JP7287884B2 - Positive plate for lead-acid battery, lead-acid battery - Google Patents
Positive plate for lead-acid battery, lead-acid battery Download PDFInfo
- Publication number
- JP7287884B2 JP7287884B2 JP2019214712A JP2019214712A JP7287884B2 JP 7287884 B2 JP7287884 B2 JP 7287884B2 JP 2019214712 A JP2019214712 A JP 2019214712A JP 2019214712 A JP2019214712 A JP 2019214712A JP 7287884 B2 JP7287884 B2 JP 7287884B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- lead
- electrode plate
- acid battery
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、鉛蓄電池に関する。 The present invention relates to lead-acid batteries.
鉛蓄電池には液式のものと制御弁式のものがあり、液式鉛蓄電池は、セル室を備えた電槽と、セル室に電解液とともに収納されている極板群と、を備え、その極板群は、交互に配置された正極板および負極板と、正極板および負極板との間に配置されたセパレータと、からなる積層体を有する。 There are liquid lead-acid batteries and valve-regulated lead-acid batteries, and the flooded lead-acid batteries include a container with a cell chamber and a group of electrode plates housed in the cell chamber together with an electrolyte. The electrode plate group has a laminate composed of positive plates and negative plates alternately arranged, and separators arranged between the positive plates and the negative plates.
近年、国内で新規に販売される自動車の多くは、従来のエンジン車からISS(Idling Stop and Start)車に代わりつつあり、今後、これら車両の制御に対応するISS用鉛蓄電池のニーズはより一層高まっていくものと予測される。
ISS車用の鉛蓄電池は、通常の鉛蓄電池と比べて大きな負荷がかかるため、高い寿命性能が求められており、これらの特性の改善に向けて様々な検討が行われている。
鉛蓄電池の寿命性能は主に正極の性能に依存するため、高い寿命性能を得る方法としては、これまでにも、正極活物質密度の最適化や、高温環境下でのペースト作製あるいは熟成により四塩基性硫酸鉛を生成させる方法が提案されている。
In recent years, many of the new vehicles sold in Japan are replacing conventional engine-powered vehicles with ISS (idling stop and start) vehicles, and the need for ISS lead-acid batteries capable of controlling these vehicles will continue to increase in the future. expected to rise.
Since lead-acid batteries for ISS vehicles are subjected to a larger load than ordinary lead-acid batteries, they are required to have high life performance, and various studies are being conducted to improve these characteristics.
Since the life performance of a lead-acid battery mainly depends on the performance of the positive electrode, there have been four methods for obtaining high life performance, such as optimizing the density of the positive electrode active material, preparing a paste in a high-temperature environment, or aging it. Methods have been proposed to produce basic lead sulfate.
例えば、特許文献1には、鉛蓄電池用の正極活性組成物の製造のための添加剤として、3μm未満の平均粒径を有する微粉化した四塩基性硫酸鉛と、微粉シリカをベースとし、平均粒径が1.5μm未満の鉛丹を含むものが開示されている。そして、特許文献1には、この添加剤を含むことで、アンチモンを含まない合金からなる格子状基板を用いた場合でも、安定した容量が得られ、寿命の向上が期待できると記載されている。
また、特許文献2には、正極活物質の原料として、鉛粉と鉛丹化率が20~80重量%の鉛丹との混合物を用いることで記載されている。
さらに、特許文献3には、正極板および負極板内に含浸された電解液に、平均粒子径0.01~0.1μmのシリカを1.0質量%以下の割合で含有させることが記載されている。
For example, in US Pat. No. 5,300,000, as additives for the production of positive electrode active compositions for lead-acid batteries, micronized tetrabasic lead sulfate having an average particle size of less than 3 μm and micronized silica are used as a base, with an average Disclosed is one containing red lead with a particle size of less than 1.5 μm. Patent Document 1 describes that by including this additive, stable capacity can be obtained and improvement in life can be expected even when a grid substrate made of an alloy that does not contain antimony is used. .
Further, Patent Document 2 describes that a mixture of lead powder and red lead having a red lead conversion rate of 20 to 80% by weight is used as a raw material for a positive electrode active material.
Furthermore, Patent Document 3 describes that the electrolytic solution impregnated in the positive electrode plate and the negative electrode plate contains silica having an average particle size of 0.01 to 0.1 μm at a rate of 1.0% by mass or less. ing.
しかしながら、特許文献1~3に記載された方法では、正極合剤に鉛丹やシリカを含む状態となるため、良好な放電容量を保持しながら寿命性能が高い鉛蓄電池を得ることができない。
本発明の課題は、良好な放電容量を保持しながら寿命性能が高い鉛蓄電池を得ることである。
However, in the methods described in Patent Documents 1 to 3, the positive electrode mixture contains red lead and silica, so it is not possible to obtain a lead-acid battery with high life performance while maintaining good discharge capacity.
An object of the present invention is to obtain a lead-acid battery with high life performance while maintaining good discharge capacity.
上記課題を解決するために、本発明の第一態様は、下記の構成(a)~(c)を有することを特徴とする鉛蓄電池用正極板を提供する。
(a)セル室と、セル室に電解液と共に収納された極板群と、を備え、極板群は、交互に配置された負極板および正極板と、負極板と正極板との間に配置されたセパレータと、からなる積層体を有する鉛蓄電池の正極板である。
(b)鉛合金からなる集電体と、前記集電体の格子状基板に保持された正極合剤とからなり、下記の構成(c)を満たす。
(c)正極合剤のメジアン細孔径が0.61μm以上0.70μm以下であり、正極合剤の密度が3.70g/cm3以上3.89g/cm3以下であり、正極合剤を構成する正極活物質に含まれるβ-PbO2の質量に対するα-PbO2の質量の比(α/β)が0.12以下である。
In order to solve the above problems, a first aspect of the present invention provides a positive electrode plate for a lead-acid battery, characterized by having the following configurations (a) to (c).
(a) A cell chamber and an electrode plate group housed in the cell chamber together with an electrolyte, the electrode plate group being arranged between the negative electrode plate and the positive electrode plate alternately arranged between the negative electrode plate and the positive electrode plate. A positive electrode plate of a lead-acid battery having a laminate comprising a separator disposed thereon.
(b) A current collector made of a lead alloy and a positive electrode material mixture held on a grid-like substrate of the current collector, satisfying the following configuration (c).
(c) The positive electrode mixture has a median pore diameter of 0.61 μm or more and 0.70 μm or less, and a density of the positive electrode mixture is 3.70 g/cm 3 or more and 3.89 g/cm 3 or less, and constitutes the positive electrode mixture. The ratio (α/β) of the mass of α-PbO 2 to the mass of β-PbO 2 contained in the positive electrode active material is 0.12 or less.
本発明の第二態様は、下記の構成(d)(e)を有することを特徴とする鉛蓄電池を提供する。
(d)セル室と、セル室に電解液と共に収納された極板群と、を備え、極板群は、交互に配置された負極板および正極板と、負極板と正極板との間に配置されたセパレータと、からなる積層体を有する鉛蓄電池である。
(e)正極板は、鉛合金からなる集電体と、集電体の格子状基板に保持された正極合剤とからなり、上記構成(c)を満たす。
A second aspect of the present invention provides a lead-acid battery characterized by having the following configurations (d) and (e).
(d) a cell chamber and an electrode plate group housed in the cell chamber together with an electrolyte, the electrode plate group being between the negative electrode plate and the positive electrode plate alternately arranged and the negative electrode plate and the positive electrode plate; and a separator disposed thereon.
(e) The positive electrode plate is composed of a current collector made of a lead alloy and a positive electrode mixture held on a grid-like substrate of the current collector, and satisfies the above configuration (c).
本発明の鉛蓄電池用正極板を備えた鉛蓄電池によれば、良好な放電容量を保持しながら寿命性能が高くなることが期待できる。 According to the lead-acid battery provided with the positive electrode plate for lead-acid battery of the present invention, it can be expected that the life performance is improved while maintaining a good discharge capacity.
以下、本発明の実施形態について説明するが、本発明は以下に示す実施形態に限定されない。以下に示す実施形態では、本発明を実施するために技術的に好ましい限定がなされているが、この限定は本発明の必須要件ではない。 Embodiments of the present invention will be described below, but the present invention is not limited to the embodiments shown below. In the embodiments shown below, technically preferred limitations are made for implementing the present invention, but the limitations are not essential to the present invention.
[構成]
この実施形態の鉛蓄電池は、モノブロックタイプの電槽と、蓋と、六個の極板群とを有する。電槽は、隔壁により六個のセル室に区画されている。六個のセル室は電槽の長手方向に沿って配列されている。各セル室に一個の極板群が配置されている。各セル室に電解液が注入されている。
各極板群は、交互に配置された複数枚の正極板および負極板と、正極板と負極板との間に配置されたセパレータと、からなる積層体を有する。
[composition]
The lead-acid battery of this embodiment has a monoblock type container, a lid, and a group of six electrode plates. The container is partitioned into six cell chambers by partition walls. Six cell chambers are arranged along the longitudinal direction of the container. One electrode plate group is arranged in each cell chamber. An electrolyte is injected into each cell chamber.
Each electrode plate group has a laminate including a plurality of positive electrode plates and negative electrode plates alternately arranged, and a separator disposed between the positive electrode plates and the negative electrode plates.
正極板は、格子状基板と格子状基板から上側に突出する耳部とを有する鉛合金からなる集電体の格子状基板に、正極合剤(正極活物質を含む合剤)が保持されたものである。負極板は、格子状基板と格子状基板から上側に突出する耳部とを有する鉛合金からなる集電体の格子状基板に、負極合剤(負極活物質を含む合剤)が保持されたものである。複数枚の正極板および負極板は、セパレータを介して交互に配置されている。積層体を構成する負極板の枚数は正極板の枚数よりも一枚多くても良いし、同じでも良い。
正極合剤のメジアン細孔径が0.61μm以上0.70μm以下であり、正極合剤の密度が3.70g/cm3以上3.89g/cm3以下であり、正極合剤を構成する正極活物質に含まれるβ-PbO2の質量に対するα-PbO2の質量の比(α/β)が0.12以下である。
The positive electrode plate is formed by holding a positive electrode mixture (a mixture containing a positive electrode active material) on a grid-like substrate of a current collector made of a lead alloy having a grid-like substrate and ears protruding upward from the grid-like substrate. It is. The negative electrode plate is formed by holding a negative electrode mixture (a mixture containing a negative electrode active material) on a grid-like substrate of a current collector made of a lead alloy having a grid-like substrate and ears protruding upward from the grid-like substrate. It is. The plurality of positive electrode plates and negative electrode plates are alternately arranged with separators interposed therebetween. The number of negative electrode plates constituting the laminate may be one more than the number of positive electrode plates, or may be the same.
The positive electrode mixture has a median pore diameter of 0.61 μm or more and 0.70 μm or less, and a density of the positive electrode mixture is 3.70 g/cm 3 or more and 3.89 g/cm 3 or less. The ratio (α/β) of the mass of α-PbO 2 to the mass of β-PbO 2 contained in the substance is 0.12 or less.
負極合剤は、従来品と同様の構成である。具体的には、負極活物質である鉛と、補強繊維などを含む。
負極板は袋状セパレータ内に収納されている。そして、負極板が入った袋状セパレータと正極板とを交互に重ねることで、正極板と負極板との間にセパレータが配置された状態となっている。なお、正極板を袋状セパレータ内に収納して、負極板と交互に重ねてもよい。
The negative electrode mixture has the same structure as the conventional product. Specifically, it contains lead, which is a negative electrode active material, and reinforcing fibers.
The negative electrode plate is housed in a bag-shaped separator. By alternately stacking the bag-like separators containing the negative electrode plates and the positive electrode plates, the separators are arranged between the positive electrode plates and the negative electrode plates. In addition, the positive electrode plate may be accommodated in the bag-like separator and alternately stacked with the negative electrode plate.
また、各極板群は、積層体の正極板および負極板をそれぞれ幅方向の別の位置で連結する正極ストラップおよび負極ストラップと、正極ストラップおよび負極ストラップからそれぞれ立ち上がる正極中間極柱および負極中間極柱を有する。正極ストラップおよび負極ストラップは、正極板および負極板の耳部をそれぞれ連結している。セル配列方向の両端のセル室に配置された正極ストラップおよび負極ストラップには、それぞれ小片部を介して外部端子となる正極極柱および負極極柱が形成されている。 Each electrode plate group includes a positive electrode strap and a negative electrode strap that connect the positive electrode plate and the negative electrode plate of the laminate at different positions in the width direction, respectively, and a positive electrode intermediate column and a negative electrode intermediate electrode that stand up from the positive electrode strap and the negative electrode strap, respectively. have pillars. A positive strap and a negative strap connect the ears of the positive plate and the negative plate, respectively. The positive electrode strap and the negative electrode strap arranged in the cell chambers at both ends in the cell arrangement direction are formed with a positive electrode pole and a negative electrode pole, respectively, which serve as external terminals via small pieces.
[製法]
実施形態の鉛蓄電池は、例えば以下の方法で製造することができる。正極板の製造方法以外は、従来公知の方法が採用できる。
先ず、化成前の正極板を作製する際に用いる混練物として、鉛粉、平均粒径5μm以下の四塩基性硫酸鉛、硫酸、酸化ビスマス、および水を含む混練物を作製する。酸化ビスマスの添加量は、鉛粉100質量部に対して0.03質量部以上0.10質量部以下の割合とする。
[Manufacturing method]
The lead-acid battery of the embodiment can be manufactured, for example, by the following method. Conventionally known methods can be employed except for the method of manufacturing the positive electrode plate.
First, a kneaded material containing lead powder, tetrabasic lead sulfate having an average particle size of 5 μm or less, sulfuric acid, bismuth oxide, and water is prepared as a kneaded material used when producing a positive electrode plate before chemical conversion. The amount of bismuth oxide to be added is 0.03 parts by mass or more and 0.10 parts by mass or less with respect to 100 parts by mass of lead powder.
次に、作製された混練物を集電体の格子状基板に充填した後に温度70℃以上90℃以下、湿度90%以上98%以下で熟成した後、乾燥する。これにより、化成前の正極合剤中の四塩基性硫酸鉛の含有率を70%以上75%以下とする。なお、化成前の正極合剤中の四塩基性硫酸鉛の含有率が70%以上75%以下となるように、温度70℃以上90℃以下の範囲内で選択される熟成温度に応じて、混練物を作製する際の硫酸および四塩基性硫酸鉛の添加量を調整する。
以上が、化成前の正極板を得る工程である。
Next, after the produced kneaded material is filled into a grid-like substrate of a current collector, it is aged at a temperature of 70° C. or higher and 90° C. or lower and a humidity of 90% or higher and 98% or lower, and then dried. As a result, the content of tetrabasic lead sulfate in the positive electrode mixture before chemical conversion is set to 70% or more and 75% or less. In addition, depending on the aging temperature selected within the range of 70° C. or higher and 90° C. or lower so that the content of tetrabasic lead sulfate in the positive electrode mixture before chemical conversion is 70% or higher and 75% or lower, The amount of sulfuric acid and tetrabasic lead sulfate to be added when preparing the kneaded product is adjusted.
The above is the process for obtaining the positive electrode plate before anodization.
次に、得られた化成前の正極板と、通常の方法で作製された化成前の負極板と、セパレータと、を用いて、化成前の積層体を作製する。
次に、化成前の積層体をCOS(キャストオンストラップ)方式の鋳造装置を用い、正極板の耳部同士を接続した正極ストラップおよび負極板の耳部同士を接続した負極ストラップを形成するとともに、正極中間極柱、負極中間極柱、正極極柱および負極極柱を形成する。それらを形成した後、前記積層体を電槽の各セル室に配置する。
Next, using the obtained positive electrode plate before chemical conversion, the negative electrode plate before chemical conversion produced by a normal method, and the separator, a laminate before chemical conversion is produced.
Next, using a COS (cast-on-strap) type casting apparatus, the laminate before chemical conversion is formed into a positive electrode strap in which the tabs of the positive plates are connected and a negative strap in which the tabs of the negative plates are connected, A positive electrode middle pole, a negative electrode middle pole, a positive electrode pole and a negative electrode pole are formed. After forming them, the laminate is placed in each cell chamber of the battery case.
次に、隣接するセル室の正極中間極柱同士または負極中間極柱同士を抵抗溶接することで、隣接するセル間を電気的に直列に接続する。次に、電槽の上面と蓋の下面とを熱で溶かして蓋を電槽に載せ、熱溶着により電槽に蓋を固定する。なお、蓋を電槽に載せる際に、正極極柱および負極極柱を蓋にインサート成型されたブッシングの貫通穴に通す。その後、ブッシングの貫通孔からそれぞれ突出した状態の正極極柱および負極極柱をバーナー等で加熱しブッシングと一体化させることで、正極端子および負極端子を形成する。 Next, the adjacent cells are electrically connected in series by resistance welding the positive intermediate poles or the negative intermediate poles of the adjacent cell chambers. Next, the upper surface of the container and the lower surface of the lid are melted by heat, the lid is placed on the container, and the lid is fixed to the container by thermal welding. When the lid is placed on the container, the positive pole and the negative pole are passed through the through hole of the bushing insert-molded in the lid. After that, the positive pole and the negative pole protruding from the through-hole of the bushing are heated with a burner or the like to be integrated with the bushing, thereby forming the positive terminal and the negative terminal.
その後、蓋を貫通する穴として設けた注液孔からセル室内に、アルミ二ウムイオンを20mmol/L以上200mmol/L以下の濃度で含有する電解液(硫酸に硫酸アルミニウムが添加された電解液)を注入した後、注液孔を塞ぐことなどの通常の工程を行うことにより、鉛蓄電池の組み立てを完成させる。その後、通常の条件で電槽化成を行うことで鉛蓄電池が得られる。
この電槽化成により、集電体に保持された状態の鉛粉が正極活物質に変化し、正極合剤のメジアン細孔径が0.61μm以上0.70μm以下であり、正極合剤の密度が3.70g/cm3以上3.89g/cm3以下であり、正極合剤を構成する正極活物質に含まれるβ-PbO2の質量に対するα-PbO2の質量の比(α/β)が0.12以下となる。
After that, an electrolytic solution containing aluminum ions at a concentration of 20 mmol/L or more and 200 mmol/L or less (an electrolytic solution in which aluminum sulfate is added to sulfuric acid) is poured into the cell chamber through an injection hole provided as a hole penetrating the lid. After the injection, the assembly of the lead-acid battery is completed by carrying out normal processes such as plugging the injection hole. After that, a lead-acid battery is obtained by forming a container under normal conditions.
By this container formation, the lead powder held in the current collector is changed into a positive electrode active material, the median pore diameter of the positive electrode mixture is 0.61 μm or more and 0.70 μm or less, and the density of the positive electrode mixture is 3.70 g/cm 3 or more and 3.89 g/cm 3 or less, and the ratio (α/β) of the mass of α-PbO 2 to the mass of β-PbO 2 contained in the positive electrode active material constituting the positive electrode mixture is 0.12 or less.
[作用、効果]
正極合剤のメジアン細孔径が大きく、密度が高いほど、正極活物質同士あるいは正極活物質と格子状基板との密着性が向上するため、正極板の耐久性は向上するが、活物質の利用効率は低下する。正極合剤のメジアン細孔径が小さく、密度が低いほど、活物質の利用効率は向上するが、正極活物質同士あるいは正極活物質と格子状基板との密着性が低下するため、正極板の耐久性は低下する。
また、電気化学的に不活性なα-PbO2が多いほど、耐久性(寿命性能)の点で有利になるが、活物質の利用効率の点では不利になる。電気化学的に活性なβ-PbO2が多いほど、活物質の利用効率(放電容量)の点で有利になるが、耐久性(寿命性能)の点では不利になる。
[action, effect]
The larger the median pore diameter and the higher the density of the positive electrode mixture, the better the adhesion between the positive electrode active materials or between the positive electrode active material and the lattice substrate. Efficiency decreases. The smaller the median pore diameter and the lower the density of the positive electrode mixture, the more efficiently the active material is used. sexuality declines.
Also, the more electrochemically inactive α-PbO 2 is, the more advantageous it is in terms of durability (lifetime performance), but it is disadvantageous in terms of utilization efficiency of the active material. A larger amount of electrochemically active β-PbO 2 is advantageous in terms of utilization efficiency (discharge capacity) of the active material, but disadvantageous in terms of durability (lifetime performance).
本実施形態の鉛蓄電池を構成する正極板は、正極合剤のメジアン細孔径が0.61μm以上0.70μm以下であり、正極合剤の密度が3.70g/cm3以上3.89g/cm3以下であり、正極合剤を構成する正極活物質に含まれるβ-PbO2の質量に対するα-PbO2の質量の比(α/β)が0.12以下である。これにより、本実施形態の鉛蓄電池は、良好な放電容量を保持しながら寿命性能が高くなる。
また、本実施形態の方法では、化成前の正極合剤を得る工程として、鉛粉、平均粒径5μm以下の四塩基性硫酸鉛、硫酸、および水を含む混練物を、格子状基板に充填した後、格子状基板に充填された混練物を温度70℃以上90℃以下で熟成した後乾燥することにより、化成前の正極合剤中の四塩基性硫酸鉛の含有率を70%以上75%以下とする工程を行った後に、化成を行う。これにより、本実施形態の正極板を得ることができる。
In the positive electrode plate constituting the lead-acid battery of the present embodiment, the positive electrode mixture has a median pore diameter of 0.61 μm or more and 0.70 μm or less, and the density of the positive electrode mixture is 3.70 g/cm 3 or more and 3.89 g/cm. 3 or less, and the ratio (α/β) of the mass of α-PbO 2 to the mass of β-PbO 2 contained in the positive electrode active material constituting the positive electrode mixture is 0.12 or less. As a result, the lead-acid battery of the present embodiment has a high life performance while maintaining a good discharge capacity.
Further, in the method of the present embodiment, as the step of obtaining the positive electrode mixture before chemical conversion, a kneaded product containing lead powder, tetrabasic lead sulfate having an average particle size of 5 μm or less, sulfuric acid, and water is filled into the lattice substrate. After that, the kneaded material filled in the lattice-like substrate is aged at a temperature of 70° C. or more and 90° C. or less and then dried, so that the content of tetrabasic lead sulfate in the positive electrode mixture before chemical conversion is reduced to 70% or more and 75%. % or less, chemical conversion is performed. Thereby, the positive electrode plate of this embodiment can be obtained.
本実施形態の方法では、平均粒径5μm以下の微粉な四塩基性硫酸鉛を用いることで、70℃以上の高い温度環境下で熟成を行っても、粗大な四塩基性硫酸鉛の柱状結晶が生成しない。また、熟成後の四塩基性硫酸鉛量を70%以上75%以下に制御することで、化成後の正極板の正極活物質において、反応比表面積の低下による放電容量の減少を引き起こすことなく、鉛蓄電池の寿命性能を向上させることができる。
さらに、正極合剤の比表面積が大きいほど活物質と電解液間の接触面積が多くなるため活物質の利用率は高くなる傾向を示す。しかし、比表面積が大きすぎると耐久性が低いものとなる。活物質の利用率が高いことと耐久性が高いことの両立のためには、正極合剤の比表面積を5.5~6.0m2/gの範囲にすることが好ましい。
In the method of the present embodiment, by using fine powder of tetrabasic lead sulfate having an average particle size of 5 μm or less, coarse columnar crystals of tetrabasic lead sulfate can be obtained even when aging is performed in a high temperature environment of 70° C. or higher. does not generate In addition, by controlling the amount of tetrabasic lead sulfate after aging to 70% or more and 75% or less, the positive electrode active material of the positive electrode plate after chemical conversion does not cause a decrease in discharge capacity due to a decrease in reaction specific surface area. Life performance of the lead-acid battery can be improved.
Furthermore, the greater the specific surface area of the positive electrode mixture, the greater the contact area between the active material and the electrolytic solution, so the utilization rate of the active material tends to increase. However, if the specific surface area is too large, the durability will be low. In order to achieve both high utilization of the active material and high durability, the specific surface area of the positive electrode mixture is preferably in the range of 5.5 to 6.0 m 2 /g.
[試験電池の作製]
実施形態の鉛蓄電池と同じ構造の鉛蓄電池として、サンプルNo.1~No.9の鉛蓄電池を、実施形態に記載された従来公知の方法で作製した。具体的には、定格容量が32AhのBサイズの鉛蓄電池であって、動作電圧が12Vの鉛蓄電池を作製した。
[Preparation of test battery]
As lead-acid batteries having the same structure as the lead-acid batteries of the embodiment, sample No. 1 to No. 9 lead-acid batteries were produced by the conventionally known method described in the embodiment. Specifically, a B-size lead-acid battery with a rated capacity of 32 Ah and an operating voltage of 12 V was produced.
[正極板(化成前)の作製]
<No.1>
先ず、蓄電池用の鉛粉(粒径が数μm~30数μmである鉛と酸化鉛との混合粉末で、質量比での混合比が鉛:酸化鉛=約25:75)2000gに、水370g、比重1.37の硫酸172g、酸化ビスマス1g、平均粒径5μm以下の四塩基性硫酸鉛(4BS)を20g加えて混練することで、正極合剤形成用ペースト(混練物)を得た。
次に、このペーストを、Pb-Sn系の鉛合金から成る鉛合金から成るBサイズ電池用集電体の格子状基板に充填したものを、温度70℃且つ湿度95%以上の環境下に48時間放置することで熟成し、その後60℃で24時間乾燥を行った。これにより、化成前の正極板を得た。
得られた化成前の正極板が有する正極合剤(以下、「正極未化成物質」と称する)に含まれる四塩基性硫酸鉛の含有率を、粉末X線回折測定により調べた。具体的には、得られた化成前の正極板から正極未化成物質を粉末状に掻き落とし、掻き落とされた正極未化成物質の粉末をX線回折装置にセットして、X線回折チャートを得、各物質の回折線の強度比から正極未化成物質中の四塩基性硫酸鉛の含有率を算出した。その結果、70.4%であった。
[Preparation of positive electrode plate (before chemical conversion)]
<No.1>
First, 2000 g of lead powder for a storage battery (mixed powder of lead and lead oxide with a particle size of several μm to 30 and several μm, the mixing ratio of lead:lead oxide=approximately 25:75 in terms of mass ratio) was added with water. 370 g, 172 g of sulfuric acid having a specific gravity of 1.37, 1 g of bismuth oxide, and 20 g of tetrabasic lead sulfate (4BS) having an average particle size of 5 μm or less were added and kneaded to obtain a positive electrode mixture forming paste (kneaded product). .
Next, this paste was filled in a grid-like substrate of a B-size battery current collector made of a lead alloy made of a Pb—Sn lead alloy, and placed in an environment at a temperature of 70° C. and a humidity of 95% or more for 48 hours. It was aged by leaving it for hours, and then dried at 60° C. for 24 hours. Thus, a positive electrode plate before anodization was obtained.
The content of tetrabasic lead sulfate contained in the positive electrode mixture (hereinafter referred to as "unformed positive electrode material") of the obtained positive electrode plate before chemical formation was examined by powder X-ray diffraction measurement. Specifically, the positive electrode unformed substance was scraped into powder form from the obtained positive electrode plate before chemical formation, and the scraped-off positive electrode unformed substance powder was set in an X-ray diffractometer to obtain an X-ray diffraction chart. Then, the content of tetrabasic lead sulfate in the unformed positive electrode material was calculated from the intensity ratio of the diffraction lines of each material. As a result, it was 70.4%.
<No.2>
正極合剤形成用ペーストを得る際の水の添加量を380gとした以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、70.6%であった。
<No.3>
平均粒径5μm以下の四塩基性硫酸鉛(4BS)の添加量を10gとした以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、66.8%であった。
<No.2>
A positive electrode plate before formation was obtained in the same manner as in No. 1, except that the amount of water added in obtaining the positive electrode mixture forming paste was 380 g. The content of tetrabasic lead sulfate contained in the positive electrode mixture of the obtained positive electrode plate before chemical conversion was examined by the same method as in No. 1 and found to be 70.6%.
<No.3>
A positive electrode plate before chemical conversion was obtained in the same manner as in No. 1, except that 10 g of tetrabasic lead sulfate (4BS) having an average particle size of 5 μm or less was added. The content of tetrabasic lead sulfate contained in the positive electrode mixture of the obtained positive electrode plate before chemical conversion was examined by the same method as in No. 1 and found to be 66.8%.
<No.4>
熟成の際の温度を80℃とした以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、75.0%であった。
<No.5>
正極合剤形成用ペーストを得る際の水の添加量を380gとし、熟成の際の温度を90℃とした以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、72.5%であった。
<No.4>
A positive electrode plate before anodization was obtained in the same manner as in No. 1, except that the aging temperature was 80°C. The content of tetrabasic lead sulfate contained in the positive electrode mixture of the obtained positive electrode plate before chemical conversion was examined by the same method as in No. 1 and found to be 75.0%.
<No.5>
A positive electrode plate before formation was obtained in the same manner as in No. 1, except that the amount of water added in obtaining the positive electrode mixture forming paste was 380 g and the temperature during aging was 90°C. The content of tetrabasic lead sulfate contained in the positive electrode mixture of the obtained positive electrode plate before chemical conversion was examined by the same method as in No. 1 and found to be 72.5%.
<No.6>
正極合剤形成用ペーストを得る際の水の添加量を380gとし、熟成の際の温度を95℃とした以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、72.2%であった。
<No.7>
熟成の際の温度を60℃とした以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、67.0%であった。
<No.6>
A positive electrode plate before formation was obtained in the same manner as in No. 1, except that the amount of water added when obtaining the positive electrode mixture forming paste was 380 g and the temperature during aging was 95°C. The content of tetrabasic lead sulfate contained in the positive electrode mixture contained in the obtained positive electrode plate before chemical conversion was examined by the same method as in No. 1 and found to be 72.2%.
<No.7>
A positive electrode plate before anodization was obtained in the same manner as in No. 1, except that the aging temperature was 60°C. The content of tetrabasic lead sulfate contained in the positive electrode mixture of the obtained positive electrode plate before chemical conversion was examined by the same method as in No. 1 and found to be 67.0%.
<No.8>
熟成の際の温度を65℃とした以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、68.6%であった。
<No.9>
正極合剤形成用ペーストを得る際の水の添加量を450gとし、正極合剤形成用ペーストを得る際に平均粒径5μm以下の四塩基性硫酸鉛(4BS)を加えなかった以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、3%未満と測定誤差の範囲内であったため、四塩基性硫酸鉛が実質的に存在しないことを確認できた。
<No.8>
A positive electrode plate before anodization was obtained in the same manner as in No. 1, except that the aging temperature was 65°C. The content of tetrabasic lead sulfate contained in the positive electrode mixture contained in the obtained positive electrode plate before chemical conversion was examined by the same method as in No. 1 and found to be 68.6%.
<No.9>
Except that the amount of water added when obtaining the positive electrode mixture-forming paste was 450 g, and tetrabasic lead sulfate (4BS) having an average particle size of 5 μm or less was not added when obtaining the positive electrode mixture-forming paste, No A positive electrode plate before formation was obtained in the same manner as in .1. When the content of tetrabasic lead sulfate contained in the positive electrode mixture of the obtained positive electrode plate before chemical conversion was examined by the same method as in No. 1, it was less than 3%, which was within the range of measurement error. It was confirmed that tetrabasic lead sulfate was substantially absent.
[負極板(化成前)の作製]
正極合剤形成用ペーストの作製で使用したものと同じ蓄電池用の鉛粉2000gに、水400g、ポリエステル繊維(補強用繊維)1.8g、硫酸バリウム20g、導電性カーボン4g、リグニン4gを、それぞれ添加して混合した。このようにして得られた混合物に、20℃での比重Dが1.37である硫酸水溶液を228g加えて混練することで、負極合剤形成用ペースト(混練物)を得た。
このペーストを、Pb-Ca系の鉛合金から成るBサイズ電池用集電体の格子状基板に充填した後、通常の条件による熟成乾燥工程を行い、化成前の負極板を得た。
[Preparation of negative electrode plate (before chemical conversion)]
400 g of water, 1.8 g of polyester fiber (reinforcing fiber), 20 g of barium sulfate, 4 g of conductive carbon, and 4 g of lignin were added to 2000 g of the same lead powder for a storage battery that was used in the preparation of the positive electrode mixture forming paste. Add and mix. To the mixture thus obtained, 228 g of an aqueous sulfuric acid solution having a specific gravity D at 20° C. of 1.37 was added and kneaded to obtain a negative electrode mixture forming paste (kneaded product).
This paste was applied to a grid-like substrate of a current collector for a B-size battery made of a Pb--Ca lead alloy, and then subjected to a maturing drying process under normal conditions to obtain a negative electrode plate before anodization.
[鉛蓄電池の組み立て]
先ず、No.1~No.9の各鉛蓄電池用の極板群を作製するために、上述方法で作製したNo.1~No.9の化成前の正極板を各36枚と、上述方法で作製した化成前の負極板を378(9×42)枚と、化成前の負極板と同じ数の袋状セパレータを用意した。
次に、化成前の負極板を袋状セパレータ内に収納し、この化成前の負極板入りセパレータ7枚と化成前の正極板6枚を交互に積層することで、化成前の正極板を6枚、化成前の負極板を7枚有する積層体を、サンプルNo.1~9で六個ずつ得た。
[Assembly of lead-acid battery]
First, in order to produce electrode plate groups for lead-acid batteries No. 1 to No. 9, each of 36 positive electrode plates before chemical conversion of No. 1 to No. 9 produced by the above method and the above method. 378 (9×42) sheets of the negative electrode plate before chemical conversion and the same number of bag-shaped separators as the negative electrode plate before chemical conversion were prepared.
Next, the negative electrode plate before chemical conversion is housed in a bag-shaped separator, and the seven separators containing the negative electrode plate before chemical conversion and the six positive electrode plates before chemical conversion are alternately laminated to obtain six positive electrode plates before chemical conversion. Samples Nos. 1 to 9 each had 6 laminates each having 7 negative electrode plates before anodization.
次に、サンプルNo.毎に、得られた六個の積層体をCOS(キャストオンストラップ)方式の鋳造装置を用い、キャビティ内に溶融金属(鉛合金)を供給するとともに、耳部を下側に向けた状態で積層体の耳部を挿入することで、先ず、各耳部同士を接続する正極ストラップおよび負極ストラップを形成した。続いて、配列方向両端のセル室に配置された負極ストラップおよび正極ストラップには小片と極柱を形成し、それ以外の各正極ストラップおよび負極ストラップには、それぞれ正極中間極柱および負極中間極柱を形成した。次に、それらを、「SBA(電池工業会規格) S 0101」の外形区分Mのポリプロピレン製のモノブロックタイプの電槽の六個のセル室に、それぞれ配置した。 Next, six laminates obtained for each sample No. were placed in a COS (cast-on-strap) type casting apparatus, and molten metal (lead alloy) was supplied into the cavity, and the ears were placed downward. First, a positive electrode strap and a negative electrode strap that connect the respective ears were formed by inserting the ears of the laminate in a state of facing toward each other. Subsequently, a small piece and a pole column are formed on the negative electrode straps and the positive electrode straps arranged in the cell chambers at both ends in the arrangement direction, and the positive intermediate electrode column and the negative electrode intermediate column are formed on the other positive electrode straps and negative electrode straps, respectively. formed. Next, they were placed in six cell chambers of a polypropylene monoblock type battery case of "SBA (Battery Manufacturers Association Standard) S 0101" external shape section M.
次に、電槽のセル室同士を仕切る隔壁を挟んで対向する正極中間極柱および負極中間極柱を、隔壁に設けた貫通孔の部分で抵抗溶接することにより接続した。この状態では、電槽の各セル内に化成前の極板群が配置されている。
この状態の電槽と蓋を、実施形態に記載された方法で熱溶着することで、No.1~No.9の化成前の鉛蓄電池を得た。
次に、硫酸アルミニウムが20g/L添加された希硫酸電解液(アルミニウムイオン濃度は117mmol/L)を、No.1~No.9の化成前の鉛蓄電池の蓋の注液孔から、電槽の各セル室内へ注入した。その後、通常の条件で電槽化成を行って、No.1~No.9の鉛蓄電池を得た。
Next, the positive electrode intermediate electrode column and the negative electrode intermediate electrode column facing each other across the partition wall that partitions the cell chambers of the battery case were connected by resistance welding at the portion of the through hole provided in the partition wall. In this state, the electrode plate group before formation is arranged in each cell of the container.
By heat-sealing the container and the lid in this state by the method described in the embodiment, No. 1 to No. 9 lead-acid batteries before chemical conversion were obtained.
Next, a dilute sulfuric acid electrolyte solution (aluminum ion concentration is 117 mmol/L) to which 20 g/L of aluminum sulfate has been added is poured from the injection hole of the lid of the lead-acid battery before chemical conversion of No. 1 to No. 9 into the container. was injected into each cell chamber. Thereafter, container formation was performed under normal conditions to obtain No. 1 to No. 9 lead-acid batteries.
[メジアン細孔径、密度、及び比(α/β)の測定]
No.1~No.9の鉛蓄電池の正極板について、以下の方法で正極合剤のメジアン細孔径、密度、及び比(α/β)を測定した。
電槽化成後の各鉛蓄電池から正極板を取り出して、水で洗って乾燥させた後、正極板から固形状の正極合剤を採取した。得られた固形状の正極合剤を水銀圧入式ポロシメーター(島津製作所、オートポアIV9520)にセットして、正極合剤のメジアン細孔径および密度を水銀圧入法により測定した。
また、得られた固形状の正極合剤を乳鉢等により粉砕し、得られた粉末をX線回折装置(Rigaku、RINT-Ultima+)にセットして、X線回折チャートを得、β-PbO2の回折線とα-PbO2の回折線との強度比から、比(α/β)を算出した。
[Measurement of Median Pore Size, Density, and Ratio (α/β)]
The median pore size, density, and ratio (α/β) of the positive electrode mixture were measured for the positive electrode plates of No. 1 to No. 9 lead-acid batteries by the following methods.
A positive electrode plate was taken out from each lead-acid battery after container formation, washed with water and dried, and then a solid positive electrode mixture was collected from the positive electrode plate. The obtained solid positive electrode mixture was set in a mercury intrusion porosimeter (Shimadzu Corporation, Autopore IV9520), and the median pore diameter and density of the positive electrode mixture were measured by the mercury intrusion method.
In addition, the obtained solid positive electrode mixture was pulverized with a mortar or the like, and the obtained powder was set in an X-ray diffraction apparatus (Rigaku, RINT-Ultima+) to obtain an X-ray diffraction chart and obtain β-PbO 2 . A ratio (α/β) was calculated from the intensity ratio of the diffraction line of β and α-PbO 2 .
[放電容量を調べる試験:放電試験]
No.1~No.9の鉛蓄電池の正極板の活物質利用率を、以下の方法で調べた。
JIS D 5301に則り、各鉛蓄電池を25℃の水槽内に設置し、5時間率電流で、終止電圧が10.5Vに到達するまで定電流放電した。この10.5Vに到達した時の放電容量を各鉛蓄電池の理論容量で除算し、得られた値を各鉛蓄電池の放電容量とした。
[Test to check discharge capacity: Discharge test]
The active material utilization rate of the positive plate of the lead-acid batteries No. 1 to No. 9 was examined by the following method.
According to JIS D 5301, each lead-acid battery was placed in a water tank at 25° C. and discharged at a constant current rate of 5 hours until the final voltage reached 10.5V. The discharge capacity when reaching 10.5 V was divided by the theoretical capacity of each lead-acid battery, and the obtained value was defined as the discharge capacity of each lead-acid battery.
[寿命性能を調べる試験:寿命試験]
No.1~No.9の鉛蓄電池の容量維持率を、以下の方法で調べた。
JIS D 5301 9.5 (b)に記載の重負荷寿命試験に準拠し、満充電の鉛蓄電池に対し、周囲温度40℃の環境で放電深度40%まで1時間で放電した後、10時間率電流で放電容量の125%充電するサイクルを24サイクル繰り返した。25サイクル目の放電は判定放電として、終止電圧である10.2Vに達するまで放電し、その後10時間率電流で放電容量の140%充電をした。25サイクル経過後、鉛蓄電池を取り出し、25サイクルで減水した分の電解液を補水した。この充放電サイクル試験を、25サイクル目の放電時の容量が各鉛蓄電池の5時間率容量の50%未満となるまでした。そして、No.9の鉛蓄電池(従来品)のサイクル数をNo.1~No.8の鉛蓄電池のサイクル数で除算し、得られた値をサイクル数の相対値として比較した。
[Test to examine life performance: life test]
The capacity retention rate of No. 1 to No. 9 lead-acid batteries was examined by the following method.
In accordance with the heavy load life test described in JIS D 5301 9.5 (b), a fully charged lead-acid battery was discharged to a depth of discharge of 40% in an environment with an ambient temperature of 40 ° C. in 1 hour, and then at a rate of 10 hours. A cycle of charging with current to 125% of the discharge capacity was repeated 24 cycles. The discharge at the 25th cycle was used as a judgment discharge, and the battery was discharged until it reached a final voltage of 10.2 V, and then charged at a rate of 10 hours to 140% of the discharge capacity. After 25 cycles, the lead-acid battery was taken out, and the electrolytic solution was replenished with the amount of water reduced in the 25 cycles. This charge-discharge cycle test was continued until the discharge capacity at the 25th cycle was less than 50% of the 5-hour rate capacity of each lead-acid battery. Then, the number of cycles of lead-acid battery No. 9 (conventional product) was divided by the number of cycles of lead-acid batteries No. 1 to No. 8, and the obtained values were compared as relative values of the number of cycles.
これらの測定、試験結果を、各サンプルの化成前の正極合剤の製造方法、化成前の正極合剤中の四塩基性硫酸鉛の含有率、および正極合剤の構成とともに、下記の表1に示す。放電容量およびサイクル数は、No.9の鉛蓄電池(従来品)を100とした相対値を示す。 These measurements and test results are shown in Table 1 below, together with the method of manufacturing the positive electrode mixture before chemical conversion, the content of tetrabasic lead sulfate in the positive electrode mixture before chemical conversion, and the composition of the positive electrode mixture. shown. The discharge capacity and the number of cycles are shown as relative values with the No. 9 lead-acid battery (conventional product) set to 100.
表1に示すように、本発明の実施例に相当するNo.1、No.4、No.5の鉛蓄電池は、放電容量が従来品の97%以上であって、サイクル数が従来品の127%以上と高かった。つまり、本発明の実施例に相当するNo.1、No.4、No.5の鉛蓄電池では、従来品と同等の放電容量を維持しつつ、高いサイクル数(寿命性能)を実現できることが分かる。 As shown in Table 1, the lead-acid batteries No. 1, No. 4, and No. 5, which correspond to the examples of the present invention, have a discharge capacity of 97% or more that of the conventional product, and a cycle number that is greater than that of the conventional product. It was as high as 127% or more. In other words, it can be seen that the No. 1, No. 4, and No. 5 lead-acid batteries, which correspond to the examples of the present invention, can achieve a high number of cycles (lifetime performance) while maintaining the same discharge capacity as the conventional product. .
Claims (2)
鉛合金からなる集電体と、前記集電体の格子状基板に保持された正極合剤とからなり、
前記正極合剤のメジアン細孔径が0.61μm以上0.70μm以下であり、前記正極合剤の密度が3.70g/cm3以上3.89g/cm3以下であり、前記正極合剤を構成する正極活物質に含まれるβ-PbO2の質量に対するα-PbO2の質量の比(α/β)が0.12以下である鉛蓄電池用正極板。 A cell chamber, and an electrode plate group accommodated in the cell chamber together with an electrolyte, the electrode plate group including a negative electrode plate and a positive electrode plate alternately arranged, and a space between the negative electrode plate and the positive electrode plate. a separator disposed in the positive electrode plate of a lead-acid battery having a laminate consisting of
Consists of a current collector made of a lead alloy and a positive electrode mixture held on a grid-like substrate of the current collector,
The positive electrode mixture has a median pore diameter of 0.61 μm or more and 0.70 μm or less, and a density of the positive electrode mixture is 3.70 g/cm 3 or more and 3.89 g/cm 3 or less, and constitutes the positive electrode mixture. A positive electrode plate for a lead-acid battery, wherein the ratio (α/β) of the mass of α-PbO 2 to the mass of β-PbO 2 contained in the positive electrode active material is 0.12 or less.
前記正極板は、鉛合金からなる集電体と、前記集電体の格子状基板に保持された正極合剤とからなり、
前記正極合剤のメジアン細孔径が0.61μm以上0.70μm以下であり、前記正極合剤の密度が3.70g/cm3以上3.89g/cm3以下であり、前記正極合剤を構成する正極活物質に含まれるβ-PbO2の質量に対するα-PbO2の質量の比(α/β)が0.12以下である鉛蓄電池。 A cell chamber, and an electrode plate group accommodated in the cell chamber together with an electrolyte, the electrode plate group including a negative electrode plate and a positive electrode plate alternately arranged, and a space between the negative electrode plate and the positive electrode plate. A lead-acid battery having a laminate consisting of a separator arranged in
The positive electrode plate is composed of a current collector made of a lead alloy and a positive electrode mixture held on a grid-like substrate of the current collector,
The positive electrode mixture has a median pore diameter of 0.61 μm or more and 0.70 μm or less, and a density of the positive electrode mixture is 3.70 g/cm 3 or more and 3.89 g/cm 3 or less, and constitutes the positive electrode mixture. A lead-acid battery in which the ratio (α/β) of the mass of α-PbO 2 to the mass of β-PbO 2 contained in the positive electrode active material is 0.12 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019214712A JP7287884B2 (en) | 2019-11-27 | 2019-11-27 | Positive plate for lead-acid battery, lead-acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019214712A JP7287884B2 (en) | 2019-11-27 | 2019-11-27 | Positive plate for lead-acid battery, lead-acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021086732A JP2021086732A (en) | 2021-06-03 |
JP7287884B2 true JP7287884B2 (en) | 2023-06-06 |
Family
ID=76088068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019214712A Active JP7287884B2 (en) | 2019-11-27 | 2019-11-27 | Positive plate for lead-acid battery, lead-acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7287884B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4206165B2 (en) | 1999-03-18 | 2009-01-07 | 前田建設工業株式会社 | Temporary deadline construction method |
WO2017170422A1 (en) | 2016-03-30 | 2017-10-05 | 日立化成株式会社 | Lead storage battery, micro-hybrid vehicle and start-stop system vehicle |
JP2021086731A (en) | 2019-11-27 | 2021-06-03 | 古河電池株式会社 | Positive electrode plate for lead acid battery, and lead acid battery |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2949839B2 (en) * | 1990-11-28 | 1999-09-20 | 松下電器産業株式会社 | Negative gas absorption sealed lead-acid battery |
JP4224729B2 (en) * | 1997-10-23 | 2009-02-18 | 株式会社ジーエス・ユアサコーポレーション | Sealed lead-acid battery and method for manufacturing the same |
-
2019
- 2019-11-27 JP JP2019214712A patent/JP7287884B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4206165B2 (en) | 1999-03-18 | 2009-01-07 | 前田建設工業株式会社 | Temporary deadline construction method |
WO2017170422A1 (en) | 2016-03-30 | 2017-10-05 | 日立化成株式会社 | Lead storage battery, micro-hybrid vehicle and start-stop system vehicle |
JP2021086731A (en) | 2019-11-27 | 2021-06-03 | 古河電池株式会社 | Positive electrode plate for lead acid battery, and lead acid battery |
Also Published As
Publication number | Publication date |
---|---|
JP2021086732A (en) | 2021-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI539644B (en) | Flooded lead-acid battery and method of making the same | |
JP6660072B2 (en) | Positive electrode plate for lead-acid battery, lead-acid battery using the positive electrode plate, and method of manufacturing positive electrode plate for lead-acid battery | |
WO2018229875A1 (en) | Liquid-type lead storage battery | |
TW201138192A (en) | Positive active material for a lead-acid battery | |
JP7328129B2 (en) | Positive plate for lead-acid battery, lead-acid battery | |
JP5720947B2 (en) | Lead acid battery | |
JP7375457B2 (en) | lead acid battery | |
JP7287884B2 (en) | Positive plate for lead-acid battery, lead-acid battery | |
JP7128482B2 (en) | lead acid battery | |
JP7212649B2 (en) | Lead-acid battery and manufacturing method thereof | |
JP7026715B2 (en) | Kneaded material for positive electrode mixture of lead-acid batteries, manufacturing method of lead-acid batteries, lead-acid batteries | |
JP2021086730A (en) | Method for manufacturing positive electrode plate for lead acid battery | |
JP7128484B2 (en) | liquid lead acid battery | |
JP5283429B2 (en) | Sealed lead acid battery | |
JPH10302783A (en) | Sealed lead-acid battery and manufacture thereof | |
JP2021086729A (en) | Method for manufacturing positive electrode plate for lead acid battery | |
JP7372914B2 (en) | lead acid battery | |
JP6730406B2 (en) | Lead acid battery | |
JP7493329B2 (en) | Lead-acid battery | |
CN211320252U (en) | Lead-acid battery | |
JP7410683B2 (en) | Positive electrode for lead-acid batteries and lead-acid batteries | |
JP5682530B2 (en) | Method for producing paste-like positive electrode active material for lead acid battery and positive electrode plate for lead acid battery | |
JP4069743B2 (en) | Lead acid battery | |
JP2003086178A (en) | Sealed lead-acid battery and method of manufacturing the same | |
JP2023037324A (en) | Liquid type lead storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191219 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220630 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230410 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230516 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230525 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7287884 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |