JP7283330B2 - pneumatic tire - Google Patents
pneumatic tire Download PDFInfo
- Publication number
- JP7283330B2 JP7283330B2 JP2019174605A JP2019174605A JP7283330B2 JP 7283330 B2 JP7283330 B2 JP 7283330B2 JP 2019174605 A JP2019174605 A JP 2019174605A JP 2019174605 A JP2019174605 A JP 2019174605A JP 7283330 B2 JP7283330 B2 JP 7283330B2
- Authority
- JP
- Japan
- Prior art keywords
- tire
- groove
- shoulder
- grooves
- circumferential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/01—Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/13—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Description
この発明は、空気入りタイヤに関し、さらに詳しくは、タイヤのスノートラクション性能と耐偏摩耗性能とを両立できる空気入りタイヤに関する。 TECHNICAL FIELD The present invention relates to a pneumatic tire, and more particularly to a pneumatic tire capable of achieving both snow traction performance and uneven wear resistance performance of the tire.
トラック、バスなどの長距離輸送用の車両のドライブ軸に装着される重荷重用ラジアルタイヤでは、スノートラクション性能を向上するために、サイプを有するブロックパターンが採用されている。 Heavy-duty radial tires mounted on drive shafts of vehicles for long-distance transportation, such as trucks and buses, employ a block pattern with sipes in order to improve snow traction performance.
かかる構造を採用する従来の空気入りタイヤとして、特許文献1に記載される技術が知られている。
As a conventional pneumatic tire adopting such a structure, the technology described in
一方で、従来の空気入りタイヤでは、タイヤの耐偏摩耗性能を向上すべき課題がある。 On the other hand, conventional pneumatic tires have a problem of improving uneven wear resistance performance of the tire.
そこで、この発明は、上記に鑑みてなされたものであって、タイヤのスノートラクション性能と耐偏摩耗性能とを両立できる空気入りタイヤを提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a pneumatic tire that achieves both snow traction performance and uneven wear resistance performance of the tire.
上記目的を達成するため、この発明にかかる空気入りタイヤは、タイヤ周方向に延在する複数の主溝と、前記主溝のうちタイヤ幅方向の最外側にあるショルダー主溝に区画されて成るショルダー陸部およびミドル陸部とを備える空気入りタイヤであって、前記ショルダー陸部が、タイヤ周方向に延在する単一の周方向細溝と、タイヤ接地端および前記周方向細溝を接続する複数の外側ショルダーラグ溝と、前記ショルダー主溝および前記周方向細溝を接続する複数の内側ショルダーラグ溝と、前記外側ショルダーラグ溝および前記周方向細溝に区画されて成る複数の外側ショルダーブロックと、前記内側ショルダーラグ溝および前記周方向細溝に区画され成る複数の内側ショルダーブロックとを備え、1つの前記外側ショルダーブロックが、3つの前記内側ショルダーブロックに対して前記周方向細溝を挟んで対向し、前記内側ショルダーブロックの最大接地長さL15と最大接地幅W15とが、1.10≦L15/W15≦1.50の関係を有し、且つ、前記周方向細溝の最大溝幅W11が、前記ショルダー陸部の最大接地幅Wb1に対して0.025≦W11/Wb1≦0.045の関係を有することを特徴とする。また、この発明にかかる空気入りタイヤは、タイヤ周方向に延在する複数の主溝と、前記主溝のうちタイヤ幅方向の最外側にあるショルダー主溝に区画されて成るショルダー陸部およびミドル陸部とを備える空気入りタイヤであって、前記ショルダー陸部が、タイヤ周方向に延在する単一の周方向細溝と、タイヤ接地端および前記周方向細溝を接続する複数の外側ショルダーラグ溝と、前記ショルダー主溝および前記周方向細溝を接続する複数の内側ショルダーラグ溝と、前記外側ショルダーラグ溝および前記周方向細溝に区画されて成る複数の外側ショルダーブロックと、前記内側ショルダーラグ溝および前記周方向細溝に区画され成る複数の内側ショルダーブロックとを備え、1つの前記外側ショルダーブロックが、3つの前記内側ショルダーブロックに対して前記周方向細溝を挟んで対向し、前記内側ショルダーブロックの最大接地長さL15と最大接地幅W15とが、1.10≦L15/W15≦1.50の関係を有し、且つ、前記周方向細溝に対する前記外側ショルダーラグ溝の開口幅W12が、前記周方向細溝に対する前記内側ショルダーラグ溝の開口幅W13に対して1.50≦W12/W13≦2.20の関係を有することを特徴とする。また、この発明にかかる空気入りタイヤは、タイヤ周方向に延在する複数の主溝と、前記主溝のうちタイヤ幅方向の最外側にあるショルダー主溝に区画されて成るショルダー陸部およびミドル陸部とを備える空気入りタイヤであって、前記ショルダー陸部が、タイヤ周方向に延在する単一の周方向細溝と、タイヤ接地端および前記周方向細溝を接続する複数の外側ショルダーラグ溝と、前記ショルダー主溝および前記周方向細溝を接続する複数の内側ショルダーラグ溝と、前記外側ショルダーラグ溝および前記周方向細溝に区画されて成る複数の外側ショルダーブロックと、前記内側ショルダーラグ溝および前記周方向細溝に区画され成る複数の内側ショルダーブロックとを備え、1つの前記外側ショルダーブロックが、3つの前記内側ショルダーブロックに対して前記周方向細溝を挟んで対向し、前記内側ショルダーブロックの最大接地長さL15と最大接地幅W15とが、1.10≦L15/W15≦1.50の関係を有し、且つ、前記外側ショルダーブロックが、サイプあるいは溝により分断されていない、タイヤ周方向に連続した踏面を有することを特徴とする。 In order to achieve the above object, a pneumatic tire according to the present invention is divided into a plurality of main grooves extending in the tire circumferential direction, and shoulder main grooves located at the outermost side in the tire width direction among the main grooves. A pneumatic tire comprising a shoulder land portion and a middle land portion, wherein the shoulder land portion connects a single circumferential narrow groove extending in the tire circumferential direction with a tire ground contact edge and the circumferential narrow groove. a plurality of outer shoulder lug grooves connecting the shoulder main grooves and the circumferential narrow grooves; and a plurality of outer shoulders partitioned by the outer shoulder lug grooves and the circumferential narrow grooves. and a plurality of inner shoulder blocks partitioned by the inner shoulder lug grooves and the circumferential narrow grooves, wherein one outer shoulder block defines the circumferential narrow grooves for the three inner shoulder blocks. The maximum contact length L15 and the maximum contact width W15 of the inner shoulder blocks facing each other on both sides have a relationship of 1.10≦L15/W15≦1.50, and the maximum grooves of the circumferential narrow grooves The width W11 is characterized by having a relationship of 0.025≤W11/Wb1≤0.045 with respect to the maximum contact width Wb1 of the shoulder land portion . In addition, the pneumatic tire according to the present invention has a plurality of main grooves extending in the tire circumferential direction, and shoulder land portions and middle grooves which are partitioned into the outermost shoulder main grooves in the tire width direction among the main grooves. A pneumatic tire comprising a land portion, wherein the shoulder land portion comprises a single circumferential narrow groove extending in the tire circumferential direction and a plurality of outer shoulders connecting the tire contact edge and the circumferential narrow groove. a plurality of inner shoulder lug grooves connecting the shoulder main groove and the circumferential narrow groove; a plurality of outer shoulder blocks partitioned by the outer shoulder lug groove and the circumferential narrow groove; and the inner side. a plurality of inner shoulder blocks partitioned by shoulder lug grooves and said circumferential narrow grooves, wherein one said outer shoulder block faces three said inner shoulder blocks across said circumferential narrow grooves; The maximum contact length L15 and the maximum contact width W15 of the inner shoulder block have a relationship of 1.10≦L15/W15≦1.50, and the opening of the outer shoulder lug groove with respect to the circumferential narrow groove. The width W12 is characterized by having a relationship of 1.50≦W12/W13≦2.20 with respect to the opening width W13 of the inner shoulder lug groove with respect to the circumferential narrow groove. In addition, the pneumatic tire according to the present invention has a plurality of main grooves extending in the tire circumferential direction, and shoulder land portions and middle grooves which are partitioned into the outermost shoulder main grooves in the tire width direction among the main grooves. A pneumatic tire comprising a land portion, wherein the shoulder land portion comprises a single circumferential narrow groove extending in the tire circumferential direction and a plurality of outer shoulders connecting the tire contact edge and the circumferential narrow groove. a plurality of inner shoulder lug grooves connecting the shoulder main groove and the circumferential narrow groove; a plurality of outer shoulder blocks partitioned by the outer shoulder lug groove and the circumferential narrow groove; and the inner side. a plurality of inner shoulder blocks partitioned by shoulder lug grooves and said circumferential narrow grooves, wherein one said outer shoulder block faces three said inner shoulder blocks across said circumferential narrow grooves; The maximum contact length L15 and the maximum contact width W15 of the inner shoulder blocks have a relationship of 1.10≦L15/W15≦1.50, and the outer shoulder blocks are divided by sipes or grooves. It is characterized by having a continuous tread in the tire circumferential direction.
