[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7273687B2 - non-return valve - Google Patents

non-return valve Download PDF

Info

Publication number
JP7273687B2
JP7273687B2 JP2019191652A JP2019191652A JP7273687B2 JP 7273687 B2 JP7273687 B2 JP 7273687B2 JP 2019191652 A JP2019191652 A JP 2019191652A JP 2019191652 A JP2019191652 A JP 2019191652A JP 7273687 B2 JP7273687 B2 JP 7273687B2
Authority
JP
Japan
Prior art keywords
valve
check valve
head portion
check
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019191652A
Other languages
Japanese (ja)
Other versions
JP2021067297A (en
Inventor
嘉一 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019191652A priority Critical patent/JP7273687B2/en
Publication of JP2021067297A publication Critical patent/JP2021067297A/en
Application granted granted Critical
Publication of JP7273687B2 publication Critical patent/JP7273687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Check Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Description

この発明は、逆止弁、及び逆止弁を備えたパージソレノイドバルブに関するものである。 The present invention relates to a check valve and a purge solenoid valve provided with the check valve.

自動車業界では、燃費向上を背景に、エンジンのダウンサイジングターボ化が進んでいる。ターボエンジン車は、キャニスタに溜まった蒸散ガソリンを、停車時にインテークマニホールド(以下、「インマニ」と称する)に生じる負圧でエンジンに戻して再燃焼させる方法と、走行時にコンプレッサ上流に生じる負圧でエンジンに戻して再燃焼させる方法とにより、処理している。キャニスタの配管は、途中で分岐し、一方の配管がインマニに接続し、もう一方の配管がコンプレッサ上流に接続する構造である。この配管構造では、インマニ及びコンプレッサ上流からキャニスタへの逆流を防止するために、分岐した各々の配管に逆止弁が設けられている必要がある。逆止弁の一種に、弁体が傘状の形状をした、アンブレラ式の逆止弁がある(例えば、特許文献1参照)。 In the automotive industry, the downsizing turbo of the engine is progressing against the background of the improvement of fuel efficiency. In a turbo engine car, the vaporized gasoline accumulated in the canister is returned to the engine by the negative pressure generated in the intake manifold (hereinafter referred to as the "intake manifold") when the vehicle is stopped, and is reburned. It is disposed of by returning it to the engine and re-burning it. The pipes of the canister are branched in the middle, one pipe is connected to the intake manifold, and the other pipe is connected upstream of the compressor. In this piping structure, each branched piping must be provided with a check valve in order to prevent reverse flow from the intake manifold and upstream of the compressor to the canister. One type of check valve is an umbrella-type check valve having an umbrella-shaped valve body (see, for example, Patent Document 1).

近年、ダウンサイジングターボ車における蒸散ガソリン処理能力の向上が課題となっており、走行時にコンプレッサ上流の気流により発生する微小負圧で、大流量の蒸散ガソリンをキャニスタからエンジンに戻すことが求められている。そのため、逆止弁には、微小負圧でも大きく開口することによる大流量化と、エンジンの高回転時に生じる高過給圧に対する逆止シール性の両立が求められる。 In recent years, it has become an issue to improve the evaporative gasoline processing capacity of downsized turbo vehicles, and there is a need to return a large amount of evaporative gasoline from the canister to the engine with the slight negative pressure generated by the airflow upstream of the compressor during driving. there is Therefore, the check valve is required to achieve both a large flow rate by opening a large opening even with a very small negative pressure and check sealing performance against the high supercharging pressure that occurs when the engine rotates at high speed.

特開2019-32056号公報JP 2019-32056 A

アンブレラ式の逆止弁の逆止シール性を向上させるには、弁体の剛性を上げる必要があるが、弁体の剛性が上がると開弁し難くなり、流量が低下してしまう。アンブレラ式の逆止弁で大流量を流すには、弁体の剛性を下げる必要があるが、弁体の剛性が下がると逆止シール性が低下してしまう。このように、アンブレラ式の逆止弁は、大流量化と逆止シール性との両立が難しいという課題があった。 In order to improve the check sealing performance of an umbrella type check valve, it is necessary to increase the rigidity of the valve body. In order to allow a large amount of flow to flow through an umbrella-type check valve, it is necessary to lower the rigidity of the valve body. As described above, the umbrella type check valve has a problem in that it is difficult to achieve both a large flow rate and check sealing performance.

この発明は、上記のような課題を解決するためになされたもので、逆止シール性を維持したまま、大流量化を実現した逆止弁を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a check valve that achieves a large flow rate while maintaining check sealing properties.

この発明に係る逆止弁は、円形状の傘部及び傘部の中心に設けられた軸部を有する弁体部と、傘部の周縁が接触するシール部、シール部の内側において流体を流す流通孔、及びシール部の中心において軸部を保持する保持部を有する弁座部とを備える逆止弁であって、傘部は、流通孔に対向する面における軸部の周りに設けられた円環溝を有し、前記弁座部は、前記流通孔に設けられた、前記保持部を中心として径方向へ放射状にのびる複数のリブを有し、前記傘部は、前記複数のリブに当接する突起部を有するものである。 A check valve according to the present invention includes a valve body portion having a circular head portion and a shaft portion provided at the center of the head portion, a seal portion in contact with the peripheral edge of the head portion, and a fluid flowing inside the seal portion. A check valve comprising a flow hole and a valve seat portion having a holding portion that holds a shaft portion at the center of the seal portion, wherein the umbrella portion is provided around the shaft portion on a surface facing the flow hole The valve seat portion has a plurality of ribs radially extending from the holding portion provided in the flow hole, and the head portion extends from the plurality of ribs. It has a protruding portion that abuts .

この発明によれば、円環溝を設けて傘部の根元の剛性を下げることによって傘部が大きく開口するようにしたので、逆止シール性を維持したまま、大流量化を実現した逆止弁を提供することができる。 According to this invention, since the head portion is made to open wide by providing the annular groove and lowering the rigidity of the root of the head portion, the non-return valve realizes a large flow rate while maintaining the non-return sealability. A valve can be provided.

実施の形態1に係る蒸散ガソリン処理システムの構成例を示す図である。1 is a diagram showing a configuration example of a transpired gasoline processing system according to Embodiment 1; FIG. 実施の形態1に係る逆止弁の構成例を示す断面図であり、開弁状態を示す。FIG. 2 is a cross-sectional view showing a configuration example of the check valve according to Embodiment 1, showing a valve open state; 実施の形態1に係る逆止弁の構成例を示す断面図であり、閉弁状態を示す。FIG. 2 is a cross-sectional view showing a configuration example of the check valve according to Embodiment 1, showing a closed state; 実施の形態1に係る逆止弁の厚みを説明する図である。FIG. 4 is a diagram illustrating the thickness of the check valve according to Embodiment 1; 実施の形態1に係る逆止弁の構成例を示す断面図である。FIG. 3 is a cross-sectional view showing a configuration example of the check valve according to Embodiment 1; 実施の形態1に係る逆止弁の構成例を示すC矢視図である。4 is a view in the direction of arrow C showing a configuration example of the check valve according to Embodiment 1. FIG. 実施の形態1に係るパージソレノイドバルブの変形例を示す断面図である。FIG. 5 is a cross-sectional view showing a modification of the purge solenoid valve according to Embodiment 1;

実施の形態1.
図1は、実施の形態1に係る蒸散ガソリン処理システムの構成例を示す図である。ターボエンジン車における蒸散ガソリン処理システムは、燃料タンク1、キャニスタ2、パージソレノイドバルブ3、逆止弁4a,4b、エアクリーナ5、コンプレッサ6、スロットルバルブ7、及びエンジン8を含む。このターボエンジン車において、エアクリーナ5からの空気がエンジン8へ導出される。コンプレッサ6が動作している場合は、エアクリーナ5からの空気がコンプレッサ6によって圧縮されてエンジン8へ導出される。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a transpired gasoline processing system according to Embodiment 1. FIG. A transpired gasoline processing system in a turbo engine vehicle includes a fuel tank 1, a canister 2, a purge solenoid valve 3, check valves 4a, 4b, an air cleaner 5, a compressor 6, a throttle valve 7, and an engine 8. In this turbo engine vehicle, air is led out from the air cleaner 5 to the engine 8 . When the compressor 6 is operating, the air from the air cleaner 5 is compressed by the compressor 6 and discharged to the engine 8 .

燃料タンク1内で揮発した蒸散ガソリンは、キャニスタ2に溜まる。キャニスタ2に溜まった蒸散ガソリンは、エンジン8のアイドル時及び低回転時にスロットルバルブ7下流のインマニで発生する負圧、並びに、エンジン8の中回転時及び高回転時にコンプレッサ6の上流で発生する負圧によって吸引され、エンジン8で燃焼される。キャニスタ2の下流の配管に設置されたパージソレノイドバルブ3は、キャニスタ2に溜まった蒸散ガソリンをエンジン8に送る量を制御するバルブである。パージソレノイドバルブ3とインマニとを接続する配管には、インマニからキャニスタ2への逆流を防止する逆止弁4aが設置されている。パージソレノイドバルブ3とコンプレッサ6上流とを接続する配管には、コンプレッサ6上流からキャニスタ2への逆流を防止する逆止弁4bが設置されている。 Evaporated gasoline in the fuel tank 1 accumulates in the canister 2. - 特許庁Evaporated gasoline accumulated in the canister 2 causes negative pressure generated in the intake manifold downstream of the throttle valve 7 when the engine 8 is idling and at low speed, and negative pressure generated upstream of the compressor 6 when the engine 8 is at medium speed and high speed. It is sucked by pressure and combusted in the engine 8 . A purge solenoid valve 3 installed in a pipe downstream of the canister 2 is a valve that controls the amount of evaporated gasoline accumulated in the canister 2 sent to the engine 8 . A check valve 4a for preventing reverse flow from the intake manifold to the canister 2 is installed in a pipe connecting the purge solenoid valve 3 and the intake manifold. A check valve 4 b that prevents reverse flow from the upstream of the compressor 6 to the canister 2 is installed in the piping that connects the purge solenoid valve 3 and the upstream of the compressor 6 .

実施の形態1において、逆止弁4aと逆止弁4bは同一の構成であるため、逆止弁4aと逆止弁4bを区別する必要がない場合には「逆止弁4」と呼ぶ。 In Embodiment 1, the check valve 4a and the check valve 4b have the same structure, so that the check valve 4a and the check valve 4b are referred to as the "check valve 4" when there is no need to distinguish between them.

図2A及び図2Bは、実施の形態1に係る逆止弁4の構成例を示す断面図である。図2Aは逆止弁4の開弁状態、図2Bは逆止弁4の閉弁状態を示す。逆止弁4は、弁体部40と弁座部43とを備える。弁体部40は、ゴム等の弾性体で構成されている。この弁体部40は、円形状の傘部41と、傘部41の中心に設けられた軸部42とを備える。弁座部43は、金属又は樹脂等の剛体で構成されている。この弁座部43は、傘部41の周縁が接触するシール部44と、シール部44の内側において流体を流す流通孔45と、シール部44の中心において軸部42を保持する保持部46とを備える。図示例では、軸部42の両端部が太く、中央部が細くなっており、中央部が保持部46の孔に通された状態において両端部が当該孔からの抜け止めとして機能する。 2A and 2B are cross-sectional views showing configuration examples of the check valve 4 according to the first embodiment. 2A shows the open state of the check valve 4, and FIG. 2B shows the closed state of the check valve 4. FIG. The check valve 4 includes a valve body portion 40 and a valve seat portion 43 . The valve body portion 40 is made of an elastic material such as rubber. The valve body portion 40 includes a circular head portion 41 and a shaft portion 42 provided at the center of the head portion 41 . The valve seat portion 43 is made of a rigid body such as metal or resin. The valve seat portion 43 includes a seal portion 44 with which the peripheral edge of the umbrella portion 41 contacts, a flow hole 45 through which fluid flows inside the seal portion 44, and a holding portion 46 that holds the shaft portion 42 at the center of the seal portion 44. Prepare. In the illustrated example, both end portions of the shaft portion 42 are thick and the center portion is thin, and when the center portion is passed through the hole of the holding portion 46, both end portions function as stoppers from the hole.

図2A及び図2Bの紙面において、上方にインマニ又はコンプレッサ6上流が存在し、下方にパージソレノイドバルブ3が存在する。また、傘部41の紙面上側の面を「表面」と呼び、傘部41の紙面下側の面、つまり流通孔45に対向する面を「裏面」と呼ぶ。傘部41の表面に負圧がかかると、又は傘部41の裏面に正圧がかかると、傘部41が反ってその周縁がシール部44から離れて開口し、流通孔45を通って図2Aに示される矢印方向へ蒸散ガソリンが流れる。反対に、傘部41の表面に正圧がかかると、又は傘部41の裏面に負圧がかかると、傘部41の周縁が弁座部43のシール部44に接触することで傘部41が流通孔45を塞ぎ、図2Bに示される矢印方向の逆流を防止する。 In the plane of Figures 2A and 2B, there is an intake manifold or compressor 6 upstream and a purge solenoid valve 3 below. Further, the surface of the umbrella portion 41 on the upper side of the paper surface is called "front surface", and the surface of the umbrella portion 41 on the lower side of the paper surface, that is, the surface facing the flow hole 45 is called the "back surface". When a negative pressure is applied to the front surface of the head portion 41 or a positive pressure is applied to the back surface of the head portion 41, the head portion 41 warps and its peripheral edge opens apart from the seal portion 44, and passes through the flow hole 45 to the figure. Evaporated gasoline flows in the direction of the arrow indicated by 2A. Conversely, when a positive pressure is applied to the front surface of the head portion 41 or a negative pressure is applied to the back surface of the head portion 41, the peripheral edge of the head portion 41 contacts the seal portion 44 of the valve seat portion 43, whereby the head portion 41 is closed. blocks the flow hole 45 and prevents back flow in the direction of the arrow shown in FIG. 2B.

図3は、実施の形態1に係る逆止弁4の厚みを説明する図である。図4Aは、実施の形態1に係る逆止弁4の構成例を示す断面図である。図4Bは、実施の形態1に係る逆止弁4の構成例を示すC矢視図である。逆止弁4の大流量化のために、傘部41の、流通孔45に対向する裏面における軸部42の周りに、円環溝41aが設けられている。円環溝41aが設けられた部位の厚みA1は、円環溝41aよりも周縁側の厚みA2,A3よりも薄い。そのため、傘部41のうち、円環溝41aの部位のみ剛性が下がる。これにより、傘部41が円環溝41aで変形しやすくなり、傘部41の反り量は、円環溝41aが無い場合に比べて大きくなる。その結果、傘部41の周縁が大きく開口し、逆止弁4の大流量化を実現できる。なお、傘部41のうちの円環溝41aよりも周縁側の厚みは変更されないため、周縁側の剛性は下がらず、逆止シール性は維持される。 FIG. 3 is a diagram illustrating the thickness of the check valve 4 according to Embodiment 1. FIG. FIG. 4A is a cross-sectional view showing a configuration example of the check valve 4 according to Embodiment 1. FIG. 4B is a view in the direction of arrow C showing a configuration example of the check valve 4 according to Embodiment 1. FIG. In order to increase the flow rate of the check valve 4, an annular groove 41a is provided around the shaft portion 42 on the rear surface of the umbrella portion 41 facing the flow hole 45. As shown in FIG. The thickness A1 of the portion where the annular groove 41a is provided is thinner than the thicknesses A2 and A3 on the peripheral edge side of the annular groove 41a. Therefore, the rigidity of only the portion of the annular groove 41a of the umbrella portion 41 is reduced. As a result, the head portion 41 is easily deformed by the annular groove 41a, and the amount of warping of the head portion 41 becomes greater than when there is no annular groove 41a. As a result, the peripheral edge of the umbrella portion 41 opens wide, and the flow rate of the check valve 4 can be increased. In addition, since the thickness of the peripheral edge side of the annular groove 41a of the head portion 41 is not changed, the rigidity of the peripheral edge side does not decrease, and the non-return sealability is maintained.

また、傘部41は、順流時の受圧面積B1が大きく、逆流時の受圧面積B2が小さい構造である。順流時の受圧面積B1は、傘部41全体の面積である。逆流時の受圧面積B2は、傘部41のうちのシール部44に接触する周縁を除いた部分の面積である。順流時の受圧面積B1が大きいことにより、傘部41に作用する受圧力が大きくなるため、傘部41は低圧力でも開弁する。つまり、逆止弁4の開弁応答性が向上する。逆流時の受圧面積B2が小さいことにより、閉弁時、高圧力下での傘部41の変形過多によるシール不良が防止される。つまり、逆止弁4の逆止シール性が向上する。高圧力下での傘部41の変形過多によるシール不良とは、例えば、傘部41が流通孔45へ落ち込むことにより、傘部41の周縁とシール部44との間に隙間が生じる状態を指す。 Moreover, the head portion 41 has a structure in which the pressure receiving area B1 is large during forward flow and the pressure receiving area B2 is small during reverse flow. The pressure-receiving area B<b>1 during forward flow is the area of the entire head portion 41 . The pressure-receiving area B<b>2 at the time of backflow is the area of the portion of the head portion 41 excluding the peripheral edge that contacts the seal portion 44 . Since the receiving pressure acting on the head portion 41 increases due to the large pressure receiving area B1 during the forward flow, the head portion 41 opens even at low pressure. That is, the valve opening responsiveness of the check valve 4 is improved. Since the pressure-receiving area B2 at the time of reverse flow is small, it is possible to prevent sealing defects due to excessive deformation of the head portion 41 under high pressure when the valve is closed. That is, the non-return sealability of the check valve 4 is improved. A sealing failure due to excessive deformation of the head portion 41 under high pressure refers to, for example, a state in which a gap is generated between the peripheral edge of the head portion 41 and the seal portion 44 due to the head portion 41 dropping into the flow hole 45 . .

また、傘部41の流通孔45に対向する部位の変形過多を抑制するために、当該部位に突起部41bが設けられている。突起部41bは、例えば、図4Bに示されるように、円環溝41aの外側に設けられた、円環状の突起である。また、弁座部43の流通孔45には、保持部46を中心として径方向へ放射状にのびる複数のリブ45aが設けられている。例えば、図4Bに示されるように、8個のリブ45aが、周方向に45度おきに設けられている。突起部41bがリブ45aに当接することで、逆流時に高圧力を受けた傘部41の変形過多が抑制される。これにより、逆流時に傘部41が流通孔45へ落ち込むことによるシール不良を防ぐ。 Moreover, in order to suppress excessive deformation of the portion of the umbrella portion 41 facing the through hole 45, a projection portion 41b is provided at that portion. The protrusion 41b is, for example, an annular protrusion provided outside the annular groove 41a, as shown in FIG. 4B. In addition, a plurality of ribs 45a are provided in the communication hole 45 of the valve seat portion 43 and radially extend from the holding portion 46 in the radial direction. For example, as shown in FIG. 4B, eight ribs 45a are provided at intervals of 45 degrees in the circumferential direction. The protrusion 41b abuts against the rib 45a, thereby suppressing excessive deformation of the umbrella portion 41 that receives high pressure during reverse flow. As a result, sealing failure due to the umbrella portion 41 dropping into the flow hole 45 during reverse flow is prevented.

さらに、傘部41の周縁の変形を抑制するために、傘部41は、流通孔45に対向する部位の厚みA2に比べて、シール部44に対向する部位の厚みA3の方が厚い形状である。傘部41の周縁は、厚みA3が厚いために剛性が上がり、逆流時に変形しにくくなる。そのため、逆流時、傘部41の周縁とシール部44とが接触する面積が増え、傘部41のシール不良が抑制される。 Furthermore, in order to suppress deformation of the peripheral edge of the head portion 41, the head portion 41 has a shape in which the thickness A3 of the portion facing the seal portion 44 is thicker than the thickness A2 of the portion facing the flow hole 45. be. Since the thickness A3 of the peripheral edge of the head portion 41 is large, the rigidity is increased, and the deformation is less likely to occur during reverse flow. Therefore, when backflow occurs, the contact area between the peripheral edge of the umbrella portion 41 and the seal portion 44 increases, and sealing failure of the umbrella portion 41 is suppressed.

以上のように、実施の形態1に係る逆止弁4は、弁体部40と、弁座部43とを備える。弁体部40は、円形状の傘部41と、傘部41の中心に設けられた軸部42とを有する。弁座部43は、傘部41の周縁が接触するシール部44と、シール部44の内側において流体を流す流通孔45と、シール部44の中心において軸部42を保持する保持部46とを有する。傘部41は、流通孔45に対向する面における軸部42の周りに設けられた円環溝41aを有する。この構成により、傘部41が根元側で変形して周縁が大きく開口するようになるため、逆止弁4の逆止シール性を維持したまま、大流量化を実現することができる。この逆止弁4を蒸散ガソリン処理システムの逆止弁4a,4bとして用いた場合、逆止弁4a,4bは、微小負圧でも開弁して大流量の蒸散ガソリンをエンジン8へ戻すことができると共に、高過給圧がパージソレノイドバルブ3及びキャニスタ2へ逆流することを防止できる。 As described above, the check valve 4 according to Embodiment 1 includes the valve body portion 40 and the valve seat portion 43 . The valve body portion 40 has a circular head portion 41 and a shaft portion 42 provided at the center of the head portion 41 . The valve seat portion 43 includes a seal portion 44 with which the peripheral edge of the umbrella portion 41 contacts, a communication hole 45 through which fluid flows inside the seal portion 44, and a holding portion 46 that holds the shaft portion 42 at the center of the seal portion 44. have. The head portion 41 has an annular groove 41 a provided around the shaft portion 42 on the surface facing the flow hole 45 . With this configuration, the head portion 41 is deformed on the root side and the peripheral edge opens wide, so that a large flow rate can be realized while maintaining the check seal performance of the check valve 4 . When this check valve 4 is used as the check valves 4a and 4b of a vaporized gasoline processing system, the check valves 4a and 4b can be opened to return a large amount of vaporized gasoline to the engine 8 even under a slight negative pressure. In addition, high supercharging pressure can be prevented from flowing back to the purge solenoid valve 3 and the canister 2.

また、実施の形態1によれば、弁座部43は、流通孔45に設けられた、保持部46を中心として径方向へ放射状にのびる複数のリブ45aを有する。傘部41は、複数のリブ45aに当接する突起部41bを有する。この構成により、逆流時、傘部41が流通孔45へ落ち込むことによるシール不良を防止することができる。 Further, according to the first embodiment, the valve seat portion 43 has a plurality of ribs 45 a radially extending around the holding portion 46 provided in the flow hole 45 . The umbrella portion 41 has protrusions 41b that come into contact with the plurality of ribs 45a. With this configuration, it is possible to prevent a sealing failure due to the umbrella portion 41 dropping into the flow hole 45 when the water flows backward.

また、実施の形態1によれば、傘部41は、流通孔45に対向する部位の厚みA2に比べて、シール部44に対向する部位の厚みA3の方が厚い。この構成により、逆流時の傘部41の周縁の変形が抑制できるので、シール不良を防止することができる。 Further, according to Embodiment 1, the thickness A3 of the portion facing the sealing portion 44 is thicker than the thickness A2 of the portion facing the circulation hole 45 of the umbrella portion 41 . With this configuration, it is possible to suppress the deformation of the peripheral edge of the head portion 41 during reverse flow, thereby preventing defective seals.

なお、図1~図4Bでは、パージソレノイドバルブ3と逆止弁4a,4bとが独立した構成であったが、逆止弁4a,4bがパージソレノイドバルブ3に内蔵された構成であってもよい。図5は、実施の形態1に係るパージソレノイドバルブ3の変形例を示す断面図であり、閉弁状態を示す。パージソレノイドバルブ3は、キャニスタ2から蒸散ガソリンを導入する導入ポート30と、この蒸散ガソリンをインマニへ導出する第1導出ポート31aと、この蒸散ガソリンをコンプレッサ6上流へ導出する第2導出ポート31bと、導入ポート30から第1導出ポート31aと第2導出ポート31bとに分岐する分岐流路32とを備えている。 In FIGS. 1 to 4B, the purge solenoid valve 3 and the check valves 4a and 4b are configured independently. good. FIG. 5 is a cross-sectional view showing a modification of the purge solenoid valve 3 according to Embodiment 1, showing a closed state. The purge solenoid valve 3 has an introduction port 30 for introducing the evaporated gasoline from the canister 2, a first outlet port 31a for leading the evaporated gasoline to the intake manifold, and a second outlet port 31b for leading the evaporated gasoline upstream of the compressor 6. , a branch channel 32 branching from the introduction port 30 into a first outlet port 31a and a second outlet port 31b.

導入ポート30と分岐流路32とを接続する流路における分岐流路32上流には、当該流路を開閉する弁体部33と、弁座部37とが設けられている。弁体部33が弁座部37から離れて開弁状態になると、導入ポート30と逆止弁4aと逆止弁4bが接続される。弁体部33が弁座部37に接触して閉弁状態になると、導入ポート30と逆止弁4aと逆止弁4bが遮断される。 A valve body portion 33 and a valve seat portion 37 for opening and closing the flow path are provided upstream of the branch flow path 32 in the flow path connecting the introduction port 30 and the branch flow path 32 . When the valve body portion 33 is separated from the valve seat portion 37 to open the valve, the introduction port 30 is connected to the check valve 4a and the check valve 4b. When the valve body portion 33 comes into contact with the valve seat portion 37 to close the valve, the introduction port 30 and the check valves 4a and 4b are blocked.

弁体部33は、ソレノイド部34とスプリング35とにより開閉される。ソレノイド部34は、コイル34aと、コイル34aへの通電により励磁されるコア34bと、コア34bから弁体部33へ突出したピン34cと、コア34bに吸引されるプランジャ34dとを有する。プランジャ34dには、弁体部33が固定されている。給電端子36を介してコイル34aへ通電されると、弁体部33がピン34cに当接する位置まで、プランジャ34dがコア34bに吸引され、弁体部33が弁座部37から離れる。コイル34aへの通電が停止すると、スプリング35の付勢力を受けた弁体部33が弁座部37に接触する。 The valve body portion 33 is opened and closed by a solenoid portion 34 and a spring 35 . The solenoid portion 34 has a coil 34a, a core 34b excited by energizing the coil 34a, a pin 34c projecting from the core 34b to the valve body portion 33, and a plunger 34d attracted to the core 34b. The valve body portion 33 is fixed to the plunger 34d. When the coil 34a is energized through the power supply terminal 36, the plunger 34d is attracted to the core 34b until the valve body 33 contacts the pin 34c, and the valve body 33 is separated from the valve seat 37. When the energization of the coil 34 a stops, the valve body portion 33 that receives the biasing force of the spring 35 contacts the valve seat portion 37 .

分岐流路32と第1導出ポート31aとを接続する流路には、逆止弁4aが設置されている。この逆止弁4aは、キャニスタ2に連通している導入ポート30側の圧力より、インマニに連通している第1導出ポート31a側の圧力が高くなると閉弁する。 A check valve 4a is installed in the flow path connecting the branch flow path 32 and the first outlet port 31a. The check valve 4a closes when the pressure on the side of the introduction port 30 communicating with the canister 2 becomes higher than the pressure on the side of the first outlet port 31a communicating with the intake manifold.

分岐流路32と第2導出ポート31bとを接続する流路には、逆止弁4bが設置されている。この逆止弁4bは、キャニスタ2に連通している導入ポート30側の圧力より、コンプレッサ6上流に連通している第2導出ポート31b側の圧力が高くなると閉弁する。 A check valve 4b is installed in the flow path connecting the branch flow path 32 and the second lead-out port 31b. The check valve 4b closes when the pressure on the side of the second outlet port 31b communicating with the upstream side of the compressor 6 becomes higher than the pressure on the side of the introduction port 30 communicating with the canister 2 .

なお、本発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、又は実施の形態の任意の構成要素の省略が可能である。 It should be noted that, within the scope of the invention, any component of the embodiment can be modified, or any component of the embodiment can be omitted.

1 燃料タンク、2 キャニスタ、3 パージソレノイドバルブ、4,4a,4b 逆止弁、5 エアクリーナ、6 コンプレッサ、7 スロットルバルブ、8 エンジン、30 導入ポート、31a 第1導出ポート、31b 第2導出ポート、32 分岐流路、33 弁体部、34 ソレノイド部、34a コイル、34b コア、34c ピン、34d プランジャ、35 スプリング、36 給電端子、37 弁座部、40 弁体部、41 傘部、41a 円環溝、41b 突起部、42 軸部、43 弁座部、44 シール部、45 流通孔、45a リブ、46 保持部、A1,A2,A3 厚み、B1,B2 受圧面積。 1 fuel tank, 2 canister, 3 purge solenoid valve, 4, 4a, 4b check valve, 5 air cleaner, 6 compressor, 7 throttle valve, 8 engine, 30 inlet port, 31a first outlet port, 31b second outlet port, 32 branch flow path, 33 valve body portion, 34 solenoid portion, 34a coil, 34b core, 34c pin, 34d plunger, 35 spring, 36 power supply terminal, 37 valve seat portion, 40 valve body portion, 41 head portion, 41a annular ring Groove 41b Projection 42 Shaft 43 Valve seat 44 Seal 45 Flow hole 45a Rib 46 Holding portion A1, A2, A3 Thickness B1, B2 Pressure receiving area.

Claims (1)

円形状の傘部及び前記傘部の中心に設けられた軸部を有する弁体部と、
前記傘部の周縁が接触するシール部、前記シール部の内側において流体を流す流通孔、及び前記シール部の中心において前記軸部を保持する保持部を有する弁座部とを備える逆止弁であって、
前記傘部は、前記流通孔に対向する面における前記軸部の周りに設けられた円環溝を有し、
前記弁座部は、前記流通孔に設けられた、前記保持部を中心として径方向へ放射状にのびる複数のリブを有し、
前記傘部は、前記複数のリブに当接する突起部を有することを特徴とする逆止弁。
a valve body portion having a circular head portion and a shaft portion provided at the center of the head portion;
A check valve comprising a seal portion with which the peripheral edge of the head portion contacts, a flow hole through which fluid flows inside the seal portion, and a valve seat portion having a holding portion that holds the shaft portion at the center of the seal portion. There is
The head portion has an annular groove provided around the shaft portion on a surface facing the flow hole,
The valve seat portion has a plurality of ribs provided in the flow hole and radially extending in a radial direction around the holding portion,
The check valve , wherein the head portion has projections that contact the plurality of ribs .
JP2019191652A 2019-10-21 2019-10-21 non-return valve Active JP7273687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019191652A JP7273687B2 (en) 2019-10-21 2019-10-21 non-return valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019191652A JP7273687B2 (en) 2019-10-21 2019-10-21 non-return valve

Publications (2)

Publication Number Publication Date
JP2021067297A JP2021067297A (en) 2021-04-30
JP7273687B2 true JP7273687B2 (en) 2023-05-15

Family

ID=75636958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019191652A Active JP7273687B2 (en) 2019-10-21 2019-10-21 non-return valve

Country Status (1)

Country Link
JP (1) JP7273687B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007530884A (en) 2004-03-23 2007-11-01 イリノイ トゥール ワークス インコーポレイティド Leak-free one-way valve for use with vacuum attachments
JP2014111915A (en) 2012-12-05 2014-06-19 Hamanako Denso Co Ltd Evaporation fuel purge device
JP2016133132A (en) 2015-01-15 2016-07-25 トヨタ紡織株式会社 Check valve and check valve structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128929U (en) * 1978-02-28 1979-09-07

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007530884A (en) 2004-03-23 2007-11-01 イリノイ トゥール ワークス インコーポレイティド Leak-free one-way valve for use with vacuum attachments
JP2014111915A (en) 2012-12-05 2014-06-19 Hamanako Denso Co Ltd Evaporation fuel purge device
JP2016133132A (en) 2015-01-15 2016-07-25 トヨタ紡織株式会社 Check valve and check valve structure

Also Published As

Publication number Publication date
JP2021067297A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
US10760534B2 (en) Fuel vapor processing apparatus
JP5289276B2 (en) Blow-by gas reduction device
JP6544114B2 (en) Check valve device and evaporated fuel supply system
JP2012215155A (en) Blowby gas returning apparatus for engine with supercharger
US10495232B2 (en) Dual path dual purge valve system and valve assembly for turbo boosted engine
JP5689983B2 (en) solenoid valve
JP7273687B2 (en) non-return valve
JP6289685B2 (en) Solenoid valve and transpiration gas treatment system
JP2015148173A (en) Check valve device and evaporated fuel supply system with the same
US10961954B2 (en) Valve device and fuel evaporation gas purge system
JP6590758B2 (en) Canister and canister vent solenoid valve
JP2017044285A (en) Check valve device and evaporation fuel supply system
US10662902B2 (en) Purge control solenoid valve
JP2017219162A (en) Double eccentric valve
JP2018004030A (en) Double eccentric valve
JP2011252421A (en) Exhaust gas recirculation apparatus
JP6590745B2 (en) Exhaust gas recirculation valve
JP5319000B2 (en) Blow-by gas reduction device
US20240295277A1 (en) Egr valve
JP6653611B2 (en) Purge solenoid valve
JP7211059B2 (en) Check valve device and evaporative fuel supply system
WO2014030401A1 (en) Valve device and secondary air introduction device
JP2024000558A (en) Check valve and purge solenoid valve
WO2017006463A1 (en) Check valve and purge solenoid valve equipped with check valve
JP2024057320A (en) Valve device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230428

R150 Certificate of patent or registration of utility model

Ref document number: 7273687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350