JP7278325B2 - Silicon nitride sintered body - Google Patents
Silicon nitride sintered body Download PDFInfo
- Publication number
- JP7278325B2 JP7278325B2 JP2021071651A JP2021071651A JP7278325B2 JP 7278325 B2 JP7278325 B2 JP 7278325B2 JP 2021071651 A JP2021071651 A JP 2021071651A JP 2021071651 A JP2021071651 A JP 2021071651A JP 7278325 B2 JP7278325 B2 JP 7278325B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- sintered body
- nitride sintered
- voids
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Ceramic Products (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Description
本発明は、回路基板、放熱部材等として使用される窒化ケイ素焼結体に関するものである。 TECHNICAL FIELD The present invention relates to a silicon nitride sintered body used as a circuit board, a heat radiation member, and the like.
回路基板、放熱部材等として使用される絶縁性セラミックス(焼結体)の材料としては、窒化アルミニウム(AlN)や、窒化ケイ素(Si3N4 )が挙げられる。
窒化アルミニウムは、熱伝導率が150W/m・K以上と高いが、機械的強度が低いため、クラックが生じやすく使いづらい。
窒化ケイ素は、熱伝導率が窒化アルミニウムほどではないが50W/m・K以上はあるうえ、機械的強度が高いため、クラックが生じにくく薄型化ができる等の利点を有する。そのため、近年、窒化ケイ素焼結体の開発及び採用が進んでいる。
Aluminum nitride (AlN) and silicon nitride (Si 3 N 4 ) are examples of materials for insulating ceramics (sintered bodies) used as circuit boards, heat radiating members, and the like.
Aluminum nitride has a high thermal conductivity of 150 W/m·K or more, but has a low mechanical strength, so it is prone to cracks and is difficult to use.
Silicon nitride has a thermal conductivity of 50 W/m·K or more, although it is not as good as that of aluminum nitride, and has high mechanical strength. Therefore, in recent years, the development and adoption of silicon nitride sintered bodies are progressing.
特許文献1には、窒化ケイ素結晶粒の粒界相に存在する結晶相がX線回折ピークの強度比で(窒化ケイ素を1として)0.05~0.40である窒化ケイ素焼結体、及び、その材料のグリーンシートを、窒素雰囲気中にて1600~1900℃で焼結した後、1100~1700℃で残留ガラス相を除去する製造方法が記載されている。
特許文献2には、回路部材等の接合性を改善し、厚さ3mmの基板で測定した絶縁破壊電圧が36~47kV/mm(同文献の表6)である窒化ケイ素基板、及び、その材料のグリーンシートを、成分の揮発を抑制するために酸化マグネシウム及び酸化エルビウムの共材を配置した焼成炉に入れて、1750℃で3~5時間焼結する製造方法が記載されている。
In
特許文献3には、気孔率0~1.0%、ポア最大直径0.2~3μm、厚さ0.15~0.635mmの基板で測定した絶縁耐力が17~29kV/mm(同文献の表7,8)である窒化ケイ素基板、及び、その材料のグリーンシートを、非酸化性雰囲気中にて1800~1900℃で焼結する製造方法が記載されている。
In
特許文献4には、反りが2.0μm/mm以下である窒化ケイ素基板、及び、その材料のグリーンシートを、窒素加圧雰囲気中にて1800~2000℃で8~18時間焼結した後、荷重を印加しながら1550~1700℃で熱処理して反りを抑制する製造方法が記載されている。 In Patent Document 4, after sintering a silicon nitride substrate having a warp of 2.0 μm / mm or less and a green sheet of the material at 1800 to 2000 ° C. for 8 to 18 hours in a nitrogen pressurized atmosphere, A manufacturing method is described in which warpage is suppressed by heat treatment at 1550 to 1700° C. while applying a load.
特許文献5には、反りが小さく高い強度を有する窒化ケイ素基板、及び、その材料のグリーンシートを、窒化ケイ素及びマグネシアの揮発を抑制するために酸化マグネシウム等の詰め粉を配置した焼成容器に入れて、1860℃で5時間焼結する製造方法が記載されている。 In Patent Document 5, a silicon nitride substrate having small warpage and high strength and a green sheet of the material are placed in a firing container in which filling powder such as magnesium oxide is arranged to suppress volatilization of silicon nitride and magnesia. and sintering at 1860° C. for 5 hours.
特許文献6には、空孔割合0.1~4%、厚さ0.15~0.25mmの基板で測定した絶縁破壊の強さが32~36kV/mm(同文献の表3)である窒化ケイ素基板、及び、その材料のグリーンシートを、窒素雰囲気中にて1850~1900℃で3~5時間焼結する製造方法が記載されている。 In Patent Document 6, the dielectric breakdown strength measured with a substrate having a void ratio of 0.1 to 4% and a thickness of 0.15 to 0.25 mm is 32 to 36 kV / mm (Table 3 of the same document). A manufacturing method is described in which a silicon nitride substrate and a green sheet of the material are sintered at 1850-1900° C. for 3-5 hours in a nitrogen atmosphere.
しかし、特許文献1~6のいずれにも、ボイドの凹凸度(穴を含む面積/包絡面積)について検討された窒化ケイ素焼結体は記載されていない。特許文献3には、上記のとおり、気孔率0~1.0%、ポア最大直径0.2~3μmに制御することにより、絶縁耐力の向上、体積固有抵抗値の向上を図ることができることが記載されているが、気孔の凹凸度についての言及はない。
However, none of
これに対して、本発明者の検討によると、気孔率と、ポア最大直径の制御だけでは、絶縁耐力の向上に限界があること、そして、凹凸度が1に近いボイドが一定以上を占めていることにより、窒化ケイ素焼結体の反りが小さくなり、絶縁破壊電圧がより高くなることが分かってきた。本発明は、この検討をさらに鋭意進めてなされたものである。 On the other hand, according to the study of the present inventor, there is a limit to the improvement of dielectric strength only by controlling the porosity and the maximum pore diameter, and voids with a degree of unevenness close to 1 occupy a certain amount or more. It has been found that the warp of the silicon nitride sintered body is reduced and the dielectric breakdown voltage is further increased by the presence of the silicon nitride sintered body. The present invention has been made as a result of further intensive studies on this matter.
[1]窒化ケイ素焼結体の表面を50μm以上研磨した研磨面の任意の少なくとも一つの64μm×48μmのエリアにおいて、ボイドの輪郭線内の面積をボイドの包絡線内の面積で除して算出される凹凸度が0.9以上であるボイドの個数が、ボイドの全個数の10%以上を占め、かつ、当該凹凸度が0.7未満であるボイドの個数が、ボイドの全個数の43%以下を占めている窒化ケイ素焼結体。
[2]窒化ケイ素焼結体の表面を50μm以上研磨した研磨面の任意の少なくとも一つの64μm×48μmのエリアにおいて、ボイドの輪郭線内の面積をボイドの包絡線内の面積で除して算出される凹凸度が0.8以上であるボイドの個数が、ボイドの全個数の30%以上を占め、かつ、当該凹凸度が0.7未満であるボイドの個数が、ボイドの全個数の43%以下を占めている窒化ケイ素焼結体。
[3]前記エリアにおいて、ボイドの平面投影面積率が1.0%以下であることが好ましい。
[4]上記1~3のいずれか一項に記載の窒化ケイ素焼結体を用いた回路基板。
[5]上記1~3のいずれか一項に記載の窒化ケイ素焼結体を用いた放熱部材。
[6]上記1~3のいずれか一項に記載の窒化ケイ素焼結体を用いた絶縁部材。
[1] Calculated by dividing the area within the outline of the void by the area within the envelope of the void in at least one arbitrary 64 μm × 48 μm area of the polished surface obtained by polishing the surface of the silicon nitride sintered body to 50 μm or more. The number of voids with an unevenness of 0.9 or more accounts for 10% or more of the total number of voids, and the number of voids with an unevenness of less than 0.7 accounts for 43 of the total number of voids. % or less silicon nitride sintered body.