この発明にかかる空気入りタイヤでは、(1)ショルダー陸部が、外側ショルダーラグ溝および内側ショルダーラグ溝を備えるので、ショルダー陸部のエッジ成分が確保されて、タイヤのスノートラクション性能が向上する。また、(2)内側ショルダーブロックが長尺な外側ショルダーブロックに対して周方向細溝を挟んで対向するので、タイヤ接地時にて周方向細溝が閉塞したときに、内側ショルダーブロックが高い周方向剛性をもつ外側ショルダーブロックに支持される。これにより、内側ショルダーブロックが補強されて、内側ショルダーブロックのヒール・アンド・トゥ摩耗(ブロックエッジ部の偏摩耗およびサイプを起点とした偏摩耗を含む。)が抑制される。また、(3)内側ショルダーブロックがタイヤ周方向に長尺な形状を有するので、内側ショルダーブロックの周方向剛性が確保されて、内側ショルダーブロックのヒール・アンド・トゥ摩耗が抑制される。これらにより、タイヤの耐偏摩耗性能とスノートラクション性能とが両立する利点がある。 In the pneumatic tire according to the present invention, (1) the shoulder land portions have the outer shoulder lug grooves and the inner shoulder lug grooves, so that the edge components of the shoulder land portions are secured and the snow traction performance of the tire is improved. (2) Since the inner shoulder block faces the long outer shoulder block across the circumferential narrow groove, when the circumferential narrow groove is closed when the tire touches the ground, the inner shoulder block is positioned higher in the circumferential direction. It is supported by rigid outer shoulder blocks. This reinforces the inner shoulder blocks and suppresses heel-and-toe wear of the inner shoulder blocks (including uneven wear of block edges and uneven wear originating from sipes). In addition, (3) since the inner shoulder blocks have an elongated shape in the tire circumferential direction, the circumferential rigidity of the inner shoulder blocks is ensured, and heel-and-toe wear of the inner shoulder blocks is suppressed. As a result, there is an advantage that the uneven wear resistance performance of the tire and the snow traction performance are compatible.
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, the constituent elements of this embodiment include those that can be replaced while maintaining the identity of the invention and that are obvious to replace. Moreover, the multiple modifications described in this embodiment can be arbitrarily combined within the scope obvious to those skilled in the art.
[空気入りタイヤ]
図1は、この発明の実施の形態にかかる空気入りタイヤ1を示すタイヤ子午線方向の断面図である。同図は、タイヤ径方向の片側領域の断面図を示している。また、同図は、空気入りタイヤ1の一例として、トラック、バスなどの長距離輸送用の車両のドライブ軸に装着される重荷重用ラジアルタイヤを示している。
[Pneumatic tire]
FIG. 1 is a cross-sectional view along the tire meridian line showing a
同図において、タイヤ子午線方向の断面は、タイヤ回転軸(図示省略)を含む平面でタイヤを切断したときの断面として定義される。また、タイヤ赤道面CLは、JATMAに規定されたタイヤ断面幅の測定点の中点を通りタイヤ回転軸に垂直な平面として定義される。また、タイヤ幅方向は、タイヤ回転軸に平行な方向として定義され、タイヤ径方向は、タイヤ回転軸に垂直な方向として定義される。 In the figure, the cross section in the tire meridian direction is defined as a cross section when the tire is cut along a plane including the tire rotation axis (not shown). Also, the tire equatorial plane CL is defined as a plane that passes through the midpoint of the measurement points of the tire cross-sectional width defined in JATMA and is perpendicular to the tire rotation axis. The tire width direction is defined as a direction parallel to the tire rotation axis, and the tire radial direction is defined as a direction perpendicular to the tire rotation axis.
空気入りタイヤ1は、タイヤ回転軸を中心とする環状構造を有し、一対のビードコア11、11と、一対のビードフィラー12、12と、カーカス層13と、ベルト層14と、トレッドゴム15と、一対のサイドウォールゴム16、16と、一対のリムクッションゴム17、17とを備える(図1参照)。
The
一対のビードコア11、11は、スチールから成る1本あるいは複数本のビードワイヤを環状かつ多重に巻き廻して成り、ビード部に埋設されて左右のビード部のコアを構成する。一対のビードフィラー12、12は、ローアーフィラー121およびアッパーフィラー122から成り、一対のビードコア11、11のタイヤ径方向外周にそれぞれ配置されてビード部を補強する。
A pair of
カーカス層13は、1枚のカーカスプライから成る単層構造あるいは複数枚のカーカスプライを積層して成る多層構造を有し、左右のビードコア11、11間にトロイダル状に架け渡されてタイヤの骨格を構成する。また、カーカス層13の両端部は、ビードコア11およびビードフィラー12を包み込むようにタイヤ幅方向外側に巻き返されて係止される。また、カーカス層13のカーカスプライは、スチールから成る複数のカーカスコードをコートゴムで被覆して圧延加工して構成され、絶対値で80[deg]以上90[deg]以下のコード角度(タイヤ周方向に対するカーカスコードの長手方向の傾斜角として定義される。)を有する。
The
ベルト層14は、複数のベルトプライ141~144を積層して成り、カーカス層13の外周に掛け廻されて配置される。これらのベルトプライ141~144は、高角度ベルト141と、一対の交差ベルト142、143と、ベルトカバー144と含む。高角度ベルト141は、スチールから成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、絶対値で45[deg]以上70[deg]以下のコード角度(タイヤ周方向に対するベルトコードの長手方向の傾斜角として定義される。)を有する。一対の交差ベルト142、143は、スチールから成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、絶対値で10[deg]以上55[deg]以下のコード角度を有する。また、一対の交差ベルト142、143は、相互に異符号のコード角度を有し、ベルトコードの長手方向を相互に交差させて積層される(いわゆるクロスプライ構造を有する)。ベルトカバー144は、スチールあるいは有機繊維材から成る複数のベルトカバーコードをコートゴムで被覆して圧延加工して構成され、絶対値で10[deg]以上55[deg]以下のコード角度を有する。
The
トレッドゴム15は、カーカス層13およびベルト層14のタイヤ径方向外周に配置されてタイヤのトレッド部を構成する。一対のサイドウォールゴム16、16は、カーカス層13のタイヤ幅方向外側にそれぞれ配置されて左右のサイドウォール部を構成する。一対のリムクッションゴム17、17は、左右のビードコア11、11およびカーカス層13の巻き返し部のタイヤ径方向内側からタイヤ幅方向外側に延在して、ビード部のリム嵌合面を構成する。
The
[トレッド面]
図2は、図1に記載した空気入りタイヤ1のトレッド面を示す平面図である。同図は、オールシーズン用タイヤのトレッド面を示している。同図において、タイヤ周方向とは、タイヤ回転軸周りの方向をいう。また、符号Tは、タイヤ接地端であり、寸法記号TWは、タイヤ接地幅である。
[Tread surface]
FIG. 2 is a plan view showing the tread surface of the
図2に示すように、空気入りタイヤ1は、タイヤ周方向に延在する複数の主溝21、22と、これらの主溝21、22に区画された複数の陸部31~33とをトレッド面に備える。
As shown in FIG. 2, the
主溝は、JATMAに規定されるウェアインジケータの表示義務を有する溝であり、6.0[mm]以上の溝幅および10[mm]以上の溝深さを有する。また、図2の構成では、主溝21、22の溝幅Wg1、Wg2(図2参照)が、タイヤ接地幅TWに対して3[%]以上4[%]以下の範囲にある。
The main groove is a groove required to display a wear indicator defined by JATMA, and has a groove width of 6.0 [mm] or more and a groove depth of 10 [mm] or more. 2, the groove widths Wg1 and Wg2 (see FIG. 2) of the
溝幅は、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、溝開口部における対向する溝壁間の距離として測定される。切欠部あるいは面取部を溝開口部に有する構成では、溝幅方向かつ溝深さ方向に平行な断面視におけるトレッド踏面の延長線と溝壁の延長線との交点を測定点として、溝幅が測定される。 The groove width is measured as the distance between opposing groove walls at the opening of the groove in a no-load state in which the tire is mounted on a specified rim and filled with a specified internal pressure. In a structure having a cutout portion or a chamfered portion at the groove opening, the groove width is measured using the intersection of the extension line of the tread surface and the extension line of the groove wall in a cross-sectional view parallel to the groove width direction and the groove depth direction. is measured.
溝深さは、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、トレッド踏面から溝底までの距離として測定される。また、部分的な底上部、サイプあるいは凹凸部を溝底に有する構成では、これらを除外して溝深さが測定される。 Groove depth is measured as the distance from the tread surface to the bottom of the groove when the tire is mounted on a specified rim and filled with a specified internal pressure in an unloaded state. In addition, in a configuration having a partial bottom portion, a sipe, or an uneven portion at the groove bottom, the groove depth is measured excluding these.
規定リムとは、JATMAに規定される「標準リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、規定内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、規定荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。ただし、JATMAにおいて、乗用車用タイヤの場合には、規定内圧が空気圧180[kPa]であり、規定荷重が規定内圧での最大負荷能力の88[%]である。 A specified rim means a "standard rim" specified by JATMA, a "design rim" specified by TRA, or a "measuring rim" specified by ETRTO. In addition, the prescribed internal pressure means the "maximum air pressure" prescribed by JATMA, the maximum value of "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" prescribed by TRA, or "INFLATION PRESSURES" prescribed by ETRTO. In addition, the specified load means the "maximum load capacity" specified by JATMA, the maximum value of "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" specified by TRA, or the "LOAD CAPACITY" specified by ETRTO. However, according to JATMA, in the case of passenger car tires, the specified internal pressure is 180 [kPa], and the specified load is 88 [%] of the maximum load capacity at the specified internal pressure.
例えば、図2の構成では、4本の主溝21、22がタイヤ赤道面CLを境界として左右対称に配置されている。また、5列の陸部31~33が、これらの主溝21、22により区画されている。また、1つの陸部33が、タイヤ赤道面CL上に配置されている。
For example, in the configuration of FIG. 2, four
しかし、これに限らず、3本あるいは5本の主溝が配置されても良い(図示省略)。また、陸部がタイヤ赤道面CLから外れた位置に配置されても良い(図示省略)。 However, the present invention is not limited to this, and three or five main grooves may be arranged (not shown). Also, the land portion may be arranged at a position away from the tire equatorial plane CL (not shown).
ここで、タイヤ赤道面CLを境界とする1つの領域に配置された主溝21、22のうち、タイヤ幅方向の最も外側にある主溝21をショルダー主溝として定義し、他の主溝22をセンター主溝として定義する。
Here, of the
図2の構成では、タイヤ赤道面CLから左右のショルダー主溝21、21の溝中心線までの距離(図中の寸法記号省略)が、タイヤ接地幅TWの26[%]以上32[%]以下の範囲にある。また、タイヤ赤道面CLから左右のセンター主溝22、22の溝中心線までの距離が、タイヤ接地幅TWの8[%]以上12[%]以下の範囲にある。
In the configuration of FIG. 2, the distance from the tire equatorial plane CL to the groove center lines of the left and right shoulder
溝中心線は、対向する溝壁間の距離の測定点の中点を接続した仮想線として定義される。 A groove centerline is defined as an imaginary line connecting the midpoints of the distance measurement points between opposing groove walls.
タイヤ接地幅TWは、タイヤを規定リムに装着して規定内圧を付与すると共に静止状態にて平板に対して垂直に置いて規定荷重に対応する負荷を付与したときのタイヤと平板との接触面におけるタイヤ軸方向の最大直線距離として測定される。 The tire contact width TW is the contact surface between the tire and the flat plate when the tire is mounted on the specified rim, the specified internal pressure is applied, the tire is placed perpendicular to the flat plate in the stationary state, and the load corresponding to the specified load is applied. measured as the maximum linear distance in the axial direction of the tire.
タイヤ接地端Tは、タイヤを規定リムに装着して規定内圧を付与すると共に静止状態にて平板に対して垂直に置いて規定荷重に対応する負荷を加えたときのタイヤと平板との接触面におけるタイヤ軸方向の最大幅位置として定義される。 The tire contact edge T is the contact surface between the tire and the flat plate when the tire is mounted on the specified rim, the specified internal pressure is applied, the tire is placed perpendicular to the flat plate in the stationary state, and a load corresponding to the specified load is applied. is defined as the position of maximum width in the axial direction of the tire.
また、ショルダー主溝21、21に区画されたタイヤ幅方向外側の陸部31、31をショルダー陸部として定義する。ショルダー陸部31、31は、タイヤ幅方向の最も外側の陸部であり、タイヤ接地端T上に位置する。また、ショルダー主溝21、21に区画されたタイヤ幅方向内側の陸部32、32をミドル陸部として定義する。ミドル陸部32、32は、ショルダー主溝21を挟んでショルダー陸部31に隣り合う。また、ミドル陸部32、32よりもタイヤ赤道面CL側にある陸部33をセンター陸部として定義する。センター陸部33は、タイヤ赤道面CL上に配置されても良いし(図2参照)、タイヤ赤道面CLから外れた位置に配置されても良い(図示省略)。
Further,
図2のような4本の主溝21、22を備える構成では、一対のショルダー陸部31、31と、一対のミドル陸部32、32と、単一のセンター陸部33とが定義される。また、例えば、5本以上の主溝を備える構成では、2列以上のセンター陸部が定義され(図示省略)、3本の主溝を備える構成では、ミドル陸部がセンター陸部を兼ねる(図示省略)。
2, a pair of
また、図2において、陸部31、32、33の最大接地幅Wb1、Wb2、Wb3が、タイヤ接地幅TWに対して15[%]以上25[%]以下の範囲にある。また、図2の構成では、ショルダー陸部31の最大接地幅Wb1が最も広く、センター陸部33の最大接地幅Wb3が最も狭い。また、ミドル陸部32の最大接地幅Wb2が、ショルダー陸部31の最大接地幅Wb1に対して0.75≦Wb2/Wb1≦0.87の関係を有することが好ましく、0.79≦Wb2/Wb1≦0.83の関係を有することがより好ましい。
Further, in FIG. 2, the maximum contact widths Wb1, Wb2, Wb3 of the
陸部の接地幅は、タイヤを規定リムに装着して規定内圧を付与すると共に静止状態にて平板に対して垂直に置いて規定荷重に対応する負荷を付与したときの陸部と平板との接触面におけるタイヤ軸方向の直線距離として測定される。 The ground contact width of the land part is the width between the land part and the flat plate when the tire is mounted on the specified rim, the specified internal pressure is applied, and the load corresponding to the specified load is applied by placing the tire perpendicular to the flat plate in the stationary state. It is measured as a linear distance in the axial direction of the contact surface of the tire.
[主溝のジグザグ形状]
図3は、図2に記載した空気入りタイヤのショルダー陸部31およびミドル陸部32を示す拡大図である。
[Zigzag shape of main groove]
FIG. 3 is an enlarged view showing the
図3に示すように、ショルダー主溝21およびセンター主溝22は、タイヤ幅方向に振幅をもつジグザグ形状を有する。
As shown in FIG. 3, the shoulder
また、ショルダー主溝21が、タイヤ周方向に対して相互に異なる方向に傾斜する長尺部と短尺部とを交互に接続して成るジグザグ形状を有する。また、図3において、ジグザグ形状の長尺部の周方向長さLg1が、ジグザグ形状の波長λ1に対して0.60≦Lg1/λ1≦0.90の関係を有することが好ましく、0.65≦Lg1/λ1≦0.80の関係を有することがより好ましい。また、ジグザグ形状の振幅A1が、タイヤ接地幅TWに対して0.02≦A1/TW≦0.04の関係を有する。
Moreover, the shoulder
ジグザグ形状の波長および振幅は、溝中心線を測定点として測定される。 The zigzag wave length and amplitude are measured using the groove centerline as the measuring point.
また、センター主溝22が、タイヤ周方向に対して相互に異なる方向に傾斜する直線部を交互に接続して成るジグザグ形状を有する。また、図3において、これらの直線部の周方向長さLg2が、ジグザグ形状の波長λ2に対して0.30≦Lg2/λ2≦0.70の関係を有することが好ましく、0.35≦Lg2/λ2≦0.65の関係を有することがより好ましい。したがって、センター主溝22が略同一長さの直線部を接続して成るジグザグ形状を有することが好ましい。また、センター主溝22のジグザグ形状の振幅A2が、タイヤ接地幅TWに対して0.02≦A2/TW≦0.04の関係を有する。また、センター主溝22のジグザグ形状のピッチ数がショルダー主溝21のジグザグ形状のピッチ数に等しい。
Further, the center
また、図3の構成では、上記のように、ショルダー主溝21が長尺部と短尺部とを交互に接続して成るジグザグ形状を有し、センター主溝22が略同一長さの直線部を接続して成るジグザグ形状を有している。かかる構成では、センター陸部33のタイヤ赤道面CL側のエッジ部の剛性が確保されて、センター陸部33の偏摩耗が抑制される。一方で、トレッド部ショルダー領域のトラクション性が向上して、タイヤのスノー性能が効果的に高まる。これにより、タイヤのスノー性能と耐偏摩耗性能とが両立する。
In the configuration of FIG. 3, as described above, the shoulder
しかし、これに限らず、ショルダー主溝21およびセンター主溝22の双方が、長尺部と短尺部とを交互に接続して成るジグザグ形状を有しても良いし(図示省略)、略同一長さの直線部を接続して成るジグザグ形状を有しても良い。
However, the present invention is not limited to this, and both the shoulder
また、図2の構成では、ショルダー主溝21およびセンター主溝22のジグザグ形状が、タイヤ周方向視にてシースルー構造を有する。したがって、隣り合う陸部31、32;32、33のエッジ部が、タイヤ周方向視にて相互にオーバーラップしない。これにより、ショルダー主溝21およびセンター主溝22の溝容積が確保されて、タイヤのスノートラクション性能が向上する。
2, the zigzag shapes of the shoulder
[ショルダー陸部]
図4は、図3に記載したショルダー陸部31を示す拡大図である。図5は、図4に記載したショルダー陸部31の要部を示す拡大図である。図6は、図4に記載したショルダー陸部31の断面図である。同図は、外側ショルダーラグ溝312、周方向細溝311および内側ショルダーラグ溝313に沿った溝深さ方向の断面図を示している。
[Shoulder land part]
FIG. 4 is an enlarged view showing the
図3に示すように、ショルダー陸部31は、単一の周方向細溝311と、複数の外側ショルダーラグ溝312と、複数の内側ショルダーラグ溝313と、複数の外側ショルダーブロック314と、複数の内側ショルダーブロック315とを備える。
As shown in FIG. 3 , the
周方向細溝311は、タイヤ周方向に延在して、ショルダー陸部31の全周に渡って連続的に延在する。また、タイヤ接地端Tから周方向細溝311の溝中心線までの距離D11が、ショルダー陸部31の最大接地幅Wb1に対して0.30≦D11/Wb1≦0.70の範囲にあり、0.40≦D11/Wb1≦0.60の範囲にあることが好ましい。したがって、周方向細溝311が、ショルダー陸部31のタイヤ幅方向の中央部に配置される。
The circumferential
また、図4において、周方向細溝311が、略同一長さの直線部を接続して成るジグザグ形状を有する。また、ジグザグ形状の直線部の周方向長さL11が、ジグザグ形状の波長λ11に対して0.30≦L11/λ11≦0.70の関係を有し、0.45≦L11/λ11≦0.65の関係を有することが好ましい。また、周方向細溝311のジグザグ形状の振幅(図中の寸法記号省略)が、ショルダー主溝21のジグザグ形状の振幅A1(図3参照)よりも小さい。また、周方向細溝311のジグザグ形状のピッチ数がショルダー主溝21のジグザグ形状のピッチ数に等しい(図3参照)。
Further, in FIG. 4, the circumferential
また、図4において、周方向細溝311の最大溝幅W11が、ショルダー陸部31の最大接地幅Wb1に対して0.025≦W11/Wb1≦0.045の関係を有する。また、周方向細溝311の最大溝幅W11が、W11≦3.0[mm]の範囲にある。また、図6において、周方向細溝311の最大溝深さH11が、ショルダー主溝21の最大溝深さHg1に対して0.55≦H11/Hg1≦0.75の関係を有する。これらにより、周方向細溝311がタイヤ接地時に適正に塞がり、ショルダー陸部31の剛性が確保される。
4, the maximum groove width W11 of the circumferential
外側ショルダーラグ溝312は、図3に示すように、タイヤ幅方向に延在してタイヤ接地端Tおよび周方向細溝311を接続する。具体的には、外側ショルダーラグ溝312が、周方向細溝311のジグザグ形状のタイヤ接地端T側への最大振幅位置に接続する。また、複数の外側ショルダーラグ溝312が、タイヤ周方向に所定間隔で配列される。
As shown in FIG. 3 , the outer
また、図5において、周方向細溝311に対する外側ショルダーラグ溝312の開口幅W12が、12.0[mm]≦W12≦18.0[mm]の範囲にある。また、図6において、外側ショルダーラグ溝312の最大溝深さH12が、ショルダー主溝21の最大溝深さHg1に対して0.95≦H12/Hg1≦1.45の関係を有する。
5, the opening width W12 of the outer
内側ショルダーラグ溝313は、図3に示すように、タイヤ幅方向に延在してショルダー主溝21および周方向細溝311を接続する。具体的には、内側ショルダーラグ溝313が、周方向細溝311のジグザグ形状のタイヤ赤道面CL側への最大振幅位置と、ショルダー主溝21のジグザグ形状のタイヤ接地端T側への最大振幅位置とを接続する。また、複数の内側ショルダーラグ溝313が、タイヤ周方向に所定間隔で配列される。また、周方向細溝311に対する内側ショルダーラグ溝313の開口位置が、周方向細溝311に対する外側ショルダーラグ溝312の開口位置に対してタイヤ周方向にオフセットして配置される。
As shown in FIG. 3 , the inner
また、図3において、タイヤ周方向に対する内側ショルダーラグ溝313の傾斜角θ13が、73[deg]≦θ13≦83[deg]の範囲にある。また、図3の構成では、内側ショルダーラグ溝313が、ショルダー主溝21のジグザグ形状の長尺部に対してタイヤ周方向で逆方向に傾斜している。
3, the inclination angle θ13 of the inner
ラグ溝の傾斜角は、ラグ溝の左右の開口部の中心点を接続した仮想直線とタイヤ周方向に平行な直線とのなす角として測定される。 The inclination angle of the lug groove is measured as an angle formed by a straight line parallel to the tire circumferential direction and an imaginary straight line connecting the center points of the left and right openings of the lug groove.
また、図5において、周方向細溝311に対する内側ショルダーラグ溝313の開口幅W13が、6.0[mm]≦W13≦10.0[mm]の範囲にある。また、周方向細溝311に対する外側ショルダーラグ溝312の開口幅W12が周方向細溝311に対する内側ショルダーラグ溝313の開口幅W13に対して1.50≦W12/W13≦2.20の関係を有することが好ましく、1.70≦W12/W13≦2.00の関係を有することがより好ましい。
5, the opening width W13 of the inner
また、図6において、内側ショルダーラグ溝313の最大溝深さH13が、ショルダー主溝21の最大溝深さHg1に対して0.55≦H13/Hg1≦0.75の関係を有する。また、内側ショルダーラグ溝313の最大溝深さH13が、外側ショルダーラグ溝312の最大溝深さH12よりも浅い(H13<H12)。
6, the maximum groove depth H13 of the inner
また、図6に示すように、内側ショルダーラグ溝313が、周方向細溝311に対する接続部に形成された底上部3131を有する。また、ショルダー陸部31の踏面から内側ショルダーラグ溝313の底上部3131の頂面までの距離H13’が、ショルダー主溝21の最大溝深さHg1に対して0.45≦H13’/Hg1≦0.65の関係を有する。また、底上部3131の距離H13’が、周方向細溝311の最大溝深さH11に対して0.65≦H13’/H11≦0.90の関係を有することが好ましい。したがって、底上部3131の距離H13’が周方向細溝311の最大溝深さH11よりも浅い位置にあることが好ましい。これにより、内側ショルダーブロック315(図4参照)の剛性が確保される。
In addition, as shown in FIG. 6 , the inner
なお、これに限らず、内側ショルダーラグ溝313の底上部3131が省略されても良い(図示省略)。
In addition, not limited to this, the
外側ショルダーブロック314は、図3に示すように、外側ショルダーラグ溝312および周方向細溝311に区画されて成る。また、複数の外側ショルダーブロック314が、タイヤ周方向に所定間隔で配列される。
The
また、図4に示すように、外側ショルダーブロック314の周方向細溝311側のエッジ部が、周方向細溝311に沿ったジグザグ形状を有する。また、1つの外側ショルダーブロック314の周方向細溝311側のエッジ部が、2つの凸部と単一の凹部ともつW字形状を有する。また、外側ショルダーブロック314の最大接地長さL14が、周方向細溝311のジグザグ形状の波長λ11に対して1.45≦L14/λ11≦1.85の関係を有する。
Further, as shown in FIG. 4 , the edge portion of the
また、外側ショルダーブロック314の最大接地長さL14と最大接地幅W14とが、2.70≦L14/W14≦3.30の関係を有する。また、外側ショルダーブロック314の最大接地幅W14が、ショルダー陸部31の最大接地幅Wb1に対して0.40≦W14/Wb1≦0.60の関係を有する。
Further, the maximum contact length L14 and the maximum contact width W14 of the
ブロックの最大接地長さおよび最大接地幅は、タイヤを規定リムに装着して規定内圧を付与すると共に静止状態にて平板に対して垂直に置いて規定荷重に対応する負荷を付与したときのブロックと平板との接触面におけるタイヤ周方向およびタイヤ軸方向の最大直線距離としてそれぞれ測定される。 The maximum ground contact length and maximum contact width of the block are measured when the tire is mounted on the specified rim, the specified internal pressure is applied, and the block is placed vertically on a flat plate in a stationary state and a load corresponding to the specified load is applied. It is measured as the maximum linear distance in the tire circumferential direction and the tire axial direction at the contact surface between the tire and the flat plate.
また、図4に示すように、外側ショルダーブロック314が、単一の周方向サイプ316を有する。周方向サイプ316は、タイヤ周方向に延在し、また、その両端部が外側ショルダーブロック314内で終端する。また、周方向サイプ316のタイヤ周方向への延在長さ(図中の寸法記号省略)が、外側ショルダーブロック314の最大周方向長さL14に対して40[%]以上50[%]以下の範囲にある。一方で、外側ショルダーブロック314が、周方向細溝311に接続するサイプあるいは細溝を備えていない。このため、外側ショルダーブロック314が、サイプあるいは細溝により分断されておらず、タイヤ周方向に連続した踏面を有する。
Also, as shown in FIG. 4, the
サイプは、トレッド踏面に形成された切り込みであり、1.5[mm]未満のサイプ幅および2.0[mm]以上のサイプ深さを有することにより、タイヤ接地時に閉塞する。 The sipe is a cut formed in the tread surface, and has a sipe width of less than 1.5 [mm] and a sipe depth of 2.0 [mm] or more, so that the sipe closes when the tire touches the ground.
サイプ幅は、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、トレッド踏面におけるサイプの最大開口幅として測定される。 The sipe width is measured as the maximum opening width of the sipe on the tread surface in a no-load state in which the tire is mounted on a specified rim and filled with a specified internal pressure.
サイプ深さは、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、トレッド踏面からサイプ底までの距離として測定される。また、サイプが部分的な底上部あるいは凹凸部あるいは凹凸部をサイプ底に有する構成では、これらを除外してサイプ深さが測定される。 The sipe depth is measured as the distance from the tread surface to the sipe bottom when the tire is mounted on a specified rim and filled with a specified internal pressure in an unloaded state. In addition, in a configuration in which the sipe has a partial bottom portion, an uneven portion, or an uneven portion on the sipe bottom, the sipe depth is measured excluding these portions.
内側ショルダーブロック315は、図3に示すように、内側ショルダーラグ溝313および周方向細溝311に区画されて成る。また、複数の内側ショルダーブロック315が、タイヤ周方向に所定間隔で配列される。また、内側ショルダーブロック315のピッチ数が、周方向細溝311およびショルダー主溝21のジグザグ形状のピッチ数に等しい。
As shown in FIG. 3, the
また、図4に示すように、内側ショルダーブロック315の左右のエッジ部が、周方向細溝311およびショルダー主溝21側に凸となるV字形状を有する。また、図4の構成では、上記のようにショルダー主溝21が長尺部と短尺部とを交互に接続して成るジグザグ形状を有するため、内側ショルダーブロック315のショルダー主溝21側のエッジ部のV字形状が、タイヤ周方向に非対称な形状を有している。
Further, as shown in FIG. 4, the left and right edge portions of the
また、3つの内側ショルダーブロック315が、1つの外側ショルダーブロック314に対して周方向細溝311を挟んで対向する。すなわち、1つの長尺な外側ショルダーブロック314が、3つの短尺な内側ショルダーブロック315に跨ってタイヤ周方向に延在する。また、図4に示すように、3つの内側ショルダーブロック315のうち、中央に配置された内側ショルダーブロック315が、その周方向細溝311側のエッジ部の全体にて外側ショルダーブロック314に対向する。また、タイヤ周方向の前後に配置された1つの内側ショルダーブロック315が、隣り合う2つの外側ショルダーブロック314に対して周方向細溝311を挟んで対向する。
Also, three
上記の構成では、(1)ショルダー陸部31が、外側ショルダーラグ溝312および内側ショルダーラグ溝313を備えるので、ショルダー陸部31のエッジ成分が確保されて、タイヤのスノートラクション性能が向上する。また、(2)内側ショルダーブロック315が長尺な外側ショルダーブロック314に対して周方向細溝311を挟んで対向するので、タイヤ接地時にて周方向細溝311が閉塞したときに、内側ショルダーブロック315が高い周方向剛性をもつ外側ショルダーブロック314に支持される。これにより、内側ショルダーブロック315のヒール・アンド・トゥ摩耗が抑制される。これらにより、タイヤの耐偏摩耗性能とスノートラクション性能とが両立する。
In the above configuration, (1) the
また、図4において、内側ショルダーブロック315の最大接地長さL15と最大接地幅W15とが、1.10≦L15/W15≦1.50の関係を有し、また、1.20≦L15/W15≦1.40の関係を有することが好ましい。したがって、内側ショルダーブロック315がタイヤ周方向に長尺な形状を有する。また、内側ショルダーブロック315の最大接地幅W15が、ショルダー陸部31の最大接地幅Wb1に対して0.50≦W15/Wb1≦0.65の関係を有する。
4, the maximum contact length L15 and the maximum contact width W15 of the
また、図4において、内側ショルダーブロック315の最大接地長さL15が、外側ショルダーブロック314の最大接地長さL14に対して0.45≦L15/L14≦0.65の関係を有することが好ましく、0.50≦L15/L14≦0.60の関係を有することがより好ましい。また、内側ショルダーブロック315の総ピッチ数が、外側ショルダーブロック314のピッチ数の2倍である。
4, it is preferable that the maximum contact length L15 of the
また、図4の構成では、上記のように1つの外側ショルダーブロック314に対向する3つの内側ショルダーブロック315のうち、タイヤ周方向の前後に配置された1つ内側ショルダーブロック315が、その周方向細溝311側のエッジ部の一部にて、隣り合う2つの外側ショルダーブロック314、314に対向する。
In the configuration of FIG. 4, one of the three
このとき、図5に示すように、1つの内側ショルダーブロック315と隣り合う2つの外側ショルダーブロック314とのタイヤ周方向における対向長さLd1、Ld2の和が、内側ショルダーブロック315の周方向長さL15に対して0.40≦(Ld1+Ld2)/L15の関係を有することが好ましく、0.50≦(Ld1+Ld2)/L15の関係を有することがより好ましい。また、対向長さLd1、Ld2のそれぞれが、内側ショルダーブロック315の周方向長さL15の15[%]以上であることが好ましい。これにより、タイヤ接地時にて周方向細溝311が閉塞したときに、内側ショルダーブロック315が2つの外側ショルダーブロック314に適正に支持される。比(Ld1+Ld2)/L15の上限は、特に限定がないが、周方向細溝311に対する外側ショルダーラグ溝312の開口幅W12(図5参照)により制約を受ける。
At this time, as shown in FIG. 5, the sum of opposing lengths Ld1 and Ld2 in the tire circumferential direction between one
また、図5において、外側ショルダーブロック314と内側ショルダーブロック315とのタイヤ幅方向におけるオーバーラップ量Ddが、内側ショルダーブロック315の最大接地幅W15に対して0.050≦Dd/W15の関係を有することが好ましく、0.070≦Dd/W15の関係を有することがより好ましい。これにより、タイヤ接地時にて周方向細溝311が閉塞したときにおける、内側ショルダーブロック315と外側ショルダーブロック314との接触幅が確保される。上記比Dd/W15の上限は、特に限定がないが、周方向細溝311の振幅の上限により制約を受ける。
5, the overlap amount Dd in the tire width direction between the
また、図4に示すように、内側ショルダーブロック315が、単一のオープンサイプ317と、一対のクローズドサイプ318、318とを有する。オープンサイプ317は、内側ショルダーブロック315の中央部に配置されて、内側ショルダーブロック315をタイヤ幅方向に貫通する。一対のクローズドサイプ318、318は、オープンサイプ317に区画された内側ショルダーブロック315のタイヤ周方向の前後の領域にそれぞれ配置され、また、その両端部が内側ショルダーブロック315内で終端する。
4, the
なお、図4の構成では、すべてのサイプ316~318が、波状形状を有している。しかし、これに限らず、一部あるいは全部のサイプがストレート形状を有しても良い(図示省略)。 Note that in the configuration of FIG. 4, all of the sipes 316-318 have a wavy shape. However, not limited to this, some or all of the sipes may have a straight shape (not shown).
[ミドル陸部]
図7は、図3に記載したミドル陸部32を示す拡大図である。図8は、図7に記載したミドル陸部32の断面図である。同図は、ミドルラグ溝321Aに沿った溝深さ方向の断面図を示している。
[Middle Land]
FIG. 7 is an enlarged view showing the
図3に示すように、ミドル陸部32は、第一および第二のミドルラグ溝321A、321Bと、複数のミドルブロック322とを備える。
As shown in FIG. 3, the
第一および第二のミドルラグ溝321A、321Bは、タイヤ幅方向に延在してミドル陸部を貫通し、ショルダー主溝21およびセンター主溝22に開口する。第一および第二のミドルラグ溝321A、321Bは、相互に異なる溝深さを有する。具体的に、第一ミドルラグ溝321Aの最大溝深さH21Aが、第二ミドルラグ溝321Bの最大溝深さH21Bよりも深い(H21B<H21A。図8参照)。この点については、後述する。
The first and second middle lug grooves 321</b>A, 321</b>B extend in the tire width direction, penetrate the middle land portion, and open into the shoulder
また、図3に示すように、第一ミドルラグ溝321Aのタイヤ接地端T側の開口部が、タイヤ幅方向視にてショルダー陸部31の外側ショルダーラグ溝312に対してオフセットした位置に配置される。また、第二ミドルラグ溝321Bのタイヤ接地端T側の開口部が、タイヤ幅方向視にてショルダー陸部31の外側ショルダーラグ溝312に対してオーバーラップする位置に配置される。図3の構成では、第一および第二のミドルラグ溝321A、321Bが、タイヤ周方向に交互に配列されている。
Further, as shown in FIG. 3, the opening of the first
また、タイヤ周方向に対する第一および第二のミドルラグ溝321A、321Bの傾斜角θ21が、50[deg]≦θ21≦80[deg]の範囲にある。また、図3の構成では、第一および第二のミドルラグ溝321A、321Bが、ショルダー主溝21のジグザグ形状の長尺部に対してタイヤ周方向で同一方向に傾斜し、また、ショルダー陸部31の内側ショルダーラグ溝313に対して逆方向に傾斜している。
In addition, the inclination angle θ21 of the first and second
図7に示すように、第一および第二のミドルラグ溝321A、321Bが、タイヤ赤道面CL側に向かって溝幅を狭めた形状を有する。図7の構成では、ミドルラグ溝321A、321Bの一方(図中下方)のエッジ部がステップ形状を有し、他方(図中上方)のエッジ部が直線状あるいは円弧形状を有することにより、ミドルラグ溝321A、321Bが、タイヤ赤道面CL側に向かって溝幅を狭めた形状を有している。
As shown in FIG. 7, the first and second
また、図7において、ミドルラグ溝321A、321Bのタイヤ赤道面CL側(すなわちセンター主溝22側)の開口幅W21cとタイヤ接地端T側(すなわちショルダー主溝21側)の開口幅W21tとが、0.30≦W21c/W21t≦0.60の関係を有し、また、0.40≦W21c/W21t≦0.50の関係を有することが好ましい。また、タイヤ赤道面CL側の開口幅W21cが、W21c≦4.0[mm]の範囲にあることが好ましい。
In FIG. 7, the opening width W21c of the
また、図7において、ミドルラグ溝321A、321Bの幅狭部(図中の符号省略)のタイヤ幅方向への延在長さD21’が、ミドル陸部32の最大接地幅Wb2に対して0.20≦D21’/Wb2≦0.40の関係を有する。ミドルラグ溝321A、321Bの幅狭部は、タイヤ接地端T側の開口幅W21tに対して60[%]以下の溝幅を有する連続した領域として定義される。図7の構成では、ミドルラグ溝321A、321Bのタイヤ赤道面CL側の開口部からステップ形状の立ち上げ部までの領域が、上記幅狭部となる。
7, the extension length D21' of the narrow width portions (reference numerals omitted in the drawing) of the
また、図8において、上記のように、第一ミドルラグ溝321Aの最大溝深さH21Aが、第二ミドルラグ溝321Bの最大溝深さH21Bよりも深い(H21B<H21A)。したがって、タイヤ周方向においてショルダー陸部31の外側ショルダーブロック314の中央部に位置する第一ミドルラグ溝321Aが、相対的に深い溝深さを有する。具体的には、第二ミドルラグ溝321Bの最大溝深さH21Bが、第一ミドルラグ溝321Aの最大溝深さH21Aに対して0.60≦H21B/H21A≦0.80の関係を有する。これにより、ショルダー陸部31およびミドル陸部32における周方向剛性が均一化される。
Also, in FIG. 8, as described above, the maximum groove depth H21A of the first
また、第一ミドルラグ溝321Aの最大溝深さH21Aが、ショルダー主溝21の最大溝深さHg1に対してH21A/Hg1≦1.00の関係を有し、H21A/Hg1≦0.90の関係を有することが好ましい。また、第二ミドルラグ溝321Bの最大溝深さH21Bが、ショルダー主溝21の最大溝深さHg1に対して0.80≦H21B/Hg1の関係し、0.70≦H21B/Hg1の関係を有することが好ましい。比H21A/Hg1の下限および比H21B/Hg1の上限は、特に限定がないが、上記比H21B/H21Aの範囲により制約を受ける。
Further, the maximum groove depth H21A of the first
また、図8に示すように、ミドルラグ溝321A、321Bが、タイヤ赤道面CL側の溝底部に底上部3211を有する。具体的には、底上部3211が上記した幅狭部に形成される。また、ミドル陸部32の踏面からミドルラグ溝321A、321Bの底上部3211の頂面までの距離H21’が、ショルダー主溝21の最大溝深さHg1に対して0.50≦H21’/Hg1≦0.65の関係を有する。
Further, as shown in FIG. 8, the
ミドルブロック322は、図3に示すように、隣り合う第一および第二のミドルラグ溝321A、321Bに区画されて成る。また、複数のミドルブロック322が、タイヤ周方向に所定間隔で配列される。また、ミドルブロック322のピッチ数が、ショルダー陸部31の内側ショルダーブロック315のピッチ数に等しい。
As shown in FIG. 3, the
また、図7に示すように、ミドルブロック322の左右のエッジ部が、ショルダー主溝21側およびセンター主溝22側に凸となるV字形状を有する。また、図7の構成では、上記のようにショルダー主溝21が長尺部と短尺部とを交互に接続して成るジグザグ形状を有するため、ミドルブロック322のショルダー主溝21側のエッジ部のV字形状が、タイヤ周方向に非対称な形状を有している。
Further, as shown in FIG. 7, the left and right edge portions of the
また、図7において、ミドルブロック322の最大接地長さL22と最大接地幅W22とが、1.10≦L22/Wb2≦1.40の関係を有し、また、1.20≦L22/Wb2≦1.30の関係を有することが好ましい。したがって、ミドルブロック322がタイヤ幅方向に長尺な形状を有する。
7, the maximum contact length L22 and the maximum contact width W22 of the
また、図7に示すように、ミドルブロック322が、単一のオープンサイプ323と、一対のクローズドサイプ324、324とを有する。オープンサイプ323は、ミドルブロック322の中央部に配置されて、ミドルブロック322をタイヤ幅方向に貫通する。一対のクローズドサイプ324、324は、オープンサイプ323に区画されたミドルブロック322のタイヤ周方向の前後の領域にそれぞれ配置され、また、その両端部がミドルブロック322内で終端する。
Also, as shown in FIG. 7, the
[センター陸部]
図2に示すように、センター陸部33は、センター陸部33をタイヤ幅方向に貫通する複数のセンターラグ溝331と、これらのセンターラグ溝331に区画されて成る複数のセンターブロック332とを備える。また、タイヤ周方向に対するセンターラグ溝331の傾斜方向が、ミドル陸部32のミドルラグ溝321A、321Bの傾斜方向に対して逆方向である。また、センター主溝22に対するセンターラグ溝331の開口位置が、ミドル陸部32のミドルラグ溝321A、321Bの開口位置に対してタイヤ周方向にオフセットして配置される。また、図2の構成では、センターラグ溝331がステップ状の屈曲形状を有している。
[Center Rikubu]
As shown in FIG. 2, the
また、図2に示すように、センターブロック332が、単一のオープンサイプと、一対のクローズドサイプとを有する(図中の符号省略)。オープンサイプは、センターブロック332の中央部に配置されて、センターブロック332をタイヤ幅方向に貫通する。一対のクローズドサイプは、オープンサイプに区画されたセンターブロック332のタイヤ周方向の前後の領域にそれぞれ配置され、また、その両端部がセンターブロック332内で終端する。
Also, as shown in FIG. 2, the
[効果]
以上説明したように、この空気入りタイヤ1は、タイヤ周方向に延在する複数の主溝21、22と、主溝21、22のうちタイヤ幅方向の最外側にあるショルダー主溝21に区画されて成るショルダー陸部31およびミドル陸部32とを備える(図2参照)。また、ショルダー陸部31が、タイヤ周方向に延在する単一の周方向細溝311と、タイヤ接地端Tおよび周方向細溝311を接続する複数の外側ショルダーラグ溝312と、ショルダー主溝21および周方向細溝311を接続する複数の内側ショルダーラグ溝313と、外側ショルダーラグ溝312および周方向細溝311に区画されて成る複数の外側ショルダーブロック314と、内側ショルダーラグ溝313および周方向細溝311に区画され成る複数の内側ショルダーブロック315とを備える(図3参照)。また、1つの外側ショルダーブロック314が、3つの内側ショルダーブロック315に対して周方向細溝311を挟んで対向する。また、内側ショルダーブロック315の最大接地長さL15と最大接地幅W15とが、1.10≦L15/W15≦1.50の関係を有する(図4参照)。
[effect]
As described above, the
上記の構成では、(1)ショルダー陸部31が、外側ショルダーラグ溝312および内側ショルダーラグ溝313を備えるので、ショルダー陸部31のエッジ成分が確保されて、タイヤのスノートラクション性能が向上する。また、(2)内側ショルダーブロック315が長尺な外側ショルダーブロック314に対して周方向細溝311を挟んで対向するので、タイヤ接地時にて周方向細溝311が閉塞したときに、内側ショルダーブロック315が高い周方向剛性をもつ外側ショルダーブロック314に支持される。これにより、内側ショルダーブロック315が補強されて、内側ショルダーブロック315のヒール・アンド・トゥ摩耗(ブロックエッジ部の偏摩耗およびサイプを起点とした偏摩耗を含む。)が抑制される。また、(3)内側ショルダーブロック315がタイヤ周方向に長尺な形状を有するので、内側ショルダーブロック315の周方向剛性が確保されて、内側ショルダーブロック315のヒール・アンド・トゥ摩耗が抑制される。これらにより、タイヤの耐偏摩耗性能とスノートラクション性能とが両立する利点がある。
In the above configuration, (1) the
また、この空気入りタイヤ1では、周方向細溝311の最大溝幅W11が、ショルダー陸部31の最大接地幅Wb1に対して0.025≦W11/Wb1≦0.045の関係を有する(図4参照)。上記下限により、周方向細溝311の溝としての機能が確保される利点がある。上記上限により、タイヤ接地時に周方向細溝311が適正に閉塞して、外側ショルダーブロック314による内側ショルダーブロック315の補強作用が確保される利点がある。
Further, in the
また、この空気入りタイヤ1では、周方向細溝311が、タイヤ幅方向に振幅をもつジグザグ形状を有する(図4参照)。かかる構成では、タイヤ接地時に周方向細溝311が閉塞したときにタイヤ周方向への噛み合い力が生じるため、外側ショルダーブロック314による内側ショルダーブロック315の補強作用が効果的に高まる利点がある。また、周方向細溝311のタイヤ周方向へのエッジ成分が増加して、タイヤのスノートラクション性が向上する利点がある。
Further, in the
また、この空気入りタイヤ1では、周方向細溝311に対する外側ショルダーラグ溝312の開口幅W12が、周方向細溝311に対する内側ショルダーラグ溝313の開口幅W13に対して1.50≦W12/W13≦2.20の関係を有する(図5参照)。これにより、周方向細溝311に区画されたタイヤ接地端T側の領域の溝開口幅の総和とタイヤ赤道面CL側の溝開口幅の総和とがバランスする利点がある。
In the
また、この空気入りタイヤ1では、内側ショルダーラグ溝313が、周方向細溝311に対する接続部に形成された底上部3131を有する(図6参照)。これにより、内側ショルダーブロック315の剛性が補強される利点がある。
In addition, in the
また、この空気入りタイヤ1では、外側ショルダーブロック314が、サイプあるいは溝により分断されていない、タイヤ周方向に連続した踏面を有する。これにより、外側ショルダーブロック314の剛性が確保される利点がある。
Further, in the
また、この空気入りタイヤ1では、外側ショルダーブロック314の最大接地長さL14と最大接地幅W14とが、2.70≦L14/W14≦3.30の関係を有する(図4参照)。これにより、外側ショルダーブロック314の周方向剛性が確保されて、外側ショルダーブロック314のヒール・アンド・トゥ摩耗が抑制される利点がある。
Further, in the
また、この空気入りタイヤ1では、3つの内側ショルダーブロック315のうちタイヤ周方向の前後に配置された1つの内側ショルダーブロック315と隣り合う2つの外側ショルダーブロック314とのタイヤ周方向における対向長さLd1、Ld2の和が、内側ショルダーブロック315の周方向長さL15に対して0.40≦(Ld1+Ld2)/L15の関係を有する(図5参照)。これにより、タイヤ接地時にて、1つの内側ショルダーブロック315が隣り合う2つの外側ショルダーブロック314により適正に支持される利点がある。
Also, in the
また、この空気入りタイヤ1では、外側ショルダーブロック314と内側ショルダーブロック315とのタイヤ幅方向におけるオーバーラップ量Ddが、内側ショルダーブロック315の最大接地幅W15に対して0.050≦Dd/W15の関係を有する(図5参照)。これにより、タイヤ接地時にて周方向細溝311が閉塞したときにおける、内側ショルダーブロック315と外側ショルダーブロック314との接触幅が確保される利点がある。
In the
また、この空気入りタイヤ1では、ミドル陸部32が、ミドル陸部32をタイヤ幅方向に貫通する複数のミドルラグ溝321A、321Bを備える(図2参照)。また、ミドルラグ溝321A、321Bが、タイヤ赤道面CL側に向かって溝幅を狭めた形状を有する(図7参照)。また、ミドルラグ溝321A、321Bのタイヤ赤道面CL側の開口幅W21cとタイヤ接地端T側の開口幅W21tとが、0.30≦W21c/W21t≦0.60の関係を有する。かかる構成では、ミドルラグ溝321A、321Bがタイヤ赤道面CL側に向かって溝幅を狭めた形状を有することにより、ミドルブロック322の剛性が適切に補強されて、ミドルブロック322ヒール・アンド・トゥ摩耗が抑制される利点がある。
Further, in the
また、この空気入りタイヤ1では、ミドル陸部32が、ミドル陸部32をタイヤ幅方向に貫通する第一および第二のミドルラグ溝321A、321Bを備える(図3参照)。また、第一ミドルラグ溝321Aのタイヤ接地端T側の開口部が、タイヤ幅方向視にてショルダー陸部31の外側ショルダーラグ溝312に対してオフセットした位置に配置される。また、第二ミドルラグ溝321Bのタイヤ接地端T側の開口部が、タイヤ幅方向視にてショルダー陸部31の外側ショルダーラグ溝312に対してオーバーラップする位置に配置される。また、第一ミドルラグ溝321Aの最大溝深さH21Aが、第二ミドルラグ溝321Bの最大溝深さH21Bに対してH21B<H21Aの関係を有する。かかる構成では、第一および第二のミドルラグ溝321A、321Bの最大溝深さH21A、H21Bが幅広な外側ショルダーラグ溝312との位置関係に応じて適正化されるので、ショルダー陸部31およびミドル陸部32における周方向剛性が均一化される利点がある。
Further, in the
また、この空気入りタイヤ1では、ミドル陸部32の最大接地幅Wb2が、ショルダー陸部31の最大接地幅Wb1に対して0.75≦Wb2/Wb1≦0.87の関係を有する(図2参照)。これにより、ミドル陸部32の最大接地幅Wb2が適正化される利点がある。
Further, in the
また、この空気入りタイヤ1では、ショルダー主溝21が、長尺部と短尺部とを交互に接続して成るジグザグ形状を有する。また、長尺部の周方向長さLg1が、ジグザグ形状の波長λ1に対して0.60≦Lg1/λ1≦0.90の関係を有する(図3参照)。これにより、トレンド部ショルダー領域の剛性が増加して、陸部31、32のヒール・アンド・トゥ摩耗が抑制される利点がある。
Further, in the
また、この空気入りタイヤ1では、センター主溝22が、略同一長さの直線部を接続して成るジグザグ形状を有すると共に、直線部の周方向長さLg2が、ジグザグ形状の波長λ2に対して0.30≦Lg2/λ2≦0.70の関係を有する(図3参照)。これにより、トレッド部ショルダー領域のトラクション性が向上して、タイヤのスノートラクション性能が効果的に高まる利点がある。
Further, in this
また、この空気入りタイヤ1は、車両のドライブ軸に装着される重荷重用タイヤである(図1参照)。かかる重荷重用タイヤを適用対象とすることにより、タイヤのスノートラクション性能および耐偏摩耗性能の向上作用を効果的に得られる利点がある。
Also, this
図9および図10は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。 9 and 10 are charts showing the results of performance tests of the pneumatic tire according to the embodiment of the invention.
この性能試験では、複数種類の試験タイヤについて、(1)スノートラクション性能および(2)耐偏摩耗性能に関する評価が行われた。また、タイヤサイズ11R22.5の試験タイヤがJATMAの規定リムに組み付けられ、この試験タイヤにJATMAの規定内圧および規定荷重が付与される。また、試験タイヤが、試験車両である2-D(駆動二輪)のトラクターヘッドのドライブ軸に装着される。 In this performance test, multiple types of test tires were evaluated for (1) snow traction performance and (2) uneven wear resistance performance. Also, a test tire having a tire size of 11R22.5 is mounted on a JATMA specified rim, and the JATMA specified internal pressure and load are applied to the test tire. Also, the test tire is mounted on the drive shaft of the 2-D (two-wheel drive) tractor head, which is the test vehicle.
(1)スノートラクション性能に関する評価は、試験車両が雪路試験場のスノー路面を走行し、走行速度が5[km/h]から20[km/h]に至るまでの加速タイムが測定される。そして、この測定結果に基づいて従来例を基準(100)とした指数評価が行われる。この評価は、数値が大きいほど好ましい。 (1) Snow traction performance is evaluated by running a test vehicle on a snowy road surface of a snow road test site and measuring the acceleration time from 5 [km/h] to 20 [km/h]. Then, based on this measurement result, index evaluation is performed with the conventional example as the standard (100). This evaluation is so preferable that the numerical value is large.
(2)耐偏摩耗性能に関する評価は、試験車両が所定の舗装路を3万[km]走行した後に、ヒール・アンド・トゥ摩耗量が測定されて指数評価が行われる。この評価は従来例を基準(100)とした指数評価により行われ、その数値が大きいほど好ましい。 (2) Evaluation of uneven wear resistance performance is performed by measuring the heel-and-toe wear amount after the test vehicle has traveled 30,000 [km] on a predetermined paved road and performing an index evaluation. This evaluation is performed by index evaluation with the conventional example as a standard (100), and the larger the value, the better.
実施例の試験タイヤは、図1および図2の構成を備え、ジグザグ形状を有する4本の主溝21、22と、これらの主溝21、22に区画された5列の陸部31~33とを備える。また、主溝21、22の最大溝幅Wg1、Wg2が8.3[mm]であり、主溝21、22の最大溝深さHg1、Hg2が21.4[mm]である。また、タイヤ接地幅TWが240[mm]であり、ショルダー陸部31の最大接地幅Wb1が53.5[mm]である。また、ショルダー主溝21のジグザグ形状の波長λ1が45.1[mm]である。また、第一ミドルラグ溝321Aの最大溝深さH21Aが12.4[mm]である。
The test tire of the example has the configuration shown in FIGS. and The maximum groove widths Wg1 and Wg2 of the
従来例の試験タイヤは、図1および図2の構成において、ショルダー陸部31の内側ショルダーブロック315がタイヤ幅方向に長尺な構造を有する。
1 and 2, the conventional test tire has a structure in which the
試験結果が示すように、実施例の試験タイヤでは、タイヤのスノートラクション性能および耐偏摩耗性能が両立することが分かる。 As can be seen from the test results, the test tires of the examples have both snow traction performance and uneven wear resistance performance.
1 空気入りタイヤ;11 ビードコア;12 ビードフィラー;121 ローアーフィラー;122 アッパーフィラー;13 カーカス層;14 ベルト層;141 高角度ベルト;142、143 交差ベルト;144 ベルトカバー;15 トレッドゴム;16 サイドウォールゴム;17 リムクッションゴム;21 ショルダー主溝;22 センター主溝;31 ショルダー陸部;311 周方向細溝;312 外側ショルダーラグ溝;3121 底上部;313 内側ショルダーラグ溝;3131 底上部;314 外側ショルダーブロック;315 内側ショルダーブロック;316~318 サイプ;32 ミドル陸部;33 センター陸部;321A 第一ミドルラグ溝;321B 第二ミドルラグ溝;3211 底上部;322 ミドルブロック;323、324 サイプ;331 センターラグ溝;332 センターブロック 1 pneumatic tire; 11 bead core; 12 bead filler; 121 lower filler; 122 upper filler; 13 carcass layer; Rubber; 17 rim cushion rubber; 21 shoulder main groove; 22 center main groove; 31 shoulder land portion; 311 circumferential narrow groove; 312 outer shoulder lug groove; 32 middle land part; 33 center land part; 321A first middle lug groove; 321B second middle lug groove; 3211 bottom upper part; 322 middle block; Lug groove; 332 center block
Claims (16)
前記ショルダー陸部が、タイヤ周方向に延在する単一の周方向細溝と、タイヤ接地端および前記周方向細溝を接続する複数の外側ショルダーラグ溝と、前記ショルダー主溝および前記周方向細溝を接続する複数の内側ショルダーラグ溝と、前記外側ショルダーラグ溝および前記周方向細溝に区画されて成る複数の外側ショルダーブロックと、前記内側ショルダーラグ溝および前記周方向細溝に区画され成る複数の内側ショルダーブロックとを備え、
1つの前記外側ショルダーブロックが、3つの前記内側ショルダーブロックに対して前記周方向細溝を挟んで対向し、
前記内側ショルダーブロックの最大接地長さL15と最大接地幅W15とが、1.10≦L15/W15≦1.50の関係を有し、且つ、
前記周方向細溝の最大溝幅W11が、前記ショルダー陸部の最大接地幅Wb1に対して0.025≦W11/Wb1≦0.045の関係を有することを特徴とする空気入りタイヤ。 A pneumatic tire comprising a plurality of main grooves extending in the tire circumferential direction, and a shoulder land portion and a middle land portion defined by the outermost shoulder main grooves in the tire width direction of the main grooves. ,
The shoulder land portion includes a single circumferential narrow groove extending in the tire circumferential direction, a plurality of outer shoulder lug grooves connecting the tire contact edge and the circumferential narrow groove, the shoulder main groove and the circumferential narrow groove. a plurality of inner shoulder lug grooves connecting the narrow grooves; a plurality of outer shoulder blocks partitioned by the outer shoulder lug grooves and the circumferential narrow grooves; and a plurality of outer shoulder blocks partitioned by the inner shoulder lug grooves and the circumferential narrow grooves. a plurality of inner shoulder blocks consisting of
one of the outer shoulder blocks faces the three inner shoulder blocks across the circumferential narrow groove ;
The maximum contact length L15 and the maximum contact width W15 of the inner shoulder blocks have a relationship of 1.10≦L15/W15≦1.50, and
A pneumatic tire , wherein the maximum groove width W11 of the circumferential narrow groove has a relationship of 0.025≦W11/Wb1≦0.045 with respect to the maximum ground contact width Wb1 of the shoulder land portion.
前記ミドルラグ溝が、タイヤ赤道面側に向かって溝幅を狭めた形状を有し、
前記ミドルラグ溝のタイヤ赤道面側の開口幅W21cとタイヤ接地端側の開口幅W21tとが、0.30≦W21c/W21t≦0.60の関係を有する請求項1~8のいずれか一つに記載の空気入りタイヤ。 the middle land portion includes a plurality of middle lug grooves penetrating the middle land portion in the tire width direction;
The middle lug groove has a shape with a groove width narrowing toward the tire equatorial plane side,
The middle lug groove according to any one of claims 1 to 8 , wherein an opening width W21c on the tire equatorial plane side and an opening width W21t on the tire grounding edge side of the middle lug groove have a relationship of 0.30≤W21c/W21t≤0.60. Pneumatic tires as described.
前記第一ミドルラグ溝のタイヤ接地端側の開口部が、タイヤ幅方向視にて前記ショルダー陸部の前記外側ショルダーラグ溝に対してオフセットした位置に配置され、
前記第二ミドルラグ溝のタイヤ接地端側の開口部が、タイヤ幅方向視にて前記ショルダー陸部の前記外側ショルダーラグ溝に対してオーバーラップする位置に配置され、且つ、
前記第一ミドルラグ溝の最大溝深さH21Aが、前記第二ミドルラグ溝の最大溝深さH21Bに対してH21B<H21Aの関係を有する請求項1~9のいずれか一つに記載の空気入りタイヤ。 the middle land portion includes first and second middle lug grooves penetrating the middle land portion in the tire width direction,
the opening of the first middle lug groove on the side of the tire grounding edge is arranged at a position offset from the outer shoulder lug groove of the shoulder land portion as viewed in the tire width direction,
The opening of the second middle lug groove on the side of the tire contact edge is arranged at a position overlapping the outer shoulder lug groove of the shoulder land portion as viewed in the tire width direction, and
The pneumatic tire according to any one of claims 1 to 9 , wherein the maximum groove depth H21A of the first middle lug grooves has a relationship of H21B<H21A with respect to the maximum groove depth H21B of the second middle lug grooves. .
前記ショルダー陸部が、タイヤ周方向に延在する単一の周方向細溝と、タイヤ接地端および前記周方向細溝を接続する複数の外側ショルダーラグ溝と、前記ショルダー主溝および前記周方向細溝を接続する複数の内側ショルダーラグ溝と、前記外側ショルダーラグ溝および前記周方向細溝に区画されて成る複数の外側ショルダーブロックと、前記内側ショルダーラグ溝および前記周方向細溝に区画され成る複数の内側ショルダーブロックとを備え、
1つの前記外側ショルダーブロックが、3つの前記内側ショルダーブロックに対して前記周方向細溝を挟んで対向し、
前記内側ショルダーブロックの最大接地長さL15と最大接地幅W15とが、1.10≦L15/W15≦1.50の関係を有し、且つ、
前記周方向細溝に対する前記外側ショルダーラグ溝の開口幅W12が、前記周方向細溝に対する前記内側ショルダーラグ溝の開口幅W13に対して1.50≦W12/W13≦2.20の関係を有することを特徴とする空気入りタイヤ。 A pneumatic tire comprising a plurality of main grooves extending in the tire circumferential direction, and a shoulder land portion and a middle land portion defined by the outermost shoulder main grooves in the tire width direction of the main grooves. ,
The shoulder land portion includes a single circumferential narrow groove extending in the tire circumferential direction, a plurality of outer shoulder lug grooves connecting the tire contact edge and the circumferential narrow groove, the shoulder main groove and the circumferential narrow groove. a plurality of inner shoulder lug grooves connecting the narrow grooves; a plurality of outer shoulder blocks partitioned by the outer shoulder lug grooves and the circumferential narrow grooves; and a plurality of outer shoulder blocks partitioned by the inner shoulder lug grooves and the circumferential narrow grooves. a plurality of inner shoulder blocks consisting of
one of the outer shoulder blocks faces the three inner shoulder blocks across the circumferential narrow groove ;
The maximum contact length L15 and the maximum contact width W15 of the inner shoulder blocks have a relationship of 1.10≦L15/W15≦1.50, and
The opening width W12 of the outer shoulder lug groove with respect to the circumferential narrow groove has a relationship of 1.50≦W12/W13≦2.20 with respect to the opening width W13 of the inner shoulder lug groove with respect to the circumferential narrow groove. A pneumatic tire characterized by:
前記ショルダー陸部が、タイヤ周方向に延在する単一の周方向細溝と、タイヤ接地端および前記周方向細溝を接続する複数の外側ショルダーラグ溝と、前記ショルダー主溝および前記周方向細溝を接続する複数の内側ショルダーラグ溝と、前記外側ショルダーラグ溝および前記周方向細溝に区画されて成る複数の外側ショルダーブロックと、前記内側ショルダーラグ溝および前記周方向細溝に区画され成る複数の内側ショルダーブロックとを備え、
1つの前記外側ショルダーブロックが、3つの前記内側ショルダーブロックに対して前記周方向細溝を挟んで対向し、
前記内側ショルダーブロックの最大接地長さL15と最大接地幅W15とが、1.10≦L15/W15≦1.50の関係を有し、且つ、
前記外側ショルダーブロックが、サイプあるいは溝により分断されていない、タイヤ周方向に連続した踏面を有することを特徴とする空気入りタイヤ。 A pneumatic tire comprising a plurality of main grooves extending in the tire circumferential direction, and a shoulder land portion and a middle land portion defined by the outermost shoulder main grooves in the tire width direction of the main grooves. ,
The shoulder land portion includes a single circumferential narrow groove extending in the tire circumferential direction, a plurality of outer shoulder lug grooves connecting the tire contact edge and the circumferential narrow groove, the shoulder main groove and the circumferential narrow groove. a plurality of inner shoulder lug grooves connecting the narrow grooves; a plurality of outer shoulder blocks partitioned by the outer shoulder lug grooves and the circumferential narrow grooves; and a plurality of outer shoulder blocks partitioned by the inner shoulder lug grooves and the circumferential narrow grooves. a plurality of inner shoulder blocks consisting of
one of the outer shoulder blocks faces the three inner shoulder blocks across the circumferential narrow groove ;
The maximum contact length L15 and the maximum contact width W15 of the inner shoulder blocks have a relationship of 1.10≦L15/W15≦1.50, and
A pneumatic tire , wherein the outer shoulder block has a tread that is continuous in the tire circumferential direction and is not divided by sipes or grooves .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019174605A JP7283330B2 (en) | 2019-09-25 | 2019-09-25 | pneumatic tire |
PCT/JP2020/026475 WO2021059663A1 (en) | 2019-09-25 | 2020-07-06 | Pneumatic tire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019174605A JP7283330B2 (en) | 2019-09-25 | 2019-09-25 | pneumatic tire |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021049885A JP2021049885A (en) | 2021-04-01 |
JP7283330B2 true JP7283330B2 (en) | 2023-05-30 |
Family
ID=75156825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019174605A Active JP7283330B2 (en) | 2019-09-25 | 2019-09-25 | pneumatic tire |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7283330B2 (en) |
WO (1) | WO2021059663A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009248919A (en) | 2008-04-10 | 2009-10-29 | Yokohama Rubber Co Ltd:The | Pneumatic tire |
JP2013220759A (en) | 2012-04-17 | 2013-10-28 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
US20150251500A1 (en) | 2012-11-19 | 2015-09-10 | Continental Reifen Deutschland Gmbh | Pneumatic vehicle tire |
JP2015224002A (en) | 2014-05-29 | 2015-12-14 | 住友ゴム工業株式会社 | Pneumatic tire |
JP2016064780A (en) | 2014-09-25 | 2016-04-28 | 住友ゴム工業株式会社 | Pneumatic tire |
JP2019137339A (en) | 2018-02-14 | 2019-08-22 | 横浜ゴム株式会社 | Pneumatic tire |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0485106A (en) * | 1990-07-27 | 1992-03-18 | Bridgestone Corp | Pneumatic tire |
JPH04365608A (en) * | 1991-06-12 | 1992-12-17 | Yokohama Rubber Co Ltd:The | Pneumatic studless tire for heavy load |
JP3270521B2 (en) * | 1992-06-04 | 2002-04-02 | 株式会社ブリヂストン | Blocks and pneumatic tires |
JPH09193617A (en) * | 1996-01-24 | 1997-07-29 | Bridgestone Corp | Pneumatic radial tire |
-
2019
- 2019-09-25 JP JP2019174605A patent/JP7283330B2/en active Active
-
2020
- 2020-07-06 WO PCT/JP2020/026475 patent/WO2021059663A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009248919A (en) | 2008-04-10 | 2009-10-29 | Yokohama Rubber Co Ltd:The | Pneumatic tire |
JP2013220759A (en) | 2012-04-17 | 2013-10-28 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
US20150251500A1 (en) | 2012-11-19 | 2015-09-10 | Continental Reifen Deutschland Gmbh | Pneumatic vehicle tire |
JP2015224002A (en) | 2014-05-29 | 2015-12-14 | 住友ゴム工業株式会社 | Pneumatic tire |
JP2016064780A (en) | 2014-09-25 | 2016-04-28 | 住友ゴム工業株式会社 | Pneumatic tire |
JP2019137339A (en) | 2018-02-14 | 2019-08-22 | 横浜ゴム株式会社 | Pneumatic tire |
Also Published As
Publication number | Publication date |
---|---|
WO2021059663A1 (en) | 2021-04-01 |
JP2021049885A (en) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014073285A1 (en) | Pneumatic tire | |
JP2018135064A (en) | Pneumatic tire | |
JP2022126525A (en) | tire | |
US11872848B2 (en) | Pneumatic tire | |
JP7147354B2 (en) | pneumatic tire | |
JP7276045B2 (en) | pneumatic tire | |
JP7283331B2 (en) | pneumatic tire | |
EP3882052B1 (en) | Pneumatic tire | |
JP2022056696A (en) | tire | |
JP7115132B2 (en) | pneumatic tire | |
JP7510056B2 (en) | tire | |
JP7283330B2 (en) | pneumatic tire | |
JP2022126526A (en) | tire | |
JP7115077B2 (en) | pneumatic tire | |
EP3882053A1 (en) | Pneumatic tire | |
JP7323789B2 (en) | pneumatic tire | |
JP2019194038A (en) | Pneumatic tire | |
JP7457246B2 (en) | tire | |
US11633988B2 (en) | Pneumatic tire | |
JP7534591B2 (en) | tire | |
JP7549201B2 (en) | tire | |
JP7323790B2 (en) | pneumatic tire | |
JP7251360B2 (en) | pneumatic tire | |
JP7215400B2 (en) | pneumatic tire | |
JP7298381B2 (en) | pneumatic tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230418 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230501 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7283330 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |