductor device and its manufacturing method
US20080199982A1 (en) 2007-02-15 2008-08-21 Hymite A/S Fabrication Process for Package With Light Emitting Device On A Sub-Mount
JP2008200706A (en) 2007-02-20 2008-09-04 Seiko Epson Corp Brazing filler metal, device and its manufacturing method
JP2009212281A (en) 2008-03-04 2009-09-17 Panasonic Corp Semiconductor light-emitting device
US20100200884A1 (en) 2009-02-10 2010-08-12 Sang Youl Lee Light emitting device and light emitting device package
JP2011108905A (en) 2009-11-19 2011-06-02 Shindo Denshi Kogyo Kk Electronic device, wiring board and method of manufacturing the electronic device
JP2011216712A (en) 2010-03-31 2011-10-27 Citizen Finetech Miyota Co Ltd Electronic device
JP2011249729A (en) 2010-05-31 2011-12-08 Hitachi Kyowa Engineering Co Ltd Optical element mounting substrate and optical element mounting package
WO2012036219A1 (en) 2010-09-17 2012-03-22 旭硝子株式会社 Light-emitting element substrate and light-emitting device
JP2012230935A (en) 2011-04-25 2012-11-22 Denki Kagaku Kogyo Kk Led light source package
JP2014217888A (en) 2013-05-03 2014-11-20 恒碩科技股▲ふん▼有限公司 Solder alloy
JP2014236202A (en) 2013-06-05 2014-12-15 旭硝子株式会社 Light-emitting device
WO2015087812A1 (en) 2013-12-11 2015-06-18 旭硝子株式会社 Cover glass for light emitting diode packages, sealed structure and light emitting device
WO2015166945A1 (en) 2014-04-30 2015-11-05 株式会社日本スペリア社 Lead-free solder alloy
JP5877487B1 (en) 2014-12-26 2016-03-08 パナソニックIpマネジメント株式会社 Light emitting device
JP2017035708A (en) 2015-08-07 2017-02-16 住友金属鉱山株式会社 Sb-Cu SOLDER ALLOY CONTAINING NO Pb

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130059875A (en) * 2011-11-29 2013-06-07 서울옵토디바이스주식회사 Light emitting diode package
KR102049380B1 (en) * 2013-05-28 2019-11-28 엘지이노텍 주식회사 Light emitting module
WO2015152387A1 (en) * 2014-04-02 2015-10-08 千住金属工業株式会社 Solder alloy for led, and led module
TWM530478U (en) * 2016-05-23 2016-10-11 聯京光電股份有限公司 Ultraviolet light-emitting diode packaging structure
TWM528524U (en) * 2016-06-01 2016-09-11 智晶光電股份有限公司 Organic light-emitting diode package structure

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053290A (en) 2006-08-22 2008-03-06 Rohm Co Ltd Optical semiconductor device and its manufacturing method
US20080199982A1 (en) 2007-02-15 2008-08-21 Hymite A/S Fabrication Process for Package With Light Emitting Device On A Sub-Mount
JP2008200706A (en) 2007-02-20 2008-09-04 Seiko Epson Corp Brazing filler metal, device and its manufacturing method
JP2009212281A (en) 2008-03-04 2009-09-17 Panasonic Corp Semiconductor light-emitting device
US20100200884A1 (en) 2009-02-10 2010-08-12 Sang Youl Lee Light emitting device and light emitting device package
JP2011108905A (en) 2009-11-19 2011-06-02 Shindo Denshi Kogyo Kk Electronic device, wiring board and method of manufacturing the electronic device
JP2011216712A (en) 2010-03-31 2011-10-27 Citizen Finetech Miyota Co Ltd Electronic device
JP2011249729A (en) 2010-05-31 2011-12-08 Hitachi Kyowa Engineering Co Ltd Optical element mounting substrate and optical element mounting package
WO2012036219A1 (en) 2010-09-17 2012-03-22 旭硝子株式会社 Light-emitting element substrate and light-emitting device
JP2012230935A (en) 2011-04-25 2012-11-22 Denki Kagaku Kogyo Kk Led light source package
JP2014217888A (en) 2013-05-03 2014-11-20 恒碩科技股▲ふん▼有限公司 Solder alloy
JP2014236202A (en) 2013-06-05 2014-12-15 旭硝子株式会社 Light-emitting device
WO2015087812A1 (en) 2013-12-11 2015-06-18 旭硝子株式会社 Cover glass for light emitting diode packages, sealed structure and light emitting device
WO2015166945A1 (en) 2014-04-30 2015-11-05 株式会社日本スペリア社 Lead-free solder alloy
JP5877487B1 (en) 2014-12-26 2016-03-08 パナソニックIpマネジメント株式会社 Light emitting device
JP2017035708A (en) 2015-08-07 2017-02-16 住友金属鉱山株式会社 Sb-Cu SOLDER ALLOY CONTAINING NO Pb

Also Published As

Publication number Publication date
TW201906198A (en) 2019-02-01
KR20200021462A (en) 2020-02-28
WO2018235925A1 (en) 2018-12-27
TWI784013B (en) 2022-11-21
KR102563840B1 (en) 2023-08-07
JPWO2018235925A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
JP7205470B2 (en) Window materials, optical packages
JP7435460B2 (en) Window materials, optical packages
TWI523724B (en) A bonding material, a method for producing the same, and a method of manufacturing the bonding structure
WO2006098454A1 (en) Submount and method for manufacturing same
JP2005101481A (en) Cap for semiconductor
JP2021114578A (en) Protective cap, frame for the same, light-emitting device, and light-emitting device array
KR20170075750A (en) Cover material for hermetic sealing, method for producing cover material for hermetic sealing, and electronic component containing package
WO2017064991A1 (en) Joining composition
JP2013145862A (en) Board for mounting led element, method for manufacturing the same, and semiconductor device with board for mounting led element
WO2020022278A1 (en) Optical package
JP2001127375A (en) Submount for mounting optical semiconductor element
JP2005191313A (en) Lid and package for optical semiconductor element housing using the same
JP2006073977A (en) Method for manufacturing wafer level package using laser irradiation
JP4429115B2 (en) Lid and optical element storage package using the same
TWI713990B (en) Sealing lid made of a translucent material
JP7116308B2 (en) METAL MATERIAL FOR OPTO-SEMICONDUCTOR DEVICE, MANUFACTURING METHOD THEREOF, AND OPTO-SEMICONDUCTOR DEVICE USING THE SAME
JP2008016813A (en) Substrate for mounting power element, its manufacturing method, and power module
WO2013069767A1 (en) Substrate for light emitting elements, light emitting module, and method for manufacturing light emitting module
JP7473877B2 (en) Manufacturing method of the cover member
WO2024201707A1 (en) Optical component, transparent sealing member, substrate, and method for manufacturing optical component
JP5023633B2 (en) Optical communication apparatus and manufacturing method thereof
KR101173531B1 (en) Solder alloy and solder joints using the same
JP2013183148A (en) Substrate for mounting semiconductor light-emitting element, method for manufacturing the same, and semiconductor light-emitting device using the same
WO2021014925A1 (en) Lid material for light-emitting device and method for manufacturing lid material
JP2022019511A (en) Protective cap, electronic device, and manufacturing method of protective cap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R150 Certificate of patent or registration of utility model

Ref document number: 7205470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150