[2] Calculated by dividing the area within the outline of the void by the area within the envelope of the void in at least one arbitrary 64 μm × 48 μm area of the polished surface obtained by polishing the surface of the silicon nitride sintered body to 50 μm or more. The number of voids with an unevenness of 0.8 or more accounts for 30% or more of the total number of voids, and the number of voids with an unevenness of less than 0.7 accounts for 43 of the total number of voids. % or less silicon nitride sintered body.
[3] In the area, it is preferable that the planar projected area ratio of voids is 1.0% or less.
[4] A circuit board using the silicon nitride sintered body according to any one of 1 to 3 above.
[5] A heat dissipating member using the silicon nitride sintered body according to any one of [1] to [3] above.
[6] An insulating member using the silicon nitride sintered body according to any one of [1] to [3] above.
[作用]
凹凸度が0.9以上のボイドが10%以上を占めていることにより、又は、凹凸度が0.8以上のボイドが30%以上を占めていることにより、電圧印加時にボイド形状の凹凸部において発生する部分放電が、凹凸が小さいために発生しにくくなって減少し、絶縁破壊電圧が高くなる。
また、ボイドの平面投影面積率が1.0%以下であることにより、窒化ケイ素焼結体の反りが小さくなる。
[Action]
Voids with a degree of unevenness of 0.9 or more account for 10% or more, or voids with a degree of unevenness of 0.8 or more account for 30% or more, so that void-shaped uneven portions are formed when a voltage is applied. Since the unevenness is small, the partial discharge that occurs in is less likely to occur, and the dielectric breakdown voltage increases.
In addition, when the planar projected area ratio of the voids is 1.0% or less, the warpage of the silicon nitride sintered body is reduced.
本発明によれば、窒化ケイ素焼結体の絶縁破壊電圧が高くなる。 According to the present invention, the dielectric breakdown voltage of the silicon nitride sintered body is increased.
本発明の窒化ケイ素焼結体は、窒化ケイ素焼結体の表面を50μm研磨した研磨面の任意の少なくとも一つの64μm×48μmのエリアにおいて、ボイドの輪郭線内の面積をボイドの包絡線内の面積で除して算出される凹凸度が0.9以上であるボイドの個数が、ボイドの全個数の10%以上を占めていること、あるいは、当該凹凸度が0.8以上であるボイドの個数が、ボイドの全個数の30%以上を占めていることを特徴とする。上記手段に例示した好ましい態様に加え、次の好ましい形態を例示する。 In the silicon nitride sintered body of the present invention, the surface of the silicon nitride sintered body is polished by 50 μm, and in at least one arbitrary area of 64 μm × 48 μm on the polished surface, the area within the outline of the void is The number of voids with an unevenness of 0.9 or more calculated by dividing by the area accounts for 10% or more of the total number of voids, or the number of voids with an unevenness of 0.8 or more The number of voids is characterized by accounting for 30% or more of the total number of voids. In addition to the preferred modes exemplified in the above means, the following preferred modes are exemplified.
1.製造方法
窒化ケイ素焼結体の製造方法において、窒化ケイ素粉末と焼結助剤との混合物を焼結する焼結工程は、1930≦焼成温度(℃)+焼成時間(hr)×50≦2200とし、焼結助剤で形成される粒界相をアモルファス構造とすることが好ましい。
半導体検出器を備えたX線回折装置を使用して得られたX線回折パターンにおいて粒界相に由来するピークが検出されないことが好ましい。
前記焼結工程において、焼成用の閉鎖状態の筐体内に、製造する窒化ケイ素焼結体とは別体の予め焼結した板状の窒化ケイ素焼結体を配置することが好ましい。
前記焼結助剤として少なくともMgO又はMgSiN2を含有し、SrOを含有しないことが好ましい。
1. Manufacturing method In the manufacturing method of the silicon nitride sintered body, the sintering step of sintering the mixture of the silicon nitride powder and the sintering aid is 1930 ≤ sintering temperature (°C) + sintering time (hr) x 50 ≤ 2200. It is preferable that the grain boundary phase formed by the sintering aid has an amorphous structure.
It is preferable that no peaks derived from the grain boundary phase are detected in the X-ray diffraction pattern obtained using an X-ray diffraction apparatus equipped with a semiconductor detector.
In the sintering step, it is preferable to place a previously sintered plate-shaped silicon nitride sintered body separate from the silicon nitride sintered body to be manufactured in the closed casing for firing.
Preferably, the sintering aid contains at least MgO or MgSiN 2 and does not contain SrO.
1930≦焼成温度(℃)+焼成時間(hr)×50≦2200とすることにより、焼結が実現されるとともに、焼結中のSiO2の揮発が抑制されて、粒界相の結晶化が抑制される。焼結助剤で形成される粒界相をアモルファス構造とすることにより、焼結後の冷却時に、体積収縮が小さくなるとともに、焼結助剤がより低温まで液相として存在して窒化ケイ素結晶粒間の狭い部分まで行き渡るため、窒化ケイ素焼結体中のボイドが少なくなり、窒化ケイ素焼結体の内部応力が減少して反りが小さくなる。また、ボイド形状の凹凸が小さくなる。
また、焼結工程において、焼成用の閉鎖状態の筐体内に、製造する窒化ケイ素焼結体とは別体の予め焼結した板状の窒化ケイ素焼結体(以下「ダミー窒化ケイ素焼結体」という。)を配置すると、焼成時にダミー窒化ケイ素焼結体のSiO2が揮発することにより、製造する窒化ケイ素焼結体のSiO2の揮発が抑制されるので、これによっても結晶化が抑制され、また、焼結密度の低下が防止される。ダミー窒化ケイ素焼結体は、製造する窒化ケイ素焼結体と、同一組成である必要はないが、同一助剤系であることが好ましい。
また、焼結助剤としてアルカリ土類金属を添加することにより、液相の融点を下げる効果がある。しかしながら、アルカリ土類金属であってもSrOは、MgO又はMgSiN2よりも揮発しにくいことから焼成後に残存してしまい、熱伝導を阻害する要因になってしまうため、少なくともMgO又はMgSiN2を含有し、SrOを含有しないことにより、高熱伝導率の窒化ケイ素焼結体を得ることができる。
また、窒化ケイ素焼結体が相対密度98%以上に緻密化することにより、曲げ強度が高くなり、絶縁破壊電圧も高くなる。
By setting 1930 ≤ sintering temperature (°C) + sintering time (hr) x 50 ≤ 2200, sintering is realized and volatilization of SiO 2 during sintering is suppressed to prevent crystallization of the grain boundary phase. Suppressed. By making the grain boundary phase formed by the sintering aid into an amorphous structure, the volume shrinkage is reduced during cooling after sintering, and the sintering aid exists as a liquid phase even at a lower temperature to form silicon nitride crystals. Since it spreads to narrow portions between grains, the voids in the silicon nitride sintered body are reduced, the internal stress of the silicon nitride sintered body is reduced, and the warp is reduced. Moreover, the unevenness of the void shape is reduced.
In the sintering process, a pre-sintered plate-shaped silicon nitride sintered body separate from the silicon nitride sintered body to be manufactured (hereinafter referred to as "dummy silicon nitride sintered body ), the volatilization of the SiO 2 of the dummy silicon nitride sintered body during firing suppresses the volatilization of the SiO 2 of the silicon nitride sintered body to be produced, which also suppresses crystallization. Also, a decrease in sintered density is prevented. The dummy silicon nitride sintered body does not need to have the same composition as the silicon nitride sintered body to be produced, but preferably has the same auxiliary agent system.
