[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7298323B2 - 外部環境認識装置 - Google Patents

外部環境認識装置 Download PDF

Info

Publication number
JP7298323B2
JP7298323B2 JP2019111072A JP2019111072A JP7298323B2 JP 7298323 B2 JP7298323 B2 JP 7298323B2 JP 2019111072 A JP2019111072 A JP 2019111072A JP 2019111072 A JP2019111072 A JP 2019111072A JP 7298323 B2 JP7298323 B2 JP 7298323B2
Authority
JP
Japan
Prior art keywords
external environment
unit
recognition
vehicle
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019111072A
Other languages
English (en)
Other versions
JP2020204822A (ja
Inventor
大介 堀籠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2019111072A priority Critical patent/JP7298323B2/ja
Priority to EP20821845.3A priority patent/EP3985635A4/en
Priority to US17/618,496 priority patent/US20220237899A1/en
Priority to PCT/JP2020/011539 priority patent/WO2020250528A1/ja
Priority to CN202080043208.5A priority patent/CN113994405A/zh
Publication of JP2020204822A publication Critical patent/JP2020204822A/ja
Application granted granted Critical
Publication of JP7298323B2 publication Critical patent/JP7298323B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/776Validation; Performance evaluation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/86Combinations of sonar systems with lidar systems; Combinations of sonar systems with systems not using wave reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/22Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/255Detecting or recognising potential candidate objects based on visual cues, e.g. shapes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/80Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
    • G06V10/803Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of input or preprocessed data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9323Alternative operation using light waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9324Alternative operation using ultrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • G01S7/412Identification of targets based on measurements of radar reflectivity based on a comparison between measured values and known or stored values
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30256Lane; Road marking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30268Vehicle interior
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/07Target detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

ここに開示する技術は、移動体の外部の環境を認識する外部環境認識装置に関する。
特許文献1には、車両に搭載される画像処理装置が開示されている。この画像処理装置は、カメラで撮影して得られた撮影画像に基づく入力画像から路面領域を検出する路面検出部と、入力画像における路面領域の検出結果を時系列で検証する時系列検証を行う時系列検証部と、路面検出部による路面領域の検出結果と時系列検証部による時系列検証の結果とに基づいて対象物を検知するための検知領域を入力画像内に設定する検知領域選択部と、検知領域において対象物を検知する検知部とを備える。
特開2018-22234号公報
ところで、特許文献1のような装置に設けられたデータ処理系統の異常を検出するために、異常検出の対象となるデータ処理系統を二重化することが考えられる。具体的には、同一のデータ処理を行う2つの処理部を設け、2つの処理部に同一のデータを入力して2つの処理部の出力を比較し、2つの処理部の出力が互いに異なる場合にデータ処理に異常があると判定する、という方式(いわゆるデュアルロックステップ方式)を採用することが考えられる。しかしながら、データ処理系統を二重化すると、冗長な構成が追加されることになるので、データ処理系統の回路規模および消費電力が増加してしまう。
ここに開示する技術は、かかる点に鑑みてなされたものであり、その目的とするところは、異常検出機能の追加に伴う回路規模および消費電力の増加を低減することが可能な外部環境認識装置を提供することにある。
ここに開示する技術は、移動体の外部環境を認識する外部環境認識装置に関する。この外部環境認識装置は、前記移動体の外部環境を撮像する撮像部により得られた画像データに基づいて、該移動体の外部環境を認識する認識処理部と、前記認識処理部の認識結果と前記移動体の外部環境を検出する検出部の検出結果とに基づいて、該認識処理部により認識された外部環境を表現するオブジェクトデータを生成するオブジェクトデータ生成部と、前記認識処理部により認識された外部環境と前記検出部により検出された外部環境との同一性に基づいて、前記撮像部と前記認識処理部と前記検出部とを含むデータ処理系統の異常を検出する異常検出部とを備える。
前記の構成では、異常検出の対象となるデータ処理系統の全体を二重化することなく、データ処理系統の異常を検出することができる。これにより、異常検出の対象となるデータ処理系統の全体を二重化する場合よりも、異常検出機能の追加に伴う回路規模および消費電力の増加を低減することができる。
なお、前記検出部は、前記移動体の外部環境へ向けて探知波を送信して該外部環境からの反射波を受信することで該移動体の外部環境を検出するように構成されてもよい。前記異常検出部は、前記認識処理部により認識された外部環境に含まれる物標と前記検出部により検出された外部環境に含まれる物標との同一性に基づいて、前記データ処理系統の異常を検出するように構成されてもよい。
前記の構成では、異常検出部は、認識処理部により認識された物標と検出部により検出された物標との同一性に基づいて、データ処理系統の異常を検出する。なお、検出部において、移動体の外部環境に含まれる物標(例えば車両)は、移動体の外部環境に含まれる移動可能領域(例えば車道)よりも検出されやすい。したがって、認識処理部により認識された物標と検出部により検出された物標との同一性に基づいてデータ処理系統の異常を検出することにより、認識処理部により認識された移動可能領域と検出部により検出された移動可能領域との同一性に基づいてデータ処理系統の異常を検出する場合よりも、データ処理系統の異常の検出精度を向上させることができる。
また、前記異常検出部は、前記移動体の外部環境に含まれる物標のうち該移動体との間の距離が予め定められた距離範囲内となる物標に関する前記認識処理部の認識結果と前記検出部の検出結果との同一性に基づいて、前記データ処理系統の異常を検出するように構成されてもよい。
前記の構成では、移動体との間の距離が撮像部による撮像および検出部による検出を適切に行うことができる距離となる物標を、異常検出部の処理の対象とすることができる。これにより、認識処理部により適切に認識された物標と検出部により適切に検出された物標との同一性に基づいてデータ処理系統の異常を検出することができるので、データ処理系統の異常の検出精度を向上させることができる。
また、前記異常検出部は、前記認識処理部により認識された外部環境と前記検出部により検出された外部環境との同一性の破綻の継続時間に基づいて、前記データ処理系統の異常を検出するように構成されてもよい。
前記の構成では、認識処理部により認識された外部環境と検出部により検出された外部環境との同一性の破綻の継続時間に基づいて、データ処理系統の異常を検出することにより、データ処理系統の異常の過検出を低減することができる。これにより、データ処理系統の異常の検出を適切に行うことができる。
ここに開示する技術によれば、異常検出機能の追加に伴う回路規模および消費電力の増加を低減することができる。
実施形態による車両制御システムの構成を例示するブロック図である。 外部環境認識部の構成を例示するブロック図である。 外部環境認識部の基本動作を例示するフローチャートである。 画像データを例示する図である。 画像データの分類結果を例示する図である。 統合データの概念を例示する図である。 二次元データを例示する図である。 異常検出部による異常検出動作を例示するフローチャートである。
以下、実施の形態を図面を参照して詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。以下では、移動体の動作を制御する移動体制御システムの一例である車両制御システム10を例に挙げて説明する。
(実施形態)
図1は、車両制御システム10の構成を例示する。車両制御システム10は、移動体の一例である車両(この例では自動四輪車)に設けられる。この車両は、マニュアル運転とアシスト運転と自動運転とに切り換え可能である。マニュアル運転は、ドライバの操作(例えばアクセルの操作など)に応じて走行する運転である。アシスト運転は、ドライバの操作を支援して走行する運転である。自動運転は、ドライバの操作なしに走行する運転である。車両制御システム10は、自動運転およびアシスト運転において、車両に設けられたアクチュエータ101を制御することで車両の動作を制御する。例えば、アクチュエータ101は、エンジン、トランスミッション、ブレーキ、ステアリングなどを含む。
なお、以下の説明では、車両制御システム10が設けられている車両を「自車両」と記載し、自車両の周囲に存在する他の車両を「他車両」と記載する。
この例では、車両制御システム10は、複数のカメラ11と、複数のレーダ12と、位置センサ13と、車両状態センサ14と、ドライバ状態センサ15と、運転操作センサ16と、通信部17と、コントロールユニット18と、ヒューマンマシンインターフェース19と、演算装置20とを備える。演算装置20は、外部環境認識装置の一例である。
〔カメラ(撮像部)〕
複数のカメラ11は、互いに同様の構成を有する。カメラ11は、自車両の外部環境を撮像することで、自車両の外部環境を示す画像データを取得する。カメラ11により得られた画像データは、演算装置20に送信される。なお、カメラ11は、移動体の外部環境を撮像する撮像部の一例である。
この例では、カメラ11は、広角レンズを有する単眼カメラである。そして、複数のカメラ11による自車両の外部環境の撮像範囲が自車両の周囲の全周に渡るように、複数のカメラ11が自車両に配置されている。例えば、カメラ11は、CCD(Charge Coupled Device)やCMOS(Complementary metal-oxide-semiconductor)などの固体撮像素子を用いて構成される。なお、カメラ11は、通常のレンズを有する単眼カメラであってもよいし、ステレオカメラであってもよい。
〔レーダ(検出部)〕
複数のレーダ12は、互いに同様の構成を有する。レーダ12は、自車両の外部環境を検出する。具体的には、レーダ12は、自車両の外部環境へ向けて電波(探知波の一例)を送信して自車両の外部環境からの反射波を受信することで、自車両の外部環境を検出する。レーダ12の検出結果は、演算装置20に送信される。なお、レーダ12は、移動体の外部環境を検出する検出部の一例である。検出部は、移動体の外部環境へ向けて探知波を送信して移動体の外部環境からの反射波を受信することで、移動体の外部環境を検出する。
この例では、複数のレーダ12による自車両の外部環境の検出範囲が自車両の周囲の全周に渡るように、複数のレーダ12が自車両に配置されている。例えば、レーダ12は、ミリ波(探知波の一例)を送信するミリ波レーダであってもよいし、レーザ光(探知波の一例)を送信するライダ(Light Detection and Ranging)であってもよいし、赤外線(探知波の一例)を送信する赤外線レーダであってもよいし、超音波(探知波の一例)を送信する超音波センサであってもよい。
〔位置センサ〕
位置センサ13は、自車両の位置(例えば緯度および経度)を検出する。例えば、位置センサ13は、全地球測位システムからのGPS情報を受信し、GPS情報に基づいて自車両の位置を検出する。位置センサ13により検出された自車両の位置は、演算装置20に送信される。
〔車両状態センサ〕
車両状態センサ14は、自車両の状態(例えば速度や加速度やヨーレートなど)を検出する。例えば、車両状態センサ14は、自車両の速度を検出する車速センサ、自車両の加速度を検出する加速度センサ、自車両のヨーレートを検出するヨーレートセンサなどにより構成される。車両状態センサ14により検出された自車両の状態は、演算装置20に送信される。
〔ドライバ状態センサ〕
ドライバ状態センサ15は、自車両を運転するドライバの状態(例えばドライバの健康状態や感情や身体挙動など)を検出する。例えば、ドライバ状態センサ15は、ドライバを撮像する車内カメラ、ドライバの生体情報を検出する生体情報センサなどにより構成される。ドライバ状態センサ15により検出されたドライバの状態は、演算装置20に送信される。
〔運転操作センサ〕
運転操作センサ16は、自車両に加えられる運転操作を検出する。例えば、運転操作センサ16は、自車両のハンドルの操舵角を検出する操舵角センサ、自車両のアクセルの操作量を検出するアクセルセンサ、自車両のブレーキの操作量を検出するブレーキセンサなどにより構成される。運転操作センサ16により検出された運転操作は、演算装置20に送信される。
〔通信部〕
通信部17は、自車両の外部に設けられた外部装置との間で通信を行う。例えば、通信部17は、自車両の周囲に位置する他車両(図示を省略)からの通信情報、ナビゲーションシステム(図示を省略)からの交通情報などを受信する。通信部17により受信された情報は、演算装置20に送信される。
〔コントロールユニット〕
コントロールユニット18は、演算装置20により制御され、自車両に設けられたアクチュエータ101を制御する。例えば、コントロールユニット18は、パワートレイン装置、ブレーキ装置、ステアリング装置などを含む。パワートレイン装置は、後述する駆動指令値に示された目標駆動力に基づいて、アクチュエータ101に含まれるエンジンおよびトランスミッションを制御する。ブレーキ装置は、後述する制動指令値に示された目標制動力に基づいて、アクチュエータ101に含まれるブレーキを制御する。ステアリング装置は、後述する操舵指令値に示された目標操舵量に基づいてアクチュエータ101に含まれるステアリングを制御する。
〔ヒューマンマシンインターフェース〕
ヒューマンマシンインターフェース19は、演算装置20と自車両の乗員(特にドライバ)との間において情報の入出力を行うために設けられる。例えば、ヒューマンマシンインターフェース19は、情報を表示するディスプレイ、情報を音声出力するスピーカ、音声を入力するマイク、自車両の乗員(特にドライバ)による操作が与えられる操作部などを含む。操作部は、タッチパネルやボタンである。
〔演算装置〕
演算装置20は、自車両に設けられたセンサ類の出力および車外から送信された情報などに基づいて、自車両が走行すべき経路である目標経路を決定し、目標経路を走行するために必要となる自車両の運動である目標運動を決定する。そして、演算装置20は、自車両の運動が目標運動となるように、コントロールユニット18を制御してアクチュエータ101の動作を制御する。例えば、演算装置20は、1つまたは複数の演算チップを有する電子制御ユニット(ECU)により構成される。言い換えると、演算装置20は、1つまたは複数のプロセッサ、1つまたは複数のプロセッサを動作させるためのプログラムやデータを記憶する1つまたは複数のメモリなどを有する電子制御ユニット(ECU)により構成される。
この例では、演算装置20は、外部環境認識部21と、候補経路生成部22と、車両挙動認識部23と、ドライバ挙動認識部24と、目標運動決定部25と、運動制御部26とを有する。これらは、演算装置20の機能の一部である。
外部環境認識部21は、自車両の外部環境を認識する。候補経路生成部22は、外部環境認識部21の出力に基づいて1つまたは複数の候補経路を生成する。候補経路は、自車両が走行可能な経路であり、目標経路の候補である。
車両挙動認識部23は、車両状態センサ14の出力に基づいて自車両の挙動(例えば速度や加速度やヨーレートなど)を認識する。例えば、車両挙動認識部23は、深層学習により生成された学習モデルを用いて車両状態センサ14の出力から自車両の挙動を認識する。ドライバ挙動認識部24は、ドライバ状態センサ15の出力に基づいてドライバの挙動(例えばドライバの健康状態や感情や身体挙動など)を認識する。例えば、ドライバ挙動認識部24は、深層学習により生成された学習モデルを用いてドライバ状態センサ15の出力からドライバの挙動を認識する。
目標運動決定部25は、車両挙動認識部23の出力と、ドライバ挙動認識部24の出力に基づいて、候補経路生成部22により生成された1つまたは複数の候補経路の中から目標経路となる候補経路を選択する。例えば、目標運動決定部25は、複数の候補経路のうちドライバが最も快適であると感じる候補経路を選択する。そして、目標運動決定部25は、目標経路として選択された候補経路に基づいて目標運動を決定する。
運動制御部26は、目標運動決定部25により決定された目標運動に基づいてコントロールユニット18を制御する。例えば、運動制御部26は、目標運動を達成するための駆動力と制動力と操舵量である目標駆動力と目標制動力と目標操舵量をそれぞれ導出する。そして、運動制御部26は、目標駆動力を示す駆動指令値と目標制動力を示す制動指令値と目標操舵量を示す操舵指令値をコントロールユニット18に含まれるパワートレイン装置とブレーキ装置とステアリング装置にそれぞれ送信する。
〔外部環境認識部〕
図2は、外部環境認識部21の構成を例示する。この例では、外部環境認識部21は、画像処理チップ31と、人工知能アクセラレータ32と、制御チップ33とにより構成される。画像処理チップ31と人工知能アクセラレータ32と制御チップ33の各々は、プロセッサと、プロセッサを動作させるためのプログラムやデータなどを記憶するメモリとにより構成される。
この例では、外部環境認識部21は、前処理部40と、認識処理部41と、統合データ生成部42と、二次元データ生成部43と、異常検出部44とを有する。これらは、外部環境認識部21の機能の一部である。この例では、画像処理チップ31に前処理部40が設けられ、人工知能アクセラレータ32に認識処理部41と統合データ生成部42が設けられ、制御チップ33に二次元データ生成部43と異常検出部44が設けられる。
〈前処理部〉
前処理部40は、カメラ11により得られた画像データに対して前処理を行う。前処理には、画像データに示された画像の歪みを補正する歪み補正処理、画像データに示された画像の明度を調整するホワイトバランス調整処理などが含まれる。
〈認識処理部〉
認識処理部41は、前処理部40により前処理された画像データに基づいて、自車両の外部環境を認識する。
〈統合データ生成部〉
統合データ生成部42は、認識処理部41の認識結果に基づいて、統合データを生成する。統合データは、認識処理部41により認識された自車両の外部環境に含まれる移動可能領域および物標が統合されたデータである。この例では、統合データ生成部42は、認識処理部41の認識結果と、レーダ12の検出結果(すなわちレーダ12により検出された自車両の外部環境)とに基づいて、統合データを生成する。
〈二次元データ生成部〉
二次元データ生成部43は、統合データ生成部42により生成された統合データに基づいて、二次元データを生成する。二次元データは、統合データに含まれる移動可能領域および物標が二次元化されたデータである。
〈オブジェクトデータ生成部〉
なお、この例では、統合データ生成部42と二次元データ生成部43がオブジェクトデータ生成部45を構成している。オブジェクトデータ生成部45は、認識処理部41の認識結果に基づいてオブジェクトデータを生成する。オブジェクトデータは、認識処理部41により認識された自車両の外部環境を表現するデータである。この例では、オブジェクトデータ生成部45は、認識処理部41の認識結果と、レーダ12の検出結果(すなわちレーダ12により検出された自車両の外部環境)とに基づいて、オブジェクトデータを生成する。
〈異常検出部〉
異常検出部44は、認識処理部41により認識された車両の外部環境とレーダ12により検出された車両の外部環境との同一性に基づいて、カメラ11と認識処理部41とレーダ12とを含むデータ処理系統の異常を検出する。この例では、カメラ11と認識処理部41とレーダ12とを含むデータ処理系統は、カメラ11から前処理部40を経由して認識処理部41に至る第1系統とレーダ12から認識処理部41に至る第2系統とを含む。例えば、異常検出部44は、データ処理系統の異常を検出する異常検出処理において、深層学習により生成された学習モデルを用いて認識処理部41の認識結果とレーダ12の検出結果との同一性を検出するように構成されてもよい。この学習モデルは、認識処理部41の認識結果とレーダ12の検出結果との同一性を検出するための学習モデルである。なお、異常検出部44は、他の周知の同一性検出技術を用いて認識処理部41の認識結果とレーダ12の検出結果との同一性を検出するように構成されてもよい。
〔外部環境認識部の基本動作〕
次に、図3を参照して、外部環境認識部21の基本動作について説明する。
〈ステップS11〉
まず、前処理部40は、カメラ11により得られた画像データに対して前処理を行う。この例では、前処理部40は、複数のカメラ11により得られた複数の画像データの各々に対して前処理を行う。前処理には、画像データに示された画像の歪み(この例ではカメラ11の広角化による歪み)を補正する歪み補正処理や、画像データに示された画像のホワイトバランスを調整するホワイトバランス調整処理などが含まれる。なお、カメラ11により得られた画像データに歪みがない場合(例えば通常のレンズを有するカメラを用いる場合)は、歪み補正処理が省略されてもよい。
図4に示すように、画像データD1に示された自車両の外部環境には、車道50と歩道71と空地72が含まれている。車道50は、自車両が移動することができる移動可能領域の一例である。また、この画像データD1に示された自車両の外部環境には、他車両61と標識62と街路樹63と建物80が含まれている。他車両61(自動四輪車)は、時間経過により変位する動体の一例である。動体の他の例としては、自動二輪車、自転車、歩行者などが挙げられる。標識62と街路樹63は、時間経過により変位しない静止体の一例である。静止体の他の例としては、中央分離帯、センターポール、建物などが挙げられる。動体と静止体は、物標60の一例である。
図4の例では、車道50の外側に歩道71が設けられ、歩道71の外側(車道50から遠い側)に空地72が設けられている。また、図4の例では、車道50のうち自車両が走行する車線を1台の他車両61が走行し、車道50のうち自車両が走行する車線の対向車線を2台の他車両61が走行している。そして、歩道71の外側に沿うように標識62と街路樹63が並んでいる。また、自車両の前方の遠い位置に建物80が設けられている。
〈ステップS12〉
次に、認識処理部41は、画像データD1に対して分類処理を行う。この例では、認識処理部41は、複数のカメラ11により得られた複数の画像データの各々に対して分類処理を行う。分類処理では、認識処理部41は、画像データD1に示された画像を画素単位で分類し、その分類結果を示す分類情報を画像データD1に付加する。この分類処理により、認識処理部41は、画像データD1に示された画像(自車両の外部環境を示す画像)の中から移動可能領域および物標を認識する。例えば、認識処理部41は、深層学習により生成された学習モデルを用いて分類処理を行う。この学習モデルは、画像データD1に示された画像を画素単位で分類するための学習モデルである。なお、認識処理部41は、他の周知の分類技術を用いて分類処理を行うように構成されてもよい。
図5は、画像データD1に示される画像の分類結果を例示するセグメンテーション画像D2を示す。図5の例では、画像データD1に示される画像は、画素単位で、車道と車両と標識と街路樹と歩道と空地と建物のいずれかに分類されている。
〈ステップS13〉
次に、認識処理部41は、画像データに対して、移動可能領域データ生成処理を行う。移動可能領域データ生成処理では、認識処理部41は、画像データD1に示される画像の中から分類処理により移動可能領域(この例では車道50)に分類された画素領域を特定し、その特定された画素領域に基づいて移動可能領域データを生成する。移動可能領域データは、認識処理部41により認識された移動可能領域を表現するデータ(この例では二次元マップデータ)である。この例では、認識処理部41は、同一の時点において複数のカメラ11により取得された複数の画像データの各々において特定された移動可能領域に基づいて、移動可能領域データを生成する。例えば、移動可能データ生成処理には、周知の二次元データ生成技術が用いられてもよい。
〈ステップS14〉
また、認識処理部41は、物標情報生成処理を行う。物標情報生成処理では、認識処理部41は、第1情報生成処理と、第2情報生成処理と、情報統合処理とを行う。
第1情報生成処理は、画像データに対して行われる。この例では、認識処理部41は、複数のカメラ11により得られた複数の画像データの各々に対して第1情報生成処理を行う。第1情報生成処理では、認識処理部41は、画像データD1に示される画像の中から分類処理により物標60に分類された画素領域を特定し、その特定された画素領域に基づいて物標情報を生成する。なお、画像データD1に示された画像において複数の物標60が認識された場合、認識処理部41は、複数の物標60の各々に対して第1情報生成処理を行う。物標情報は、物標60に関する情報であり、物標60の種別、物標60の形状、自車両から物標60までの距離および方向、自車両を基準とする物標60の位置、自車両の移動速度に対する物標60の相対速度の大きさおよび向きなどを示す。例えば、認識処理部41は、深層学習により生成された学習モデルを用いて第1情報生成処理を行う。この学習モデルは、画像データD1に示される画像の中から特定された画素領域(物標60に分類された画素領域)に基づいて物標情報を生成ための学習モデルである。なお、認識処理部41は、他の周知の情報生成技術を用いて第1情報生成処理を行うように構成されてもよい。
第2情報生成処理は、レーダ12の出力に対して行われる。この例では、認識処理部41は、複数のレーダ12の各々の出力に基づいて第2情報生成処理を行う。第2情報生成処理では、認識処理部41は、レーダ12の検出結果に基づいて物標情報を生成する。例えば、認識処理部41は、レーダ12の検出結果(自車両の外部環境を表現する反射波の強度分布)に対して解析処理を行うことで、物標情報(具体的には物標60の種別、物標60の形状、自車両から物標60までの距離および方向、自車両を基準とする物標60の位置、自車両の移動速度に対する物標60の相対速度の大きさおよび向きなど)を導出する。なお、認識処理部41は、深層学習により生成された学習モデル(レーダ12の検出結果に基づいて物標情報を生成するための学習モデル)を用いて第2情報生成処理を行うように構成されてもよいし、他の周知の解析技術を用いて第2情報生成処理を行うように構成されてもよい。
情報統合処理では、認識処理部41は、第1情報生成処理により得られた物標情報と、第2情報生成処理により得られた物標情報とを統合することにより、新たな物標情報を生成する。例えば、認識処理部41は、物標情報に含まれる複数のパラメータ(具体的には物標60の種別、物標60の形状、自車両から物標60までの距離および方向、自車両を基準とする物標60の位置、自車両の移動速度に対する物標60の相対速度の大きさおよび向きなど)の各々について、第1情報生成処理により得られた物標情報のパラメータと第2情報生成処理により得られた物標情報のパラメータとを比較し、2つのパラメータのうち精度が高いほうのパラメータを新たな物標情報に含まれるパラメータとする。
〈ステップS15〉
次に、統合データ生成部42は、ステップS13において生成された移動可能領域データと、ステップS14において生成された物標情報とを統合することにより、統合データD3を生成する。統合データD3は、認識処理部41により認識された移動可能領域(この例では車道50)および物標60が統合されたデータ(この例では三次元マップデータ)である。例えば、統合データ生成部42は、周知のデータ統合技術を用いて、移動可能領域データと物標情報とから統合データD3を生成するように構成されてもよい。
図6は、統合データD3の概念を例示する。図6に示すように、統合データD3では、物標60が抽象化されている。
〈ステップS16〉
次に、二次元データ生成部43は、統合データD3を二次元化することにより、二次元データD4を生成する。二次元データD4は、統合データD3に含まれる移動可能領域(この例では車道50)および物標60が二次元化されたデータ(この例では二次元マップデータ)である。例えば、二次元データ生成部43は、周知の二次元化技術を用いて、統合データD3から二次元データD4を生成するように構成されてもよい。
図7に示すように、二次元データD4では、移動可能領域(この例では車道50)と物標60(この例では自車両100)とが二次元化されている。この例では、二次元データD4は、自車両100の俯瞰図(上空から自車両100を見下ろした図)に対応する。二次元データD4には、車道50と他車両61と自車両100とが含まれている。
〔異常検出処理〕
次に、図8を参照して、異常検出部44による異常検出処理(データ処理系統の異常を検出する処理)について説明する。
〈ステップS21〉
まず、異常検出部44は、認識処理部41の認識結果とレーダ12の検出結果とを取得する。例えば、異常検出部44は、認識処理部41の第1情報生成処理により得られた物標情報(認識処理部41の認識結果の一例)と、認識処理部41の第2情報生成処理により得られた物標情報(レーダ12の検出結果の一例)とを取得する。
〈ステップS22〉
次に、異常検出部44は、認識処理部41により認識された外部環境とレーダ12により検出された外部環境とに同一性があるか否かを判定する。同一性がある場合には、ステップS23の処理が行われ、そうでない場合には、ステップS24の処理が行われる。
〈ステップS23〉
認識処理部41により認識された外部環境とレーダ12により検出された外部環境とに同一性がある場合、異常検出部44は、カメラ11と認識処理部41とレーダ12とを含むデータ処理系統の異常が発生していないと判定する。
〈ステップS24〉
一方、認識処理部41により認識された外部環境とレーダ12により検出された外部環境とに同一性がない場合、異常検出部44は、カメラ11と認識処理部41とレーダ12とを含むデータ処理系統の異常が発生していると判定する。
〔異常の因果関係〕
次に、カメラ11と認識処理部41とレーダ12とを含むデータ処理系統の異常と、認識処理部41の認識結果とレーダ12の検出結果との同一性の破綻との因果関係について説明する。カメラ11と認識処理部41とレーダ12とを含むデータ処理系統に異常が発生していない場合、認識処理部41の認識結果およびレーダ12の検出結果の両方が正常となるので、認識処理部41の認識結果とレーダ12の検出結果とが互いに一致しているとみなすことができ、認識処理部41の認識結果とレーダ12の検出結果との同一性が成立する。一方、カメラ11と認識処理部41とレーダ12とを含むデータ処理系統に異常が発生すると、認識処理部41の認識結果およびレーダ12の検出結果のうち少なくとも一方が異常となるので、認識処理部41の認識結果とレーダ12の検出結果とが互いに一致しているとみなすことができず、認識処理部41の認識結果とレーダ12の検出結果との同一性が破綻する。
〔同一性の判定の具体例〕
次に、異常検出部44による同一性(認識処理部41の認識結果とレーダ12の検出結果との同一性)の判定について具体例を挙げて説明する。同一性を判定するパラメータとして、移動可能領域(この例では車道50)の形状、自車両を基準とする移動可能領域の位置、物標60の種別、物標60の形状、自車両から物標60までの距離および方向、自車両を基準とする物標60の位置、自車両の移動速度に対する物標60の相対速度の大きさおよび向きなどが挙げられる。
移動可能領域(または物標60)の形状に基づいて同一性を判定する場合、異常検出部44は、認識処理部41により認識された移動可能領域(または物標60)の形状とレーダ12により検出された移動可能領域(または物標60)の形状との差(例えば面積の差)が予め定められた閾値を下回る場合に、認識処理部41の認識結果とレーダ12の検出結果との同一性があると判定し、そうでない場合に、認識処理部41の認識結果とレーダ12の検出結果との同一性がない(破綻している)と判定する。
自車両を基準とする移動可能領域(または物標60)の位置に基づいて同一性を判定する場合、異常検出部44は、認識処理部41により認識された移動可能領域(または物標60)の位置とレーダ12により検出された移動可能領域(または物標60)の位置との差(位置ずれ量)が予め定められた閾値を下回る場合に、認識処理部41の認識結果とレーダ12の検出結果との同一性があると判定し、そうでない場合に、認識処理部41の認識結果とレーダ12の検出結果との同一性がない(破綻している)と判定する。
物標60の種別に基づいて同一性を判定する場合、異常検出部44は、認識処理部41により認識された物標60の種別とレーダ12により検出された物標60の種別とが互いに一致する場合に、認識処理部41の認識結果とレーダ12の検出結果との同一性があると判定し、そうでない場合に、認識処理部41の認識結果とレーダ12の検出結果との同一性がない(破綻している)と判定する。
自車両から物標60までの距離および方向に基づいて同一性を判定する場合、異常検出部44は、認識処理部41により認識された物標60の距離および方向とレーダ12により検出された物標60の距離および方向との差(距離ずれ量および方向ずれ量)が予め定められた閾値を下回る場合に、認識処理部41の認識結果とレーダ12の検出結果との同一性があると判定し、そうでない場合に、認識処理部41の認識結果とレーダ12の検出結果との同一性がない(破綻している)と判定する。
自車両の移動速度に対する物標60の相対速度の大きさおよび向きに基づいて同一性を判定する場合、異常検出部44は、認識処理部41により認識された物標60の相対速度の大きさおよび向きとレーダ12により検出された物標60の相対速度の大きさおよび向きとの差(速度ずれ量および方向ずれ量)が予め定められた閾値を下回る場合に、認識処理部41の認識結果とレーダ12の検出結果との同一性があると判定し、そうでない場合に、認識処理部41の認識結果とレーダ12の検出結果との同一性がない(破綻している)と判定する。
なお、異常検出部44は、上記の複数のパラメータのうちいずれか1つに基づいて同一性(認識処理部41の認識結果とレーダ12の検出結果との同一性)を判定するように構成されてもよいし、上記の複数のパラメータのうち2つ以上のパラメータに基づいて同一性を判定するように構成されてもよい。
また、上記の複数のパラメータのうち2つ以上のパラメータに基づいて同一性を判定する場合、異常検出部44は、2つ以上のパラメータのうち同一性があると判定されるパラメータの数が予め定められた数を上回る場合に、認識処理部41の認識結果とレーダ12の検出結果との同一性があると判定するように構成されてもよい。
〔実施形態の効果〕
以上のように、この実施形態の演算装置20では、異常検出の対象となるデータ処理系統の全体を二重化することなく、データ処理系統の異常を検出することができる。これにより、異常検出の対象となるデータ処理系統の全体を二重化する場合よりも、異常検出機能の追加に伴う回路規模および消費電力の増加を低減することができる。
(実施形態の変形例1)
なお、異常検出部44は、認識処理部41により認識された車両の外部環境に含まれる物標と、レーダ12により検出された車両の外部環境に含まれる物標との同一性に基づいて、データ処理系統の異常を検出するように構成されることが好ましい。特に、異常検出部44は、車両の外部環境に含まれる物標のうち車両との間の距離が予め定められた距離範囲内となる物標に関する認識処理部41の認識結果とレーダ12の検出結果との同一性に基づいて、データ処理系統の異常を検出するように構成されることが好ましい。
〔実施形態の変形例1の効果〕
この実施形態の変形例1の演算装置20では、異常検出部44は、認識処理部41により認識された物標60と、レーダ12により検出された物標60との同一性に基づいて、データ処理系統の異常を検出する。なお、レーダ12において、自車両の外部環境に含まれる物標60(例えば他車両61)は、自車両の外部環境に含まれる移動可能領域(例えば車道50)よりも検出されやすい。したがって、認識処理部41により認識された物標60とレーダ12により検出された物標60との同一性に基づいてデータ処理系統の異常を検出することにより、認識処理部41により認識された移動可能領域(この例では車道50)とレーダ12により検出された移動可能領域との同一性に基づいてデータ処理系統の異常を検出する場合よりも、データ処理系統の異常の検出精度を向上させることができる。
また、この実施形態の変形例1の演算装置20では、自車両との間の距離がカメラ11による撮像およびレーダ12による検出を適切に行うことができる距離となる物標60を、異常検出部44の処理の対象とすることができる。これにより、認識処理部41により適切に認識された物標60とレーダ12により適切に検出された物標60との同一性に基づいてデータ処理系統の異常を検出することができるので、データ処理系統の異常の検出精度を向上させることができる。
(実施形態の変形例2)
なお、異常検出部44は、認識処理部41により認識された外部環境とレーダ12により検出された外部環境との同一性の破綻の継続時間に基づいて、データ処理系統の異常を検出するように構成されてもよい。具体的には、この変形例2では、異常検出部44は、認識処理部41により認識された外部環境とレーダ12により検出された外部環境との同一性の破綻の継続時間が予め定められた正常時間を上回る場合に、データ処理系統の異常が発生していると判定し、この同一性の破綻の継続時間が正常時間を上回らない場合に、データ処理系統の異常が発生していないと判定する。
〔実施形態の変形例2の効果〕
この実施形態の変形例2の演算装置20では、異常検出部44は、認識処理部41により認識された外部環境とレーダ12により検出された外部環境との同一性の破綻の継続時間に基づいて、データ処理系統の異常を検出する。これにより、データ処理系統の異常の過検出を低減することができる。例えば、データ処理系統の異常ではない別の原因(例えば瞬時的なノイズなど)により認識処理部41により認識された外部環境とレーダ12により検出された外部環境との同一性が僅かな時間だけ破綻する場合に、データ処理系統の異常が誤検出される、という事態を回避することができる。これにより、データ処理系統の異常の検出を適切に行うことができる。
(その他の実施形態)
以上の説明では、移動体として車両(自動四輪車)を例に挙げたが、これに限定されない。例えば、移動体は、船舶、列車、航空機、自動二輪車、自立移動型のロボット、掃除機、ドローンなどであってもよい。
また、以上の説明では、二次元データ生成部43が制御チップ33に設けられる場合を例に挙げたが、これに限定されない。例えば、二次元データ生成部43は、人工知能アクセラレータ32に設けられてもよいし、その他の演算チップに設けられてもよい。これと同様に、異常検出部44は、制御チップ33に設けられてもよいし、人工知能アクセラレータ32に設けられてもよいし、その他の演算チップに設けられてもよい。なお、外部環境認識部21の他の構成(例えば前処理部40など)および演算装置20の他の構成(例えば候補経路生成部22など)についても同様のことがいえる。
また、以上の説明では、外部環境認識部21が画像処理チップ31と人工知能アクセラレータ32と制御チップ33とにより構成される場合を例に挙げたが、これに限定されない。例えば、外部環境認識部21は、2つ以下の演算チップにより構成されてもよいし、4つ以上の演算チップにより構成されてもよい。なお、外部環境認識部21の他の構成(例えば前処理部40など)および演算装置20の他の構成(例えば候補経路生成部22など)についても同様のことがいえる。
また、以上の実施形態および変形例を適宜組み合わせて実施してもよい。以上の実施形態および変形例は、本質的に好ましい例示であって、この発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
以上説明したように、ここに開示する技術は、移動体の外部環境を認識する外部環境認識装置として有用である。
10 車両制御システム(移動体制御システム)
11 カメラ(撮像部)
12 レーダ(検出部)
13 位置センサ
14 車両状態センサ
15 ドライバ状態センサ
16 運転操作センサ
17 通信部
18 コントロールユニット
19 ヒューマンマシンインターフェース
20 演算装置
21 外部環境認識部
22 候補経路生成部
23 車両挙動認識部
24 ドライバ挙動認識部
25 目標運動決定部
26 運動制御部
31 画像処理チップ
32 人工知能アクセラレータ
33 制御チップ
40 前処理部
41 認識処理部
42 統合データ生成部
43 二次元データ生成部
44 異常検出部
45 オブジェクトデータ生成部
50 車道(移動可能領域)
60 物標
61 他車両
62 標識
63 街路樹
71 歩道
72 空地
80 建物
100 車両(移動体)
101 アクチュエータ

Claims (4)

  1. 移動体の外部環境を認識する外部環境認識装置であって、
    前記移動体の外部環境を撮像する撮像部により得られた画像データに基づいて、該移動体の外部環境を認識する認識処理部と、
    前記認識処理部の認識結果と、前記移動体の外部環境を検出する検出部の検出結果とに基づいて、該認識処理部により認識された外部環境を表現するオブジェクトデータを生成するオブジェクトデータ生成部と、
    前記認識処理部により認識された外部環境と前記検出部により検出された外部環境との同一性に基づいて、前記撮像部と前記認識処理部と前記検出部とを含むデータ処理系統の異常を検出する異常検出部とを備え
    前記認識処理部により認識された外部環境および前記検出部により検出された外部環境の各々は、前記移動体が移動することができる移動可能領域を含み、
    前記同一性は、前記移動可能領域の形状および前記移動体を基準とする前記移動可能領域の位置の少なくとも1つに関する同一性を含む
    ことを特徴とする外部環境認識装置。
  2. 請求項1において、
    前記検出部は、前記移動体の外部環境へ向けて探知波を送信して該外部環境からの反射波を受信することで該移動体の外部環境を検出し、
    前記異常検出部は、前記認識処理部により認識された外部環境に含まれる物標と前記検出部により検出された外部環境に含まれる物標との同一性に基づいて、前記データ処理系統の異常を検出する
    ことを特徴とする外部環境認識装置。
  3. 請求項2において、
    前記異常検出部は、前記移動体の外部環境に含まれる物標のうち該移動体との間の距離が予め定められた距離範囲内となる物標に関する前記認識処理部の認識結果と前記検出部の検出結果との同一性に基づいて、前記データ処理系統の異常を検出する
    ことを特徴とする外部環境認識装置。
  4. 請求項1~3のいずれか1つにおいて、
    前記異常検出部は、前記認識処理部により認識された外部環境と前記検出部により検出された外部環境との同一性の破綻の継続時間に基づいて、前記データ処理系統の異常を検出する
    ことを特徴とする外部環境認識装置。
JP2019111072A 2019-06-14 2019-06-14 外部環境認識装置 Active JP7298323B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019111072A JP7298323B2 (ja) 2019-06-14 2019-06-14 外部環境認識装置
EP20821845.3A EP3985635A4 (en) 2019-06-14 2020-03-16 OUTDOOR ENVIRONMENT RECOGNITION DEVICE
US17/618,496 US20220237899A1 (en) 2019-06-14 2020-03-16 Outside environment recognition device
PCT/JP2020/011539 WO2020250528A1 (ja) 2019-06-14 2020-03-16 外部環境認識装置
CN202080043208.5A CN113994405A (zh) 2019-06-14 2020-03-16 外部环境识别装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019111072A JP7298323B2 (ja) 2019-06-14 2019-06-14 外部環境認識装置

Publications (2)

Publication Number Publication Date
JP2020204822A JP2020204822A (ja) 2020-12-24
JP7298323B2 true JP7298323B2 (ja) 2023-06-27

Family

ID=73781765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019111072A Active JP7298323B2 (ja) 2019-06-14 2019-06-14 外部環境認識装置

Country Status (5)

Country Link
US (1) US20220237899A1 (ja)
EP (1) EP3985635A4 (ja)
JP (1) JP7298323B2 (ja)
CN (1) CN113994405A (ja)
WO (1) WO2020250528A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7568536B2 (ja) 2021-02-17 2024-10-16 古河電気工業株式会社 レーダー処理装置、プログラム、レーダー処理方法及びレーダーシステム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010546A1 (ja) 2012-07-10 2014-01-16 本田技研工業株式会社 故障判定装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676195A (ja) * 1992-08-27 1994-03-18 Hitachi Ltd 異常事象検出装置
JPH09142236A (ja) * 1995-11-17 1997-06-03 Mitsubishi Electric Corp 車両の周辺監視方法と周辺監視装置及び周辺監視装置の故障判定方法と周辺監視装置の故障判定装置
DE10218924A1 (de) * 2002-04-27 2003-11-06 Bosch Gmbh Robert Verfahren und Vorrichtung zur Kursprädiktion bei Kraftfahrzeugen
US8803966B2 (en) * 2008-04-24 2014-08-12 GM Global Technology Operations LLC Clear path detection using an example-based approach
DE102009024131A1 (de) * 2009-06-05 2010-01-21 Daimler Ag Verfahren zur Ermittelung einer Fahrspur und Fahrerassistenzsystem für ein Fahrzeug mit Mitteln zur Ermittelung einer Fahrspur
US8849554B2 (en) * 2010-11-15 2014-09-30 Image Sensing Systems, Inc. Hybrid traffic system and associated method
US9472097B2 (en) * 2010-11-15 2016-10-18 Image Sensing Systems, Inc. Roadway sensing systems
US9052393B2 (en) * 2013-01-18 2015-06-09 Caterpillar Inc. Object recognition system having radar and camera input
US9279881B2 (en) * 2013-03-12 2016-03-08 Escort Inc. Radar false alert reduction
CN107226091B (zh) * 2016-03-24 2021-11-26 松下电器(美国)知识产权公司 物体检测装置、物体检测方法以及记录介质
JP6611353B2 (ja) * 2016-08-01 2019-11-27 クラリオン株式会社 画像処理装置、外界認識装置
JP6751691B2 (ja) * 2017-06-15 2020-09-09 ルネサスエレクトロニクス株式会社 異常検出装置及び車両システム
US10559140B2 (en) * 2017-06-16 2020-02-11 Uatc, Llc Systems and methods to obtain feedback in response to autonomous vehicle failure events
DE102017210151A1 (de) * 2017-06-19 2018-12-20 Zf Friedrichshafen Ag Vorrichtung und Verfahren zur Ansteuerung eines Fahrzeugmoduls in Abhängigkeit eines Zustandssignals
DE102017210156B4 (de) * 2017-06-19 2021-07-22 Zf Friedrichshafen Ag Vorrichtung und Verfahren zum Ansteuern eines Fahrzeugmoduls
JP7036633B2 (ja) * 2018-03-15 2022-03-15 株式会社デンソーテン 異常検出装置、異常検出方法および異常検出システム
US10935652B2 (en) * 2018-06-26 2021-03-02 GM Global Technology Operations LLC Systems and methods for using road understanding to constrain radar tracks
US11199413B2 (en) * 2018-07-19 2021-12-14 Qualcomm Incorporated Navigation techniques for autonomous and semi-autonomous vehicles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010546A1 (ja) 2012-07-10 2014-01-16 本田技研工業株式会社 故障判定装置

Also Published As

Publication number Publication date
WO2020250528A1 (ja) 2020-12-17
JP2020204822A (ja) 2020-12-24
EP3985635A4 (en) 2022-07-27
US20220237899A1 (en) 2022-07-28
CN113994405A (zh) 2022-01-28
EP3985635A1 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
US11657604B2 (en) Systems and methods for estimating future paths
CN113767389A (zh) 从用于自主机器应用的经变换的真实世界传感器数据模拟逼真的测试数据
US20210403037A1 (en) Arithmetic operation system for vehicles
CN112989914A (zh) 具有自适应加权输入的注视确定机器学习系统
CN113609888A (zh) 利用平面单应性和自监督的场景结构理解进行对象检测
JP7363118B2 (ja) 外部環境認識装置
JP7298323B2 (ja) 外部環境認識装置
JP7400222B2 (ja) 外部環境認識装置
JP7330911B2 (ja) 車両用制御装置
WO2020250519A1 (ja) 外部環境認識装置
US20230245468A1 (en) Image processing device, mobile object control device, image processing method, and storage medium
CN113291289B (zh) 车辆用控制系统
CN113875223B (zh) 外部环境识别装置
JP7139300B2 (ja) 認識装置、認識方法、およびプログラム
JP2021123232A (ja) 車両用制御装置
JP7554699B2 (ja) 画像処理装置および画像処理方法、車両用制御装置、プログラム
CN112581793A (zh) 操作具有立体摄像机系统和lidar传感器的机动车辆的方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R150 Certificate of patent or registration of utility model

Ref document number: 7298323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150