JP7200532B2 - 感光性樹脂組成物、及び、電子装置 - Google Patents
感光性樹脂組成物、及び、電子装置 Download PDFInfo
- Publication number
- JP7200532B2 JP7200532B2 JP2018150144A JP2018150144A JP7200532B2 JP 7200532 B2 JP7200532 B2 JP 7200532B2 JP 2018150144 A JP2018150144 A JP 2018150144A JP 2018150144 A JP2018150144 A JP 2018150144A JP 7200532 B2 JP7200532 B2 JP 7200532B2
- Authority
- JP
- Japan
- Prior art keywords
- formula
- polymer
- resin composition
- photosensitive resin
- structural unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Materials For Photolithography (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
例えば、特許文献1には、環式炭化水素基を有するモノマーと、無水マレイン酸等の不飽和多塩基酸無水物と、ビニルトルエン等の共重合可能なモノマーと、水酸基を有するモノマーとの共重合体を含む感光性樹脂組成物と、該硬化膜から形成されるカラーフィルターが開示されている。
すなわち、本発明によれば、
分子中に、環状オレフィンに由来する構造単位(a)、下記の式(b-1)で表される構造単位、及び、下記の式(c-1)で表される構造単位を含むポリマーと、
感光剤と、
を含む、感光性樹脂組成物が提供される。
本明細書中、数値範囲の説明における「a~b」との表記は、特に断らない限り、a以上b以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」の意である。
本明細書における「(メタ)アクリル」との表記は、アクリルとメタクリルの両方を包含する概念を表す。「(メタ)アクリレート」等の類似の表記についても同様である。
本明細書における「電子装置」の語は、半導体チップ、半導体素子、プリント配線基板、電気回路ディスプレイ装置、情報通信端末、発光ダイオード、物理電池、化学電池など、電子工学の技術が適用された素子、デバイス、最終製品等を包含する意味で用いられる。
尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。
まず、はじめに、本実施形態の感光性樹脂組成物の概要について説明する。
本実施形態の感光性樹脂組成物は、分子中に、環状オレフィンに由来する構造単位(a)、下記の式(b-1)で表される構造単位、及び、下記の式(c-1)で表される構造単位を含むポリマーと、感光剤とを含む。
上記したポリマーを含む感光性樹脂組成物が、優れた耐熱変色性を有することとなる理由は、必ずしも全てが明らかではない。しかし、その理由は以下のように推測される。
また、この感光性樹脂組成物は、さらに、必要に応じ、溶媒、着色剤、ラジカル重合性化合物、架橋性化合物等を含んでも良い。また、各用途に応じて、その他の成分が配合されても良い。
以下、本実施形態の感光性樹脂組成物を構成する各成分について説明する。
(環状オレフィンに由来する構造単位(a))
本発明にかかるポリマーは、繰り返し単位として、環状オレフィンに由来する構造単位(a)を有する。
本発明にかかるポリマーは、環状オレフィン由来の構造単位を含有するため、密着性、低誘電性、加工性に優れた硬化膜を得ることができる。
環状オレフィンに由来する構造単位は、環状オレフィン骨格を有するモノマーの共重合又は開環重合体により得られる構造単位を含む。
前記環状オレフィン由来の構造単位は、ノルボルネン系モノマー由来の構造単位Aを含むことが好ましい。ノルボルネン骨格を有することで、より密着性を向上させることができ、また有機絶縁層(硬化膜)における低誘電性をより実現できる。
アルキル基としては、たとえばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、およびデシル基が挙げられる。アルケニル基としては、たとえばアリル基、ペンテニル基、およびビニル基が挙げられる。アルキニル基としては、エチニル基が挙げられる。アルキリデン基としては、たとえばメチリデン基、およびエチリデン基が挙げられる。アリール基としては、たとえばフェニル基、ナフチル基、およびアントラセニル基が挙げられる。アラルキル基としては、たとえばベンジル基、およびフェネチル基が挙げられる。アルカリル基としては、たとえばトリル基、キシリル基が挙げられる。シクロアルキル基としては、たとえばアダマンチル基、シクロペンチル基、シクロヘキシル基、およびシクロオクチル基が挙げられる。ヘテロ環基としては、たとえばエポキシ基、およびオキセタニル基が挙げられる。
なお、R1、R2、R3またはR4としてカルボキシル基と架橋しうる官能基を含むことにより、ポリマーを含む感光性樹脂組成物から構成される膜の硬化度を更に向上させることができる。
なお、ポリマーを含んで構成される膜の光透過性を高める観点からは、R1、R2、R3およびR4のいずれかが水素であることが好ましく、特には、R1、R2、R3およびR4すべてが水素であることが好ましい。
本発明にかかるポリマーは、繰り返し単位として、下記の式(b-1)で表される構造単位を有する。
RX、RYは、それぞれ独立して水素または炭素数1~3の有機基であることが好ましく、それぞれ独立して水素又は炭素数1の有機基であることがより好ましく、RXが水素かつRYが水素又は炭素数1の有機基であることが更に好ましく、RXとRYが水素であることが一層好ましい。
上記無水マレイン酸または無水マレイン酸誘導体に由来する構造単位として、上記(b-1)で示される構造単位を含むことにより、ポリマーにおける酸化の制御をすることが可能となり、ポリマーのアルカリ可溶性を適度に調整することができる。
本発明にかかるポリマーは、繰り返し単位として、下記の式(c-1)で表される構造単位を有する。
本発明に係るポリマーは、式(b-1)で表される無水マレイン酸やその誘導体に由来する構造と、式(c-1)で表されるマレイミド系モノマーに由来する構造単位を併せ持つことにより、アルカリ可溶性、加工性、耐熱性等の感光性樹脂組成物としての特性を十分維持しつつ、耐熱性、耐熱変色性を向上させることができる。
この中でも、RCは炭素数1~30のアルキル基、シクロアルキル基、又は、アラルキル基であることが好ましい。
アルキル基としては、直鎖又は分岐のいずれであってもよく、例えば炭素数1~30個のアルキル基、好ましくは炭素数1~12個の直鎖及び分岐アルキル基を挙げることができる。
シクロアルキル基としては、たとえばアダマンチル基、シクロペンチル基、シクロヘキシル基、およびシクロオクチル基が挙げられる。
アラルキル基としては、ベンジル基・フェネチル基が挙げられる。
この中でも、RCはアルキル基、又は、シクロアルキル基であることが好ましく、シクロアルキル基であることがより好ましい。
RCは、アルキル基としては、メチル基、又は、エチル基であることが好ましい。また、RCは、シクロアルキル基として、シクロヘキシル基であることが特に好ましい。
式(c-1)中、RCを上記態様とすることで、着色を低減させることができる。式(c-1)中、RCを上記態様とすることで、より着色を低減させることができる詳細なメカニズムは明らかではないが、本発明者らの検討によれば、マレイミド中の窒素原子に直接共役系の置換基が結合した構造は光吸収の要因となる可能性があり、共役系の置換基を含まない態様とするか、あるいは、共役系の置換基が、アルキル鎖等の連結基を介し間接的に窒素原子に結合した態様とすることで、着色を低減させることができるものと推測される。
本発明にかかるポリマーは、さらに、下記式(d-1)、(d-2)、(d-3)のいずれかで表される構造単位のうち、少なくともいずれか1種の構造単位を含むことができる。
R5、R6、R7は、炭素数2~18の有機基であり、ここでの有機基としては、たとえばアルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基が挙げられる。
アルキル基としては、たとえばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、およびデシル基が挙げられる。アルケニル基としては、たとえばアリル基、ペンテニル基、およびビニル基が挙げられる。アルキニル基としては、エチニル基が挙げられる。アルキリデン基としては、たとえばメチリデン基、およびエチリデン基が挙げられる。アリール基としては、たとえばフェニル基、ナフチル基、およびアントラセニル基が挙げられる。アラルキル基としては、たとえばベンジル基、およびフェネチル基が挙げられる。アルカリル基としては、たとえばトリル基、キシリル基が挙げられる。シクロアルキル基としては、たとえばアダマンチル基、シクロペンチル基、シクロヘキシル基、およびシクロオクチル基が挙げられる。
光ラジカル重合開始剤により、ラジカル重合を開始する炭素-炭素二重結合を有していることが好ましい。R5、R6、R7は、炭素-炭素二重結合を有することが好ましく、また、たとえば、ビニル基、ビニリデン基、アクリロイル基、メタクリロイル基のいずれかを含むことが好ましい。また、R5、R6、R7は、特にその末端に炭素-炭素二重結合を有することが好ましい。R5、R6、R7としては、炭素数2~18の脂肪族炭化水素基があげられる。この場合、たとえば、R5、R6、R7として以下式(I)、式(II)のいずれかの基を採用することができる。
また、式(d-1)におけるR1を構成する炭素数2~18の有機基は、その構造中にO、N、S、P、Siのいずれか1以上の原子を含んでいてもよい。なお、R5、R6、R7は酸性官能基を含まないものとすることができる。これにより、最終的に得られるポリマー中における酸価の制御を容易とすることができる。
ポリマーにおける分子量分布を一定の範囲に制御することにより、当該ポリマーにより形成される膜について、硬化時におけるパターンの変形を抑制できる。このため、ポリマーのMw/Mnを上記範囲とすることにより、ポリマーを含む感光性樹脂組成物からなる膜のパターン形状を良好なものとすることができる。なお、このような効果は、同時にポリマーの低分子量成分を低減する場合において特に顕著に表れる。
また、ポリマーのMw(重量平均分子量)は、たとえば3,000以上30,000以下である。
東ソー社製ゲルパーミエーションクロマトグラフィー装置HLC-8320GPC
カラム:東ソー社製TSK-GEL Supermultipore HZ-M
検出器:液体クロマトグラム用RI検出器
測定温度:40℃
溶媒:THF
試料濃度:2.0mg/ミリリットル
また、ポリマー中における低分子量成分量は、たとえばGPC測定により得られた分子量に関するデータに基づき、分子量分布全体の面積に占める、分子量1000以下に該当する成分の面積総和の割合から算出される。
本実施形態に係るポリマーは、たとえば以下のように製造される。
はじめに、環状オレフィンモノマーと、無水マレイン酸又はその誘導体と、マレイミド又はその誘導体を準備する。これらは、それぞれ以下の式(A)、(B)、(C)で示されるモノマーを用いることができる。式(A)において、n、R1~R4は、上記式(a-1)のものと同様とすることができ、式(C)において、RCは上記式(c-1)ものと同様とすることができる。
その他、ノルボルネン型モノマーとしては、式(A)のR1、R2、R3、R4の基の構造中に、架橋性を有する基、あるいはフッ素等のハロゲン原子を含む基などの官能基を含むものを採用することができる。
ノルボルネン型モノマーとしては、これらのうち、いずれか1種以上を使用できる。なかでも、ポリマーの光透過性の観点から、ビシクロ[2.2.1]-ヘプト-2-エン(慣用名:2-ノルボルネン)を使用することが好ましい。
ここで、式(A)で示されるモノマーと、式(B)で示されるモノマーと、式(C)で示されるモノマーのモル比は、式(A)で示されるモノマーと、式(B)で示されるモノマーと、式(C)で示されるモノマーの合計を100としたとき、式(A)で示されるモノマーが20~80mol%、式(B)で示されるモノマーが1~50mol%、式(C)で示されるモノマーが1~40mol%であることが好ましく、式(A)で示されるモノマーが30~70mol%、式(B)で示されるモノマーが3~45mol%、式(C)で示されるモノマーが3~30mol%であることがより好ましい。
なお、この付加重合に際しては、式(A)で示されるモノマーと、式(B)で示されるモノマーと、式(C)で示されるモノマー以外にも共重合できるモノマーを添加してもよい。このようなモノマーとして、分子内にエチレン性二重結合を有する基を含む化合物が挙げられる。ここで、エチレン性二重結合を有する基の具体例としては、アリル基、アクリル基、メタクリル基、マレイミド基や、スチリル基やインデニル基のような芳香族ビニル基等が挙げられる。
アゾ化合物としては、たとえばアゾビスイソブチロニトリル(AIBN)、ジメチル2,2'-アゾビス(2-メチルプロピオネート)、1,1'-アゾビス(シクロヘキサンカルボニトリル)(ABCN)があげられ、これらのうち、いずれか1種以上を使用できる。
また、有機過酸化物としては、たとえば過酸化水素、ジターシャリブチルパーオキサイド(DTBP)、過酸化ベンゾイル(ベンゾイルパーオキサイド,BPO)および、メチルエチルケトンパーオキサイド(MEKP)を挙げることができ、これらのうち、いずれか1種以上を使用できる。
ただし、共重合体1において、式(1)の構造のR1は、各繰り返し単位において共通であることが好ましいが、それぞれの繰り返し単位ごとに異なっていてもよい。R2~R4、RCにおいても同様である。
共重合体1は感光性樹脂組成物の均一な溶解性を得るという観点から、交互共重合体が好ましい。
次に、共重合体1と、残留モノマーおよびオリゴマー等の低分子量成分とが含まれた有機層に対して、大量の貧溶媒、たとえば、ヘキサンやメタノールに加えて、共重合体1を含むポリマーを凝固沈殿させる。ここで、低分子量成分としては、残留モノマー、オリゴマー、さらには、重合開始剤等が含まれる。次いで、ろ過を行い、得られた凝固物を、乾燥させる。これにより、低分子量成分が除去された共重合体1を主成分(主生成物)とするポリマーを得ることができる。
次に、得られた共重合体1の無水マレイン酸に由来する環状構造の繰り返し単位のうち、一部の繰り返し単位を閉環した状態としながら、残りの繰り返し単位を開環することができる。これにより、共重合体1中におけるカルボキシル基の量を調整するともにラジカル重合性基を導入することができる。
本実施形態においては、共重合体1の無水マレイン酸由来の繰り返し単位のうち、たとえば10%以上の繰り返し単位を開環させることが好ましい。なかでも、共重合体1の無水マレイン酸由来の環状構造の繰り返し単位の全個数のうち、15%以上の繰り返し単位を開環することが好ましい。また、本実施形態においては、共重合体1の無水マレイン酸由来の繰り返し単位のうち、たとえば、60%以下の繰り返し単位を開環させることが好ましく、50%以下の繰り返し単位を開環させることがより好ましい。上記範囲とすることにより、共重合体1に十分なアルカリ現像液を付与するとともに、光ラジカル発生剤による架橋反応をより効率的に進行させることが容易となる。
アルコールとしては、1たとえば、アリルアルコール、メタリルアルコール、3-ブテン-1-オール、3-メチル-3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、6-ヘプテン-1-オール、7-オクテン-1-オール、8-ノネン-1-オール、9-デセン-1-オール、10-ウンデセン-1-オール、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルアクリレート、4-ヒドロキシブチルメタクリレート、1,4-シクロヘキサンジメタノールモノアクリレート、および1,4-シクロヘキサンジメタノールモノメタクリレートがあげられ、これらのうちいずれか1以上使用することができる。
なお、本工程に用いられる溶媒として、たとえば、汎用性の高い溶媒として、ジエチルエーテル、テトラヒドロフラン、トルエン、メチルエチルケトン、酢酸エチル等のうち、いずれか1種以上を使用することができる。
塩基触媒としては、ピリジンや、トリエチルアミンなどのアルキルアミン、ジメチルアニリン、ウロトロピン、ジメチルアミノピリジンなどのアミン化合物、酢酸ナトリウム等の金属塩を用いることができる。
また、酸触媒としては、硫酸や塩酸などの鉱酸、パラトルエンスルホン酸などの有機酸、三フッ化ホウ素エーテラートなどのルイス酸などを用いることができる。
なお、本工程で塩基触媒を用いる場合においては、この塩基と、生成したカルボキシル基とが塩(カルボン酸塩)を形成することがある。この場合、このカルボン酸塩の構造を維持したまま次工程に移行することもできるし、また、塩酸やギ酸等の酸を作用させ、上述の式(4)、(6)で示されるような、末端にカルボキシル基を備える構造単位に変換させることもできる。
(α)塩基としての金属アルコキシド(M(OR5))
(β)アルコールおよびアルカリ金属塩またはアルカリ水酸化物
のいずれかと、メチルエチルケトン(MEK)等の有機溶媒をさらに添加し、加熱撹拌し反応液を得、カルボキシル基の塩部分を有する共重合体2を得た後、塩酸あるいは蟻酸等の水溶液を加えて、共重合体2を酸処理して、上記式(4)、(5)、(6)で表される構造単位を有する共重合体3を得る態様とすることもできる。
前駆体ポリマーを溶解する溶媒は、反応を阻害しないものの中から適宜選択することができ、加熱の条件としては、たとえば、50~100℃の範囲で設定することができる。反応時間は、ポリマーの化学構造の変化の度合などを観察しながら適宜設定できる。
具体的には、R8は、炭素数2~18の有機基であって、その構造中に炭素-炭素二重結合を有するものであるが、R8としては、たとえばアリル基、ペンテニル基、およびビニル基等のアルケニル基を含む有機基とすることができる。より具体的には、R2は、ビニル基、ビニリデン基、アクリロイル基、メタクリロイル基からなる群から選ばれるいずれかの基を含むことがより好ましく、アクリロイル基またはメタクリロイル基を含むことがさらに好ましい。
また、R8としては、前述の式(I)、式(II)のいずれかの基を採用することもできる。
また、R8として、芳香環を含む炭素数8~18の有機基を用いてもよい。この場合、たとえばR8としては、ビニルアリール基(-Ar-CH=CH2、Arは芳香族炭化水素基を表す)を採用することができる。
すなわち、本実施形態によって得られるポリマーは、この式(8)で示される構造単位を含みうる。
塩基触媒としては、ピリジンや、トリエチルアミンなどのアルキルアミン、ジメチルアニリン、ウロトロピン、ジメチルアミノピリジンなどのアミン化合物、酢酸ナトリウム等の金属塩を用いることができる。
また、酸触媒としては、硫酸や塩酸などの鉱酸、パラトルエンスルホン酸などの有機酸、フッ化ホウ素エーテラートなどのルイス酸などを用いることができる。
なお、本工程で塩基触媒を用いる場合においては、この塩基とポリマー中のカルボキシル基とが塩(カルボン酸塩)を形成することがあるため、塩酸やギ酸等の酸を作用させ、ポリマー中のカルボン酸塩の部位を、カルボキシル基へと変換させることが好適である。
次に、以上の工程により得られた共重合体3を含む溶液を、水への再沈あるいは水洗により残留金属成分や未反応アルコールを除去する。再沈の場合には、大量の水へ共重合体3を含むポリマーを滴下して凝固沈殿させる。次いで、ろ過を行い、得られた凝固物を、捕集し、水による洗浄操作を数回繰り返す。水洗の場合には、水と有機溶媒(たとえば、MEK)との混合物で洗浄して、その後、水層を除去する(第一の洗浄)。その後、再度、有機層に、水と有機溶媒(たとえば、MEK)との混合物を加えて、洗浄する(第二の洗浄)。本実施形態においては、以上のような洗浄工程(処理S4)をたとえば5回以上、より好ましくは10回繰り返す。これにより、共重合体3中におけるアルカリ金属の濃度を、十分に低減することができる。本実施形態においては、共重合体3中のアルカリ金属濃度が10ppm以下、好ましくは5ppm以下となるように洗浄工程(処理S4)を繰り返し行うことが好ましい。
洗浄工程(処理S4)の後において、溶媒置換を行うことができる。溶媒置換は、たとえば減圧蒸留によって処理S1からS4にて使用した化合物を除去し、PGMEA(プロピレングリコールモノメチルエーテルアセテート)等の製品溶媒を添加しながら系内を置換していくことにより行うことができる。
本実施形態では、前述した開環工程(処理S3)にて、無水マレイン酸由来の繰り返し単位の開環率を調整することで、ポリマーのアルカリ現像液(たとえば、TMAH(水酸化テトラメチルアンモニウム水溶液))に対する溶解速度が調整されているが、さらに、厳密に溶解速度を調整する必要がある場合には本加熱工程(処理S6)を実施することができる。この加熱工程(処理S6)では、共重合体3を加熱することでポリマーのアルカリ現像液に対する溶解速度をさらに調整することができる。
従って、この工程を経て得られる共重合体4は、前述した式(1)で示す繰り返し単位と、式(2)で示される繰り返し単位と、式(3)で示される繰り返し単位と、式(4)で示される繰り返し単位と、式(5)で示される繰り返し単位とを備えるものとなる。
式(5)には、式(6)において二つのカルボキシル基がエステル化した構造が含まれていてもよい。この場合には、R6およびR7は、いずれも本加熱工程(処理S6)で使用するアルコールに由来のものとなる。
以上の工程を経ることにより、本実施形態に係るポリマーが得られることとなる。
なお、本明細書中において「感光性樹脂膜」とは、電子装置等の作製過程において、露光工程に供される樹脂膜を指す。例えば、「感光性樹脂膜」は、光が照射された部位が硬化し、一方、照射されない部位は現像工程で現像液(例えばアルカリ溶液)に溶解して除去される、ネガ型の感光性樹脂膜を指す。
続いて、本実施形態にかかる感光性樹脂組成物について説明する。
本実施形態に係る感光性樹脂組成物は、先に説明した製造方法により得られるポリマーと、感光剤とを配合することにより得られるものである。
本実施形態に記載の感光性樹脂組成物は、上述の各成分を溶媒に溶解することで、ワニス状として使用することができる。
このような溶媒の例としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、メチル-1,3-ブチレングリコールアセテート、1,3-ブチレングリコール-3-モノメチルエーテル、ピルビン酸メチル、およびピルビン酸エチル及びメチル-3-メトキシプロピオネート等が挙げられる。
なお、樹脂膜のクラック発生を顕著に抑制する観点からは、これらの化合物のうち、γ-ブチロラクロン、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートからなる群から選ばれる化合物を用いることが好ましい態様である。
また、本実施形態の感光性樹脂組成物における溶媒の含有量は、ポリマー100質量部に対して、1000質量部以下であることが好ましく、800質量部以下であることがより好ましい。溶媒の含有量が上記範囲内であると、適度なハンドリング性をもたらすことができる。
本実施形態の着色感光性樹脂組成物は、前記ラジカル重合開始剤により、前記ポリマーと架橋するラジカル重合性化合物(第一の架橋剤ともいう。)を含むことができる。
ラジカル重合性化合物(第一の架橋剤)は、2以上の(メタ)アクリロイル基を有する多官能アクリル化合物であることが好ましい。具体的には、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、ビスフェノールAアルキレンオキシドジ(メタ)アクリレート、ビスフェノールFアルキレンオキシドジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加ジトリメチロールプロパンテトラ(メタ)アクリレート、エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、エチレンオキシド付加ジペンタエリスリトールヘキサ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加ジトリメチロールプロパンテトラ(メタ)アクリレート、プロピレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、プロピレンオキシド付加ジペンタエリスリトールヘキサ(メタ)アクリレート、ε-カプロラクトン付加トリメチロールプロパントリ(メタ)アクリレート、ε-カプロラクトン付加ジトリメチロールプロパンテトラ(メタ)アクリレート、ε-カプロラクトン付加ペンタエリスリトールテトラ(メタ)アクリレート、ε-カプロラクトン付加ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレート類;エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ブチレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、ビスフェノールAアルキレンオキシドジビニルエーテル、ビスフェノールFアルキレンオキシドジビニルエーテル、トリメチロールプロパントリビニルエーテル、ジトリメチロールプロパンテトラビニルエーテル、グリセリントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ジペンタエリスリトールペンタビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル、エチレンオキシド付加トリメチロールプロパントリビニルエーテル、エチレンオキシド付加ジトリメチロールプロパンテトラビニルエーテル、エチレンオキシド付加ペンタエリスリトールテトラビニルエーテル、エチレンオキシド付加ジペンタエリスリトールヘキサビニルエーテル等の多官能ビニルエーテル類;(メタ)アクリル酸2-ビニロキシエチル、(メタ)アクリル酸3-ビニロキシプロピル、(メタ)アクリル酸1-メチル-2-ビニロキシエチル、(メタ)アクリル酸2-ビニロキシプロピル、(メタ)アクリル酸4-ビニロキシブチル、(メタ)アクリル酸4-ビニロキシシクロヘキシル、(メタ)アクリル酸5-ビニロキシペンチル、(メタ)アクリル酸6-ビニロキシヘキシル、(メタ)アクリル酸4-ビニロキシメチルシクロヘキシルメチル、(メタ)アクリル酸p-ビニロキシメチルフェニルメチル、(メタ)アクリル酸2-(ビニロキシエトキシ)エチル、(メタ)アクリル酸2-(ビニロキシエトキシエトキシエトキシ)エチル等のビニルエーテル基含有(メタ)アクリル酸エステル類;エチレングリコールジアリルエーテル、ジエチレングリコールジアリルエーテル、ポリエチレングリコールジアリルエーテル、プロピレングリコールジアリルエーテル、ブチレングリコールジアリルエーテル、ヘキサンジオールジアリルエーテル、ビスフェノールAアルキレンオキシドジアリルエーテル、ビスフェノールFアルキレンオキシドジアリルエーテル、トリメチロールプロパントリアリルエーテル、ジトリメチロールプロパンテトラアリルエーテル、グリセリントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、ジペンタエリスリトールペンタアリルエーテル、ジペンタエリスリトールヘキサアリルエーテル、エチレンオキシド付加トリメチロールプロパントリアリルエーテル、エチレンオキシド付加ジトリメチロールプロパンテトラアリルエーテル、エチレンオキシド付加ペンタエリスリトールテトラアリルエーテル、エチレンオキシド付加ジペンタエリスリトールヘキサアリルエーテル等の多官能アリルエーテル類;(メタ)アクリル酸アリル等のアリル基含有(メタ)アクリル酸エステル類;トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(メタクリロイルオキシエチル)イソシアヌレート、アルキレンオキシド付加トリ(アクリロイルオキシエチル)イソシアヌレート、アルキレンオキシド付加トリ(メタクリロイルオキシエチル)イソシアヌレート等の多官能(メタ)アクリロイル基含有イソシアヌレート類;トリアリルイソシアヌレート等の多官能アリル基含有イソシアヌレート類;トリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート等の多官能イソシアネートと(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル等の水酸基含有(メタ)アクリル酸エステル類との反応で得られる多官能ウレタン(メタ)アクリレート類;ジビニルベンゼン等の多官能芳香族ビニル類等が挙げられる。
なかでも、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の三官能(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の四官能(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の六官能(メタ)アクリレートがあげられ、これらのうちいずれか1以上を使用することが好ましい。
本実施形態の着色感光性樹脂組成物において、第一の架橋剤を用いる場合、その含有量は、ポリマーを100質量部に対し、30~70質量部であることが好ましく、さらには、50~60質量部であることが好ましい。
このような感光性樹脂組成物は、たとえば、カラーフィルタを構成するブラックマトリクスや着色パターンを作製する際に、好適に用いることができる。
有機顔料としては、アゾ系顔料、フタロシアニン系顔料、多環式顔料(キナクリドン系、ペリレン系、ペリノン系、イソインドリノン系、イソインドリン系、ジオキサジン系、チオインジゴ系、アントラキノン系、キノフタロン系、金属錯体系、ジケトピロロピロール系等)、染料レーキ系顔料等を使用することができる。
無機顔料としては、白色・体質顔料(酸化チタン、酸化亜鉛、硫化亜鉛、クレー、タルク、硫酸バリウム、炭酸カルシウム等)、有彩顔料(黄鉛、カドミニウム系、クロムバーミリオン、ニッケルチタン、クロムチタン、黄色酸化鉄、ベンガラ、ジンククロメート、鉛丹、群青、紺青、コバルトブルー、クロムグリーン、酸化クロム、バナジン酸ビスマス等)、黒色顔料(カーボンブラック、ボーンブラック、グラファイト、鉄黒、チタンブラック等)、光輝材顔料(パール顔料、アルミ顔料、ブロンズ顔料等)、蛍光顔料(硫化亜鉛、硫化ストロンチウム、アルミン酸ストロンチウム等)を使用することができる。
このような樹脂膜は、たとえばレジストとしての用途として用いることができ、また、たとえば、電子装置用の保護膜、層間膜、またはダム材等の永久膜を構成することもできる。
(条件)
感光性樹脂組成物をガラス基板上に塗布し、100℃、120秒間の条件で乾燥し、300mJ/cm2の露光量で露光して得られる厚み3μmの樹脂膜Aについて、波長400nmの光の光線透過率を分光光度計で評価し、耐熱試験前透過率TA%とした。
(条件)
感光性樹脂組成物をガラス基板上に塗布し、100℃、120秒間の条件で乾燥し、300mJ/cm2の露光量で露光して得られる厚み3μmの樹脂膜Aについて、波長400nmの光の光線透過率を分光光度計で評価し、耐熱試験前透過率TA%とした。樹脂膜Aを大気雰囲気下、250℃、1時間加熱して得られる樹脂膜Bについて、波長400nmの光の光線透過率を分光光度計で評価し、耐熱試験後透過率TB%とした。TB/TA×100を耐熱変色性%とした。
本発明の感光性樹脂組成物を硬化させて得られる永久膜は、透過率、耐熱変色性に優れた永久膜となるため、特に、透明性が要求される用途、特に加熱されても着色しないことが要求される、例えば、液晶表示装置や有機EL素子等の各種表示装置有する電子装置の着色パターン、ブラックマトリクス、オーバーコート、リブ及びスペーサーに適用することが好ましい。
本実施形態の感光性樹脂組成物は、好ましくは、カラーフィルタの製造に用いられる。以下、本実施形態の感光性樹脂組成物を適用したカラーフィルタの例について図1を示しながら説明する。なお、このようなカラーフィルタは液晶表示装置や固体撮像素子に備えさせることができる。
また、この支持体10は必要に応じて、コロナ放電処理、オゾン処理、薬液処理等が施されたものであってもよい。
なお、本実施形態において、この支持体10は好ましくはガラスにより構成される。
具体的な形成方法は、公知の方法を採用することができるが、たとえば、スパッタリング法、真空蒸着法、CVD法等の方法を採用することができる。
以下、図2を参照しながらカラーフィルタ100の製造方法について説明する。
本実施形態のカラーフィルタ100の製造方法は、
本実施形態の感光性樹脂組成物を支持体10に適用することで感光性樹脂組成物の層15を形成する、感光性樹脂組成物層形成工程と、
前記感光性樹脂組成物の層に対して露光する、露光工程と、
アルカリ性現像液によりパターンを形成する、現像工程と、を含む。
この感光性樹脂組成物を支持体10に塗布する方法としては、スピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の塗布方法を用いることができる。これらの中でもスピンコートが好ましく、その回転数は1000~3000rpmが好ましい。
塗膜上へのパターン形成は、目的のパターンを形成するためのマスクを用いて、活性光線等を照射して行う。活性光線の光源としては、例えば、キセノンランプ、ハロゲンランプ、タングステンランプ、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、中圧水銀灯、低圧水銀灯、カーボンアーク、蛍光ランプ等のランプ光源;アルゴンイオンレーザー、YAGレーザー、エキシマレーザー、窒素レーザー、ヘリウムカドミウムレーザー、半導体レーザー等のレーザー光源等が使用される。
現像方法としては、例えば、シャワー現像法、スプレー現像法、浸漬現像法等を挙げることができる。現像条件としては通常、23℃で1~10分程度である。
この形成方法は、先述の通り、たとえば、スパッタリング法、真空蒸着法、CVD法等の方法を採用することができる。
また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良などは本発明に含まれるものである。
還流冷却管及び滴下漏斗を備えた反応容器内に、2-ノルボルネン(NB)の75%トルエン溶液(179.7g、2-ノルボルネン換算134.8g、1.43mol)、2,2'-アゾビスイソ酪酸ジメチル(和光純薬工業製,商品名:V-601,13.2g,0.057mol)及びMEK101.0gを加え、撹拌・溶解させた。次いで、窒素バブリングにより系内の溶存酸素を除去したのち、加温し、内温が60℃に到達したところで、N-シクロヘキシルマレイミド(CMI、25.7g、0.14mol)及び無水マレイン酸(MAN、126.4g、1.29mol)をMEK304.0gに溶解させた溶液を3時間かけて添加した。その後、80℃に昇温しさらに6時間反応させた。次いで、反応混合物を室温まで冷却し、MEK250gを添加し希釈した。希釈後の溶液を大量のメタノールに注ぎ、ポリマーを析出させた。次いでポリマーを濾取し、さらにメタノールで洗浄した後、120℃、16時間真空乾燥させた。ポリマーの収量は250.0g、収率は83%であった。また、ポリマーは、重量平均分子量Mwが7,600であり、分散度(重量平均分子量Mw/数平均分子量Mn)が1.88であった。
還流冷却管及び滴下漏斗を備えた反応容器内に、2-ノルボルネンの75%トルエン溶液(57.7g、2-ノルボルネン換算43.3g、0.459mol)、V-601(4.2g、0.018mol)及びMEK30.6gを加え、撹拌・溶解させた。次いで、窒素バブリングにより系内の溶存酸素を除去したのち、加温し、内温が60℃に到達したところで、N-シクロヘキシルマレイミド(16.5g、0.092mol)及び無水マレイン酸(36.0g、0.368mol)をMEK105.0gに溶解させた溶液を3時間かけて添加した。その後、80℃に昇温しさらに6時間反応させた。次いで、反応混合物を室温まで冷却し、MEK83.3gを添加し希釈した。希釈後の溶液を大量のメタノールに注ぎ、ポリマーを析出させた。次いでポリマーを濾取し、さらにメタノールで洗浄した後、120℃、16時間真空乾燥させた。ポリマーの収量は81.5g、収率は82%であった。また、ポリマーは、重量平均分子量Mwが7,200であり、分散度(重量平均分子量Mw/数平均分子量Mn)が1.86であった。
還流冷却管及び滴下漏斗を備えた反応容器内に、2-ノルボルネンの75%トルエン溶液(53.7g、2-ノルボルネン換算40.3g、0.428mol)、V-601(3.9g,0.017mol)及びMEK35.1gを加え、撹拌・溶解させた。次いで、窒素バブリングにより系内の溶存酸素を除去したのち、加温し、内温が60℃に到達したところで、N-シクロヘキシルマレイミド30.7g(0.171mol)及び無水マレイン酸(25.2g、0.257mol)をMEK101.5gに溶解させた溶液を3時間かけて添加した。その後、80℃に昇温しさらに6時間反応させた。次いで、反応混合物を室温まで冷却し、MEK83.3gを添加し希釈した。希釈後の溶液を大量のメタノールに注ぎ、ポリマーを析出させた。次いでポリマーを濾取し、さらにメタノールで洗浄した後、120℃、16時間真空乾燥させた。ポリマーの収量は79.7g、収率は80%であった。また、ポリマーは、重量平均分子量Mwが6,600であり、分散度(重量平均分子量Mw/数平均分子量Mn)が1.88であった。
還流冷却管及び滴下漏斗を備えた反応容器内に、2-ノルボルネンの75%トルエン溶液(62.3g、2-ノルボルネン換算46.7g、0.496mol)、V-601(4.6g,0.020mol)及びMEK45.9gを加え、撹拌・溶解させた。次いで、窒素バブリングにより系内の溶存酸素を除去したのち、加温し、内温が60℃に到達したところで、無水マレイン酸(48.7g、0.496mol)をMEK88.5gに溶解させた溶液を3時間かけて添加した。その後、80℃に昇温しさらに6時間反応させた。次いで、反応混合物を室温まで冷却し、MEK83.3gを添加し希釈した。希釈後の溶液を大量のメタノールに注ぎ、ポリマーを析出させた。次いでポリマーを濾取し、さらにメタノールで洗浄した後、120℃、16時間真空乾燥させた。ポリマーの収量は92.5g、収率は93%であった。また、ポリマーは、重量平均分子量Mwが6,900であり、分散度(重量平均分子量Mw/数平均分子量Mn)が1.76であった。
還流冷却管及び滴下漏斗を備えた反応容器内に、無水マレイン酸(11.1g、0.113mol)、2,2'-アゾビス(2,4‐ジメチルバレロニトリル)(1.12g、0.005mol)及びMEK18.3gを加え、撹拌・溶解させた。次いで、窒素バブリングにより系内の溶存酸素を除去したのち、加温し、内温が70℃に到達したところで、2-ノルボルネンの75%トルエン溶液(2.8g、2-ノルボルネン換算2.1g、0.022mol)、ビニルトルエン(10.7g,0.091mol)をMEK18.5gに溶解させた溶液を3時間かけて添加した。その後、80℃に昇温しさらに2時間反応させた。次いで、反応混合物を室温まで冷却した。溶液を大量のメタノールに注ぎ、ポリマーを析出させた。次いでポリマーを濾取し、さらにメタノールで洗浄した後、120℃、16時間真空乾燥させた。ポリマーの収量は20.3g、収率は81%であった。また、ポリマーは、重量平均分子量Mwが24,700であり、分散度(重量平均分子量Mw/数平均分子量Mn)が3.58であった。
合成例1で合成した前駆体ポリマーA20.0gをMEK30.0gに溶解させた。さらに2-ヒドロキシエチルアクリレート(HEA)11.6gとトリエチルアミン(TEA)2.0gを添加し、70℃に昇温した後6時間反応させた。次いで、反応混合液を室温に冷却し、ギ酸にて中和した。溶液を大量の純水に注ぎ、ポリマーを析出させた。得られたポリマーを濾取し、さらに純水で洗浄した後、PGMEAに溶解させ、減圧下で残留水分の除去・濃縮を行って固形分約35%のポリマー溶液を得た。
このようにして得られたポリマーの重量平均分子量(Mw)は8,600であり、分子量分布1.89であった。また、アルカリ溶解速度は12,300Å/secであった。また、二重結合当量は620g/molであった。
2-ヒドロキシエチルアクリレートの代わりに4-ヒドロキシブチルアクリレート(4HBA)14.4gを用いた以外は合成例6と同様の方法で反応を実施した。ポリマーの重量平均分子量(Mw)、分子量分布、アルカリ溶解速度、二重結合当量は、表2に記載の通りであった。
2-ヒドロキシエチルアクリレートの代わりに、2-ヒドロキシエチルメタクリレート(HEMA)13.0gを用いた以外は合成例6と同様の方法で反応を実施した。ポリマーの重量平均分子量(Mw)、分子量分布、アルカリ溶解速度、二重結合当量は、表2に記載の通りであった。
合成例1で合成した前駆体ポリマーA20.0gをMEK30.0gに溶解させた。さらに2-ヒドロキシエチルメタクリレート(HEMA)9.1gとトリエチルアミン(TEA)2.0gを添加し、70℃に昇温した後6時間反応させた。次いで、系中にメタクリル酸グリシジル(GMA)4.3gを追加し70℃でさらに4時間反応させた。反応混合液を室温に冷却し、ギ酸にて中和した。溶液を大量の純水に注ぎ、ポリマーを析出させた。得られたポリマーを濾取し、さらに純水で洗浄した後、PGMEAに溶解させ、減圧下で残留水分の除去・濃縮を行って固形分約35%のポリマー溶液を得た。このようにして得られたポリマーの重量平均分子量(Mw)、分子量分布、アルカリ溶解速度、二重結合当量は、表2に記載の通りであった。
合成例2で合成した前駆体ポリマーB20.0gをMEK30.0gに溶解させた。さらに2-ヒドロキシエチルアクリレート(HEA)11.0gとトリエチルアミン(TEA)2.0gを添加し、70℃に昇温した後6時間反応させた。次いで、反応混合液を室温に冷却し、ギ酸にて中和した。溶液を大量の純水に注ぎ、ポリマーを析出させた。得られたポリマーを濾取し、さらに純水で洗浄した後、PGMEAに溶解させ、減圧下で残留水分の除去・濃縮を行って固形分約35%のポリマー溶液を得た。ポリマーの重量平均分子量(Mw)、分子量分布、アルカリ溶解速度、二重結合当量は、表2に記載の通りであった。
合成例3で合成した前駆体ポリマーC20.0gをMEK30.0gに溶解させた。さらに2-ヒドロキシエチルアクリレート(HEA)10.3gとトリエチルアミン(TEA)2.0gを添加し、70℃に昇温した後6時間反応させた。次いで、反応混合液を室温に冷却し、ギ酸にて中和した。溶液を大量の純水に注ぎ、ポリマーを析出させた。得られたポリマーを濾取し、さらに純水で洗浄した後、PGMEAに溶解させ、減圧下で残留水分の除去・濃縮を行って固形分約35%のポリマー溶液を得た。ポリマーの重量平均分子量(Mw)、分子量分布、アルカリ溶解速度、二重結合当量は、表2に記載の通りであった。
合成例4で合成した前駆体ポリマーD20.0gをMEK30.0gに溶解させた。さらに2-ヒドロキシエチルメタクリレート(HEMA)8.5gとトリエチルアミン(TEA)2.0gを添加し、70℃に昇温した後6時間反応させた。次いで、系中にメタクリル酸グリシジル(GMA)4.4gを追加し70℃でさらに4時間反応させた。反応混合液を室温に冷却し、ギ酸にて中和した。溶液を大量の純水に注ぎ、ポリマーを析出させた。得られたポリマーを濾取し、さらに純水で洗浄した後、PGMEAに溶解させ、減圧下で残留水分の除去・濃縮を行って固形分約35%のポリマー溶液を得た。
ポリマーの重量平均分子量(Mw)、分子量分布、アルカリ溶解速度、二重結合当量は、表2に記載の通りであった。
合成例5で合成した前駆体ポリマーE15.0gをMEK27.9gに溶解させた。さらに2-ヒドロキシエチルアクリレート(HEA)10.2gとトリエチルアミン(TEA)1.5gを添加し、70℃に昇温した後6時間反応させた。次いで、反応混合液を室温に冷却し、ギ酸にて中和した。溶液を大量の純水に注ぎ、ポリマーを析出させた。得られたポリマーを濾取し、さらに純水で洗浄した後、PGMEAに溶解させ、減圧下で残留水分の除去・濃縮を行って固形分約35%のポリマー溶液を得た。ポリマーの重量平均分子量(Mw)、分子量分布、アルカリ溶解速度、二重結合当量は、表2に記載の通りであった。
上記合成例で得られたポリマー各100質量部に対し、それぞれ架橋剤であるジペンタエリスリトールヘキサアクリレート(A-DPH、新中村化学工業株式会社製)50質量部、以下の式で表される光ラジカル発生剤(イルガキュアOXE01(BASF社製))10質量部g、シランカップリング剤(KBM-403(3-グリシドキシプロピルトリメトキシシラン;信越化学工業株式会社製))1質量部、界面活性剤(F556(DIC株式会社製))0.1質量部をプロピレングリコールモノメチルエーテルアセテートにて溶解し、固形分30%の溶液とした。その後孔径0.2μmのメンブランフィルターでろ過し、感光性樹脂組成物を調製した。
得られた前駆体ポリマー・ポリマーについて、以下に従い評価を行った。
なお、本明細書において、重量平均分子量(Mw)、数平均分子量(Mn)、および分子量分布(Mw/Mn)は、GPC測定により得られる標準ポリスチレン(PS)の検量線から求めた、ポリスチレン換算値を用いる。測定条件は、以下の通りである。
東ソー社製ゲルパーミエーションクロマトグラフィー装置HLC-8320GPC
カラム:東ソー社製TSK-GEL Supermultipore HZ-M
検出器:液体クロマトグラム用RI検出器
測定温度:40℃
溶媒:THF
試料濃度:2.0mg/ミリリットル
ポリマーのアルカリ溶解速度は、ポリマーをプロピレングリコールモノメチルエーテルアセテートに溶解させ、固形分20重量%に調整したポリマー溶液を、シリコンウェハ上にスピン方式で塗布し、これを110℃で100秒間ソフトベークして得られるポリマー膜を、23℃で2.38%のテトラメチルアンモニウムハイドロオキサイド水溶液に含浸させ、視覚的に前記ポリマー膜が消去するまでの時間を測定することにより算出した。
ポリマーの二重結合当量は以下の方法で測定した。まず、減圧乾燥して溶媒を除去したポリマー約50mg及び内部標準物質としてテレフタル酸ジメチル約5mgを計量し、DMSO-d6に溶解させた。この溶液について、核磁気共鳴分光装置JNM-AL300(JEOL社製)を用いて1H-NMRの測定を行った。得られたスペクトルチャートの(メタ)アクリル基に由来するシグナル(5-7ppm)と内部標準物質のフェニル基のシグナル(4H、8.1ppm)の積分比から二重結合1mol当たりのポリマー重量(g/mol、二重結合当量)を算出した。
(光線透過率 TA)
各実施例および各比較例について、以下のようにして感光性樹脂組成物を用いて形成される樹脂膜Aの光線透過率を測定した。まず、得られた感光性樹脂組成物をガラス基板にスピンコーターを用いて塗布した後、110℃、110秒間ホットプレートにてベークした。ガラス基板としては、縦100mm、横100mmサイズのコーニング社製1737ガラス基板を用いた。その後、感光性樹脂組成物全体にキヤノン社製g+h+i線マスクアライナー(PLA-501F)にて、g+h+i線を300mJ/cm2で露光した。次いで、該樹脂膜Aの、波長400nmの光線に対する光線透過率TA(%)を測定した。光線透過率TAは、紫外可視分光光度計を用いて測定した。結果を表3に示す。
上記光線透過率TAに記載の方法で得た樹脂膜Aを、大気雰囲気下、250℃、1時間加熱し樹脂膜Bを得た。その後樹脂膜Bの波長400nmの光の光線透過率TBを評価した。TB/TA×100を耐熱変色性%とした。結果を表3に示す。
調製された感光性樹脂組成物を、それぞれ、4インチシリコンウエハ上にスピンコーターを用いて塗布した。塗布後、ホットプレートにて100℃で2分間プリベークし、膜厚約3.0μmの塗膜を得た。
この薄膜に透過率1~100%の階調を有するフォトマスクを介してキヤノン社製g+h+i線マスクアライナー(PLA-501F)にて300mJ/cm2の露光量でg+h+i線を露光した。
露光後、現像液として2.38%水酸化テトラメチルアンモニウムを用いて23℃、60秒間現像を行うことによって未露光部を溶解除去し、1~100mJ/cm2の各露光量で露光された薄膜を得た。
現像後残膜率(%)={(各露光量における薄膜Bの膜厚(μm))/(薄膜Aの膜厚(μm))}×100
上記の計算式で得られた現像後残膜率が95%以上となる最低露光量をそのレジストの感度とし、以下の評価基準で評価した。A>B>Cの順で感度に優れ、B以上を合格とした。
A:0~100mJ/cm2
B:100~200mJ/cm2
C:200mJ/cm2以上、又は、解像不可
上記の「最低露光量」で露光した以外は、<感度の評価>と同様の工程によりパターンを形成した。現像後の10μmライン&スペースパターンで、パターン近傍に残渣が見られなかったものを良好、残渣が見られたものや解像性が低く評価不能のものを不良とした。
得られた感光性樹脂組成物を、3インチシリコンウェハー上に回転塗布し(回転数300~2500rpm)、100℃、120秒間ホットプレートにてベーク後、約3μm厚の薄膜を得た。この薄膜をPLA-501Fにて300mJ/cm2全面露光した後、クリーンオーブンで230℃、60分間加熱することによりポストベーク処理を行い、硬化膜を得た。
作製した硬化膜を削り取り、示差熱熱重量同時測定装置(TG/DTA)にて窒素雰囲気下、30℃から400℃まで10℃/minで昇温し、5%重量減少温度(Td5)を測定した。
Claims (6)
- 前記感光性樹脂組成物の樹脂膜の、下記条件で測定した耐熱変色性が91%以上である、請求項1に記載の感光性樹脂組成物。
(条件)
感光性樹脂組成物をガラス基板上に塗布し、100℃、120秒間の条件で乾燥し、300mJ/cm2の露光量で露光して得られる厚み3μmの樹脂膜Aについて、波長400nmの光の光線透過率を分光光度計で評価し、耐熱試験前透過率TA%とした。樹脂膜Aを大気雰囲気下、250℃、1時間加熱して得られる樹脂膜Bについて、波長400nmの光の光線透過率を分光光度計で評価し、耐熱試験後透過率TB%とした。TB/TA×100を耐熱変色性%とした。 - 前記ポリマーにおいて、前記式(c-1)で表される構造単位が、前記ポリマーを100としたとき、1mol%以上40mol%以下含まれる、請求項1~4のいずれか一項に記載の感光性樹脂組成物。
- 請求項1~5のいずれか一項に記載の感光性樹脂組成物を硬化させて得られる永久膜を有する、電子装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018150144A JP7200532B2 (ja) | 2018-08-09 | 2018-08-09 | 感光性樹脂組成物、及び、電子装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018150144A JP7200532B2 (ja) | 2018-08-09 | 2018-08-09 | 感光性樹脂組成物、及び、電子装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020027115A JP2020027115A (ja) | 2020-02-20 |
JP7200532B2 true JP7200532B2 (ja) | 2023-01-10 |
Family
ID=69620037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018150144A Active JP7200532B2 (ja) | 2018-08-09 | 2018-08-09 | 感光性樹脂組成物、及び、電子装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7200532B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024143067A1 (ja) * | 2022-12-26 | 2024-07-04 | 三菱ケミカル株式会社 | 感光性樹脂組成物、硬化物、隔壁、有機電界発光素子、カラーフィルター、画像表示装置、及び硬化物の形成方法 |
CN117866173A (zh) * | 2023-12-25 | 2024-04-12 | 亚培烯科技(上海)有限公司 | 可固化环氧树脂组合物及其应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002122994A (ja) | 2000-08-08 | 2002-04-26 | Fuji Photo Film Co Ltd | ポジ型感光性組成物 |
JP2015007762A (ja) | 2013-05-29 | 2015-01-15 | 住友ベークライト株式会社 | ネガ型感光性樹脂組成物、電子装置およびポリマー |
JP2018520222A (ja) | 2015-05-06 | 2018-07-26 | プロメラス, エルエルシー | 永久的な誘電体としてのマレイミド及びシクロオレフィンモノマーのポリマー |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07102027A (ja) * | 1993-10-05 | 1995-04-18 | Nippon Kayaku Co Ltd | 樹脂組成物、レジスト組成物及びその硬化物 |
-
2018
- 2018-08-09 JP JP2018150144A patent/JP7200532B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002122994A (ja) | 2000-08-08 | 2002-04-26 | Fuji Photo Film Co Ltd | ポジ型感光性組成物 |
JP2015007762A (ja) | 2013-05-29 | 2015-01-15 | 住友ベークライト株式会社 | ネガ型感光性樹脂組成物、電子装置およびポリマー |
JP2018520222A (ja) | 2015-05-06 | 2018-07-26 | プロメラス, エルエルシー | 永久的な誘電体としてのマレイミド及びシクロオレフィンモノマーのポリマー |
Also Published As
Publication number | Publication date |
---|---|
JP2020027115A (ja) | 2020-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016194619A1 (ja) | 着色感光性樹脂組成物、着色パターンまたはブラックマトリクス、カラーフィルタ、液晶表示装置または固体撮像素子およびカラーフィルタの製造方法 | |
JP7074051B2 (ja) | ポリマーの製造方法、ネガ型感光性樹脂組成物の製造方法、樹脂膜の製造方法、電子装置の製造方法およびポリマー | |
JP7200532B2 (ja) | 感光性樹脂組成物、及び、電子装置 | |
JP7052900B2 (ja) | 感光性樹脂組成物、ポリマー、パターン、カラーフィルタ、ブラックマトリクス、表示装置および撮像素子 | |
JP6661929B2 (ja) | ネガ型感光性樹脂組成物、樹脂膜および電子装置 | |
CN114556214B (zh) | 树脂组合物、感光性树脂组合物及其固化物 | |
JP2020024356A (ja) | 感光性樹脂組成物、パターン、カラーフィルタ、ブラックマトリクス、表示装置、撮像素子、および、表示装置または撮像素子の製造方法 | |
JP2023024401A (ja) | ポリマー、ポリマー溶液、感光性樹脂組成物、および硬化物 | |
JP2021196596A (ja) | ポリマー溶液 | |
JP2020023654A (ja) | ポリマー、ポリマーの製造方法、感光性樹脂組成物、パターン、カラーフィルタ、ブラックマトリクス、液晶表示装置および固体撮像素子 | |
JP7552223B2 (ja) | ポリマー、ポリマーの製造方法、感光性樹脂組成物、および硬化物 | |
JP7559421B2 (ja) | カラーフィルタまたはブラックマトリクス形成用ポリマー溶液 | |
TWI858162B (zh) | 樹脂組成物、與感光性樹脂組成物及其硬化物 | |
JP7585658B2 (ja) | ポリマー溶液、感光性樹脂組成物 | |
CN114599686B (zh) | 聚合物及树脂组合物 | |
KR20240134378A (ko) | 폴리머, 폴리머 용액, 감광성 수지 조성물, 및 경화물 | |
KR20090040079A (ko) | 감광성 폴리실세스퀴옥산 수지 조성물 및 이를 이용한박막의 패턴 형성 방법 | |
JP2022165664A (ja) | 感光性樹脂組成物および硬化膜 | |
JP2021116406A (ja) | ポリマー溶液 | |
JP2022046309A (ja) | ポリマー溶液、感光性樹脂組成物およびその用途 | |
JP2024110897A (ja) | ポリマー、ポリマー溶液、感光性樹脂組成物、および硬化物 | |
JP2022170248A (ja) | ポリマー、ポリマー溶液、感光性樹脂組成物、および硬化物 | |
JP2022114042A (ja) | ポリマー、ポリマー溶液、感光性樹脂組成物、および硬化物 | |
JP2022022060A (ja) | ポリマー、ポリマー溶液、感光性樹脂組成物およびその用途 | |
JP2024110932A (ja) | ポリマー、ポリマー溶液、感光性樹脂組成物、および硬化物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210709 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220614 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221205 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7200532 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |