[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7277884B2 - Method for manufacturing paper strength agent - Google Patents

Method for manufacturing paper strength agent Download PDF

Info

Publication number
JP7277884B2
JP7277884B2 JP2019126406A JP2019126406A JP7277884B2 JP 7277884 B2 JP7277884 B2 JP 7277884B2 JP 2019126406 A JP2019126406 A JP 2019126406A JP 2019126406 A JP2019126406 A JP 2019126406A JP 7277884 B2 JP7277884 B2 JP 7277884B2
Authority
JP
Japan
Prior art keywords
meth
acrylate
monomers
acrylamide
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019126406A
Other languages
Japanese (ja)
Other versions
JP2021011540A (en
Inventor
剛 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2019126406A priority Critical patent/JP7277884B2/en
Publication of JP2021011540A publication Critical patent/JP2021011540A/en
Application granted granted Critical
Publication of JP7277884B2 publication Critical patent/JP7277884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paper (AREA)

Description

本発明は紙の製造に使用される製紙用紙力剤の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a paper strength agent used in the production of paper.

従来から紙に強度を付与する紙力剤として、ポリアクリルアミド系紙力剤がある。ポリアクリルアミド系紙力剤はイオン性によりアニオンタイプ、カチオンタイプ、及び両性タイプに分類される。現在では性能の面から、両性タイプの紙力剤が主流となっている。両性タイプのポリアクリルアミド系紙力剤は、アクリルアミドにカチオン性モノマーとアニオン性モノマー等の各種重合成分を共重合して得られる両性アクリルアミド系水溶性ポリマーよりなる(特許文献1)。両性アクリルアミド系水溶性ポリマーは、ポリイオンコンプレックスを形成する。ポリイオンコンプレックスは、カチオン基とアニオン基の間の静電相互作用により形成される。ポリイオンコンプレックスを形成することで、両性アクリルアミド系水溶性ポリマーは紙力増強効果を発揮することが知られている。 Polyacrylamide-based paper strength agents have hitherto been known as paper strength agents for imparting strength to paper. Polyacrylamide-based paper strength agents are classified into anionic type, cationic type, and amphoteric type according to ionicity. At present, amphoteric type paper strength agents are the mainstream from the standpoint of performance. Amphoteric polyacrylamide paper strength agents are composed of amphoteric acrylamide water-soluble polymers obtained by copolymerizing acrylamide with various polymerizable components such as cationic monomers and anionic monomers (Patent Document 1). The amphoteric acrylamide-based water-soluble polymer forms a polyion complex. Polyion complexes are formed by electrostatic interactions between cationic and anionic groups. Amphoteric acrylamide-based water-soluble polymers are known to exhibit paper strength enhancing effects by forming polyion complexes.

近年古紙のリサイクル化やクローズド化が進むことで、抄紙系内には微細繊維や溶存電解質物質が蓄積され、抄紙系の電気伝導度は上昇傾向にある。このため、特に両性タイプの紙力剤はイオンコンプレックスの形成が阻害され、十分な効果が発揮できない状況となっている。 In recent years, due to the progress of recycling of used paper and the closed system, fine fibers and dissolved electrolyte substances accumulate in the papermaking system, and the electrical conductivity of the papermaking system tends to increase. For this reason, amphoteric type paper strength agents in particular are in a situation where the formation of ion complexes is inhibited and sufficient effects cannot be exhibited.

一方、分子内に疎水性基を有する水溶性高分子は水中で会合体を形成することが知られている(非特許文献1)。疎水性会合体は疎水性相互作用により形成されるため、溶存電解質の存在によりその形成が阻害されることは無い。 On the other hand, it is known that water-soluble polymers having hydrophobic groups in the molecule form aggregates in water (Non-Patent Document 1). Since the hydrophobic association is formed by hydrophobic interaction, the formation is not inhibited by the presence of dissolved electrolytes.

カチオン性モノマー、アニオン性モノマー、架橋性ビニル系モノマー、疎水性ビニル系モノマー及び(メタ)アクリルアミドを共重合した共重合体を含有してなる紙力増強剤が知られている(特許文献2)。当該技術における疎水性モノマーとは、水に対する溶解度が小さい難溶性を有するビニル系モノマーであり、(メタ)アクリロニトリル、メタクリル酸メチル、メタクリル酸グリシジル、メタクリル酸ベンジルの群から選ばれた1種又は2種以上の混合物が挙げられている。これらのモノマーを水に添加し、重合開始剤を投入して重合し、目的の重合体を得ている。しかし、水に難溶性のモノマーは水に添加し撹拌した場合、疎水性モノマー液滴を形成し、他の水溶性モノマーとの共重合が均一に起こりにくいという問題がある。 A paper strength agent containing a copolymer obtained by copolymerizing a cationic monomer, an anionic monomer, a crosslinkable vinyl monomer, a hydrophobic vinyl monomer and (meth)acrylamide is known (Patent Document 2). . Hydrophobic monomers in the art are vinyl-based monomers having low solubility in water and poor solubility in water. Mixtures of more than one species are mentioned. These monomers are added to water and polymerized by adding a polymerization initiator to obtain the desired polymer. However, a poorly water-soluble monomer forms droplets of a hydrophobic monomer when added to water and stirred, and there is a problem that uniform copolymerization with other water-soluble monomers is difficult to occur.

溶解パラメーターが20.5(MPa)1/2以下で非イオン性のモノマーの一種以上に由来する構成単位と、アニオン性又はカチオン性モノマーの一種以上に由来する構成単位とを有する共重合体(A)と界面活性剤(B)とを(A)/(B)=99/1~1/99(重量比)の範囲で含有する紙質向上剤が開示されている(特許文献3)。当該技術における紙質向上剤は、予め共重合体を得た後に、界面活性剤を混合することにより得られるものである。 A copolymer having a solubility parameter of 20.5 (MPa) 1/2 or less and having structural units derived from one or more nonionic monomers and structural units derived from one or more anionic or cationic monomers ( A paper quality improver containing A) and a surfactant (B) in the range of (A)/(B)=99/1 to 1/99 (weight ratio) is disclosed (Patent Document 3). The paper quality improver in this technology is obtained by preliminarily obtaining a copolymer and then mixing it with a surfactant.

特開2012-251252号公報JP 2012-251252 A 特開平5-156597号公報JP-A-5-156597 特開2004-52216号公報JP-A-2004-52216 高分子46巻3月号(1997年)、128項~131項Kobunshi Vol. 46, March (1997), pp. 128-131

本発明の目的は、一般に使用されている両性タイプの紙力剤の問題点を解決し、イオン性夾雑物の影響を受けにくく紙力増強効果に優れた新しいタイプの紙力剤を提供することにある。また、疎水性モノマーと親水性モノマーを共重合して紙力増強剤を得る場合に、その性能を向上させることにある。 An object of the present invention is to solve the problems of amphoteric type paper strength agents that are generally used, and to provide a new type of paper strength agent that is less susceptible to ionic contaminants and has an excellent paper strength enhancing effect. It is in. Another object of the present invention is to improve the performance of a paper strength agent obtained by copolymerizing a hydrophobic monomer and a hydrophilic monomer.

本発明者は鋭意検討を重ねた結果、疎水性単量体、(メタ)アクリルアミド、カチオン性単量体を必須成分とし、反応性界面活性剤を含まない単量体を界面活性剤存在下重合することにより得られる高分子が、優れた紙力増強効果を発揮することを見出した。 As a result of extensive studies, the present inventors have found that a monomer containing a hydrophobic monomer, (meth)acrylamide, and a cationic monomer as essential components and containing no reactive surfactant is polymerized in the presence of a surfactant. It was found that the polymer obtained by

本発明によれば、優れた紙力増強効果を有する紙力剤を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the paper strength agent which has the outstanding paper strengthening effect can be obtained.

以下本発明を詳細に説明する。 The present invention will be described in detail below.

本発明によれば、疎水性単量体、(メタ)アクリルアミド、カチオン性単量体を必須成分とし、反応性界面活性剤を含まない単量体を界面活性剤存在下重合することにより優れた紙力増強効果を有する高分子が得られる。重合は水溶液重合、懸濁重合、塩水中分散重合等の従来公知の方法により行うことができる。例えば、所定の反応容器に単量体混合物、水、界面活性剤、ラジカル重合開始剤を添加し、窒素ガス等の不活性ガス雰囲気下、撹拌、加温することにより目的の高分子を得ることができる。 According to the present invention, a hydrophobic monomer, (meth)acrylamide, and a cationic monomer are essential components, and by polymerizing a monomer containing no reactive surfactant in the presence of a surfactant, excellent A polymer having a paper strength enhancing effect is obtained. Polymerization can be carried out by conventionally known methods such as aqueous solution polymerization, suspension polymerization, and dispersion polymerization in salt water. For example, a monomer mixture, water, a surfactant, and a radical polymerization initiator are added to a predetermined reaction vessel, and stirred and heated under an inert gas atmosphere such as nitrogen gas to obtain the desired polymer. can be done.

疎水性単量体としては、ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、スチレン等が挙げられる。これらを二種以上組み合わせることも可能である。疎水性単量体は全単量体に対し、0.05~15質量%が好ましく、さらに好ましくは0.1~10質量%である。疎水性単量体の量が少ないと疎水性会合体の形成が不十分となり紙力増強効果が低下する。疎水性単量体の量が多いとアクリルアミドの量が少なくなり、パルプとの水素結合による結合力が低下し紙力増強効果が低下する。 Hydrophobic monomers include butyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dodecyl (meth)acrylate, octadecyl (meth)acrylate and styrene. It is also possible to combine two or more of these. The hydrophobic monomer content is preferably 0.05 to 15% by mass, more preferably 0.1 to 10% by mass, based on the total monomers. If the amount of the hydrophobic monomer is too small, the formation of hydrophobic aggregates will be insufficient and the effect of increasing paper strength will be reduced. If the amount of the hydrophobic monomer is large, the amount of acrylamide will be small, and the bonding strength due to hydrogen bonding with pulp will be reduced, resulting in a reduction in the effect of increasing paper strength.

カチオン性単量体としては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミドなどの無機酸若しくは有機酸の塩類、またはこれら第3級アミノ基含有単量体とメチルクロライド、ベンジルクロライド、ジメチル硫酸、エピクロロヒドリン等の四級化剤との反応によって得られる第四級アンモニウム塩を有する単量体などが挙げられる。これらを二種以上組み合わせることも可能である。カチオン性単量体は全単量体に対し、3~30質量%が好ましく、更に好ましくは5~25質量%である。カチオン性単量体の量が少ないとパルプへの吸着性が低下し紙力増強効果が低下する。またカチオン性単量体の量が多すぎるとアクリルアミドの量が少なくなり、パルプとの水素結合による結合力が低下し紙力増強効果が低下する。 Cationic monomers include salts of inorganic acids or organic acids such as dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylamide, diethylaminopropyl (meth)acrylamide, or these A monomer having a quaternary ammonium salt obtained by reacting a tertiary amino group-containing monomer with a quaternizing agent such as methyl chloride, benzyl chloride, dimethyl sulfate, epichlorohydrin, and the like. It is also possible to combine two or more of these. The cationic monomer content is preferably 3 to 30% by mass, more preferably 5 to 25% by mass, based on the total monomers. If the amount of the cationic monomer is too small, the absorbability to pulp will decrease, and the effect of increasing paper strength will decrease. On the other hand, if the amount of the cationic monomer is too large, the amount of acrylamide will be too small, and the bonding strength due to hydrogen bonding with pulp will decrease, resulting in a decrease in the effect of increasing paper strength.

本発明の紙力剤に係る高分子は重合成分としてさらにアクリルアミド以外のノニオン性単量体、アニオン性単量体、架橋性単量体等を含むことができる。これらの合計量は全単量体の20質量%以下が好ましい。尚、本発明の紙力剤に係る高分子は重合成分として反応性界面活性は含まない。ここで反応性界面活性剤とは、一分子中にラジカル重合可能なエチレン性二重結合を持つ置換基を有し界面活性剤として機能する単量体である。 The polymer related to the paper strength agent of the present invention can further contain nonionic monomers other than acrylamide, anionic monomers, crosslinkable monomers, etc., as polymerization components. The total amount of these is preferably 20% by mass or less based on the total amount of monomers. Incidentally, the polymer related to the paper strength agent of the present invention does not contain reactive surface activity as a polymer component. Here, the reactive surfactant is a monomer having a substituent having a radically polymerizable ethylenic double bond in one molecule and functioning as a surfactant.

アクリルアミド以外のノニオン性単量体としては、ジメチルアクリルアミド、ビニルホルムアミド、ヒドロキシエチル(メタ)アクリレート等がある。これらを二種以上組み合わせることも可能である。 Nonionic monomers other than acrylamide include dimethylacrylamide, vinylformamide, hydroxyethyl (meth)acrylate and the like. It is also possible to combine two or more of these.

アニオン性単量体としては、(メタ)アクリル酸、クロトン酸等のモノカルボン酸単量体、マレイン酸、イタコン酸等のジカルボン酸単量体、2-アクリルアミド-2-メチルプロパンスルホン酸等の有機スルホン酸単量体、またはこれらのナトリウム塩等のアルカリ金属塩、アンモニウム塩等が挙げられる。これらを二種以上組み合わせることも可能である。 Examples of anionic monomers include monocarboxylic acid monomers such as (meth)acrylic acid and crotonic acid; dicarboxylic acid monomers such as maleic acid and itaconic acid; Examples include organic sulfonic acid monomers, alkali metal salts such as sodium salts thereof, and ammonium salts thereof. It is also possible to combine two or more of these.

架橋性単量体としては、メチレンビスアクリルアミド、エチレングリコールジ(メタ)アクリレート、N-メチロールアクリルアミド、トリアリルイソシアネート、ジビニルベンゼン等が挙げられる。これらを二種以上組み合わせることも可能である。添加量は全単量体に対し1質量%以下が好ましい。 Examples of crosslinkable monomers include methylenebisacrylamide, ethylene glycol di(meth)acrylate, N-methylolacrylamide, triallyl isocyanate, divinylbenzene and the like. It is also possible to combine two or more of these. The amount to be added is preferably 1% by mass or less based on the total amount of monomers.

重合の際使用する界面活性剤は、分子内に親水性基と疎水性基を有する物質であり、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレンソルビタンモノオレエート、ポリオキシエチレンソルビタントリオレエート等のポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキルエーテル、ソルビタンモノオレエート、ソルビタンモノステアレート等のソルビタン脂肪酸エステル、ドデシル硫酸ナトリウム、ナフタレンスルホネート・ホルマリン縮合物、ペンタオキシエチレンオレイルアルコールエーテル等のポリオキシエチレン高級アルコールエーテル等が挙げられる。これらを二種以上組み合わせることも可能である。界面活性剤存在下、水中で重合することで単量体を微細分散させる効果が作用し、共重合が促進されるため本発明における紙力剤の紙力増強効果を発揮すると考えられる。界面活性剤の量が少ないと単量体を微細分散させる効果が小さく、多すぎると溶解時、使用時に発泡の原因となる。界面活性剤の添加量は全単量体に対して0.01質量%~5質量%であり、好ましくは0.05質量%~3質量%、更に好ましくは0.1質量%~1質量%である。 Surfactants used in polymerization are substances having a hydrophilic group and a hydrophobic group in the molecule. Ethylene sorbitan fatty acid ester, polyoxyethylene alkyl ether such as polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene lauryl ether, sorbitan fatty acid ester such as sorbitan monooleate, sorbitan monostearate, sodium dodecyl sulfate, naphthalene Polyoxyethylene higher alcohol ethers such as sulfonate-formalin condensate, pentaoxyethylene oleyl alcohol ether and the like. It is also possible to combine two or more of these. Polymerization in water in the presence of a surfactant has the effect of finely dispersing the monomers and promotes copolymerization. If the amount of the surfactant is too small, the effect of finely dispersing the monomers will be small, and if it is too large, foaming will occur during dissolution and use. The amount of the surfactant added is 0.01% to 5% by mass, preferably 0.05% to 3% by mass, more preferably 0.1% to 1% by mass, based on the total monomers. is.

本発明においては連鎖移動剤を使用することが好ましい。連鎖移動剤としては、アルキルメルカプタン類、チオグリコール酸及びそのエステル類、イソプロピルアルコール、アリルアルコール、アリルアミン、ジ亜リン酸ナトリウム等が挙げられる。また、メタリルスルホン酸ナトリウム、メタリルスルホン酸カリウム、メタリルスルホン酸アンモニウム等のメタリルスルホン酸塩等の単量体が挙げられる。 It is preferred to use a chain transfer agent in the present invention. Chain transfer agents include alkylmercaptans, thioglycolic acid and its esters, isopropyl alcohol, allyl alcohol, allylamine, sodium diphosphite and the like. Monomers such as methallylsulfonates such as sodium methallylsulfonate, potassium methallylsulfonate, and ammonium methallylsulfonate are also included.

重合開始剤としては、例えば過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、過酸化水素、過酸化ベンゾイル等の過酸化物等が挙げられる。これらは単独でも使用できるが、亜硫酸塩、亜硫酸水素塩等の還元剤と組合せてレドックス系重合開始剤としても使用できる。2、2’-アゾビス[2-(5-メチル-イミダゾリン-2-イル)プロパン]二塩酸塩、2、2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2、2’-アゾビス-2-アミジノプロパン二塩酸塩等のアゾ系の重合開始剤も使用可能である。重合開始剤の量は全単量体に対し0.05質量%~2質量%、好ましくは0.1~1質量%である。 Examples of the polymerization initiator include persulfates such as sodium persulfate, potassium persulfate and ammonium persulfate, and peroxides such as hydrogen peroxide and benzoyl peroxide. Although these can be used alone, they can also be used as redox polymerization initiators in combination with reducing agents such as sulfites and hydrogen sulfites. 2,2′-azobis[2-(5-methyl-imidazolin-2-yl)propane]dihydrochloride, 2,2′-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride, Azo polymerization initiators such as 2,2'-azobis-2-amidinopropane dihydrochloride can also be used. The amount of the polymerization initiator is 0.05% to 2% by weight, preferably 0.1% to 1% by weight, based on the total monomers.

重合反応は、通常温度30℃~100℃、時間は0.5時間~20時間で行う。得られる高分子の濃度は通常5~50質量%である。 The polymerization reaction is usually carried out at a temperature of 30° C. to 100° C. for 0.5 hour to 20 hours. The resulting polymer concentration is usually 5 to 50% by weight.

得られた高分子は、高分子1質量%水溶液の粘度が5~50mPa・sであることが好ましい。粘度はB型粘度計で回転数60rpm、25℃で測定したものである。粘度がこれより小さいと紙力増強効果が不十分となる。また、粘度がこれより大きいと溶解性が低下し取扱いが困難となる。B型粘度計として、東機産業株式会社製B8M型、TVB-10M型等の汎用品が適宜に使用される。粘度が100mPa・s以下の場合は、1号ローターを用いる。 The resulting polymer preferably has a viscosity of 5 to 50 mPa·s as a 1 mass % aqueous solution of the polymer. The viscosity was measured with a Brookfield viscometer at 60 rpm and 25°C. If the viscosity is less than this, the effect of increasing paper strength will be insufficient. On the other hand, if the viscosity is higher than this, the solubility is lowered and the handling becomes difficult. As the B-type viscometer, general-purpose products such as B8M type and TVB-10M type manufactured by Toki Sangyo Co., Ltd. are appropriately used. If the viscosity is 100 mPa·s or less, use the No. 1 rotor.

本発明における紙力剤を使用する紙の種類としては、新聞用紙、上質印刷用紙、中質印刷用紙、グラビア印刷用紙、PPC用紙、塗工原紙、微塗工紙、包装用紙、ライナーや中芯原紙の板紙等が挙げられる。添加する場所としては、抄紙工程におけるパルプスラリー中あるいは湿紙上などのウエットエンド部に添加される。添加率としては、パルプ乾燥固形分に対して、固形分で0.05~10質量%であり、好ましくは0.1~5質量%である。又、その他の紙力剤やサイズ剤、硫酸バンド、凝結剤、歩留向上剤、濾水性向上剤等の製紙用薬品と併用することができる。 The types of paper that use the paper strength agent in the present invention include newsprint, high-quality printing paper, medium-quality printing paper, gravure printing paper, PPC paper, base paper for coating, fine coated paper, packaging paper, liner and corrugating medium. Base paper, such as cardboard. As for the place of addition, it is added in the pulp slurry in the papermaking process or in the wet end portion such as on the wet paper. The addition rate is 0.05 to 10% by mass, preferably 0.1 to 5% by mass, based on the dry solid content of the pulp. It can also be used in combination with other papermaking chemicals such as paper strength agents, sizing agents, aluminum sulfate, coagulants, retention aids and drainage improvers.

以下、実施例によって本発明をさらに詳しく説明するが、本発明はその要旨を超えない限り、以下の実施例に制約されるものではない。なお、粘度はB型粘度計を使用し、回転数60rpm、25℃で測定した。 EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. The viscosity was measured at 60 rpm and 25° C. using a Brookfield viscometer.

(実施例1)
500mLの4つ口フラスコに、ドデシルアクリレート0.5g、ジメチルアミノエチルメタクリレート7.5g、35質量%塩酸5.0g、50質量%アクリルアミド84.3g、脱塩水153.0g、ドデシル硫酸ナトリウム0.05g、メタリルスルホン酸ナトリウム0.30g、2、2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(和光純薬工業製VA-044)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、25.5mPa・sであった。この結果を表1に示す。
(Example 1)
In a 500 mL four-necked flask, 0.5 g dodecyl acrylate, 7.5 g dimethylaminoethyl methacrylate, 5.0 g 35% by weight hydrochloric acid, 84.3 g 50% by weight acrylamide, 153.0 g demineralized water, 0.05 g sodium dodecyl sulfate , 0.30 g of sodium methallylsulfonate, and 0.1 g of 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (VA-044 manufactured by Wako Pure Chemical Industries, Ltd.) were charged at 200 rpm. Nitrogen gas was passed through while stirring. After 30 minutes, the temperature was raised to 50° C. and held for 3 hours. After that, it was kept at 70° C. for 2 hours. After that, it was cooled to obtain an aqueous polymer solution. The viscosity of the resulting 1% by mass aqueous solution of the polymer was 25.5 mPa·s. The results are shown in Table 1.

(実施例2)
500mLの4つ口フラスコに、ドデシルアクリレート1.0g、ジメチルアミノエチルメタクリレート7.5g、35質量%塩酸5.0g、50質量%アクリルアミド83.3g、脱塩水153.5g、ナフタレンスルホネート・ホルマリン縮合物(センカ製WS-100)0.1g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬工業製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、17.5mPa・sであった。この結果を表1に示す。
(Example 2)
In a 500 mL four-necked flask, 1.0 g of dodecyl acrylate, 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% by weight hydrochloric acid, 83.3 g of 50% by weight acrylamide, 153.5 g of demineralized water, naphthalene sulfonate formalin condensate (WS-100 manufactured by Senka), 0.30 g of sodium methallyl sulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries) were charged, and nitrogen gas was passed while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50° C. and held for 3 hours. After that, it was kept at 70° C. for 2 hours. After that, it was cooled to obtain an aqueous polymer solution. The viscosity of the resulting 1% by mass aqueous solution of the polymer was 17.5 mPa·s. The results are shown in Table 1.

(実施例3)
500mLの4つ口フラスコに、ドデシルアクリレート1.0g、ジメチルアミノエチルメタクリレート7.5g、35質量%塩酸5.0g、50質量%アクリルアミド83.0g、脱塩水153.5g、ポリオキシアルキレンアルキルエーテル(三洋化成工業製CL-100)0.1g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬工業製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、24.0mPa・sであった。この結果を表1に示す。
(Example 3)
1.0 g of dodecyl acrylate, 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% by weight hydrochloric acid, 83.0 g of 50% by weight acrylamide, 153.5 g of demineralized water, polyoxyalkylene alkyl ether ( 0.1 g of CL-100 (manufactured by Sanyo Chemical Industries), 0.30 g of sodium methallylsulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries) were charged, and nitrogen gas was passed through while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50° C. and held for 3 hours. After that, it was kept at 70° C. for 2 hours. After that, it was cooled to obtain an aqueous polymer solution. The viscosity of the resulting 1% by mass aqueous solution of the polymer was 24.0 mPa·s. The results are shown in Table 1.

(実施例4)
500mLの4つ口フラスコに、ドデシルアクリレート1.0g、スチレン1.0g、ジメチルアミノエチルメタクリレート7.5g、35質量%塩酸5.0g、50質量%アクリルアミド81.0g、脱塩水154.5g、ポリオキシアルキレンアルキルエーテル(三洋化成工業製CL-100)0.10g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬工業製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、28.0mPa・sであった。この結果を表1に示す。
(Example 4)
In a 500 mL four-necked flask, 1.0 g dodecyl acrylate, 1.0 g styrene, 7.5 g dimethylaminoethyl methacrylate, 5.0 g 35% by weight hydrochloric acid, 81.0 g 50% by weight acrylamide, 154.5 g demineralized water, poly 0.10 g of oxyalkylene alkyl ether (CL-100 manufactured by Sanyo Chemical Industries), 0.30 g of sodium methallyl sulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries) were charged and nitrogen gas was passed through while stirring at 200 rpm. . After 30 minutes, the temperature was raised to 50° C. and held for 3 hours. After that, it was kept at 70° C. for 2 hours. After that, it was cooled to obtain an aqueous polymer solution. The viscosity of the resulting 1% by mass aqueous solution of the polymer was 28.0 mPa·s. The results are shown in Table 1.

(実施例5)
500mLの4つ口フラスコに、ドデシルアクリレート1.0g、2-エチルへキシルアクリレート1.0g、ジメチルアミノエチルメタクリレート7.5g、35質量%塩酸5.0g、50質量%アクリルアミド81.2g、脱塩水154.5g、ポリオキシアルキレンアルキルエーテル(三洋化成工業製CL-100)0.10g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬工業製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、18.0mPa・sであった。この結果を表1に示す。
(Example 5)
1.0 g of dodecyl acrylate, 1.0 g of 2-ethylhexyl acrylate, 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% by weight hydrochloric acid, 81.2 g of 50% by weight acrylamide, and demineralized water in a 500 mL four-necked flask. 154.5 g, polyoxyalkylene alkyl ether (CL-100 manufactured by Sanyo Chemical Industries) 0.10 g, sodium methallyl sulfonate 0.30 g, VA-044 (manufactured by Wako Pure Chemical Industries) 0.1 g were charged and stirred at 200 rpm. Nitrogen gas was passed through. After 30 minutes, the temperature was raised to 50° C. and held for 3 hours. After that, it was kept at 70° C. for 2 hours. After that, it was cooled to obtain an aqueous polymer solution. The viscosity of the resulting 1% by mass aqueous solution of the polymer was 18.0 mPa·s. The results are shown in Table 1.

(実施例6)
500mLの4つ口フラスコに、ドデシルアクリレート1.0g、2-エチルへキシルアクリレート1.0g、ジメチルアミノエチルメタクリレート7.5g、35質量%塩酸5.0g、50質量%アクリルアミド81.2g、脱塩水154.5g、ポリオキシアルキレンアルキルエーテル(三洋化成工業製CL-100)0.50g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬工業製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、16.0mPa・sであった。この結果を表1に示す。
(Example 6)
1.0 g of dodecyl acrylate, 1.0 g of 2-ethylhexyl acrylate, 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% by weight hydrochloric acid, 81.2 g of 50% by weight acrylamide, and demineralized water in a 500 mL four-necked flask. 154.5 g, polyoxyalkylene alkyl ether (CL-100 manufactured by Sanyo Chemical Industries) 0.50 g, sodium methallyl sulfonate 0.30 g, VA-044 (manufactured by Wako Pure Chemical Industries) 0.1 g were charged and stirred at 200 rpm. Nitrogen gas was passed through. After 30 minutes, the temperature was raised to 50° C. and held for 3 hours. After that, it was kept at 70° C. for 2 hours. After that, it was cooled to obtain an aqueous polymer solution. The viscosity of the resulting 1% by mass aqueous solution of the polymer was 16.0 mPa·s. The results are shown in Table 1.

(実施例7)
500mLの4つ口フラスコに、ドデシルアクリレート1.0g、ジメチルアミノエチルメタクリレート7.5g、35質量%塩酸5.0g、50質量%アクリルアミド83.1g、80質量%アクリル酸1.3g、脱塩水153.5g、ポリオキシアルキレンアルキルエーテル(三洋化成工業製CL-100)0.10g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬工業製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、16.0mPa・sであった。この結果を表1に示す。
(Example 7)
In a 500 mL four-necked flask, 1.0 g dodecyl acrylate, 7.5 g dimethylaminoethyl methacrylate, 5.0 g 35 wt% hydrochloric acid, 83.1 g 50 wt% acrylamide, 1.3 g 80 wt% acrylic acid, 153 g demineralized water. 5 g, polyoxyalkylene alkyl ether (CL-100 manufactured by Sanyo Chemical Industries) 0.10 g, sodium methallyl sulfonate 0.30 g, and VA-044 (manufactured by Wako Pure Chemical Industries) 0.1 g were charged and stirred at 200 rpm. Nitrogen gas was passed through. After 30 minutes, the temperature was raised to 50° C. and held for 3 hours. After that, it was kept at 70° C. for 2 hours. After that, it was cooled to obtain an aqueous polymer solution. The viscosity of the resulting 1% by mass aqueous solution of the polymer was 16.0 mPa·s. The results are shown in Table 1.

(実施例8)
500mLの4つ口フラスコに、ドデシルアクリレート0.2g、ジメチルアミノエチルメタクリレート7.5g、35質量%塩酸5.0g、50質量%アクリルアミド84.5g、脱塩水152.8g、ポリオキシアルキレンアルキルエーテル(三洋化成工業製CL-100)0.10g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬工業製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、19.5mPa・sであった。この結果を表1に示す。
(Example 8)
0.2 g of dodecyl acrylate, 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% by weight hydrochloric acid, 84.5 g of 50% by weight acrylamide, 152.8 g of demineralized water, polyoxyalkylene alkyl ether ( 0.10 g of CL-100 (manufactured by Sanyo Chemical Industries), 0.30 g of sodium methallylsulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries) were charged, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50° C. and held for 3 hours. After that, it was kept at 70° C. for 2 hours. After that, it was cooled to obtain an aqueous polymer solution. The viscosity of the resulting 1% by mass aqueous solution of the polymer was 19.5 mPa·s. The results are shown in Table 1.

(実施例9)
500mLの4つ口フラスコに、オクダデシルメタクリレート0.05g、ジメチルアミノエチルメタクリレート7.5g、35質量%塩酸5.0g、50質量%アクリルアミド84.9g、脱塩水152.6g、ポリオキシアルキレンアルキルエーテル(三洋化成工業製CL-100)0.10g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬工業製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、22.5mPa・sであった。この結果を表1に示す。
(Example 9)
In a 500 mL four-necked flask, 0.05 g of octadecyl methacrylate, 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% by weight hydrochloric acid, 84.9 g of 50% by weight acrylamide, 152.6 g of demineralized water, polyoxyalkylene alkyl ether 0.10 g of CL-100 (manufactured by Sanyo Chemical Industries), 0.30 g of sodium methallyl sulfonate and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries) were charged, and nitrogen gas was passed while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50° C. and held for 3 hours. After that, it was kept at 70° C. for 2 hours. After that, it was cooled to obtain an aqueous polymer solution. The viscosity of the resulting 1% by mass aqueous solution of the polymer was 22.5 mPa·s. The results are shown in Table 1.

(実施例10)
500mLの4つ口フラスコに、ドデシルアクリレート1.0g、ジメチルアミノエチルメタクリレート7.5g、35質量%塩酸5.0g、50質量%アクリルアミド83.1g、メチレンビスアクリルアミド0.051g、脱塩水153.5g、ポリオキシアルキレンアルキルエーテル(三洋化成工業製CL-100)0.10g、メタリルスルホン酸ナトリウム0.75g、VA-044(和光純薬工業製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、30.5mPa・sであった。この結果を表1に示す。
(Example 10)
1.0 g dodecyl acrylate, 7.5 g dimethylaminoethyl methacrylate, 5.0 g 35% by weight hydrochloric acid, 83.1 g 50% by weight acrylamide, 0.051 g methylenebisacrylamide, 153.5 g demineralized water in a 500 mL four-necked flask. , Polyoxyalkylene alkyl ether (CL-100 manufactured by Sanyo Chemical Industries) 0.10 g, sodium methallyl sulfonate 0.75 g, VA-044 (manufactured by Wako Pure Chemical Industries) 0.1 g were charged and nitrogen gas was added while stirring at 200 rpm. through. After 30 minutes, the temperature was raised to 50° C. and held for 3 hours. After that, it was kept at 70° C. for 2 hours. After that, it was cooled to obtain an aqueous polymer solution. The viscosity of the resulting 1% by mass aqueous solution of the polymer was 30.5 mPa·s. The results are shown in Table 1.

(実施例11)
500mLの4つ口フラスコに、ブチルアクリレート5.0g、ジメチルアミノエチルメタクリレート7.5g、35質量%塩酸5.0g、50質量%アクリルアミド75.1g、脱塩水157.5g、ポリオキシアルキレンアルキルエーテル(三洋化成工業製CL-100)0.10g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬工業製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、26.0mPa・sであった。この結果を表1に示す。
(Example 11)
In a 500 mL four-necked flask, 5.0 g of butyl acrylate, 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% by weight hydrochloric acid, 75.1 g of 50% by weight acrylamide, 157.5 g of demineralized water, polyoxyalkylene alkyl ether ( 0.10 g of CL-100 (manufactured by Sanyo Chemical Industries), 0.30 g of sodium methallylsulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries) were charged, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50° C. and held for 3 hours. After that, it was kept at 70° C. for 2 hours. After that, it was cooled to obtain an aqueous polymer solution. The viscosity of the resulting 1% by mass aqueous solution of the polymer was 26.0 mPa·s. The results are shown in Table 1.

(実施例12)
500mLの4つ口フラスコに、ドデシルアクリレート1.0g、スチレン1.0g、ジメチルアミノエチルメタクリレート7.5g、35質量%塩酸5.0g、50質量%アクリルアミド81.0g、脱塩水154.5g、ポリオキシエチレンソルビタントリオレエート(和光純薬工業製TW-85)0.10g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬工業製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、17.5mPa・sであった。この結果を表1に示す。
(Example 12)
In a 500 mL four-necked flask, 1.0 g dodecyl acrylate, 1.0 g styrene, 7.5 g dimethylaminoethyl methacrylate, 5.0 g 35% by weight hydrochloric acid, 81.0 g 50% by weight acrylamide, 154.5 g demineralized water, poly 0.10 g of oxyethylene sorbitan trioleate (TW-85 manufactured by Wako Pure Chemical Industries), 0.30 g of sodium methallyl sulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries) were charged and nitrogen gas was introduced while stirring at 200 rpm. through. After 30 minutes, the temperature was raised to 50° C. and held for 3 hours. After that, it was kept at 70° C. for 2 hours. After that, it was cooled to obtain an aqueous polymer solution. The viscosity of the resulting 1% by mass aqueous solution of the polymer was 17.5 mPa·s. The results are shown in Table 1.

(比較例1)
500mLの4つ口フラスコに、ジメチルアミノエチルメタクリレート7.5g、35質量%塩酸5.0g、50質量%アクリルアミド85.0g、脱塩水152.5g、メタリルスルホン酸ナトリウム0.25g、VA-044(和光純薬工業製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、透明の高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、22.5mPa・sであった。この結果を表1に示す。
(Comparative example 1)
7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% by mass hydrochloric acid, 85.0 g of 50% by mass acrylamide, 152.5 g of demineralized water, 0.25 g of sodium methallylsulfonate, and VA-044 were placed in a 500 mL four-necked flask. (manufactured by Wako Pure Chemical Industries) was charged, and nitrogen gas was passed through while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50° C. and held for 3 hours. After that, it was kept at 70° C. for 2 hours. After cooling, a transparent polymer aqueous solution was obtained. The viscosity of the resulting 1% by mass aqueous solution of the polymer was 22.5 mPa·s. The results are shown in Table 1.

(比較例2)
500mLの4つ口フラスコに、ドデシルアクリレート0.50g、ジメチルアミノエチルメタクリレート7.5g、35質量%塩酸5.0g、50質量%アクリルアミド84.0g、脱塩水153.0g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬工業製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、透明の高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、22.5mPa・sであった。この結果を表1に示す。
(Comparative example 2)
In a 500 mL four-neck flask, 0.50 g of dodecyl acrylate, 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% by weight hydrochloric acid, 84.0 g of 50% by weight acrylamide, 153.0 g of demineralized water, 0 sodium methallyl sulfonate 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and nitrogen gas was passed through while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50° C. and held for 3 hours. After that, it was kept at 70° C. for 2 hours. After cooling, a transparent polymer aqueous solution was obtained. The viscosity of the resulting 1% by mass aqueous solution of the polymer was 22.5 mPa·s. The results are shown in Table 1.

(比較例3)
500mLの4つ口フラスコに、ドデシルアクリレート1.0g、ジメチルアミノエチルメタクリレート7.5g、35質量%塩酸5.0g、50質量%アクリルアミド83.0g、脱塩水153.5g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬工業製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、透明の高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、18.5mPa・sであった。この結果を表1に示す。
(Comparative Example 3)
1.0 g of dodecyl acrylate, 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% by weight hydrochloric acid, 83.0 g of 50% by weight acrylamide, 153.5 g of demineralized water, 0 sodium methallyl sulfonate, 153.5 g of demineralized water, 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and nitrogen gas was passed through while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50° C. and held for 3 hours. After that, it was kept at 70° C. for 2 hours. After cooling, a transparent polymer aqueous solution was obtained. The viscosity of the resulting 1% by mass aqueous solution of the polymer was 18.5 mPa·s. The results are shown in Table 1.

(比較例4)
500mLの4つ口フラスコに、ドデシルアクリレート1.0g、スチレン1.0g、ジメチルアミノエチルメタクリレート7.5g、35質量%塩酸5.0g、50質量%アクリルアミド81.0g、脱塩水154.5g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬工業製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子にポリオキシエチレンソルビタントリオレエート(和光純薬工業製TW-85)0.10gを混合した。得られた高分子の1質量%水溶液の粘度は、17.5mPa・sであった。この結果を表1に示す。
(Comparative Example 4)
In a 500 mL four-necked flask, 1.0 g of dodecyl acrylate, 1.0 g of styrene, 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% by weight hydrochloric acid, 81.0 g of 50% by weight acrylamide, 154.5 g of demineralized water, meth 0.30 g of sodium lylsulfonate and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries) were charged, and nitrogen gas was passed through while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50° C. and held for 3 hours. After that, it was kept at 70° C. for 2 hours. After that, it was cooled to obtain an aqueous polymer solution. The obtained polymer was mixed with 0.10 g of polyoxyethylene sorbitan trioleate (TW-85 manufactured by Wako Pure Chemical Industries, Ltd.). The viscosity of the resulting 1% by mass aqueous solution of the polymer was 17.5 mPa·s. The results are shown in Table 1.

(表1)

Figure 0007277884000001
疎水性単量体;DDA:ドデシルアクリレート、St:スチレン、2EHA:2-エチルへキシルアクリレート、ODMA:オクダデシルメタクリレート、BMA:ブチルメタクリレート
カチオン性単量体;DMM:ジメチルアミノエチルメタクリレート
AAM;アクリルアミド
その他の単量体;AAC:アクリル酸、MBAA:メチレンビスアクリルアミド
界面活性剤;SDS:ドデシル硫酸ナトリウム、WS-100:ナフタレンスルホネート・ホルマリン縮合物、CL-100:ポリオキシアルキレンアルキルエーテル、TW-85:ポリオキシエチレンソルビタントリオレエート (Table 1)
Figure 0007277884000001
Hydrophobic monomers; DDA: dodecyl acrylate, St: styrene, 2EHA: 2-ethylhexyl acrylate, ODMA: octadecyl methacrylate, BMA: butyl methacrylate cationic monomers; DMM: dimethylaminoethyl methacrylate AAM; acrylamide and others AAC: acrylic acid, MBAA: methylenebisacrylamide surfactant; SDS: sodium dodecyl sulfate, WS-100: naphthalene sulfonate formalin condensate, CL-100: polyoxyalkylene alkyl ether, TW-85: Polyoxyethylene sorbitan trioleate

(試験例1)
本発明における紙力剤の紙質測定試験を実施した。先ず、LBKPをナイアガラ式ビーターで叩解し、カナディアンスタンダードフリーネス345mLに調整した。パルプ濃度1質量%のスラリー(pH6.4、EC17.1mS/m)500mLに対し、パルプ固形分に対し0.5質量%あるいは1質量%となるように表1の実施例の高分子試料あるいは比較例の高分子試料、比較試料として市販の紙力剤(両性アクリルアミド系水溶性高分子、濃度20質量%)を添加し、800rpmで1分間撹拌後、タッピシートマシンにて抄紙(80メッシュワイヤー)し、続いて圧力410kPaで5分間プレスし、さらに回転型乾燥機を使用し105℃で乾燥した。温度23℃、湿度50%の条件下で24時間調湿して、坪量80g/cmの紙を得た。得られた紙の内部結合強さ(熊谷理機工業製インターナルボンドテスター)、JIS P8112に準じて破裂強度を測定し、表2の結果を得た。実施試験例では比較試験例の紙に比較して紙力の向上を示した。
(Test example 1)
A paper quality measurement test of the paper strength agent in the present invention was carried out. First, LBKP was beaten with a Niagara beater and adjusted to a Canadian standard freeness of 345 mL. The polymer sample or A polymer sample of a comparative example and a commercially available paper strength agent (amphoteric acrylamide-based water-soluble polymer, concentration 20% by mass) were added as a comparative sample, stirred at 800 rpm for 1 minute, and then paper-made with a tapping sheet machine (80 mesh wire ), then pressed at a pressure of 410 kPa for 5 minutes, and further dried at 105° C. using a rotary dryer. The paper was conditioned at a temperature of 23° C. and a humidity of 50% for 24 hours to obtain a paper having a basis weight of 80 g/cm 2 . The resulting paper was measured for internal bond strength (internal bond tester manufactured by Kumagai Riki Kogyo Co., Ltd.) and burst strength according to JIS P8112, and the results shown in Table 2 were obtained. The practical test examples showed an improvement in paper strength compared to the papers of the comparative test examples.

(表2)

Figure 0007277884000002
(Table 2)
Figure 0007277884000002

(試験例2)
試験例1と同様に調製(叩解度360mL)したパルプ濃度1質量%のスラリー500mLに対し、パルプ固形分に対し0.5質量%あるいは1質量%となるように表1の実施例の高分子試料あるいは比較例の高分子試料、比較試料を添加し、800rpmで1分間撹拌後、タッピシートマシンにて抄紙(80メッシュワイヤー)し、続いて圧力410kPaで5分間プレスし、さらに回転型乾燥機を使用し105℃で乾燥した。温度23℃、湿度50%の条件下で24時間調湿して、坪量80g/cmの紙を得た。得られた紙の内部結合強さ(熊谷理機工業製インターナルボンドテスター)、JIS P8112に準じて破裂強度を測定し、表3の結果を得た。実施試験例では比較試験例の紙に比較して紙力の向上を示した。
(Test example 2)
For 500 mL of slurry with a pulp concentration of 1% by mass prepared in the same manner as in Test Example 1 (beating degree: 360 mL), the polymer of the example in Table 1 was added so that it was 0.5% by mass or 1% by mass with respect to the pulp solid content. A sample or a polymer sample of a comparative example and a comparative sample are added, stirred at 800 rpm for 1 minute, paper is made with a tapping sheet machine (80 mesh wire), followed by pressing at a pressure of 410 kPa for 5 minutes, and further with a rotary dryer. and dried at 105°C. The paper was conditioned at a temperature of 23° C. and a humidity of 50% for 24 hours to obtain a paper having a basis weight of 80 g/cm 2 . The internal bond strength (internal bond tester manufactured by Kumagai Riki Kogyo Co., Ltd.) and the burst strength of the obtained paper were measured according to JIS P8112, and the results shown in Table 3 were obtained. The practical test examples showed an improvement in paper strength compared to the papers of the comparative test examples.

(表3)

Figure 0007277884000003
(Table 3)
Figure 0007277884000003

(試験例3)
試験例1と同様に調製(叩解度360mL)したパルプ濃度1質量%のスラリー500mLに対し、パルプ固形分に対し0.5質量%あるいは1質量%となるように表1の実施例の高分子試料あるいは比較例の高分子試料、比較試料を添加し、800rpmで1分間撹拌後、タッピシートマシンにて抄紙(80メッシュワイヤー)し、続いて圧力410kPaで5分間プレスし、さらに回転型乾燥機を使用し105℃で乾燥した。温度23℃、湿度50%の条件下で24時間調湿して、坪量80g/cmの紙を得た。得られた紙の内部結合強さ(熊谷理機工業製インターナルボンドテスター)、JIS P8112に準じて破裂強度を測定し、表4の結果を得た。実施試験例では比較試験例の紙に比較して紙力の向上を示した。
(Test example 3)
For 500 mL of slurry with a pulp concentration of 1% by mass prepared in the same manner as in Test Example 1 (beating degree: 360 mL), the polymer of the example in Table 1 was added so that it was 0.5% by mass or 1% by mass with respect to the pulp solid content. A sample or a polymer sample of a comparative example and a comparative sample are added, stirred at 800 rpm for 1 minute, paper is made with a tapping sheet machine (80 mesh wire), followed by pressing at a pressure of 410 kPa for 5 minutes, and further with a rotary dryer. and dried at 105°C. The paper was conditioned at a temperature of 23° C. and a humidity of 50% for 24 hours to obtain a paper having a basis weight of 80 g/cm 2 . The internal bond strength of the obtained paper (internal bond tester manufactured by Kumagai Riki Kogyo Co., Ltd.) and the burst strength were measured according to JIS P8112, and the results shown in Table 4 were obtained. The practical test examples showed an improvement in paper strength compared to the papers of the comparative test examples.

(表4)

Figure 0007277884000004
(Table 4)
Figure 0007277884000004

(試験例4)
試験例1と同様に調製(叩解度360mL)したパルプ濃度1質量%のスラリー500mLに対し、パルプ固形分に対し1質量%となるように表1の実施例の高分子試料あるいは比較例の高分子試料、比較試料を添加し、800rpmで1分間撹拌後、タッピシートマシンにて抄紙(80メッシュワイヤー)し、続いて圧力410kPaで5分間プレスし、さらに回転型乾燥機を使用し105℃で乾燥した。温度23℃、湿度50%の条件下で24時間調湿して、坪量80g/cmの紙を得た。得られた紙の内部結合強さ(熊谷理機工業製インターナルボンドテスター)、JIS P8112に準じて破裂強度を測定し、表5の結果を得た。実施試験例では比較試験例の紙に比較して紙力の向上を示した。
(Test example 4)
For 500 mL of slurry with a pulp concentration of 1% by mass prepared in the same manner as in Test Example 1 (beating degree: 360 mL), the polymer sample of the example in Table 1 or the high polymer sample of the comparative example was added so that the pulp solid content was 1% by mass. A molecular sample and a comparative sample were added, and after stirring at 800 rpm for 1 minute, the mixture was made into paper (80 mesh wire) using a tapping sheet machine, followed by pressing at a pressure of 410 kPa for 5 minutes, and further using a rotary dryer at 105°C. Dried. The paper was conditioned at a temperature of 23° C. and a humidity of 50% for 24 hours to obtain a paper having a basis weight of 80 g/cm 2 . The resulting paper was measured for internal bond strength (internal bond tester manufactured by Kumagai Riki Kogyo Co., Ltd.) and burst strength according to JIS P8112, and the results shown in Table 5 were obtained. The practical test examples showed an improvement in paper strength compared to the papers of the comparative test examples.

(表5)

Figure 0007277884000005
(Table 5)
Figure 0007277884000005

(試験例5)
試験例1と同様に調製(叩解度360mL)したパルプ濃度1質量%のスラリー500mLに対し、パルプ固形分に対し1質量%となるように表1の実施例の高分子試料あるいは比較例の高分子試料、比較試料を添加し、800rpmで1分間撹拌後、タッピシートマシンにて抄紙(80メッシュワイヤー)し、続いて圧力410kPaで5分間プレスし、さらに回転型乾燥機を使用し105℃で乾燥した。温度23℃、湿度50%の条件下で24時間調湿して、坪量80g/cmの紙を得た。得られた紙の内部結合強さ(熊谷理機工業製インターナルボンドテスター)、JIS P8112に準じて破裂強度を測定し、表6の結果を得た。実施試験例では比較試験例の紙に比較して紙力の向上を示した。
(Test Example 5)
For 500 mL of slurry with a pulp concentration of 1% by mass prepared in the same manner as in Test Example 1 (beating degree 360 mL), the polymer sample of the example in Table 1 or the high polymer sample of the comparative example was added so that the pulp solid content was 1% by mass. A molecular sample and a comparative sample were added, and after stirring at 800 rpm for 1 minute, the mixture was made into paper (80 mesh wire) using a tapping sheet machine, followed by pressing at a pressure of 410 kPa for 5 minutes, and further using a rotary dryer at 105°C. Dried. The paper was conditioned at a temperature of 23° C. and a humidity of 50% for 24 hours to obtain a paper having a basis weight of 80 g/cm 2 . The internal bond strength (internal bond tester manufactured by Kumagai Riki Kogyo Co., Ltd.) and the burst strength of the obtained paper were measured according to JIS P8112, and the results shown in Table 6 were obtained. The practical test examples showed an improvement in paper strength compared to the papers of the comparative test examples.

(表6)

Figure 0007277884000006











(Table 6)
Figure 0007277884000006











Claims (4)

疎水性単量体として、ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、スチレンから選択される一種以上、(メタ)アクリルアミド、カチオン性単量体として、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミドの無機酸若しくは有機酸の塩類、またはこれら第3級アミノ基含有単量体とメチルクロライド、ベンジルクロライド、ジメチル硫酸、エピクロロヒドリンの四級化剤との反応によって得られる第四級アンモニウム塩を有する単量体から選択される一種以上を必須成分とし、反応性界面活性剤を含まない単量体混合物、水、界面活性剤、ラジカル重合開始剤を所定の反応容器に添加し、不活性ガス雰囲気下、撹拌、加温することにより水中で重合して得られる高分子からなることを特徴とする紙力剤の製造方法。 As hydrophobic monomers, one or more selected from butyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dodecyl (meth)acrylate, octadecyl (meth)acrylate, styrene, ( meth)acrylamide, as cationic monomers, inorganic or organic acid salts of dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylamide, diethylaminopropyl (meth)acrylamide, or One selected from monomers having a quaternary ammonium salt obtained by reacting these tertiary amino group-containing monomers with a quaternizing agent such as methyl chloride, benzyl chloride, dimethyl sulfate and epichlorohydrin A monomer mixture containing the above essential components and not containing a reactive surfactant, water, a surfactant, and a radical polymerization initiator are added to a predetermined reaction vessel, and stirred and heated under an inert gas atmosphere . A method for producing a paper strength agent, comprising a polymer obtained by polymerizing in water. 疎水性単量体として、ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、スチレンから選択される一種以上、(メタ)アクリルアミド、カチオン性単量体として、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミドの無機酸若しくは有機酸の塩類、またはこれら第3級アミノ基含有単量体とメチルクロライド、ベンジルクロライド、ジメチル硫酸、エピクロロヒドリンの四級化剤との反応によって得られる第四級アンモニウム塩を有する単量体から選択される一種以上を必須成分とし、反応性界面活性剤を含まない単量体混合物、水、界面活性剤、ラジカル重合開始剤を所定の反応容器に添加し、不活性ガス雰囲気下、撹拌、加温することにより水中で重合して得られる高分子であって、該高分子が全単量体に対して、界面活性剤が0.01~5質量%の存在下、水中で重合して得られる高分子からなることを特徴とする紙力剤の製造方法。 As hydrophobic monomers, one or more selected from butyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dodecyl (meth)acrylate, octadecyl (meth)acrylate, styrene, ( meth)acrylamide, as cationic monomers, inorganic or organic acid salts of dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylamide, diethylaminopropyl (meth)acrylamide, or One selected from monomers having a quaternary ammonium salt obtained by reacting these tertiary amino group-containing monomers with a quaternizing agent such as methyl chloride, benzyl chloride, dimethyl sulfate and epichlorohydrin A monomer mixture containing the above essential components and not containing a reactive surfactant, water, a surfactant, and a radical polymerization initiator are added to a predetermined reaction vessel, and stirred and heated under an inert gas atmosphere . A polymer obtained by polymerizing in water according to A method for producing a paper strength agent, comprising: 疎水性単量体として、ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、スチレンから選択される一種以上、(メタ)アクリルアミド、カチオン性単量体として、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミドの無機酸若しくは有機酸の塩類、またはこれら第3級アミノ基含有単量体とメチルクロライド、ベンジルクロライド、ジメチル硫酸、エピクロロヒドリンの四級化剤との反応によって得られる第四級アンモニウム塩を有する単量体から選択される一種以上を必須成分とし、反応性界面活性剤を含まない単量体混合物、水、界面活性剤、ラジカル重合開始剤を所定の反応容器に添加し、不活性ガス雰囲気下、撹拌、加温することにより水中で重合して得られる高分子であって、該高分子が全単量体に対して、疎水性単量体が0.05~15質量%、界面活性剤が0.01~5質量%の存在下、水中で重合して得られる高分子からなることを特徴とする紙力剤の製造方法。 As hydrophobic monomers, one or more selected from butyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dodecyl (meth)acrylate, octadecyl (meth)acrylate, styrene, ( meth)acrylamide, as cationic monomers, inorganic or organic acid salts of dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylamide, diethylaminopropyl (meth)acrylamide, or One selected from monomers having a quaternary ammonium salt obtained by reacting these tertiary amino group-containing monomers with a quaternizing agent such as methyl chloride, benzyl chloride, dimethyl sulfate and epichlorohydrin A monomer mixture containing the above essential components and not containing a reactive surfactant, water, a surfactant, and a radical polymerization initiator are added to a predetermined reaction vessel, and stirred and heated under an inert gas atmosphere . A polymer obtained by polymerizing in water according to A method for producing a paper strength agent, comprising a polymer obtained by polymerizing in water in the presence of %. 前記高分子の1質量%水溶液のB型粘度計による回転数60rpm、温度25℃における粘度が5~50mPa・sであることを特徴とする請求項1~3の何れかに記載の紙力剤の製造方法。
The paper strength agent according to any one of claims 1 to 3, wherein the viscosity of the 1 mass% aqueous solution of the polymer is 5 to 50 mPa s at a rotation speed of 60 rpm and a temperature of 25 ° C. measured by a Brookfield viscometer. manufacturing method.
JP2019126406A 2019-07-05 2019-07-05 Method for manufacturing paper strength agent Active JP7277884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019126406A JP7277884B2 (en) 2019-07-05 2019-07-05 Method for manufacturing paper strength agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019126406A JP7277884B2 (en) 2019-07-05 2019-07-05 Method for manufacturing paper strength agent

Publications (2)

Publication Number Publication Date
JP2021011540A JP2021011540A (en) 2021-02-04
JP7277884B2 true JP7277884B2 (en) 2023-05-19

Family

ID=74227141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019126406A Active JP7277884B2 (en) 2019-07-05 2019-07-05 Method for manufacturing paper strength agent

Country Status (1)

Country Link
JP (1) JP7277884B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115199A (en) 2000-10-12 2002-04-19 Kao Corp Additive for making paper
JP2006299429A (en) 2005-04-15 2006-11-02 Kao Corp Paper quality-improving agent for papermaking
JP5865097B2 (en) 2012-01-30 2016-02-17 株式会社クボタ Filter media for water treatment and septic tank

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865097A (en) * 1981-10-08 1983-04-18 三井東圧化学株式会社 Paper strength increasing composition with good penetrating property of size liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115199A (en) 2000-10-12 2002-04-19 Kao Corp Additive for making paper
JP2006299429A (en) 2005-04-15 2006-11-02 Kao Corp Paper quality-improving agent for papermaking
JP5865097B2 (en) 2012-01-30 2016-02-17 株式会社クボタ Filter media for water treatment and septic tank

Also Published As

Publication number Publication date
JP2021011540A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
EP0659780B1 (en) Acrylamide polymers and uses thereof
AU2006242631B2 (en) High molecular weight compact structured polymers, methods of making and using
EP1425472A1 (en) Method of improving retention and drainage in a papermaking process using a diallyl -n, n-disubstituted ammonium halide/acrylamide copolymer and a structurally modified cationic polymer
JP2008545892A (en) Hydrophobic polymers and their use in the production of cellulosic fiber compositions
CN112601860B (en) Additive for papermaking, paper and method for producing paper
JP5640458B2 (en) Method for producing paper-making paper strength enhancer
JP7332100B2 (en) Papermaking paper strength agent
JP3545473B2 (en) Acrylamide polymer and its use
JP7277884B2 (en) Method for manufacturing paper strength agent
JP2004011059A (en) Additive for papermaking
JP3549330B2 (en) Papermaking additives
JP7453648B2 (en) New paper strength agent
JP3798784B2 (en) Paper strength enhancer and paper
JP2000212229A (en) Additive for paper-making and its preparation
JP7571996B2 (en) A papermaking additive that enhances the effectiveness of paper strength agents
JP7588370B2 (en) Papermaking Additives
JP3803670B2 (en) Acrylamide polymer aqueous solution and its use
JP5024719B2 (en) Paper manufacturing method
JP3125409B2 (en) Additives for papermaking and method for producing the same
JP2001279599A (en) Paper-making method
JP4158190B2 (en) Paper sizing agent
JP3976136B2 (en) Paper quality improver
JP2023128115A (en) Polymer sizing agent for paper making
KR20050052363A (en) Dispersin agent for paper pulp
JP2024059162A (en) Size agent for paper making

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230426

R150 Certificate of patent or registration of utility model

Ref document number: 7277884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150