Also, the addition of an alkaline earth metal as a sintering aid has the effect of lowering the melting point of the liquid phase. However, even if it is an alkaline earth metal, SrO is more difficult to volatilize than MgO or MgSiN2 , so it remains after firing and becomes a factor that hinders heat conduction, so at least MgO or MgSiN2 is included. However, by not containing SrO, a silicon nitride sintered body with high thermal conductivity can be obtained.
Further, by densifying the silicon nitride sintered body to a relative density of 98% or more, the bending strength is increased and the dielectric breakdown voltage is also increased.
2.粒界相
窒化ケイ素焼結体は、窒化ケイ素と、焼結助剤で形成される粒界相とからなり、前記粒界相がアモルファス構造であることが好ましい。
前記粒界相は、少なくともMgO又はMgSiN2を含有し、SrOを含有しないことが好ましい。
前記粒界相は、少なくともMg、稀土類元素(RE)、Siを含むアモルファス構造であることが好ましい。
半導体検出器を備えたX線回折装置を使用して得られたX線回折パターンにおいて回折角2θが28°~32°の範囲に存在する粒界相における結晶化合物のピークのうち、最も大きい積分強度が、窒化ケイ素(101)面の積分強度に対して5%以下であるものを、アモルファス構造と定義する。
窒化ケイ素焼結体の表面を50μm以上研磨した研磨面の任意の少なくとも一つの64μm×48μmのエリアにおいて、ボイドの平面投影面積率が1.0%以下であることが好ましい。
窒化ケイ素焼結体の熱伝導率が80W/m・K以上であることが好ましい。
2. Grain Boundary Phase The silicon nitride sintered body is composed of silicon nitride and a grain boundary phase formed by a sintering aid, and the grain boundary phase preferably has an amorphous structure.
The grain boundary phase preferably contains at least MgO or MgSiN 2 and does not contain SrO.
The grain boundary phase preferably has an amorphous structure containing at least Mg, a rare earth element (RE), and Si.
The largest integral of the peaks of the crystalline compound in the grain boundary phase existing in the diffraction angle 2θ in the range of 28° to 32° in the X-ray diffraction pattern obtained using an X-ray diffraction device equipped with a semiconductor detector. A structure having an intensity of 5% or less relative to the integrated intensity of the silicon nitride (101) plane is defined as an amorphous structure.
In at least one arbitrary area of 64 μm×48 μm on the polished surface obtained by polishing the surface of the silicon nitride sintered body by 50 μm or more, the planar projected area ratio of voids is preferably 1.0% or less.
The silicon nitride sintered body preferably has a thermal conductivity of 80 W/m·K or more.
粒界相がアモルファス構造であることにより、焼結後の冷却時に、体積収縮が小さくなるとともに、焼結助剤がより低温まで液相として存在して窒化ケイ素結晶粒間の狭い部分まで行き渡るため、窒化ケイ素焼結体中のボイドが少なくなり、窒化ケイ素焼結体の内部応力が減少して反りが小さくなる。また、ボイド形状の凹凸が小さくなる。 Since the grain boundary phase has an amorphous structure, volume shrinkage is reduced during cooling after sintering, and the sintering aid exists as a liquid phase even at lower temperatures and spreads to narrow areas between silicon nitride crystal grains. , the voids in the silicon nitride sintered body are reduced, the internal stress of the silicon nitride sintered body is reduced, and the warpage is reduced. Moreover, the unevenness of the void shape is reduced.
3.反り
板状の窒化ケイ素焼結体を120℃で1時間以上保持してから25℃の平坦な試料台に載せて1分経過する以前に測定した、窒化ケイ素焼結体の上面の最高点の試料台からの高さと最低点の試料台からの高さとの差の、窒化ケイ素焼結体の最大横断長さに対する割合として算出される反りが0.2%以下であることが好ましい。
ここで、窒化ケイ素焼結体の最大横断長さとは、窒化ケイ素焼結体の板面をその縁の1点から別の1点へ横断する線分のうち最大の線分長さをいい、例えば板面が長方形の場合は対角線長さ、板面が円形の場合は直径長さである。
3. Warp The highest point of the upper surface of the silicon nitride sintered body measured before 1 minute after holding the plate-shaped silicon nitride sintered body at 120 ° C. for 1 hour or more and placing it on a flat sample stand at 25 ° C. The warpage calculated as the ratio of the difference between the height from the sample stage and the height from the lowest point from the sample stage to the maximum transverse length of the silicon nitride sintered body is preferably 0.2% or less.
Here, the maximum crossing length of the silicon nitride sintered body refers to the maximum length of a line segment that crosses the plate surface of the silicon nitride sintered body from one point on the edge to another point, For example, if the plate surface is rectangular, it is the diagonal length, and if the plate surface is circular, it is the diameter length.
上記のとおり測定した反りが0.2%以下であることにより、窒化ケイ素焼結体が回路基板、放熱部材等として使用された製品が100℃を越えるような高温環境にさらされても、窒化ケイ素焼結体の反りが小さいので、十分な放熱効果が得られ、破損が生じにくい。 Since the warpage measured as described above is 0.2% or less, even if the product in which the silicon nitride sintered body is used as a circuit board, heat dissipation member, etc. is exposed to a high temperature environment exceeding 100 ° C., the nitriding Since the warpage of the silicon sintered body is small, a sufficient heat dissipation effect is obtained and breakage is unlikely to occur.
4.絶縁破壊電圧
厚さ100μmの板状の窒化ケイ素焼結体に交流電圧を印加したときの絶縁破壊電圧が5kV以上であることが好ましい。
4. Dielectric Breakdown Voltage It is preferable that the dielectric breakdown voltage is 5 kV or more when an AC voltage is applied to a plate-shaped silicon nitride sintered body having a thickness of 100 μm.
厚さ100μmの板状の窒化ケイ素焼結体に交流電圧を印加したときの絶縁破壊電圧が5kV以上であることにより、実際に厚さ100μmほどに形成したときに高い絶縁破壊電圧が要求される窒化ケイ素焼結体の用途に対応することができる。
なお、「厚さ100μm」は、絶縁破壊電圧の測定条件として規定するだけであり、窒化ケイ素焼結体製品の厚さを規定するものでない。すなわち、窒化ケイ素焼結体製品はどのような厚さでもよく、それを厚さ100μmに加工して測定した絶縁破壊電圧が5kV以上であれば好ましい。
Since the dielectric breakdown voltage is 5 kV or more when an AC voltage is applied to a plate-shaped silicon nitride sintered body with a thickness of 100 μm, a high dielectric breakdown voltage is required when it is actually formed to a thickness of about 100 μm. It can correspond to the use of the silicon nitride sintered body.
Note that the "thickness of 100 µm" is only defined as a condition for measuring the dielectric breakdown voltage, and does not define the thickness of the silicon nitride sintered product. That is, the silicon nitride sintered body product may have any thickness, and it is preferable if the dielectric breakdown voltage measured by processing it to a thickness of 100 μm is 5 kV or more.
5.用途
窒化ケイ素焼結体の用途としては、特に限定されないが、次の用途を例示できる。
図5(a)に示すような、半導体モジュール、LEDパッケージ、ペルチェモジュール、プリンタ、複合機、半導体レーザー、光通信、高周波などで使用される回路基板。
図5(b)に示すような汎用の放熱部材。
図5(c)に示すようなパワー半導体モジュール用放熱部材(ヒートシンク)。
図5(d)に示すような絶縁板。
図5(e)に示すような接合ウエハ用の絶縁板。
図5(f)に示すような柔軟性を有する樹脂等に埋設した放熱部材。
図示しないが、ジャイロトロンやクライストロンなどに用いられる高周波窓。
5. Applications Applications of the silicon nitride sintered body are not particularly limited, but the following applications can be exemplified.
Circuit boards used in semiconductor modules, LED packages, Peltier modules, printers, multi-function machines, semiconductor lasers, optical communications, high frequencies, etc., as shown in FIG. 5(a).
A general-purpose heat dissipation member as shown in FIG. 5(b).
A heat dissipation member (heat sink) for a power semiconductor module as shown in FIG. 5(c).
An insulating plate as shown in FIG. 5(d).
An insulating plate for bonded wafers as shown in FIG. 5(e).
A heat dissipating member embedded in a flexible resin or the like as shown in FIG. 5(f).
Although not shown, it is a high frequency window used in gyrotrons, klystrons, and the like.
次に、本発明を具体化した実施例について、比較例と比較しつつ、図面を参照して説明する。なお、実施例の各部の材料、数量及び条件は例示であり、発明の要旨から逸脱しない範囲で適宜変更できる。 Next, examples embodying the present invention will be described with reference to the drawings while comparing them with comparative examples. The materials, quantities, and conditions of each part in the examples are examples, and can be changed as appropriate without departing from the gist of the invention.
表1及び表2に示す実施例1~21に示す窒化ケイ素焼結体と、表3に示す比較例1~8の窒化ケイ素焼結体を作製した。以下「各例」というときは、実施例1~21及び比較例1~8の各々を指すものとする。 Silicon nitride sintered bodies of Examples 1 to 21 shown in Tables 1 and 2 and silicon nitride sintered bodies of Comparative Examples 1 to 8 shown in Table 3 were produced. Hereinafter, "each example" refers to each of Examples 1 to 21 and Comparative Examples 1 to 8.
[1]材料
主原料である窒化ケイ素(Si3N4 )として、イミド熱分解法、もしくは、直接窒化法によって製造された、平均粒子径(D50)が約1.0μmの窒化ケイ素粉末を各例に用いた。
[1] Materials As silicon nitride (Si 3 N 4 ), which is the main raw material, silicon nitride powder having an average particle size (D50) of about 1.0 μm manufactured by an imide pyrolysis method or a direct nitriding method is used. Used for example.
焼結助剤として、表1~3に示すように、MgO、MgSiN2、Y2O3、La2O3、Nd2O3、Sm2O3、Dy2O3の各粉末から選んだ2種を、各例に用いた。実施例1~21では、少なくともMgO又はMgSiN2を用いており、SrOを用いていない。 As the sintering aid, as shown in Tables 1 to 3, powders of MgO, MgSiN 2 , Y 2 O 3 , La 2 O 3 , Nd 2 O 3 , Sm 2 O 3 and Dy 2 O 3 were selected. Two species were used in each example. Examples 1-21 use at least MgO or MgSiN 2 and do not use SrO.
[2]製造方法
(i)材料の混合工程
各例について、窒化ケイ素粉末に対して表1~3に示す質量%の焼結助剤粉末を配合した(窒化ケイ素粉末と焼結助剤粉末との計が100質量%)。この配合粉末100重量部に対して、界面活性型分散剤を0.3重量部と、トルエンとエタノールの混合溶媒を約50重量部添加して、樹脂製容器と窒化ケイ素玉石を用いたボールミルによって粉砕混合を行った。
[2] Manufacturing method (i) Material mixing step For each example, the silicon nitride powder was blended with the sintering aid powder in the mass% shown in Tables 1 to 3 (silicon nitride powder and sintering aid powder is 100% by mass). To 100 parts by weight of this blended powder, 0.3 parts by weight of a surfactant dispersant and about 50 parts by weight of a mixed solvent of toluene and ethanol were added, and the mixture was obtained by a ball mill using a resin container and silicon nitride pebbles. Grinding mixing was performed.
この粉砕混合物に、さらにバインダーとしてポリビニルブチラールを10重量部と、可塑剤としてアジピン酸ジオクチルを4重量部と、トルエンとエタノールの混合溶媒を約20重量部とからなる溶解バインダー溶液を加え、溶解バインダー溶液と前記粉砕混合物が完全に混合されるまで、ボールミルによって攪拌混合した後、スラリーを作製した。そして、スラリーを真空中で加熱放置し、脱泡及び溶媒を揮発させることで、25℃における粘度を15000cpsに調整した。 To this pulverized mixture, a dissolved binder solution containing 10 parts by weight of polyvinyl butyral as a binder, 4 parts by weight of dioctyl adipate as a plasticizer, and about 20 parts by weight of a mixed solvent of toluene and ethanol was added, and the dissolved binder was dissolved. After stirring and mixing with a ball mill until the solution and the pulverized mixture were completely mixed, a slurry was prepared. Then, the slurry was heated and left in a vacuum to remove bubbles and volatilize the solvent, thereby adjusting the viscosity at 25° C. to 15000 cps.
(ii)グリーンシートの作製工程
次いで、作製した各例のスラリーから、ドクターブレード法によって板状のグリーンシートを得た。ドクターブレード成形装置内での最終乾燥温度は90℃とした。得られたグリーンシートを、金型プレス加工により長方形180mm×250mmへ型抜きした。
(ii) Step of producing green sheet Next, a plate-shaped green sheet was obtained from the produced slurry of each example by a doctor blade method. The final drying temperature in the doctor blade forming apparatus was 90°C. The resulting green sheet was die-cut into a rectangle of 180 mm×250 mm by die pressing.
型抜きしたグリーンシートの表面へ、離型材としての窒化ホウ素(BN)粉体スラリーをスプレーによって吹き付け、そのグリーンシートを複数枚重ねたグリーンシート積層体をBN製の筐体へ配置し、乾燥空気流量中において500℃に約4時間加熱し、バインダーなどの有機成分を除去する脱脂工程を行った。 Boron nitride (BN) powder slurry as a release material is sprayed onto the surface of the punched green sheet by spraying, and a green sheet laminate obtained by stacking a plurality of the green sheets is placed in a BN housing and dried in air. A degreasing step was performed by heating to 500° C. for about 4 hours in a flow to remove organic components such as binders.
(iii)グリーンシートの焼結工程
実施例1~21については、BN製の底板にグリーンシート積層体を配置し、その上にBN製のセッターを置き、セッターの上に載荷体としてタングステン製ブロックを置き、載荷体の上に上述した板状のダミー窒化ケイ素焼結体を配置した。
次いで、前記底板にBN製の側板及び天板を設置して、閉鎖状態の筐体を組み立てた。こうしてグリーンシート等を内包した筐体を焼成炉に入れ、焼成炉内を0.9MPaの窒素雰囲気とした。筐体は、完全な密閉ではなく、窒素が流入しうる程度の閉鎖状態なので、筐体内も0.9MPaの窒素雰囲気となる。
(iii) Green sheet sintering process For Examples 1 to 21, a green sheet laminate is placed on a BN bottom plate, a BN setter is placed thereon, and a tungsten block is placed on the setter as a load. was placed, and the above-mentioned plate-like dummy silicon nitride sintered body was placed on the load.
Next, a side plate and a top plate made of BN were installed on the bottom plate to assemble a closed case. The housing containing the green sheets and the like was put into a firing furnace, and the inside of the firing furnace was made into a nitrogen atmosphere of 0.9 MPa. Since the housing is not completely airtight, but closed to the extent that nitrogen can flow in, the inside of the housing also has a nitrogen atmosphere of 0.9 MPa.
この状態で、各例について、表1~2に示す焼成温度で焼成時間加熱することで、グリーンシート積層体を焼結させ、焼結後の積層体を1枚ずつの窒化ケイ素焼結体に分離した。分離した窒化ケイ素焼結体について、ホーニングによってBN離型材の除去を行った。ホーニング後の窒化ケイ素焼結体の外周4辺をダイヤモンドスクライバーでブレーク処理を行い、最終的に得られた窒化ケイ素焼結体の形状寸法は、長方形板状の139.6mm×190.5mm×0.32mmであった。
実施例1~21では、焼成温度を1830~1920℃の範囲とし、次の式1を満たすように比較的短時間、焼結した。
1930≦焼成温度(℃)+焼成時間(hr)×50≦2200・・・(式1)
In this state, each example is heated at the firing temperature shown in Tables 1 and 2 for the firing time to sinter the green sheet laminate, and the laminate after sintering is made into silicon nitride sintered bodies one by one. separated. The BN release material was removed from the separated silicon nitride sintered body by honing. After honing, the four sides of the silicon nitride sintered body were subjected to break treatment with a diamond scriber, and the shape and dimensions of the finally obtained silicon nitride sintered body were rectangular plates of 139.6 mm × 190.5 mm × 0. 0.32 mm.
In Examples 1 to 21, the sintering temperature was in the range of 1830 to 1920° C., and the sintering was performed for a relatively short time so as to satisfy the following
1930 ≤ firing temperature (°C) + firing time (hr) x 50 ≤ 2200 (Formula 1)
比較例1~7では、焼成温度を1860~1880℃の範囲としたが、上記の式1の上限を越えるように比較的長時間、焼結した。
比較例8では、焼成温度を1800℃とし、式1の下限を下回るように短時間、焼結した。
In Comparative Examples 1 to 7, the sintering temperature was in the range of 1860 to 1880° C., but the sintering was performed for a relatively long time so as to exceed the upper limit of the
In Comparative Example 8, the sintering temperature was set to 1800° C., and sintering was performed for a short period of time so as to fall below the lower limit of
[3]特性
各例の窒化ケイ素焼結体の特性として、相対密度、3点曲げ強度、熱伝導率、X線回折法による粒界相の同定、ボイド、反り、絶縁破壊電圧を測定した(表1~3に示す)。
[3] Characteristics As characteristics of the silicon nitride sintered body of each example, relative density, three-point bending strength, thermal conductivity, identification of grain boundary phase by X-ray diffraction method, voids, warpage, and dielectric breakdown voltage were measured ( shown in Tables 1-3).
(i)相対密度と3点曲げ強度
窒化ケイ素焼結体の相対密度は、測定密度/理論密度である。測定密度は、純水に窒化ケイ素焼結体を沈めるアルキメデス法により測定した。理論密度は、原料粉末の密度として、Si3N4=3.18g/cm3、MgO=3.60g/cm3、MgSiN2=3.07g/cm3、Y2O3=5.01g/cm3、La2O3=6.51g/cm3、Nd2O3=7.24g/cm3、Sm2O3=7.60g/cm3、Dy2O3=7.81g/cm3などの値を使用し、原料粉末の混合比から算出した。
3点曲げ強度は、窒化ケイ素焼結体をサイズ40mm×20mm×0.32mmの試験片に加工し、株式会社島津製作所製の万能試験機:型式「AG-IS」を使用して、クロスヘッドスピード0.5mm/分、支点間距離30mmで、室温(23±2℃)にて測定した。
(i) Relative density and three-point bending strength The relative density of the silicon nitride sintered body is measured density/theoretical density. The measured density was measured by the Archimedes method of submerging the silicon nitride sintered body in pure water. The theoretical densities of the raw material powder are Si 3 N 4 =3.18 g/cm 3 , MgO=3.60 g/cm 3 , MgSiN 2 =3.07 g/cm 3 , Y 2 O 3 =5.01 g/
Three-point bending strength is measured by processing a silicon nitride sintered body into a test piece of
実施例1~21と比較例1~4,6,7は相対密度が98%以上であり、十分に緻密化できているために、3点曲げ強度が600MPa以上となった。
比較例5,8は相対密度が98%未満であり、十分に緻密化できていないために、3点曲げ強度が600MPa未満となり、高強度の窒化ケイ素焼結体を得ることができなかった。
Examples 1 to 21 and Comparative Examples 1 to 4, 6, and 7 had a relative density of 98% or more, and were sufficiently densified, so that the three-point bending strength was 600 MPa or more.
Comparative Examples 5 and 8 had relative densities of less than 98% and were not sufficiently densified, so the three-point bending strength was less than 600 MPa, and high-strength silicon nitride sintered bodies could not be obtained.
(ii)熱伝導率
熱伝導率は、窒化ケイ素焼結体をサイズ10mm×10mm×0.32mmの試験片に加工し、表面処理(Ag膜蒸着+カーボン黒化処理)した後、NETZSCH社製の熱伝導性計測器:型式「LFA 467 HyperFlash」を使用して測定した。
(ii) Thermal conductivity Thermal conductivity is measured by processing the silicon nitride sintered body into a test piece with a size of 10 mm × 10 mm × 0.32 mm, and after surface treatment (Ag film deposition + carbon blackening treatment), was measured using a thermal conductivity instrument: model "LFA 467 HyperFlash".
(iii)X線回折法による粒界相の同定
窒化ケイ素焼結体をサイズ10mm×10mm×0.32mmの試験片に加工し、株式会社リガク製のX線回折装置:型式「Ultima IV」(封入式管球のターゲットはCu、Niフィルター使用、検出器は1次元半導体方式)を使用して、Cu-Kα線を用いた粉末X線回折法により、試験片平面のX線回折パターンを得た。
得られたX線回折パターンにおいて、α-Si3N4の(101)面の積分強度(以下「I窒化ケイ素」という。)と、回折角2θが28°~32°の範囲にある粒界相のSi-Y-N-O化合物のピークのうちの最大ピークの積分強度(以下「I粒界相」という。)とを、次の手順で算出し、積分強度比(I粒界相/I窒化ケイ素)を求めた。
(1) バックグラウンド除去、Kα2除去及び平滑化の前処理を行い、ピークサーチを行う。
(2) ピークプロファイルを測定データから差し引くことでバックグラウンドのプロファイルを計算し、計算で算出したデータをBスプライン関数でフィッティングする。
(3) ピーク形状は分割擬ヴォイト関数で表し、積分強度を算出する。
(iii) Identification of grain boundary phase by X-ray diffraction method A silicon nitride sintered body was processed into a test piece with a size of 10 mm × 10 mm × 0.32 mm, and an X-ray diffraction device manufactured by Rigaku Co., Ltd.: model "Ultima IV" ( The X-ray diffraction pattern of the test piece plane was obtained by the powder X-ray diffraction method using the Cu-Kα ray, using a Cu-Ni filter as the target of the sealed tube and a one-dimensional semiconductor type detector). rice field.
In the obtained X-ray diffraction pattern, the integrated intensity of the (101) plane of α-Si 3 N 4 (hereinafter referred to as “I silicon nitride”) and the grain boundary where the diffraction angle 2θ is in the range of 28° to 32° The integrated intensity of the maximum peak among the Si—Y—N—O compound peaks of the phase (hereinafter referred to as “I grain boundary phase”) is calculated by the following procedure, and the integrated intensity ratio (I grain boundary phase/ I silicon nitride) was obtained.
(1) Perform preprocessing such as background removal, Kα2 removal and smoothing, and perform peak search.
(2) Calculate the background profile by subtracting the peak profile from the measured data, and fit the calculated data with a B-spline function.
(3) The peak shape is represented by a split pseudovoigt function, and the integrated intensity is calculated.
図1(a)に実施例1のX線回折パターンを示す。焼結助剤で形成される粒界相に由来するピークが検出されず、表1のとおり、積分強度比は0であった。これは、粒界結晶相が存在せず、粒界相が実質的にアモルファス構造であることを示している。
実施例2~19も実施例1と同様であった。
実施例20,21では焼結助剤で形成される粒界相に由来するピークが検出されたが、表1のとおり、積分強度比は2.4%、3.8%であった。このように、粒界相に結晶相は存在するがその積分強度比が5%以下と僅かであるものを、アモルファス構造と定義する。
The X-ray diffraction pattern of Example 1 is shown in FIG. 1(a). No peak derived from the grain boundary phase formed by the sintering aid was detected, and as shown in Table 1, the integrated intensity ratio was 0. This indicates that no grain boundary crystal phase exists and the grain boundary phase has a substantially amorphous structure.
Examples 2-19 were similar to Example 1.
In Examples 20 and 21, peaks derived from the grain boundary phase formed by the sintering aid were detected, and as shown in Table 1, the integrated intensity ratios were 2.4% and 3.8%. As described above, the amorphous structure is defined as a crystal phase existing in the grain boundary phase but having a small integrated intensity ratio of 5% or less.
図1(b)に比較例1のX線回折パターンを示す。焼結助剤で形成される粒界相に由来するピークが検出され、表3のとおり、積分強度比は24.6%であった。これは、粒界結晶相が存在するだけでなく、粒界相が実質的に結晶相からなることを示している。
比較例2~7も比較例1と(積分強度比は異なるものの)基本的に同様であった。
比較例8では焼結助剤で形成される粒界相に由来するピークが検出されず、表1のとおり、積分強度比は0であった。これは、粒界結晶相が存在せず、粒界相が実質的にアモルファス構造であることを示している。但し、比較例8は、後述するように、相対密度が低く、凹凸度0.8以上のボイドが少ない。
The X-ray diffraction pattern of Comparative Example 1 is shown in FIG. A peak derived from the grain boundary phase formed by the sintering aid was detected, and as shown in Table 3, the integrated intensity ratio was 24.6%. This indicates that not only is there a grain boundary crystalline phase, but the grain boundary phase consists essentially of the crystalline phase.
Comparative Examples 2 to 7 were basically the same as Comparative Example 1 (although the integrated intensity ratios were different).
In Comparative Example 8, no peak derived from the grain boundary phase formed by the sintering aid was detected, and as shown in Table 1, the integrated intensity ratio was 0. This indicates that no grain boundary crystal phase exists and the grain boundary phase has a substantially amorphous structure. However, in Comparative Example 8, as will be described later, the relative density is low and there are few voids having an unevenness of 0.8 or more.
(iv)ボイド
窒化ケイ素焼結体を、次のように表面処理した。
窒化ケイ素焼結体を8mm×8mm×0.32mmの試験片に加工し、日化精工株式会社製のアルコワックス「5402SL」を使用して、φ40のアルミ製試料台へ固定した。
試料台をアイエムティー株式会社製の試料回転機:型式「SP―L1」へセットし、同社製の卓上研磨機:型式「IM-P2」を使用して、#80、#600、#1200の順にダイヤモンド研磨パッド(同社製)を用いて窒化ケイ素焼結体を表面研磨(研磨荷重:15N、研磨盤回転数:150rpm、試料回転数:150rpm)し、平坦度の調整を行った。ダイヤモンド研磨パッドにおける最終研磨量は、約50μmとなるように調整した。その後、粒度が15μm、6μm、1μmのダイヤモンドスラリー(同社製)を用いて、それぞれのダイヤモンドスラリーで5分間の表面研磨(研磨荷重:15N、研磨盤回転数:150rpm、試料回転数:150rpm)を行った。
さらに、仕上げ用研磨剤として粒度が0.05μmのアルミナスラリー(Buehler社製)を使用して20分間研磨を行うことで、鏡面仕上げとした。
鏡面仕上げ後、メイワフォーシス株式会社製のプラズマエッチング装置:型式「SEDE-PHL」を使用して、4分間のCF4ガス中でのプラズマエッチングを行い、微構造観察面を調整した。
その後、観察試料表面に導電処理を施す目的で、株式会社日立ハイテク製のイオンスパッタ:型式「E-1010」を使用してAu膜を形成した。スパッタ時間は120秒とし、操作マニュアルによると、形成されるAu膜の厚さは約15~20nmである。
(iv) Void The silicon nitride sintered body was surface-treated as follows.
The silicon nitride sintered body was processed into a test piece of 8 mm × 8 mm × 0.32 mm, and fixed to a φ40 aluminum sample stand using Arco wax "5402SL" manufactured by Nikka Seiko Co., Ltd.
Set the sample stand on the sample rotating machine manufactured by IMT Co., Ltd.: model "SP-L1", and use the company's desktop polishing machine: model "IM-P2" to grind # 80, # 600, and # 1200. The surface of the silicon nitride sintered body was then polished using a diamond polishing pad (manufactured by the same company) (polishing load: 15 N, number of rotations of polishing disk: 150 rpm, number of rotations of sample: 150 rpm) to adjust the flatness. The final polishing amount of the diamond polishing pad was adjusted to about 50 μm. After that, using diamond slurries with particle sizes of 15 μm, 6 μm, and 1 μm (manufactured by the same company), the surface was polished for 5 minutes with each diamond slurry (polishing load: 15 N, polishing disk rotation speed: 150 rpm, sample rotation speed: 150 rpm). gone.
Further, polishing was performed for 20 minutes using an alumina slurry (manufactured by Buehler) having a particle size of 0.05 μm as a polishing agent for finishing, thereby obtaining a mirror finish.
After the mirror finishing, plasma etching was performed in CF 4 gas for 4 minutes using a plasma etching apparatus: model "SEDE-PHL" manufactured by Meiwa Forsys Co., Ltd. to adjust the microstructure observation surface.
After that, an Au film was formed using an ion sputter (type E-1010) manufactured by Hitachi High-Tech Co., Ltd. for the purpose of conducting a conductive treatment on the observation sample surface. The sputtering time is 120 seconds, and according to the operation manual, the thickness of the Au film formed is about 15-20 nm.
上記表面処理後の窒化ケイ素焼結体を、株式会社日立ハイテク製の走査型電子顕微鏡(SEM):型式「S-3400N」を使用し、加速電圧10kVにて観察しSEM写真を撮影した。図2(a)に実施例1のSEM写真を示し、図2(b)に比較例1のSEM写真を示す。 The silicon nitride sintered body after the surface treatment was observed using a scanning electron microscope (SEM) model "S-3400N" manufactured by Hitachi High-Tech Co., Ltd. at an acceleration voltage of 10 kV, and an SEM photograph was taken. The SEM photograph of Example 1 is shown in FIG. 2(a), and the SEM photograph of Comparative Example 1 is shown in FIG. 2(b).
撮影したSEM写真を、旭化成エンジニアリング株式会社製のソフトウェア「A像くん Ver.2.58」を使用して画像解析し、研磨面の任意の一つの64μm×48μmのエリアに存在するボイドの、凹凸度を測定するとともに、凹凸度を6つに区分(0.9以上、0.8以上0.9未満、0.7以上0.8未満、0.6以上0.7未満、0.5以上0.6未満、0.5未満)し区分ごとのボイドの個数と、各区分ごとのボイドの個数がボイドの全個数に占める割合を算出した。
ここで、凹凸度は、図3に示すようにボイドの輪郭線と包絡線に基づき、次の式2により算出されるものである。凹凸度が1に近いほど凹凸が少なく、1より小さいほど凹凸が多い。
凹凸度=ボイドの輪郭線内の面積/ボイドの包絡線内の面積・・・(式2)
The SEM photograph taken is image-analyzed using the software “Azo-kun Ver. In addition to measuring the degree, the unevenness is classified into six (0.9 or more, 0.8 or more and less than 0.9, 0.7 or more and less than 0.8, 0.6 or more and less than 0.7, 0.5 or more less than 0.6, less than 0.5), and the number of voids in each section and the ratio of the number of voids in each section to the total number of voids were calculated.
Here, the degree of unevenness is calculated by the
Irregularity=Area within the outline of the void/Area within the envelope of the void (Formula 2)
実施例1~21は、凹凸度が0.9以上のボイドが10%以上を占め、凹凸度が0.8以上のボイドが30%以上を占めていた。
比較例1~8は、凹凸度が0.9以上のボイドが10%未満であり、凹凸度が0.8以上のボイドが30%未満であった。
In Examples 1 to 21, voids with an unevenness of 0.9 or more accounted for 10% or more, and voids with an unevenness of 0.8 or more accounted for 30% or more.
In Comparative Examples 1 to 8, voids with an unevenness of 0.9 or more were less than 10%, and voids with an unevenness of 0.8 or more were less than 30%.
次に、窒化ケイ素焼結体のSEM写真の64μm×48μmのエリアを、上記ソフトウェアを使用して画像解析し、ボイドの平面投影面積率(%)を次の式3により算出した。
平面投影面積率=(ボイドの平面投影面積の合計/エリアの面積)×100 …(式3)
実施例1~21と比較例3は、平面投影面積率が1.0%以下であった。
比較例1,2,4~8は、平面投影面積率が1.0%を越えていた。
Next, a 64 μm×48 μm area of the SEM photograph of the silicon nitride sintered body was image-analyzed using the above software, and the planar projected area ratio (%) of voids was calculated by the
Planar projected area ratio = (Total planographic projected area of voids/area area) x 100 (Equation 3)
In Examples 1 to 21 and Comparative Example 3, the planar projected area ratio was 1.0% or less.
In Comparative Examples 1, 2, 4 to 8, the planar projected area ratio exceeded 1.0%.
(v)反り
図4に示すように、各例について3枚の窒化ケイ素焼結体(139.6mm×190.5mm×0.32mm、対角線長さ236mm)を、120℃、相対湿度1%rhに調整した加熱炉に入れて同温度で1時間保持した後、加熱炉から取り出してからGFMesstechnik社製の光学式3次元測定器:型式「MikroCAD」が装備する平坦な天然石の試料台(25℃)に載せて1分経過する以前に、同測定器により窒化ケイ素焼結体の最高点の試料台からの高さと最低点の試料台からの高さとの差(μm)を測定し、該差の3枚の平均値を算出し、該平均値の、窒化ケイ素焼結体の板面の最大横断長さ(本例では対角線長さ)に対する割合(%)を反りの値とした。
(v) Warp As shown in FIG. 4, three silicon nitride sintered bodies (139.6 mm × 190.5 mm × 0.32 mm, diagonal length 236 mm) were prepared at 120 ° C. and a relative humidity of 1%rh for each example. After holding it at the same temperature for 1 hour, remove it from the heating furnace and then optical three-dimensional measuring instrument manufactured by GFMesstechnik: A flat natural stone sample stand (25 ° C. ) before 1 minute has elapsed after placing the silicon nitride sintered body on the same measuring instrument, measure the difference (μm) between the height of the highest point of the silicon nitride sintered body from the sample stage and the height of the lowest point from the sample stage. The average value of the three sheets was calculated, and the ratio (%) of the average value to the maximum transverse length (diagonal length in this example) of the plate surface of the silicon nitride sintered body was taken as the value of warpage.
実施例1~21と比較例8は、反り(平均値)が0.2%以下であった。
比較例1~7は、反り(平均値)が0.2%を越えていた。
In Examples 1 to 21 and Comparative Example 8, the warpage (average value) was 0.2% or less.
In Comparative Examples 1 to 7, warpage (average value) exceeded 0.2%.
また、実施例1について、120℃で保持する時間を2時間、4時間、8時間と長くし、その他は上記と同様に反りを測定したが、1時間保持したときの測定結果に対して±1%以内であったことから、保持時間による有意差は見られなかった。
また、加熱炉から取り出してから25℃の平坦な試料台に載せて測定するまでの経過時間を20秒後、40秒後と変えて、その他は上記と同様に反りを測定したが、1分経過後の測定結果に対して±3%以内であったことから、1分以内であれば、加熱炉から取り出してからの経過時間による有意差は見られなかった。なお、±3%以内とは、反り0.2%の窒化ケイ素焼結体に対して0.194%~0.206%の間の変動を意味しており、有意差はないといえる。
In addition, in Example 1, the time to hold at 120 ° C. was increased to 2 hours, 4 hours, and 8 hours, and the warpage was measured in the same manner as above, but ± relative to the measurement result when held for 1 hour. Since it was within 1%, no significant difference due to retention time was observed.
In addition, the warpage was measured in the same manner as above except that the elapsed time from when the sample was removed from the heating furnace to when it was placed on a flat sample stage at 25° C. and measured was changed to 20 seconds and 40 seconds after 1 minute. Since the results were within ±3% of the measured results after the lapse of time, no significant difference was observed due to the elapsed time after removal from the heating furnace within 1 minute. Note that "within ±3%" means a variation between 0.194% and 0.206% for a silicon nitride sintered body with a warp of 0.2%, and it can be said that there is no significant difference.
また、次の表4に示すように、実施例14(組成及び焼成条件が全実施例のうちで平均的である)については、反りを測定した2枚目の窒化ケイ素焼結体を、4分割してサイズを小さくした(69.8mm×95.3mm×0.32mm、対角線長さ118mm)ものと、これをさらに2分割してサイズを小さくした(69.8mm×47.6mm×0.32mm、対角線長さ85mm)ものと、これをさらに2分割してサイズを小さくした(34.9mm×47.6mm×0.32mm、対角線長さ59mm)ものについても、上記と同様に120℃保持後の反りを測定した。 Further, as shown in the following Table 4, for Example 14 (composition and firing conditions are average among all Examples), the second silicon nitride sintered body whose warpage was measured was A smaller size (69.8 mm x 95.3 mm x 0.32 mm, diagonal length of 118 mm) and a smaller size (69.8 mm x 47.6 mm x 0.8 mm) were further divided into two. 32 mm, diagonal length 85 mm) and a smaller size by further dividing it into two (34.9 mm × 47.6 mm × 0.32 mm, diagonal length 59 mm) were also held at 120 ° C. in the same manner as above. Later warpage was measured.
分割前(対角線長さ236mm)の反り0.14%に対して、分割後(対角線長さ118mm、85mm、59mm)の反りはそれぞれ0.12%、0.13%、0.15%であった。このことから、サイズを小さく分割していっても、分割前の反りとほとんど変わらない結果が得られた。 The warpage after division (diagonal length 118 mm, 85 mm, 59 mm) was 0.12%, 0.13%, and 0.15%, respectively, compared to the warp 0.14% before division (diagonal length 236 mm). rice field. From this, even if the size is divided into smaller pieces, the warpage is almost the same as before the division.
(vi)絶縁破壊電圧
窒化ケイ素焼結体を20mm×20mmの個片に切り出し、両面研磨によって厚さ100μmにすることで測定試料とした。なお、株式会社キーエンス製のレーザー顕微鏡:型式「VKX―150」を使用して研磨試料表面の200μm×200μm範囲(対物レンズの倍率は50倍)における面粗さ(Sa)を測定した結果、Sa=0.48~0.52μmの範囲であった。測定電極としてφ10.4mmの導電性銅箔粘着テープを試料両面に貼り付け、菊水電子工業株式会社の耐電圧試験器:型式「TOS5101」を使用して、フッ素系不活性液体(スリーエムジャパン株式会社製、フロリナート FC-43)中で交流電圧(正弦波)を印加した。交流電圧の昇圧速度は500V/sとして、3つのサンプルの測定における平均の絶縁破壊電圧を測定した。
(vi) Dielectric Breakdown Voltage A silicon nitride sintered body was cut into individual pieces of 20 mm×20 mm and polished on both sides to a thickness of 100 μm to obtain measurement samples. In addition, a laser microscope manufactured by Keyence Corporation: Model "VKX-150" was used to measure the surface roughness (Sa) in a range of 200 μm × 200 μm on the surface of the polished sample (magnification of the objective lens was 50 times). =0.48 to 0.52 μm. As a measuring electrode, φ10.4 mm conductive copper foil adhesive tape is attached to both sides of the sample, and a withstand voltage tester of Kikusui Electronics Co., Ltd.: Model "TOS5101" is used. (manufactured by Fluorinert FC-43), an alternating voltage (sine wave) was applied. An AC voltage step-up rate was set at 500 V/s, and an average dielectric breakdown voltage was measured in measurements of three samples.
実施例1~21は、絶縁破壊電圧が5kV以上であった。
比較例1~7は、絶縁破壊電圧が5kV未満であった。
Examples 1 to 21 had a dielectric breakdown voltage of 5 kV or higher.
Comparative Examples 1 to 7 had a dielectric breakdown voltage of less than 5 kV.
絶縁破壊電圧は、100μmよりも厚さが大きい(例えば300μm)焼結体で測定されることが多いが、そのような焼結体の測定結果を100μmあたりに換算して得られる数値はあくまでも理論的な数値である。そのため、実際に100μmほどに形成したときの当該焼結体の絶縁破壊電圧も、換算した数値になることを保証することはできない。本発明は、その保証を可能とするものである。 The dielectric breakdown voltage is often measured with a sintered body having a thickness greater than 100 μm (for example, 300 μm), but the numerical value obtained by converting the measurement result of such a sintered body into per 100 μm is purely theoretical. It is a numerical value. Therefore, it cannot be guaranteed that the dielectric breakdown voltage of the sintered body actually formed to a thickness of about 100 μm will be the converted value. The present invention makes that assurance possible.
なお、本発明は前記実施例に限定されるものではなく、発明の要旨から逸脱しない範囲で適宜変更して具体化することができる。 It should be noted that the present invention is not limited to the above-described embodiments, and can be embodied with appropriate modifications within the scope of the invention.
Claims (6)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021071651A JP7278325B2 (en) | 2021-04-21 | 2021-04-21 | Silicon nitride sintered body |
JP2023075955A JP7432040B2 (en) | 2021-04-21 | 2023-05-02 | silicon nitride sintered body |
JP2023137332A JP2023164479A (en) | 2021-04-21 | 2023-08-25 | Silicon nitride sintered compact |
JP2024095729A JP2024111031A (en) | 2021-04-21 | 2024-06-13 | Silicon nitride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021071651A JP7278325B2 (en) | 2021-04-21 | 2021-04-21 | Silicon nitride sintered body |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023075955A Division JP7432040B2 (en) | 2021-04-21 | 2023-05-02 | silicon nitride sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022166445A JP2022166445A (en) | 2022-11-02 |
JP7278325B2 true JP7278325B2 (en) | 2023-05-19 |
Family
ID=83851749
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021071651A Active JP7278325B2 (en) | 2021-04-21 | 2021-04-21 | Silicon nitride sintered body |
JP2023075955A Active JP7432040B2 (en) | 2021-04-21 | 2023-05-02 | silicon nitride sintered body |
JP2023137332A Pending JP2023164479A (en) | 2021-04-21 | 2023-08-25 | Silicon nitride sintered compact |
JP2024095729A Pending JP2024111031A (en) | 2021-04-21 | 2024-06-13 | Silicon nitride sintered body |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023075955A Active JP7432040B2 (en) | 2021-04-21 | 2023-05-02 | silicon nitride sintered body |
JP2023137332A Pending JP2023164479A (en) | 2021-04-21 | 2023-08-25 | Silicon nitride sintered compact |
JP2024095729A Pending JP2024111031A (en) | 2021-04-21 | 2024-06-13 | Silicon nitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (4) | JP7278325B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010006635A (en) | 2008-06-26 | 2010-01-14 | Kyocera Corp | Silicon nitride sintered body |
WO2013146789A1 (en) | 2012-03-26 | 2013-10-03 | 日立金属株式会社 | Sintered silicon nitride substrate and process for producing same |
JP2014058445A (en) | 2008-07-03 | 2014-04-03 | Hitachi Metals Ltd | Silicon nitride based sintered compact, silicon nitride circuit board and semiconductor module |
JP2015164184A (en) | 2014-01-30 | 2015-09-10 | 京セラ株式会社 | Silicon nitride substrate, circuit board including the same, and electronic apparatus |
WO2017170247A1 (en) | 2016-03-28 | 2017-10-05 | 日立金属株式会社 | Silicon nitride sintered substrate, silicon nitride sintered substrate sheet, circuit substrate, and production method for silicon nitride sintered substrate |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010235335A (en) | 2009-03-30 | 2010-10-21 | Kyocera Corp | Ceramic sintered compact, heat dissipating substrate and electronic device |
JP5726021B2 (en) | 2010-08-30 | 2015-05-27 | 京セラ株式会社 | Spherical body and rolling support device using the same |
-
2021
- 2021-04-21 JP JP2021071651A patent/JP7278325B2/en active Active
-
2023
- 2023-05-02 JP JP2023075955A patent/JP7432040B2/en active Active
- 2023-08-25 JP JP2023137332A patent/JP2023164479A/en active Pending
-
2024
- 2024-06-13 JP JP2024095729A patent/JP2024111031A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010006635A (en) | 2008-06-26 | 2010-01-14 | Kyocera Corp | Silicon nitride sintered body |
JP2014058445A (en) | 2008-07-03 | 2014-04-03 | Hitachi Metals Ltd | Silicon nitride based sintered compact, silicon nitride circuit board and semiconductor module |
WO2013146789A1 (en) | 2012-03-26 | 2013-10-03 | 日立金属株式会社 | Sintered silicon nitride substrate and process for producing same |
JP2015164184A (en) | 2014-01-30 | 2015-09-10 | 京セラ株式会社 | Silicon nitride substrate, circuit board including the same, and electronic apparatus |
WO2017170247A1 (en) | 2016-03-28 | 2017-10-05 | 日立金属株式会社 | Silicon nitride sintered substrate, silicon nitride sintered substrate sheet, circuit substrate, and production method for silicon nitride sintered substrate |
Also Published As
Publication number | Publication date |
---|---|
JP7432040B2 (en) | 2024-02-15 |
JP2022166445A (en) | 2022-11-02 |
JP2024111031A (en) | 2024-08-16 |
JP2023104933A (en) | 2023-07-28 |
JP2023164479A (en) | 2023-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6822362B2 (en) | Manufacturing method of silicon nitride substrate and silicon nitride substrate | |
JP4013386B2 (en) | Support for manufacturing semiconductor and method for manufacturing the same | |
JP2000058631A5 (en) | ||
JP7062229B2 (en) | Plate-shaped silicon nitride sintered body and its manufacturing method | |
JP7062230B2 (en) | Plate-shaped silicon nitride sintered body and its manufacturing method | |
WO2019188148A1 (en) | Composite sintered body, semiconductor manufacturing device member, and method for manufacturing composite sintered body | |
JP7278326B2 (en) | Manufacturing method of silicon nitride sintered body | |
WO2022196693A1 (en) | Silicon nitride substrate | |
JP7201103B2 (en) | Plate-like silicon nitride sintered body and manufacturing method thereof | |
JP7272370B2 (en) | Silicon nitride substrate manufacturing method and silicon nitride substrate | |
JP7278325B2 (en) | Silicon nitride sintered body | |
JP7339979B2 (en) | Manufacturing method of silicon nitride sintered body | |
JP7339980B2 (en) | Manufacturing method of silicon nitride sintered body | |
JP7201734B2 (en) | Silicon nitride sintered body | |
JP7211549B2 (en) | silicon nitride substrate | |
WO2024084631A1 (en) | Silicon nitride sintered body | |
JP5073135B2 (en) | Aluminum nitride sintered body, production method and use thereof | |
JP4795529B2 (en) | Ceramic substrate, thin film circuit substrate, and method for manufacturing ceramic substrate | |
JP7318835B2 (en) | silicon nitride substrate | |
JP7248186B2 (en) | silicon nitride substrate | |
JP7248187B2 (en) | silicon nitride substrate | |
WO2023157784A1 (en) | Silicon nitride sintered body, and manufacturing method of silicon nitride sintered body | |
JP7455184B1 (en) | Silicon nitride thin plate and silicon nitride resin composite plate | |
JP7211476B2 (en) | silicon nitride substrate | |
JP6721793B2 (en) | Aluminum nitride sintered body and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220517 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220704 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230509 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7278325 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |