JP7266013B2 - Polyethylene resin composition and separation membrane for secondary battery produced therefrom - Google Patents
Polyethylene resin composition and separation membrane for secondary battery produced therefrom Download PDFInfo
- Publication number
- JP7266013B2 JP7266013B2 JP2020130934A JP2020130934A JP7266013B2 JP 7266013 B2 JP7266013 B2 JP 7266013B2 JP 2020130934 A JP2020130934 A JP 2020130934A JP 2020130934 A JP2020130934 A JP 2020130934A JP 7266013 B2 JP7266013 B2 JP 7266013B2
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- polyethylene resin
- separation membrane
- tert
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
- C08L23/0815—Copolymers of ethene with aliphatic 1-olefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Cell Separators (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Description
本発明は、分離膜の優れた機械的物性を維持しながらも、シャットダウン温度を低くして熱的安定性を確保することができる分離膜用ポリエチレン樹脂組成物およびこれから製造された二次電池用分離膜に関する。 The present invention provides a polyethylene resin composition for a separation membrane, which is capable of maintaining excellent mechanical properties of the separation membrane and ensuring thermal stability by lowering the shutdown temperature, and a secondary battery produced from the polyethylene resin composition. It relates to separation membranes.
二次電池、特にリチウム二次電池用分離膜は、二次電池の正・負極の間に存在する多孔性薄膜であって、電池の充放電過程で電解液とリチウムカチオンの透過を容易にしつつ、正・負極間の直接的な短絡を防止する目的で使用される。 Separation membranes for secondary batteries, especially lithium secondary batteries, are porous thin films that exist between the positive and negative electrodes of secondary batteries, and facilitate the permeation of the electrolyte and lithium cations during the charging and discharging process of the battery. , is used to prevent a direct short circuit between positive and negative electrodes.
リチウム二次電池用分離膜の要求特性は、正極と負極を分離して電気的に絶縁させながらも、高い気孔度を通じてリチウムイオンの透過性を高めてイオン伝導を高めることである。また、外部衝撃や電池の組立時に高速の巻き取り過程で耐えることができる機械的強度を有しなければならず、過充電、高温露出などで分離膜の熱収縮現象が発生して電池が発火・爆発してはいけない。 A separator for a lithium secondary battery is required to separate and electrically insulate a positive electrode and a negative electrode, and to increase lithium ion permeability through high porosity to enhance ionic conductivity. In addition, it must have mechanical strength that can withstand external shocks and high-speed winding processes during battery assembly, and the battery will ignite due to heat shrinkage of the separator due to overcharging, high temperature exposure, etc.・Do not explode.
リチウム二次電池が過熱されたとき、熱暴走(thermal runaway)現象を防止するための電池の安全機能として、分離膜ではシャットダウン(shut down)機能が要求される。シャットダウン機能とは、電池が過熱されたとき、正極材の分解が起こる前に気孔が閉鎖されて、リチウムカチオンの伝達を防いでさらなる過熱を防止することである。このとき、シャットダウンが発生する温度をシャットダウン温度というが、一般的にシャットダウン温度が低いほど安定性が高いと言え、これは、分離膜の重要な特性の一つである。 A separator is required to have a shutdown function as a battery safety function to prevent a thermal runaway phenomenon when a lithium secondary battery is overheated. The shutdown function is that when the battery is overheated, the pores are closed before decomposition of the cathode material occurs to prevent lithium cation transfer and prevent further overheating. At this time, the temperature at which shutdown occurs is called the shutdown temperature. In general, it can be said that the lower the shutdown temperature, the higher the stability, which is one of the important characteristics of the separation membrane.
したがって、微細気孔性フィルムの機械的物性を維持しながらも、シャットダウン温度を下げることができる分離膜用組成物に対する研究が持続されている。 Therefore, research continues on a separation membrane composition capable of lowering the shutdown temperature while maintaining the mechanical properties of the microporous film.
本発明の目的は、分離膜の優れた機械的物性を維持しながらも、シャットダウン温度を低くして熱的安定性を確保することによって、これを適用した二次電池の性能を向上させることができる分離膜用ポリエチレン樹脂組成物およびこれから製造された二次電池用分離膜を提供することにある。 An object of the present invention is to improve the performance of a secondary battery to which the separation membrane is applied by lowering the shutdown temperature and securing thermal stability while maintaining excellent mechanical properties of the separation membrane. It is an object of the present invention to provide a polyethylene resin composition for a separation membrane that can be obtained and a separation membrane for a secondary battery produced therefrom.
前記目的を達成するために、本発明は、相対的に高い高負荷溶融流れ指数を有するアルファオレフィン共重合体(A)20~80重量%と;相対的に低い高負荷溶融流れ指数を有するエチレン単独重合体(B)20~80重量%と;を含み、前記アルファオレフィン共重合体(A)は、アルファオレフィン共重合体(A)100重量に対して、90~99重量%のエチレンと、炭素数が3~20のオレフィンが共重合されたものであり、前記アルファオレフィン共重合体(A)および前記エチレン単独重合体(B)の高負荷溶融流れ指数(190℃、21.6kg)の比(A/B)は、3~500であることを特徴とするポリエチレン樹脂組成物を提供する。 In order to achieve the above object, the present invention provides 20 to 80% by weight of an alpha-olefin copolymer (A) having a relatively high high-load melt flow index; and ethylene having a relatively low high-load melt flow index. 20 to 80% by weight of the homopolymer (B); and the alpha olefin copolymer (A) contains 90 to 99% by weight of ethylene with respect to 100 weight of the alpha olefin copolymer (A); It is obtained by copolymerizing olefins having 3 to 20 carbon atoms, and the high load melt flow index (190 ° C., 21.6 kg) of the alpha olefin copolymer (A) and the ethylene homopolymer (B) A ratio (A/B) of 3 to 500 provides a polyethylene resin composition.
本発明によるポリエチレン樹脂組成物は、分離膜の優れた機械的物性を維持しながらも、シャットダウン温度を低くして熱的安定性を確保することによって、これを適用した二次電池の性能をさらに向上させることができる。 The polyethylene resin composition according to the present invention maintains excellent mechanical properties of the separation membrane and lowers the shutdown temperature to ensure thermal stability, thereby further improving the performance of the secondary battery to which it is applied. can be improved.
以下、本発明をより詳細に説明する。
本発明は、相対的に高い高負荷溶融流れ指数を有するアルファオレフィン共重合体(A)20~80重量%と;相対的に低い高負荷溶融流れ指数を有するエチレン単独重合体(B)20~80重量%と;を含み、前記アルファオレフィン共重合体(A)およびエチレン単独重合体(B)の高負荷溶融流れ指数(190℃、21.6kg)の比(A/B)は、3~500であることを特徴とするポリエチレン樹脂組成物を提供する。
The present invention will now be described in more detail.
The present invention provides 20 to 80% by weight of an alpha olefin copolymer (A) having a relatively high high load melt flow index; and an ethylene homopolymer (B) having a relatively low high load melt flow index of 20 to 80% by weight, and the ratio (A/B) of the high load melt flow index (190 ° C., 21.6 kg) of the alpha olefin copolymer (A) and the ethylene homopolymer (B) is 3 to 500 is provided.
より好ましくは、前記アルファオレフィン共重合体(A)は、高負荷溶融流れ指数が0.3~5.0g/10分(190℃、21.6kg)であり、溶融温度が125~130℃であるエチレンと、炭素数が3~20のアルファオレフィンが共重合されたものでありうる。 More preferably, the alpha-olefin copolymer (A) has a high-load melt flow index of 0.3 to 5.0 g/10 min (190°C, 21.6 kg) and a melting temperature of 125 to 130°C. It can be a copolymer of some ethylene and an alpha olefin having 3 to 20 carbon atoms.
前記エチレンは、前記アルファオレフィン共重合体(A)100重量に対して90~99重量%で含有され得る。 The ethylene may be contained in an amount of 90 to 99% by weight based on 100 weights of the alpha-olefin copolymer (A).
前記アルファオレフィンは、プロピレン、ブテン、ヘキセン、オクテンなどであり得、一例として、前記アルファオレフィンは、プロピレンでありうる。前記共重合体(A)は、具体的に、エチレン-ブテン、エチレン-ヘキセン、エチレン-オクテン、エチレン-プロピレンなどであり得、好ましくはエチレン-プロピレン共重合体でありうる。 The alpha olefin may be propylene, butene, hexene, octene, etc. As an example, the alpha olefin may be propylene. Specifically, the copolymer (A) may be ethylene-butene, ethylene-hexene, ethylene-octene, ethylene-propylene, etc., preferably ethylene-propylene copolymer.
前記アルファオレフィン共重合体(A)とエチレン単独重合体(B)の溶融流れ指数の比が3より低ければ、加工性が低下し得、500を超過すれば、機械的物性が低くなり得る。 If the melt flow index ratio of the alpha-olefin copolymer (A) and the ethylene homopolymer (B) is less than 3, processability may be degraded, and if it exceeds 500, mechanical properties may be degraded.
前記アルファオレフィン共重合体(A)の21.6kg溶融流れ指数が0.3g/10分未満であれば、フィルムの押出加工時に樹脂の流れ性が低下して加工性が低下するおそれがあり、押出加工されたフィルムの表面が粗くて、延伸時にフィルムが破断するおそれがある。溶融流れ指数が5.0g/10分を超過すれば、フィルムの突刺強度(Puncture)、引張強度など機械的物性が低くなるおそれがある。 If the 21.6 kg melt flow index of the alpha-olefin copolymer (A) is less than 0.3 g/10 minutes, the flowability of the resin may decrease during extrusion processing of the film, and processability may decrease. The surface of the extruded film is rough, and there is a risk that the film will break during stretching. If the melt flow index exceeds 5.0 g/10 minutes, mechanical properties such as puncture strength and tensile strength of the film may deteriorate.
前記アルファオレフィン共重合体(A)は、総組成物100重量%対比20~80重量%、例えば、40~75重量%で含有され得る。前記アルファオレフィン重合体(A)が20重量%未満の場合、フィルムの突刺強度、引張強度など機械的物性に優れているが、加工性が低下し、シャットダウン温度が低くならないおそれがあり、80重量%以上の場合、加工性に優れ、シャットダウン温度も低くなるが、機械的物性が低下するおそれがある。 The alpha-olefin copolymer (A) may be contained in an amount of 20-80% by weight, for example 40-75% by weight, based on 100% by weight of the total composition. If the alpha-olefin polymer (A) is less than 20% by weight, the mechanical properties such as puncture strength and tensile strength of the film are excellent, but the workability may deteriorate and the shutdown temperature may not be lowered. % or more, the workability is excellent and the shutdown temperature is low, but the mechanical properties may be deteriorated.
前記エチレン単独重合体(B)は、溶融流れ指数が21.6kgの荷重で190℃で測定したとき、0.01g/10分以上~0.1g/10分である。前記エチレン単独重合体(B)の21.6kg溶融流れ指数が0.01g/10分未満であれば、加工性が低下し、銀点(fish eye)などフィルム外観が不良になるおそれがあり、溶融流れ指数が0.1g/10分以上であれば、機械的物性が低下するおそれがある。 The ethylene homopolymer (B) has a melt flow index of 0.01 g/10 min to 0.1 g/10 min when measured at 190° C. under a load of 21.6 kg. If the 21.6 kg melt flow index of the ethylene homopolymer (B) is less than 0.01 g/10 minutes, the processability may deteriorate and the film appearance such as silver spots (fish eye) may become poor. If the melt flow index is 0.1 g/10 minutes or more, the mechanical properties may deteriorate.
前記エチレン単独重合体(B)は、組成物100重量%対比20~80重量%、例えば、20~60重量%で含有され得る。前記エチレン単独重合体(B)が20重量%未満の場合、加工性に優れ、シャットダウン温度も低くなるが、機械的物性が低下するおそれがあり、80重量%以上の場合、フィルムの突刺強度、引張強度など機械的物性に優れているが、加工性が低下し、シャットダウン温度が低くならないおそれがある。 The ethylene homopolymer (B) may be contained in an amount of 20-80% by weight, for example 20-60% by weight, based on 100% by weight of the composition. When the ethylene homopolymer (B) is less than 20% by weight, the processability is excellent and the shutdown temperature is low, but the mechanical properties may deteriorate. Although it has excellent mechanical properties such as tensile strength, workability may deteriorate and the shutdown temperature may not be lowered.
本発明のポリエチレン樹脂組成物は、前記アルファオレフィン共重合体(A)およびエチレン単独重合体(B)の混合物でありうる。前記ポリエチレン樹脂組成物は、エチレン単独重合体のみを使用する場合に比べて、分離膜の機械的物性は維持しながらも、シャットダウン温度を下げる効果を発揮することができる。一例として、前記組成物は、分離膜のシャットダウン温度を140℃以下、例えば、135℃以下、例えば、130℃~135℃の範囲に下げることができる。 The polyethylene resin composition of the present invention may be a mixture of the alpha-olefin copolymer (A) and the ethylene homopolymer (B). The polyethylene resin composition has the effect of lowering the shutdown temperature while maintaining the mechanical properties of the separator as compared to the case of using only the ethylene homopolymer. As an example, the composition can reduce the shutdown temperature of the separation membrane to 140°C or less, eg, 135°C or less, eg, in the range of 130°C to 135°C.
前記ポリエチレン樹脂組成物は、示差走査熱量計(differential scanning calorimeter)で測定された溶融温度が二つのピーク(peak)で現れる二重融点を有するものでありうる。例えば、前記組成物の第1溶融温度は、130℃以下であり、第2溶融温度は、133℃以上でありうる。前記第1溶融温度および第2溶融温度の温度差は、3℃以上でありうる。前記ポリエチレン樹脂組成物が単一融点を示すか、第1溶融温度と第2溶融温度の差が3℃未満である場合、シャットダウン温度を135℃以下に下げることができないので好ましくない。 The polyethylene resin composition may have a double melting point with two peaks of melting temperature measured by a differential scanning calorimeter. For example, the composition may have a first melting temperature of 130° C. or lower and a second melting temperature of 133° C. or higher. A temperature difference between the first melting temperature and the second melting temperature may be 3° C. or more. If the polyethylene resin composition has a single melting point or the difference between the first melting temperature and the second melting temperature is less than 3°C, the shutdown temperature cannot be lowered to 135°C or less, which is not preferable.
前記ポリエチレン樹脂組成物は、溶融流れ指数が21.6kgの荷重で190℃で測定したとき、0.1g/10分以上~5.0g/10分、例えば、0.3g/10分以上~2.0g/10分である。 The polyethylene resin composition has a melt flow index of 0.1 g/10 minutes or more to 5.0 g/10 minutes, for example, 0.3 g/10 minutes or more to 2 when measured at 190° C. under a load of 21.6 kg. 0 g/10 min.
前記ポリエチレン樹脂組成物は、密度が0.940~0.950g/cm3でありうる。前記範囲より密度が低い場合、フィルムの機械的強度が弱くなるおそれがあり、前記範囲より密度が高い場合、シャットダウン温度を135℃以下に下げることができないので好ましくない。 The polyethylene resin composition may have a density of 0.940-0.950 g/cm 3 . If the density is lower than the above range, the mechanical strength of the film may be weakened.
本発明によるポリエチレン樹脂組成物は、組成物総100重量部対比酸化防止剤0.01~0.5重量部、好ましくは0.05~0.2重量部および中和剤0.01~0.3重量部、好ましくは0.05~0.2重量部をさらに含むことができる。 The polyethylene resin composition according to the present invention contains 0.01 to 0.5 parts by weight, preferably 0.05 to 0.2 parts by weight, of an antioxidant and 0.01 to 0.01 part by weight of a neutralizing agent for 100 parts by weight of the total composition. It can further contain 3 parts by weight, preferably 0.05-0.2 parts by weight.
前記酸化防止剤の含量が0.01重量部未満であれば、加工中に粘度変化、フィルム表面の不均一などの問題があり、0.5重量部を超過すれば、フィルム表面に酸化防止剤が移行(migration)して、フィルム表面の外観不良、ロール汚染など問題があり得る。 If the content of the antioxidant is less than 0.01 parts by weight, problems such as viscosity change and non-uniformity of the film surface may occur during processing. can cause problems such as poor film surface appearance and roll contamination.
前記酸化防止剤の代表的な例としては、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン(1,3,5-Trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene)、1,6-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド]ヘキサン(1,6-Bis[3-(3,5-di-tert-butyl-4 hydroxyphenyl)propionamido]hexane)、1,6-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド]プロパン(1,6-Bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propionamido]propane)、テトラキス[メチレン(3,5-ジ-tert-ブチル-4-ヒドロキシヒドロシンナメート)]メタン(tetrakis[methylene(3,5-di-tert-butyl-4-hydroxyhydrocinnamate)]methane)、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト(Bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritoldi-phosphite)、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトール-ジ-ホスファイト(Bis(2,4-di-tert-butylphenyl)Pentraerythritol-di-phosphite)などを例示することができる。酸化防止剤として、これらから選ばれた1種以上を使用できる。 Representative examples of the antioxidant include 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene(1,3,5 -Trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene), 1,6-bis[3-(3,5-di-tert-butyl-4-hydroxy Phenyl)propionamido]hexane (1,6-Bis[3-(3,5-di-tert-butyl-4 hydroxyphenyl)propionamido]hexane), 1,6-bis[3-(3,5-di-tert -butyl-4-hydroxyphenyl)propionamido]propane (1,6-Bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propionamido]propane), tetrakis[methylene(3,5-di-tert -butyl-4-hydroxyhydrocinnamate)]methane Phenyl)pentaerythritol-di-phosphite (Bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritoldi-phosphite), bis(2,4-di-tert-butylphenyl)pentaerythritol-di-phosphite Phyto (Bis(2,4-di-tert-butylphenyl) Pentraerythritol-di-phosphate) can be exemplified. As an antioxidant, one or more selected from these can be used.
本発明によるポリエチレン樹脂組成物は、総組成物100重量部に対して前記中和剤0.01~0.3重量部をさらに含むことができる。前記中和剤の含量が0.01重量部未満であれば、加工中に変色および粘度変化が発生し、0.3重量部を超過すれば、フィルム表面に中和剤が移行して、フィルム表面の外観不良、ロール汚染など問題があり得る。 The polyethylene resin composition according to the present invention may further include 0.01-0.3 parts by weight of the neutralizing agent with respect to 100 parts by weight of the total composition. If the content of the neutralizing agent is less than 0.01 parts by weight, discoloration and viscosity change may occur during processing. Problems such as poor surface appearance and roll contamination can occur.
前記中和剤の代表的な例としては、カルシウムステアリン酸、亜鉛ステアリン酸、マグネシウムアルミニウムヒドロキシカーボネート、酸化亜鉛、マグネシウムヒドロキシステアリン酸またはこれらの混合物などを含むことができる。 Representative examples of the neutralizing agent may include calcium stearate, zinc stearate, magnesium aluminum hydroxycarbonate, zinc oxide, magnesium hydroxystearate, or mixtures thereof.
前記ポリエチレン樹脂組成物を製造する方法においては特別な制限がなく、通常的に知られたポリエチレン樹脂組成物の製造方法そのまま、または適切に変形して利用することができる。例えば、韓国特許第R10-1826447号に言及された超高分子量ポリエチレンの調製方法により製造することができる。 There is no particular limitation on the method for producing the polyethylene resin composition, and a commonly known method for producing a polyethylene resin composition can be used as it is or by appropriately modifying it. For example, it can be produced by the method for preparing ultra-high molecular weight polyethylene referred to in Korean Patent No. R10-1826447.
本発明によるポリエチレン樹脂組成物は、微細多孔性分離膜に製造されて、二次電池用分離膜として使用され得る。前記二次電池は、一例として、リチウム二次電池でありうる。前記分離膜は、1~100μm、例えば、1~50μmの厚さと、20~99%、例えば、40~70%の孔隙率を有することができるが、これに制限されない。 The polyethylene resin composition according to the present invention may be manufactured into a microporous separator and used as a separator for a secondary battery. The secondary battery may be, for example, a lithium secondary battery. The separation membrane may have a thickness of 1-100 μm, eg, 1-50 μm, and a porosity of 20-99%, eg, 40-70%, but is not limited thereto.
前記ポリエチレン樹脂組成物を用いた二次電池用分離膜は、当該技術分野に公知となった方法により通常の技術者が容易に製造することができる。 A separation membrane for a secondary battery using the polyethylene resin composition can be easily manufactured by a person skilled in the art by a method known in the art.
一例として、(1)ポリエチレン樹脂組成物をパラフィン系オイルと共に押出し、キャスティングロール(casting roll)とニップロール(nip roll)の間を通るようにしてゲル状シートを製造する段階、(2)前記ゲル状シートを延伸してフィルムを製造する段階、(3)前記フィルム内に微細気孔を形成する段階、(4)熱固定段階を含むことができる。 For example, (1) a step of extruding a polyethylene resin composition together with a paraffin-based oil to pass between a casting roll and a nip roll to produce a gel-like sheet; (3) forming micropores in the film; and (4) heat setting.
前記段階(1)では、例えばツインスクリューの押出機を使用し、180~250℃の温度範囲で樹脂組成物をパラフィン系オイルと共に投入して溶融させ、Tダイを用いてゲル状シートを製造することができる。 In the step (1), for example, a twin-screw extruder is used, and the resin composition is added together with paraffin oil at a temperature of 180 to 250° C. to melt, and a gel sheet is produced using a T-die. be able to.
前記段階(2)では、前記段階(1)で製造されたゲル状シートを縦方向(machine direction)および横方向(transverse direction)にそれぞれ5~15倍逐次延伸または同時延伸して、フィルムを製造することができる。 In the step (2), the gel-like sheet prepared in the step (1) is successively or simultaneously stretched by 5 to 15 times in the machine direction and the transverse direction to prepare a film. can do.
前記段階(3)では、延伸されたフィルムをペンタン、ヘキサン、ヘプタンなどの炭化水素、塩化メチレン、四塩化炭素などの塩素化炭化水素、フッ化炭化水素、ジエチルエーテルなどの抽出溶媒に沈積してパラフィン系オイルを除去することによって、フィルム内に微細気孔を形成することになる。 In step (3), the stretched film is deposited in an extracting solvent such as hydrocarbons such as pentane, hexane and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, fluorohydrocarbons and diethyl ether. Removal of the paraffinic oil results in the formation of micropores within the film.
前記段階(4)では、110~150℃で熱固定して、残留応力を除去する。 In step (4), heat setting is performed at 110 to 150° C. to remove residual stress.
以下、本発明の好適な実施例を取って詳細に説明することとするが、下記の実施例は、本発明の理解を助けるために提示されるものに過ぎず、本発明の範囲が下記実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail by taking preferred examples, but the following examples are only presented to aid understanding of the present invention, and the scope of the present invention is the following implementations. Examples are not limiting.
分離膜の製造例:ポリエチレン樹脂を用いて製造された微細多孔性フィルム
実施例1,2、参考例1,2および比較例1~5で用いられたポリエチレン樹脂組成物を下記表1および表2に整理した。総組成物100重量部に対して添加剤としてイルガノックス1010(i-1010)、イルガフォス168(i-168)、およびステアリン酸カルシウム(calcium stearate)をそれぞれ2,000、2,000、2,000重量ppmずつ含んでヘンシェルミキサに一度に全部投入し、混練した。混練されたパウダー状樹脂組成物を混練押出機(韓国EM、32mm twin extruder)にパラフィン系オイル(KUKDONG乳化LP350F)と共に投入(樹脂30wt%、パラフィン系オイル70wt%)し、200℃で混練してT-ダイで押出して、ゲル状シートを製造した。ゲル状シートを縦方向(machine direction)および横方向(transverse direction)にそれぞれ8倍同時延伸してフィルムを製造した後、塩化メチレン抽出溶媒に沈積してパラフィン系オイルを除去して、微細多孔性フィルム(分離膜)を製造した。
Production Example of Separation Membrane: Microporous Films Produced Using Polyethylene Resin The polyethylene resin compositions used in Examples 1 and 2, Reference Examples 1 and 2, and Comparative Examples 1 to 5 are shown in Tables 1 and 2 below. organized into Additives Irganox 1010 (i-1010), Irgafos 168 (i-168), and calcium stearate at 2,000, 2,000, and 2,000 weight parts, respectively, based on 100 weight parts of the total composition Each ppm was added to the Henschel mixer and kneaded. The kneaded powdery resin composition was put into a kneading extruder (32mm twin extruder, EM, Korea) together with paraffin oil (KUKDONG emulsified LP350F) (resin 30 wt%, paraffin oil 70 wt%) and kneaded at 200°C. A gel-like sheet was produced by extrusion with a T-die. The gel-like sheet was simultaneously stretched 8 times in the machine direction and the transverse direction to produce a film, and then deposited in a methylene chloride extraction solvent to remove the paraffinic oil to obtain a microporous film. A film (separator) was produced.
電池の製造例:リチウム二次電池の製造
LiFePO4(Hanhwa chemical Co.,Ltd.,Korea)、Super P(TIMCAL,Switzerland)、およびポリフッ化ビニリデン(PVDF)(Aldrich,Korea)を8:1:1の重量比で混合した混合物を準備した後、前記混合物およびN-メチル-2-ピロリドン(NMP)(Aldrich,Korea)を2:1の重量比で分散させて、スラリーを準備した。前記スラリーをドクターブレードを用いてアルミニウム薄膜にコーティングして正極を製造した。LFPの塗工量(loading density)は、1.4mg/cm2であった。電気化学的な特性を確認するために、これをコイン電池に製造した。負極としては、Li薄膜(厚さ=600μm、Honjo、Japan)が使用された。準備された負極と正極の間に前記実施例および比較例により製造された分離膜を使用してコインセルを製造した。電解液としては、1M濃度のLiPF6が溶解したエチレンカーボネート(Ethylene carbonate;EC)およびジメチルカーボネート(Dimethyl carbonate;DMC)(1:1,v/v,Soulbrain Co.,Ltd.,Korea)の混合液が使用された。
Battery Preparation Example: Lithium Secondary Battery Preparation LiFePO4 (Hanhwa chemical Co., Ltd., Korea), Super P (TIMCAL, Switzerland), and Polyvinylidene Fluoride (PVDF) (Aldrich, Korea) 8:1: After preparing a mixture mixed at a weight ratio of 1, the mixture and N-methyl-2-pyrrolidone (NMP) (Aldrich, Korea) were dispersed at a weight ratio of 2:1 to prepare slurry. An aluminum thin film was coated with the slurry using a doctor blade to prepare a positive electrode. The loading density of LFP was 1.4 mg/cm 2 . It was fabricated into a coin cell to confirm its electrochemical properties. A Li thin film (thickness=600 μm, Honjo, Japan) was used as the negative electrode. A coin cell was manufactured by using the separators manufactured according to the above examples and comparative examples between the prepared negative electrode and positive electrode. The electrolyte was a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) (1:1, v/v, Soulbrain Co., Ltd., Korea) in which LiPF 6 of 1 M concentration was dissolved. liquid was used.
物性測定/評価項目およびその試験法
各実施例1,2、参考例1,2および比較例1~5の分離膜における諸物性の測定法は、次のとおりである。
Measurement/Evaluation Items of Physical Properties and Test Methods Therefor The physical properties of the separation membranes of Examples 1 and 2, Reference Examples 1 and 2, and Comparative Examples 1 to 5 are measured as follows.
高負荷溶融流れ指数(HLMI)
ASTM D1238によって190℃で21.6kgの荷重で測定した。
High load melt flow index (HLMI)
Measured by ASTM D1238 at 190° C. with a load of 21.6 kg.
密度(density)
ASTM D1505に準じて測定した。
density
Measured according to ASTM D1505.
プロピレン含量(wt%)
C13 NMRで測定した。
Propylene content (wt%)
Measured by C13 NMR.
かさ密度(bulk density)
ASTM D1895に準じて測定した。
bulk density
Measured according to ASTM D1895.
平均粒度(APS)
粒度分布測定装置(Maker:MALVERN)により測定されたvolume 50%における粒度の大きさ値、D(v,0.5)
Average particle size (APS)
Particle size value at volume 50% measured by a particle size distribution analyzer (Maker: MALVERN), D (v, 0.5)
粒度分布指数(SPAN)
粒度分布測定装置(Maker:MALVERN)により測定された(D(v,0.9)-D(v,0.1))/D(v,0.5)
Particle size distribution index (SPAN)
(D (v, 0.9) - D (v, 0.1)) / D (v, 0.5) measured by a particle size distribution analyzer (Maker: MALVERN)
厚さ
ASTM D374に基づいて膜の厚さを測定した。
Thickness The thickness of the film was measured according to ASTM D374.
通気度
日本産業規格(JIS)ガーレー測定法によって、常温で100mLの空気が4.8 inch H2Oの一定の圧力下に1平方インチ(inch2)の微細多孔性フィルムを通過するのにかかる時間(秒)を測定した。
Permeability By the Japanese Industrial Standard (JIS) Gurley measurement method, it takes 100 mL of air at room temperature to pass through a 1 inch 2 microporous film under a constant pressure of 4.8 inch H2O . Time (seconds) was measured.
孔隙率
横/縦50mで多孔性フィルムをカットし、厚さと重さを測定して密度を計算する。すなわち、体積は、横×縦×厚さで測定し、密度(ρ1)は、測定した重さを体積で割って計算する。孔隙率(P)は、樹脂の真密度(ρ0)と上記で測定したフィルム密度(ρ1)を通じて下記の式で計算した。本発明で確認されたポリエチレンの真密度は、0.946g/cm3であった。
P(%)=(ρ0-ρ1)/ρ0×100
The porous film is cut at a porosity of 50 m width/length, and the thickness and weight are measured to calculate the density. That is, volume is measured by width x length x thickness, and density (ρ 1 ) is calculated by dividing the measured weight by the volume. The porosity (P) was calculated by the following formula through the true density (ρ 0 ) of the resin and the film density (ρ 1 ) measured above. The true density of polyethylene confirmed in the present invention was 0.946 g/cm 3 .
P (%) = (ρ 0 - ρ 1 )/ρ 0 × 100
シャットダウン温度
シャットダウン温度は、10℃/分の速度で昇温する過程で電池のインピーダンスが初めて初期値の100倍まで高まる温度(℃)と定義して測定した。
Shutdown temperature The shutdown temperature was defined as the temperature (°C) at which the impedance of the battery first increased to 100 times its initial value in the process of increasing the temperature at a rate of 10°C/min.
突刺強度(Puncture)
日本カトーテック(Kato Tech)のKES-G5機器を用いて、末端部の直径1mmのチップ(tip)を用いて10mm/secの速度で突刺強度を測定した。
Puncture strength (Puncture)
Puncture strength was measured using a KES-G5 instrument from Kato Tech, Japan at a speed of 10 mm/sec with a 1 mm diameter tip at the end.
引張強度
ASTM D3763に基づいてインストロン社の万能試験機(UTM)で測定した。
Tensile strength was measured on an Instron universal testing machine (UTM) according to ASTM D3763.
表1および表2を参照すると、実施例および比較例の分離膜を比較したとき、実施例は、機械的物性が類似しているながらも、比較例対比機械的物性を維持しながらも、シャットダウン温度が低くなることを確認することができた。特に実施例1および2と参考例1および2、および比較例1~3を比較すると、アルファオレフィン共重合体(A)の溶融流れ指数とエチレン単独共重合体(B)の溶融流れ指数の比が3~500に属しながらも、それぞれ好ましい溶融流れ指数範囲に属する場合に最も好ましい結果として機械的物性は良くなりながらも、シャットダウン温度が低くなって安定性を確保することができることが分かる。また、共重合体(A)のエチレン含量が90%未満である比較例4と、共重合体(B)がエチレン単独重合体でない比較例5は、実施例に比べて機械的物性が非常に劣勢であることを確認することができた。 Referring to Tables 1 and 2, when the separation membranes of Examples and Comparative Examples were compared, the Examples had similar mechanical properties, while maintaining the mechanical properties compared to the Comparative Examples. I was able to confirm that the temperature was lower. In particular, when comparing Examples 1 and 2 with Reference Examples 1 and 2 , and Comparative Examples 1 to 3, the ratio of the melt flow index of the alpha olefin copolymer (A) and the melt flow index of the ethylene homocopolymer (B) is in the range of 3 to 500, but if it is within the preferred melt flow index range, the mechanical properties are improved and the shutdown temperature is lowered to ensure stability. In addition, Comparative Example 4, in which the ethylene content of the copolymer (A) is less than 90%, and Comparative Example 5, in which the copolymer (B) is not an ethylene homopolymer, have significantly higher mechanical properties than those of Examples. I was able to confirm that it was inferior.
Claims (9)
相対的に高い高負荷溶融流れ指数を有するアルファオレフィン共重合体(A)20~80重量%と;相対的に低い高負荷溶融流れ指数を有するエチレン単独重合体(B)20~80重量%と;を含み、
前記アルファオレフィン共重合体(A)は、アルファオレフィン共重合体(A)100重量に対して、90~99重量%のエチレンと、炭素数が3~20のオレフィンが共重合されたものであり、
前記アルファオレフィン共重合体(A)および前記エチレン単独重合体(B)の高負荷溶融流れ指数(190℃、21.6kg)の比(A/B)は、3~500であり、
前記アルファオレフィン共重合体(A)は、高負荷溶融流れ指数が0.3~5.0g/10分(190℃、21.6kg)であり、溶融温度が125~130℃であるエチレンと、炭素数が3~20のアルファオレフィンが共重合されたものであり、
前記エチレン単独重合体(B)は、高負荷溶融流れ指数が0.01~0.10g/10分(190℃、21.6kg)であることを特徴とする分離膜用ポリエチレン樹脂組成物。 A polyethylene resin composition for a separation membrane,
20 to 80% by weight of an alpha olefin copolymer (A) having a relatively high high load melt flow index; and 20 to 80% by weight of an ethylene homopolymer (B) having a relatively low high load melt flow index. including ;
The alpha-olefin copolymer (A) is obtained by copolymerizing 90 to 99% by weight of ethylene and an olefin having 3 to 20 carbon atoms with respect to 100 weight of the alpha-olefin copolymer (A). ,
The alpha-olefin copolymer (A) and the ethylene homopolymer (B) have a high load melt flow index (190° C., 21.6 kg) ratio (A/B) of 3 to 500,
The alpha-olefin copolymer (A) includes ethylene having a high load melt flow index of 0.3 to 5.0 g/10 minutes (190°C, 21.6 kg) and a melting temperature of 125 to 130°C, It is a copolymer of alpha olefins having 3 to 20 carbon atoms,
A polyethylene resin composition for a separation membrane, wherein the ethylene homopolymer (B) has a high load melt flow index of 0.01 to 0.10 g/10 min (190°C, 21.6 kg).
を特徴とする請求項1に記載の分離膜用ポリエチレン樹脂組成物。 The polyethylene resin composition for separation membranes according to claim 1, wherein the polyethylene resin composition for separation membranes has a density of 0.940 to 0.950 g/cm 3 .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0174541 | 2019-12-24 | ||
KR1020190174541A KR102260536B1 (en) | 2019-12-24 | 2019-12-24 | Polyethylene resin composition and separator for secondary battery produced therefrom |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021102744A JP2021102744A (en) | 2021-07-15 |
JP7266013B2 true JP7266013B2 (en) | 2023-04-27 |
Family
ID=76396790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020130934A Active JP7266013B2 (en) | 2019-12-24 | 2020-07-31 | Polyethylene resin composition and separation membrane for secondary battery produced therefrom |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7266013B2 (en) |
KR (1) | KR102260536B1 (en) |
CN (1) | CN113105695B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102684005B1 (en) * | 2021-11-30 | 2024-07-11 | 한화토탈에너지스 주식회사 | Polyethylene resin composition and method of manufacturing the same |
CN114649636B (en) * | 2022-01-06 | 2023-08-18 | 北京沐昱新能源科技有限公司 | Dry pole piece with liquid-solid two-phase hot-pressing bonding performance and oil-containing diaphragm |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000030685A (en) | 1998-07-10 | 2000-01-28 | Mitsubishi Chemicals Corp | Battery separator and secondary battery with it |
JP2002531622A (en) | 1998-11-27 | 2002-09-24 | ビーピー ケミカルズ リミテッド | Polymer composition for bottle screw cap |
JP2002338730A (en) | 2001-05-18 | 2002-11-27 | Asahi Kasei Corp | Microporous film made of polyethylene and cell obtained using the same |
JP2003165873A (en) | 2001-11-29 | 2003-06-10 | Asahi Kasei Corp | Polyethylene resin composition and molded product |
JP2003206364A (en) | 2001-11-12 | 2003-07-22 | Sekisui Film Kk | Fine porous film and process for producing it |
JP2003246899A (en) | 2001-12-17 | 2003-09-05 | Asahi Kasei Corp | Polyethylene resin composition |
WO2004085525A1 (en) | 2003-03-24 | 2004-10-07 | Asahi Kasei Chemicals Corporation | Microporous polyethylene film |
JP2006124652A (en) | 2004-09-30 | 2006-05-18 | Asahi Kasei Chemicals Corp | Microporous polyolefin film |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6168858B1 (en) * | 1995-12-05 | 2001-01-02 | Asahi Kasei Kogyo Kabushiki Kaisha | Microporous polyethylene membranes having low fusing temperatures |
KR100506159B1 (en) * | 1999-01-20 | 2005-08-08 | 에스케이 주식회사 | Microporous Polyethylene film for battery separator and Method of preparing the same |
JP2005139228A (en) * | 2003-11-04 | 2005-06-02 | Chisso Corp | Polyolefin resin porous film |
KR100943236B1 (en) * | 2006-02-14 | 2010-02-18 | 에스케이에너지 주식회사 | Microporous polyolefin film with improved meltdown property and preparing method thereof |
EP3239223A4 (en) * | 2014-12-26 | 2017-11-29 | Toray Industries, Inc. | Polyolefin microporous membrane, production method therefor, and battery separator |
KR101970492B1 (en) * | 2018-05-11 | 2019-04-19 | 더블유스코프코리아 주식회사 | A resin composition for manufacturing a porous separator |
-
2019
- 2019-12-24 KR KR1020190174541A patent/KR102260536B1/en active IP Right Grant
-
2020
- 2020-07-31 JP JP2020130934A patent/JP7266013B2/en active Active
- 2020-08-05 CN CN202010780513.4A patent/CN113105695B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000030685A (en) | 1998-07-10 | 2000-01-28 | Mitsubishi Chemicals Corp | Battery separator and secondary battery with it |
JP2002531622A (en) | 1998-11-27 | 2002-09-24 | ビーピー ケミカルズ リミテッド | Polymer composition for bottle screw cap |
JP2002338730A (en) | 2001-05-18 | 2002-11-27 | Asahi Kasei Corp | Microporous film made of polyethylene and cell obtained using the same |
JP2003206364A (en) | 2001-11-12 | 2003-07-22 | Sekisui Film Kk | Fine porous film and process for producing it |
JP2003165873A (en) | 2001-11-29 | 2003-06-10 | Asahi Kasei Corp | Polyethylene resin composition and molded product |
JP2003246899A (en) | 2001-12-17 | 2003-09-05 | Asahi Kasei Corp | Polyethylene resin composition |
WO2004085525A1 (en) | 2003-03-24 | 2004-10-07 | Asahi Kasei Chemicals Corporation | Microporous polyethylene film |
JP2006124652A (en) | 2004-09-30 | 2006-05-18 | Asahi Kasei Chemicals Corp | Microporous polyolefin film |
Also Published As
Publication number | Publication date |
---|---|
JP2021102744A (en) | 2021-07-15 |
CN113105695A (en) | 2021-07-13 |
CN113105695B (en) | 2023-04-25 |
KR102260536B1 (en) | 2021-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5586152B2 (en) | Polyolefin microporous membrane | |
WO2014192862A1 (en) | Multilayer, microporous polyolefin membrane, and production method thereof | |
JP2010007053A (en) | Microporous polyolefin film | |
JPWO2019093184A1 (en) | Polyolefin composite porous membrane and its manufacturing method, battery separator and battery | |
JP5601681B2 (en) | Polyolefin microporous membrane containing inorganic particles and separator for non-aqueous electrolyte battery | |
JP2013166804A (en) | Polyolefin microporous membrane, separator for battery and battery | |
WO2019065073A1 (en) | Microporous membrane made of polyolefin, battery separator and secondary battery | |
JP7266013B2 (en) | Polyethylene resin composition and separation membrane for secondary battery produced therefrom | |
JP5262556B2 (en) | Polyolefin resin porous membrane and battery separator using the same | |
TW201940528A (en) | Porous polyolefin film | |
JP4698078B2 (en) | Polyolefin microporous membrane and method for producing the same | |
JP4979252B2 (en) | Polyolefin microporous membrane | |
JP5073916B2 (en) | Polyolefin microporous membrane for lithium-ion battery separators | |
JP5295857B2 (en) | Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery | |
JP2012077220A (en) | Method for producing polyolefin resin composition, and method for producing porous film made of polyolefin resin | |
JP6598911B2 (en) | Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery | |
JP2011111559A (en) | Porous film and method for producing the same | |
JP6347801B2 (en) | Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery | |
JP7152435B2 (en) | Polyolefin microporous membrane | |
JP2015136809A (en) | Method for producing polyolefin microporous film, battery separator and nonaqueous electrolyte secondary battery | |
JPWO2018164055A1 (en) | Polyolefin microporous membrane | |
JP2012076384A (en) | Laminated porous film and battery | |
JP5316671B2 (en) | Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same | |
JP5017841B2 (en) | Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same | |
CN113717451B (en) | Polyethylene resin composition and separation film for secondary battery prepared from same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220118 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220614 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220905 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20220905 |
|
C11 | Written invitation by the commissioner to file amendments |
Free format text: JAPANESE INTERMEDIATE CODE: C11 Effective date: 20220913 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20220907 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20221004 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20221011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230417 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7266013 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |