[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7256480B2 - 電源回路の制御装置、及び電源回路制御プログラム - Google Patents

電源回路の制御装置、及び電源回路制御プログラム Download PDF

Info

Publication number
JP7256480B2
JP7256480B2 JP2020084534A JP2020084534A JP7256480B2 JP 7256480 B2 JP7256480 B2 JP 7256480B2 JP 2020084534 A JP2020084534 A JP 2020084534A JP 2020084534 A JP2020084534 A JP 2020084534A JP 7256480 B2 JP7256480 B2 JP 7256480B2
Authority
JP
Japan
Prior art keywords
converter
capacitor
voltage
battery
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020084534A
Other languages
English (en)
Other versions
JP2021180559A (ja
Inventor
貴大 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020084534A priority Critical patent/JP7256480B2/ja
Priority to US17/229,420 priority patent/US20210359533A1/en
Priority to CN202110494294.8A priority patent/CN113676044B/zh
Priority to DE102021112113.2A priority patent/DE102021112113A1/de
Publication of JP2021180559A publication Critical patent/JP2021180559A/ja
Application granted granted Critical
Publication of JP7256480B2 publication Critical patent/JP7256480B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0038Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

この発明は、電源回路の制御装置、及び電源回路制御プログラムに関する。
特許文献1に開示された電力システムは、二次電池で構成された第1バッテリを有する。第1バッテリには、電気的接続をオンオフするリレーを介して電気負荷が接続されている。リレーと電気負荷との間には、コンデンサが接続されている。また、電力システムは、第1バッテリよりも定格電圧の低い第2バッテリを有する。第2バッテリには、コンバータが接続されている。コンバータは、リレーよりも電気負荷側の部分に接続され、第2バッテリの出力電圧を昇圧して電気負荷に出力する。
電力システムの制御装置は、第1バッテリから電気負荷への電力供給を開始するのに先立って、リレーによって第1バッテリと電気負荷との電気的接続をオフにした状態でプリチャージ処理を行う。制御装置は、このプリチャージ処理では、コンバータの出力電圧と共に上昇するコンデンサの充電電圧が、第1バッテリの出力電圧として定められる目標電圧に略等しい値になるまでコンバータを昇圧駆動する。制御装置は、コンバータの昇圧駆動を終了すると、リレーをオンに切り替える。
特開2008-289326号公報
特許文献1の技術のような制御装置において、コンバータの昇圧駆動を指示する上位回路と、実際にコンバータの昇圧駆動を実行する下位回路とが別々に設けられていることがある。また、コンデンサの充電電圧を検出するのとは別に、コンバータの出力電圧を実測することがある。そして、上位回路でコンデンサの充電電圧を取得する一方で、下位回路ではコンバータの出力電圧を取得して当該出力電圧が目標電圧に達するまで昇圧駆動を行うことがある。
ここで、下位回路においてコンバータの出力電圧を取得できない取得異常が発生することがある。この場合、下位回路は、コンバータの出力電圧が目標電圧に達したかどうか、すなわちコンバータの昇圧駆動を終了するタイミングを判定できない。そこで、このような状況に対処するため、上位回路でコンデンサの充電電圧に基づいてコンバータの昇圧駆動の完了を判定して下位回路に昇圧駆動の停止信号を出力することが考えられる。しかしながら、このように上位回路で停止信号を出力してから下位回路でその信号を受け取って実際にコンバータの昇圧駆動を停止させるまでには相応の遅延がある。この遅延の間もコンバータによる昇圧は継続される。このことから、コンバータによる昇圧が終了してリレーをオンに切り替えるタイミングでは、コンバータの出力電圧が目標電圧を大きく超えてしまうおそれがある。
なお、上位回路から下位回路へ停止信号を出力する場合に限らず、例えば上位回路から下位回路にコンデンサの充電電圧を出力して下位回路で充電電圧によって昇圧駆動の完了を判定する場合も、上位回路と下位回路との間で充電電圧の授受に時間を要する。そのため、昇圧駆動の完了を判定するタイミングは、リアルタイムの充電電圧が目標電圧に達するタイミングよりも遅延する。したがって、リレーをオンに切り替えるタイミングでは、コンバータの出力電圧が目標電圧を大きく超えてしまい、上記と同様の課題が生じる。
上記課題を解決するための電源回路の制御装置は、第1バッテリと、前記第1バッテリの出力電圧を検出するバッテリ電圧センサと、前記第1バッテリから負荷への電気的接続をオンオフするリレーと、前記第1バッテリよりも定格電圧の低い第2バッテリと、前記第2バッテリの出力電圧を昇圧して、前記リレーよりも前記負荷側へと出力するコンバータと、前記コンバータの出力電圧を検出するコンバータ電圧センサと、前記リレーよりも前記負荷側で前記リレーに接続されているコンデンサと、前記コンデンサの充電電圧を検出するコンデンサ電圧センサとを有する電源回路に適用され、前記リレーによって前記第1バッテリと前記負荷との間の電気的接続をオフにした状態で、前記コンバータの出力電圧が前記第1バッテリの出力電圧に基づき定められる目標電圧範囲内の値になるまで前記コンバータの昇圧駆動を行うプリチャージ処理を実行する制御装置であって、前記コンバータの出力電圧を取得して、前記コンバータの出力電圧が前記目標電圧範囲内の値になるまで前記コンバータの昇圧駆動を行う昇圧駆動部と、前記第1バッテリの出力電圧及び前記コンデンサの充電電圧を取得すると共に、前記昇圧駆動部に前記コンバータの昇圧駆動を実行させ、且つ前記リレーの切り替えを制御するプリチャージ統括部とを有し、前記プリチャージ統括部は、前記昇圧駆動部が前記コンバータの出力電圧を取得できない取得異常が発生した状況で前記昇圧駆動部に前記コンバータの昇圧駆動を実行させる場合、前記コンバータの出力電圧に関する信号であるコンバータ用信号を前記昇圧駆動部に出力し、前記昇圧駆動部は、前記プリチャージ統括部から入力された前記コンバータ用信号に基づいて前記コンバータの昇圧駆動を停止し、前記プリチャージ統括部は、前記コンバータの昇圧駆動が停止されることに応じて前記コンデンサの充電電圧が上昇から下降に転じた後、前記コンデンサの充電電圧が前記目標電圧範囲外の値であるときには前記リレーの切り替えを待機し、前記コンデンサの充電電圧が前記目標電圧範囲内の値になると、前記リレーによる電気的接続をオンに切り替える。
上記構成では、取得異常が発生した場合、コンバータの出力電圧が目標電圧範囲を超えた後、コンデンサの充電電圧が目標電圧範囲外の値であるときはリレーの切り替えを待機する。そして、コンデンサの充電電圧が目標電圧範囲内の値になると、リレーの電気的接続をオンに切り替える。このことにより、取得異常が発生した場合でも、コンバータの出力電圧が目標電圧範囲内の値となる適切なタイミングでリレーの電気的接続をオンに切り替えることができる。
電源回路の制御装置において、前記プリチャージ統括部は、前記コンデンサの充電電圧が前記第1バッテリの出力電圧に達すると、前記コンバータの昇圧駆動を停止させるための停止信号を前記コンバータ用信号として前記昇圧駆動部に出力してもよい。
上記構成のように、プリチャージ統括部でコンデンサの充電電圧に基づいてコンバータの昇圧駆動の停止のタイミングを判定することで、取得異常が発生した場合でも、第1バッテリの出力電圧を基準とした適切なタイミングでコンバータの昇圧駆動を停止させることができる。
電源回路の制御装置は、前記コンデンサを第1コンデンサとしたとき、前記第1コンデンサよりも前記負荷側において前記第1コンデンサに並列に接続されている第2コンデンサと、前記コンバータを第1コンバータとしたとき、前記第1コンデンサ及び前記第2コンデンサの間に接続され、前記第1バッテリの出力電圧を昇圧して前記負荷側に出力する第2コンバータとを有し、前記第2コンバータは、前記第1コンデンサから前記第2コンデンサへの通電を許容する一方で前記第2コンデンサから前記第1コンデンサへの通電を禁止するダイオードを備え、前記プリチャージ統括部は、前記昇圧駆動部に前記停止信号を出力した後、前記第1コンデンサ又は前記第2コンデンサの充電電圧が前記第1バッテリの出力電圧よりも高い値であるときに、前記リレーによる電気的接続をオンに切り替えてもよい。
上記構成において、第1コンバータが昇圧駆動されると、第1コンバータが出力する電力は、第1コンデンサのみならずダイオードを介して第2コンデンサにも至る。したがって、第1コンバータが昇圧駆動されると、第1コンデンサ及び第2コンデンサの双方が充電される。そして、第1コンデンサ及び第2コンデンサの充電電圧は略同じになる。
ここで、仮に、第1コンデンサ及び第2コンデンサの充電電圧が目標電圧範囲における第1バッテリの出力電圧よりも低い状態で、リレーによる電気的接続をオンにするものとする。この場合、第1バッテリから負荷側へと電流が流れる。このとき、第1バッテリは、第1コンデンサのみならず、ダイオードを介して第2コンデンサとも通電可能になる。この場合、第1コンデンサ及び第2コンデンサの双方が有する静電エネルギーを加算した静電エネルギーに応じた電流が第1バッテリから負荷側へと流れる。したがって、リレーには相応に大きな電流が流れる。
一方、上記構成のように、第1コンデンサ及び第2コンデンサの充電電圧が目標電圧範囲における第1バッテリの出力電圧よりも高い状態で、リレーによる電気的接続をオンにする場合、負荷側から第1バッテリへと電流が流れる。このとき、第2コンデンサから第1バッテリへの通電は、ダイオードによって禁止される。そのため、第1コンデンサが蓄える静電容量エネルギーに応じた電流のみが第1バッテリへと流れる。したがって、リレーに流れる電流は、第1コンデンサ及び第2コンデンサの充電電圧が第1バッテリの出力電圧よりも低い状態でリレーによる電気的接続をオンにする場合よりも小さくなる。そのため、リレーが溶着するリスクを低減できる。
電源回路の制御装置において、前記プリチャージ統括部は、前記第1コンデンサと前記第2コンデンサとのうち、前記第1コンデンサの充電電圧が前記第1バッテリの出力電圧よりも高い値であるときに、前記リレーによる電気的接続をオンに切り替えてもよい。
第1コンバータの昇圧駆動が停止された後、これら第1コンデンサ及び第2コンデンサが放電する際の単位時間当たりの充電電圧の低下量は、これらのコンデンサの静電容量によって異なる。ここで、第2コンバータと負荷との間に位置する第2コンデンサには、負荷の駆動電力を蓄え得る相当に大きな静電容量が要求される。一方、第1バッテリに接続されている第1コンデンサには、第1バッテリから供給される電力を蓄え得る比較的に小さい静電容量のみが要求される。このような静電容量のスケールの違い等に関連して、第1コンデンサは第2コンデンサに比べ、電源回路に採用される製品毎の静電容量のばらつきが小さくなり得る。したがって、第1コンデンサであれば、双方向コンバータによる昇圧駆動が停止された後の充電電圧の低下量に関して、製品毎の違いが小さくなり、リレーの切り替えのタイミングが概ね定まる。このことは、リレーの切り替えの前後で統一した各種制御を実現する上で好適である。
上記課題を解決するための電源回路制御プログラムは、第1バッテリと、前記第1バッテリの出力電圧を検出するバッテリ電圧センサと、前記第1バッテリから負荷への電気的接続をオンオフするリレーと、前記第1バッテリよりも定格電圧の低い第2バッテリと、前記第2バッテリの出力電圧を昇圧して、前記リレーよりも前記負荷側へと出力するコンバータと、前記コンバータの出力電圧を検出するコンバータ電圧センサと、前記リレーよりも前記負荷側で前記リレーに接続されているコンデンサと、前記コンデンサの充電電圧を検出するコンデンサ電圧センサとを有する電源回路の制御装置に、前記リレーによって前記第1バッテリと前記負荷との間の電気的接続をオフにした状態で、前記コンバータの出力電圧が前記第1バッテリの出力電圧に基づき定められる目標電圧範囲内の値になるまで前記コンバータの昇圧駆動を行うプリチャージ処理と、前記コンバータの出力電圧を取得して、前記コンバータの出力電圧が前記目標電圧範囲内の値になるまで前記コンバータの昇圧駆動を行う昇圧駆動処理と、前記第1バッテリの出力電圧及び前記コンデンサの充電電圧を取得すると共に、前記昇圧駆動処理によって前記コンバータの昇圧駆動を実行させ、且つ前記リレーの切り替えを制御するプリチャージ統括処理とを行わせ、前記プリチャージ統括処理は、前記昇圧駆動処理において前記コンバータの出力電圧を取得できない取得異常が発生した状況で前記昇圧駆動処理によって前記コンバータの昇圧駆動を実行させる場合、前記コンバータの出力電圧に関する信号であるコンバータ用信号を出力する処理を含み、前記昇圧駆動処理は、前記プリチャージ統括処理で出力された前記コンバータ用信号に基づいて前記コンバータの昇圧駆動を停止する処理を含み、前記プリチャージ統括処理は、前記コンバータの昇圧駆動が停止されることに応じて前記コンデンサの充電電圧が上昇から下降に転じた後、前記コンデンサの充電電圧が前記目標電圧範囲外の値であるときには前記リレーの切り替えを待機し、前記コンデンサの充電電圧が前記目標電圧範囲内の値になると、前記リレーによる電気的接続をオンに切り替える処理を含む。
上記構成では、取得異常が発生した場合、コンバータの出力電圧が目標電圧範囲を超えた後、コンデンサの充電電圧が目標電圧範囲外の値であるときはリレーの切り替えを待機する。そして、コンデンサの充電電圧が目標電圧範囲内の値になると、リレーの電気的接続をオンに切り替える。このことにより、取得異常が発生した場合でも、コンバータの出力電圧が目標電圧範囲内の値となる適切なタイミングでリレーの電気的接続をオンに切り替えることができる。
車両の電力システムの概略構成図。 通常時用のプリチャージ処理の処理手順を表したフローチャート。 異常発生時用のプリチャージ処理の処理手順を表したフローチャート。 異常発生時用のプリチャージ処理に係る各パラメータの時間変化の例を表したタイムチャート。
以下、電源回路の制御装置の一実施形態を、図面を参照して説明する。
先ず、車両に搭載されている電力システムの概略構成を説明する。
図1に示すように、ハイブリッド車両(以下、単に車両と記す。)10には、当該車両10の駆動源となる内燃機関12が搭載されている。また、車両10には、内燃機関12とは別の起動源となるモータジェネレータ14が搭載されている。モータジェネレータ14はモータ及び発電機の双方の機能を有する。
車両10には、モータジェネレータ14と電力を授受する二次電池である第1バッテリ22が搭載されている。すなわち、第1バッテリ22は、モータジェネレータ14に電力を供給したり、モータジェネレータ14が発電した電力を蓄えたりする。第1バッテリ22は、車両10の走行用のバッテリであり、定格電圧が例えば200[V]~250[V]程度になっている。第1バッテリ22の端子間には、第1バッテリ22の出力電圧VBを検出する第1バッテリ電圧センサ24が接続されている。
第1バッテリ22は、一対の電力ラインを介して、電圧を昇降圧して出力する昇降圧コンバータ80に接続されている。具体的には、第1バッテリ22の正極端子は、第1正極ライン31を介して昇降圧コンバータ80に接続されている。また、第1バッテリ22の負極端子は、第1負極ライン32を介して昇降圧コンバータ80に接続されている。
第1正極ライン31の途中には、第1バッテリ22に流れる充放電電流ABを検出する電流センサ26が取り付けられている。
第1正極ライン31における、電流センサ26よりも昇降圧コンバータ80側の部分には、第1バッテリ22と昇降圧コンバータ80との間の電気的接続をオンオフする正極リレー35が取り付けられている。また、第1負極ライン32の途中には、第1バッテリ22と昇降圧コンバータ80との間の電気的接続をオンオフする負極リレー36が取り付けられている。正極リレー35及び負極リレー36が遮断状態になると、第1バッテリ22と昇降圧コンバータ80との間の電気的接続がオフになる。正極リレー35及び負極リレー36が接続状態になると、第1バッテリ22と昇降圧コンバータ80との間の電気的接続がオンになる。
第1正極ライン31と第1負極ライン32とには、双方向コンバータ50が接続されている。双方向コンバータ50は、詳細には、第1正極ライン31における、正極リレー35よりも昇降圧コンバータ80側の部分と、第1負極ライン32における、負極リレー36よりも昇降圧コンバータ80側の部分とに接続されている。双方向コンバータ50には、二次電池である第2バッテリ29が接続されている。第2バッテリ29は、補機駆動用のバッテリであり、定格電圧が例えば12[V]~48[V]程度になっている。
詳しい図示は省略するが、双方向コンバータ50は、スイッチング素子である複数のトランジスタ50Tや当該トランジスタ50Tに並列に接続された還流用のダイオード50Dを含んで構成されていて、電圧を昇降圧して出力する。具体的には、双方向コンバータ50は、第2バッテリ29の出力電圧を昇圧して第1正極ライン31及び第1負極ライン32に出力する。また、双方向コンバータ50は、第1正極ライン31及び第1負極ライン32の電圧を降圧して第2バッテリ29に出力する。双方向コンバータ50には、当該双方向コンバータ50から第1正極ライン31及び第1負極ライン32への出力電圧をコンバータ出力電圧VDとして検出するコンバータ電圧センサ52が接続されている。
第1正極ライン31と第1負極ライン32とには、第1バッテリ22と昇降圧コンバータ80との間の電圧を平滑化する第1コンデンサ41が接続されている。第1コンデンサ41は、詳細には、第1正極ライン31における、双方向コンバータ50の接続点よりも昇降圧コンバータ80側の部分と、第1負極ライン32における、双方向コンバータ50の接続点よりも昇降圧コンバータ80側の部分とに接続されている。すなわち、第1コンデンサ41は、正極リレー35よりも昇降圧コンバータ80側で第1正極ライン31を介して正極リレー35に接続されていると共に、負極リレー36よりも昇降圧コンバータ80側で第1負極ライン32を介して負極リレー36に接続されている。第1コンデンサ41の端子間には、第1コンデンサ41の充電電圧VC1を検出する第1コンデンサ電圧センサ43が接続されている。
上述した昇降圧コンバータ80においては、スイッチング素子である第1トランジスタ81及び第2トランジスタ82が直列に接続されている。第1トランジスタ81及び第2トランジスタ82は、いずれもnpn型のトランジスタである。第1トランジスタ81には、還流用の第1ダイオード85が並列に接続されている。第2トランジスタ82には、還流用の第2ダイオード86が並列に接続されている。
第1トランジスタ81のエミッタ端子及び第2トランジスタ82のコレクタ端子の接続点には、リアクトル88を介して第1正極ライン31が接続されている。第1トランジスタ81のコレクタ端子には、第2正極ライン71を介してインバータ90が接続されている。第2トランジスタ82のエミッタ端子には、第1負極ライン32が接続されていると共に、第2負極ライン72を介してインバータ90が接続されている。なお、図示は省略するが、第1トランジスタ81のベース端子、及び第2トランジスタ82のベース端子には、これらのトランジスタのオンオフを切り替えるための制御電圧が入力される。
上記の接続関係の下、昇降圧コンバータ80は、第1バッテリ22の出力電圧VBを昇圧してインバータ90に出力し、インバータ90が出力する電圧を降圧して第1バッテリ22へと出力する。インバータ90は、モータジェネレータ14に接続されている。インバータ90は、昇降圧コンバータ80とモータジェネレータ14との間で、直流電力と交流電力とを変換する。
第2正極ライン71と第2負極ライン72とには、昇降圧コンバータ80とインバータ90との間の電圧を平滑化する第2コンデンサ61が接続されている。すなわち、第2コンデンサ61は、昇降圧コンバータ80を間に挟んで第1コンデンサ41に並列に接続されている。ここで、第2コンデンサ61が接続されている第2正極ラインと、第1コンデンサ41が接続されている第1正極ライン31との間には、昇降圧コンバータ80の第1トランジスタ81及び第1ダイオード85が介在している。第1トランジスタ81に対する還流用の素子である第1ダイオード85は、第1トランジスタ81のエミッタ端子からコレクタ端子への通電を許容し、その逆の通電を禁止する。つまり、第1ダイオード85は、第1コンデンサ41から第2コンデンサ61への通電を許容し、第2コンデンサ61から第1コンデンサ41への通電を禁止する。
第2コンデンサ61の端子間には、第2コンデンサ61の充電電圧VC2を検出する第2コンデンサ電圧センサ63が接続されている。
この実施形態では、インバータ90よりも第1バッテリ22側の電気系統によって電源回路16が構成されている。すなわち、電源回路16は、第1バッテリ22、第1バッテリ電圧センサ24、電流センサ26、第1正極ライン31、第1負極ライン32、正極リレー35、及び負極リレー36を含んでいる。また、電源回路16は、第1コンデンサ41、第1コンデンサ電圧センサ43、第2コンデンサ61、第2コンデンサ電圧センサ63、第2正極ライン71、及び第2負極ライン72を含んでいる。また、電源回路16は、第2バッテリ29、双方向コンバータ50、コンバータ電圧センサ52、及び昇降圧コンバータ80を含んでいる。双方向コンバータ50は第1コンバータであり、昇降圧コンバータ80は第2コンバータである。
また、この実施形態では、インバータ90とモータジェネレータ14とによって電気負荷(以下、単に負荷と称する。)18が構成されている。負荷18と電源回路16とは、電力システムを構成している。なお、第1バッテリ22と昇降圧コンバータ80との間に介在している正極リレー35及び負極リレー36は、実質的には、第1バッテリ22と負荷18との間の電気的接続をオンオフする。
次に、車両10の制御構成について説明する。
車両10には、電力システムを含めた車両10の各種部位を制御する車両制御装置100が搭載されている。また、車両10には、双方向コンバータ50を制御するコンバータ制御装置200が搭載されている。コンバータ制御装置200は、双方向コンバータ50専用の制御装置である。車両制御装置100は、コンバータ制御装置200に対して上位の制御装置になっていて、コンバータ制御装置200を制御することを通じて双方向コンバータ50を制御する。これら車両制御装置100とコンバータ制御装置200とは、電源回路16を制御する電源制御装置11を構成している。
車両制御装置100及びコンバータ制御装置200は、コンピュータプログラム(ソフトウェア)に従って各種処理を実行する1つ以上のプロセッサとして構成し得る。なお、車両制御装置100及びコンバータ制御装置200は、各種処理のうち少なくとも一部の処理を実行する、特定用途向け集積回路(ASIC)等の1つ以上の専用のハードウェア回路、またはそれらの組み合わせを含む回路(circuitry)として構成してもよい。プロセッサは、CPU及び、RAM並びにROM等のメモリを含む。メモリは、処理をCPUに実行させるように構成されたプログラムコードまたは指令を格納している。メモリすなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。
車両制御装置100には、車両10に取り付けられている各種センサからの検出信号が入力される。具体的には、車両制御装置100には、つぎの各検出信号が入力される。
・第1バッテリ電圧センサ24が検出する第1バッテリ22の出力電圧VB
・電流センサ26が検出する第1バッテリ22の充放電電流AB
・第1コンデンサ電圧センサ43が検出する第1コンデンサ41の充電電圧VC1
・第2コンデンサ電圧センサ63が検出する第2コンデンサ61の充電電圧VC2
また、コンバータ制御装置200には、コンバータ電圧センサ52が検出するコンバータ出力電圧VDに関する信号が入力される。
ここで、車両10のイグニッションスイッチGがオンにされると、正極リレー35及び負極リレー36による第1バッテリ22と負荷18との間の電気的接続(以下、単に正極リレー35及び負極リレー36による電気的接続と略記する。)がオンに切り替わって第1バッテリ22から負荷18への電力供給が開始される。その際、高電圧である第1バッテリ22から負荷18へ向けて瞬間的に大電流が流れると、正極リレー35及び負極リレー36が溶着するおそれがある。そこで、第1バッテリ22から負荷18へ電力供給を開始するのに先立って、正極リレー35及び負極リレー36による電気的接続をオフにした状態で、第1コンデンサ41を充電する処理が必要になる。第1コンデンサ41を充電しておくことで、第1バッテリ22と第1コンデンサ41との電圧差が小さくなり、正極リレー35及び負極リレー36に流れる電流を小さく抑えることができる。
車両制御装置100は、第1コンデンサ41を充電する処理であるプリチャージ処理を統括するプリチャージ統括部104を有する。このプリチャージ処理では、正極リレー35及び負極リレー36による電気的接続をオフにした状態で、コンバータ出力電圧VDが第1バッテリ22の出力電圧VBに基づいて定められる目標電圧範囲VZ内の値になるまで双方向コンバータ50の昇圧駆動が行われる。なお、プリチャージ処理の実行中においては、第1コンデンサ41の充電電圧VC1がコンバータ出力電圧VDと略同じになる。また、プリチャージ処理を行うときは昇降圧コンバータ80もインバータ90も非駆動状態である。このとき、第1ダイオード85を介して第1正極ライン31と第2正極ライン71とが接続されることで、第2コンデンサ61の充電電圧VC2はコンバータ出力電圧VDと略同じになる。したがって、プリチャージ処理では、第1コンデンサ41の充電電圧VC1及び第2コンデンサ61の充電電圧VC2が目標電圧範囲VZまで高まる。
プリチャージ統括部104は、プリチャージ処理のベースとなる処理であるプリチャージ統括処理を実行可能である。プリチャージ統括部104は、プリチャージ統括処理では、上記目標電圧範囲VZを算出する。また、プリチャージ統括部104は、プリチャージ統括処理では、コンバータ制御装置200に指令信号を出力して、コンバータ制御装置200に双方向コンバータ50の昇圧駆動を実行させる。また、プリチャージ統括部104は、プリチャージ統括処理では、正極リレー35及び負極リレー36の切り替えを制御する。
ここで、コンバータ制御装置200においてコンバータ出力電圧VDを取得できない取得異常が発生することがある。プリチャージ統括部104は、取得異常が発生していない状況下で双方向コンバータ50の昇圧駆動を実行させる場合、双方向コンバータ50による昇圧の完了、すなわち第1コンデンサ41の充電完了の判定をコンバータ制御装置200に委ねる。一方、プリチャージ統括部104は、取得異常が発生している状況下で双方向コンバータ50の昇圧駆動を実行させる場合、第1コンデンサ41の充電電圧VC1を利用して、双方向コンバータ50による昇圧の完了を自身で判定する。そして、プリチャージ統括部104は、第1コンデンサ41の充電電圧VC1が第1バッテリ22の出力電圧VBに達すると、コンバータ出力電圧VDに関する信号であるコンバータ用信号をコンバータ制御装置200に出力する。この実施形態では、コンバータ用信号は、コンバータ出力電圧VDの上昇を停止させるための信号となっている。詳細には、プリチャージ統括部104は、双方向コンバータ50の昇圧駆動を停止させるための停止信号PNをコンバータ用信号としてコンバータ制御装置200に出力する。
プリチャージ統括部104は、上記停止信号PNを出力した場合、双方向コンバータ50の昇圧駆動が停止されることに応じて第1コンデンサ41の充電電圧VC1が上昇から下降に転じた後、第1コンデンサ41の充電電圧VC1が目標電圧範囲VZ外の値であるときには正極リレー35及び負極リレー36の切り替えを待機する。そして、プリチャージ統括部104は、第1コンデンサ41の充電電圧VC1が目標電圧範囲VZ内の値になると、正極リレー35及び負極リレー36による電気的接続をオンに切り替える。詳細には、プリチャージ統括部104は、第1コンデンサ41の充電電圧VC1が目標電圧範囲VZ内の値であって、第1バッテリ22の出力電圧VBよりも高い値であるときに、正極リレー35及び負極リレー36による電気的接続をオンに切り替える。
コンバータ制御装置200は、コンバータ出力電圧VDを取得できない上記取得異常が発生しているか否かを判定する異常判定部202を有する。
また、コンバータ制御装置200は、双方向コンバータ50の昇圧駆動を担う昇圧駆動部204を有する。昇圧駆動部204は、プリチャージ統括部104からの指令に応じて双方向コンバータ50の昇圧駆動を行う処理である昇圧駆動処理を実行可能である。昇圧駆動部204は、取得異常が発生していない状況下での昇圧駆動処理では、コンバータ出力電圧VDを取得して、当該コンバータ出力電圧VDが目標電圧範囲VZ内の値になるまで双方向コンバータ50の昇圧駆動を行う。一方、昇圧駆動部204は、取得異常が発生している状況下での昇圧駆動処理では、車両制御装置100のプリチャージ統括部104が出力する停止信号PNを取得すると、双方向コンバータ50の昇圧駆動を停止する。すなわち、昇圧駆動部204は、プリチャージ統括部104から入力されるコンバータ用信号としての停止信号PNに基づいて双方向コンバータ50の昇圧駆動を停止する。
次に、コンバータ制御装置200の異常判定部202が実行する取得異常の有無の判定処理について説明する。異常判定部202は、イグニッションスイッチGがオンになってからオフになるまでの間、取得異常の有無の判定処理を繰り返す。なお、この処理の前提として、異常判定部202は、コンバータ電圧センサ52が検出するコンバータ出力電圧VDを繰り返し受け付ける。
異常判定部202は、コンバータ電圧センサ52からコンバータ出力電圧VDを取得できない状況が予め定められた所定時間以上継続しているという判定条件が成立する場合、取得異常が発生している判定する。上記所定時間は、異常判定部202におけるコンバータ出力電圧VDの受付周期よりも十分に長い時間として定められている。なお、異常判定部202がコンバータ出力電圧VDを取得できない状況は、例えばコンバータ電圧センサ52とコンバータ制御装置200との間の通信線が断線したり、当該通信線のコネクタがコンバータ制御装置200の入力ポートから外れたりして通信障害が生じた場合に生じる。
また、異常判定部202は、コンバータ電圧センサ52からコンバータ出力電圧VDを取得できる場合でも、当該コンバータ出力電圧VDが予め定められた正常範囲から外れた値であるという判定条件が成立するときには、取得異常が発生したと判定する。上記正常範囲は、コンバータ出力電圧VDが通常取り得る値の範囲として定められている。なお、コンバータ出力電圧VDが正常範囲から外れた値となる状況は、例えば、コンバータ電圧センサ52に異常が生じ、コンバータ電圧センサ52がコンバータ出力電圧VDを適切に検出できないときに生じる。
異常判定部202は、上記のいずれの判定条件も成立しない場合、取得異常は発生していないと判定する。異常判定部202は、取得異常の有無を判定すると、当該判定結果を示す取得異常発生フラグFCを設定する。異常判定部202は、取得異常が発生していると判定した場合、取得異常発生フラグFCをオンにする。異常判定部202は、取得異常が発生していないと判定した場合、取得異常発生フラグFCをオフにする。異常判定部202は、取得異常発生フラグFCを設定すると、当該取得異常発生フラグFCを車両制御装置100に出力する。
次に、車両制御装置100のプリチャージ統括部104が実行するプリチャージ統括処理及びそれに付随してコンバータ制御装置200の昇圧駆動部204が実行する昇圧駆動処理の詳細について説明する。ここで、プリチャージ統括処理は、取得異常が発生していない状況で行われる通常時用のプリチャージ統括処理と、取得異常が発生している状況で行われる異常発生時用のプリチャージ統括処理とで内容が異なる。昇圧駆動処理についても同様である。以下では、先ず通常時用のプリチャージ統括処理及び昇圧駆動処理について説明し、その後、異常発生時用のプリチャージ統括処理及び昇圧駆動処理について説明する。なお、通常時用であれ異常発生時用であれ、プリチャージ統括処理及び昇圧駆動処理は、イグニッションスイッチGがオンになってからオフになるまでの間において1度のみ実行される。また、電源回路16に係る制御に関して、プリチャージ統括処理及び昇圧駆動処理による制御は、他の処理による制御よりも優先される。
通常時用のプリチャージ統括処理について説明する。車両制御装置100のプリチャージ統括部104は、イグニッションスイッチGがオンにされると、取得異常発生フラグFCがオフであることを条件に、通常時用のプリチャージ統括処理を開始する。なお、イグニッションスイッチGがオンになった時点では、正極リレー35及び負極リレー36による電気的接続はオフになっている。
図2の(a)に示すように、プリチャージ統括部104は、通常時用のプリチャージ統括処理を開始すると、ステップS100の処理を実行する。ステップS100において、プリチャージ統括部104は、正極リレー35及び負極リレー36の切り替えを禁止する。すなわち、プリチャージ統括部104は、正極リレー35及び負極リレー36による電気的接続をオフに維持する。プリチャージ統括部104は、ステップS100の処理を実行すると、処理をステップS110に進める。
ステップS110において、プリチャージ統括部104は、目標電圧範囲VZを算出する。具体的には、プリチャージ統括部104は、第1バッテリ電圧センサ24が検出する第1バッテリ22の出力電圧VBに関して最新のものを取得する。そして、プリチャージ統括部104は、第1バッテリ22の出力電圧VBを目標電圧範囲VZの下限値VZ1として算出する。また、プリチャージ統括部104は、第1バッテリ22の出力電圧VBに許容差電圧VPを加算した値を目標電圧範囲VZの上限値VZ2として算出する。プリチャージ統括部104は、許容差電圧VPを予め記憶している。ここで、第1バッテリ22と第1コンデンサ41の電圧差に関して、正極リレー35及び負極リレー36による電気的接続をオンに切り替えたときにこれら正極リレー35及び負極リレー36が溶着しない電圧差の限界値を限界差電圧VPMとする。許容差電圧VPは、この限界差電圧VPMよりもやや小さい値として実験やシミュレーションによって定められている。プリチャージ統括部104は、ステップS110の処理を実行すると、処理をステップS120に進める。なお、通常時用のプリチャージ統括処理の実行中、第1バッテリ22の出力電圧VBは変化することなく一定に維持される。
ステップS120において、プリチャージ統括部104は、双方向コンバータ50の昇圧駆動の実行を指示する信号として、目標電圧範囲VZをコンバータ制御装置200に出力する。この後、プリチャージ統括部104は、処理をステップS130に進める。
ステップS130において、プリチャージ統括部104は、双方向コンバータ50による昇圧が完了したことを示す完了信号PEを取得したか否かを判定する。この完了信号PEは、後述する通常時用の昇圧駆動処理においてコンバータ制御装置200の昇圧駆動部204が出力する信号である。プリチャージ統括部104は、完了信号PEを取得していない場合(ステップS130:NO)、再度ステップS130の処理を実行する。プリチャージ統括部104は、完了信号PEを取得するまでステップS130の処理を繰り返す。プリチャージ統括部104は、完了信号PEを取得すると(ステップS130:YES)、処理をステップS140に進める。
ステップS140において、プリチャージ統括部104は、正極リレー35及び負極リレー36による電気的接続をオンに切り替える。そして、プリチャージ統括部104は、通常時用のプリチャージ統括処理の一連の処理を終了する。
通常時用の昇圧駆動処理について説明する。図2の(b)に示すように、コンバータ制御装置200の昇圧駆動部204は、通常時用のプリチャージ統括処理におけるステップS120の処理を受けて本処理を開始する。詳細には、昇圧駆動部204は、プリチャージ統括部104が出力する目標電圧範囲VZを取得すると、取得異常発生フラグFCがオフであることを条件に本処理を開始する。
昇圧駆動部204は、通常時用の昇圧駆動処理を開始すると、ステップS200の処理を実行する。ステップS200において、昇圧駆動部204は、双方向コンバータ50の昇圧駆動を開始する。昇圧駆動部204は、ステップS200の処理を実行すると、処理をステップS210に進める。
ステップS210において、昇圧駆動部204は、コンバータ出力電圧VDが目標電圧範囲VZ内の値であるか否かを判定する。具体的には、昇圧駆動部204は、コンバータ電圧センサ52が検出するコンバータ出力電圧VDに関して最新のものを取得する。そして、昇圧駆動部204は、コンバータ出力電圧VDを目標電圧範囲VZの下限値VZ1及び上限値VZ2と比較する。昇圧駆動部204は、コンバータ出力電圧VDが目標電圧範囲VZ外の値である場合(ステップS210:NO)、再度ステップS210の処理を実行する。昇圧駆動部204は、コンバータ出力電圧VDが目標電圧範囲VZ内の値になるまでステップS210の処理を繰り返す。そして、昇圧駆動部204は、コンバータ出力電圧VDが目標電圧範囲VZ内の値になると(ステップS210:YES)、処理をステップS220に進める。
ステップS220において、昇圧駆動部204は、双方向コンバータ50の昇圧駆動を停止する。そして、昇圧駆動部204は、処理をステップS230に進める。
ステップS230において、昇圧駆動部204は、双方向コンバータ50による昇圧完了を示す完了信号PEを車両制御装置100に出力する。この後、昇圧駆動部204は、通常時用の昇圧駆動処理の一連の処理を終了する。以上に説明した通常時用のプリチャージ統括処理に係る一連と、通常時用の昇圧駆動処理に係る一連の処理とによって、通常時用のプリチャージ処理が構成されている。
次に、異常発生時用のプリチャージ統括処理について説明する。車両制御装置100のプリチャージ統括部104は、イグニッションスイッチGがオンにされると、取得異常発生フラグFCがオンであることを条件に、異常発生時用のプリチャージ統括処理を開始する。上記のとおり、イグニッションスイッチGがオンになった時点では、正極リレー35及び負極リレー36による電気的接続はオフになっている。
図3の(a)に示すように、プリチャージ統括部104は、異常発生時用のプリチャージ統括処理を開始すると、ステップS300の処理を実行する。ステップS300において、プリチャージ統括部104は、正極リレー35及び負極リレー36の切り替えを禁止する。この後、プリチャージ統括部104は、処理をステップS310に進める。
ステップS310において、プリチャージ統括部104は、目標電圧範囲VZを算出する。目標電圧範囲VZの算出方法は、通常時用のプリチャージ統括処理の場合と同じであるため、説明を割愛する。なお、通常時用のプリチャージ統括処理の場合と同様、異常発生時用のプリチャージ統括処理の実行中において第1バッテリ22の出力電圧VBは一定である。プリチャージ統括部104は、ステップS310の処理を実行すると、処理をステップS320に進める。
ステップS320において、プリチャージ統括部104は、双方向コンバータ50の昇圧駆動の実行を指示する信号として、目標電圧範囲VZをコンバータ制御装置200に出力する。この後、プリチャージ統括部104は、処理をステップS330に進める。
ステップS330において、プリチャージ統括部104は、第1コンデンサ41の充電電圧VC1が第1バッテリ22の出力電圧VB以上であるか否かを判定する。具体的には、プリチャージ統括部104は、第1コンデンサ電圧センサ43が検出する第1コンデンサ41の充電電圧VC1に関して最新のものを取得する。また、プリチャージ統括部104は、第1バッテリ電圧センサ24が検出する第1バッテリ22の出力電圧VBに関して最新のものを取得する。そして、プリチャージ統括部104は、第1コンデンサ41の充電電圧VC1と第1バッテリ22の出力電圧VBとを比較する。プリチャージ統括部104は、第1コンデンサ41の充電電圧VC1が第1バッテリ22の出力電圧VB未満である場合(ステップS330:NO)、再度ステップS330の処理を実行する。プリチャージ統括部104は、第1コンデンサ41の充電電圧VC1が第1バッテリ22の出力電圧VB以上になるまでステップS330の処理を繰り返す。そして、プリチャージ統括部104は、第1コンデンサ41の充電電圧VC1が第1バッテリ22の出力電圧VB以上になると(ステップS330:YES)、処理をステップS340に進める。なお、ステップS330の処理に関して、プリチャージ統括部104は、第1バッテリ22の出力電圧VBと同値である目標電圧範囲VZの下限値VZ1を、第1バッテリ22の出力電圧VBとして参照してもよい。
ステップS340において、プリチャージ統括部104は、双方向コンバータ50の昇圧駆動の停止を指示する停止信号PNをコンバータ制御装置200に出力する。プリチャージ統括部104は、ステップS340の処理を実行すると、処理をステップS350に進める。
ステップS350において、プリチャージ統括部104は、第1コンデンサ41の充電電圧VC1に関して、最新の充電電圧VC1が、前回ステップS350の処理を実行した時点での充電電圧VC1未満であるか否かを判定する。具体的には、プリチャージ統括部104は、第1コンデンサ電圧センサ43が検出する第1コンデンサ41の充電電圧VC1に関して最新のものを取得する。そして、プリチャージ統括部104は、取得した充電電圧VC1と、前回ステップS350の処理を実行した時点での充電電圧VC1(以下、前回の充電電圧VC1と記す。)とを比較する。なお、プリチャージ統括部104は、異常発生時用のプリチャージ統括処理を開始した後ステップS350の処理を初めて実行する場合、前回の充電電圧VC1をゼロとして扱う。
プリチャージ統括部104は、最新の充電電圧VC1が前回の充電電圧VC1以上である場合(ステップS350:NO)、再度ステップS350の処理を実行する。プリチャージ統括部104は、最新の充電電圧VC1が前回の充電電圧VC1未満になるまでステップS350の処理を繰り返す。そして、プリチャージ統括部104は、最新の充電電圧VC1が前回の充電電圧VC1未満になると(ステップS350:YES)、処理をステップS360に進める。なお、ステップS350の判定がNOになる状況、すなわち最新の充電電圧VC1が前回の充電電圧VC1以上である状況は、充電電圧VC1の時間変化において充電電圧VC1が上昇中である状況に相当する。また、ステップS350の判定がNOからYESに切り替わる状況、すなわち最新の充電電圧VC1が前回の充電電圧VC1以上である状態から前回の充電電圧VC1未満に切り替わる状況は、充電電圧VC1の時間変化において充電電圧VC1が上昇から下降に転じる状況に相当する。
ここで、第1コンデンサ41の充電電圧VC1が上昇から下降に転じるタイミングは、ステップS340でプリチャージ統括部104が停止信号PNを出力した後、諸所の処理を経て実際に双方向コンバータ50による昇圧が停止するタイミングに相当する。さて、ステップS340で停止信号PNを出力してから、実際に双方向コンバータ50による昇圧が停止するまでのコンバータ出力電圧VDの上昇量と、目標電圧範囲VZの上限値VZ2を規定する許容差電圧VPとを比較すると、前者は後者よりも大きいことが実験やシミュレーションからわかっている。そのため、第1コンデンサ41の充電電圧VC1が上昇から下降に転じるとき(ステップS350:YES)には、第1コンデンサ41の充電電圧VC1は、目標電圧範囲VZの上限値VZ2を上回っている。
さて、ステップS360において、プリチャージ統括部104は、第1コンデンサ41の充電電圧VC1が目標電圧範囲VZ内の値であるか否かを判定する。具体的には、プリチャージ統括部104は、第1コンデンサ電圧センサ43が検出する第1コンデンサ41の充電電圧VC1に関して最新のものを取得する。そして、プリチャージ統括部104は、充電電圧VC1を目標電圧範囲VZの下限値VZ1及び上限値VZ2と比較する。プリチャージ統括部104は、充電電圧VC1が目標電圧範囲VZ外の値である場合(ステップS360:NO)、再度ステップS360の処理を実行する。プリチャージ統括部104は、充電電圧VC1が目標電圧範囲VZ内の値になるまでステップS360の処理を繰り返す。そして、プリチャージ統括部104は、充電電圧VC1が目標電圧範囲VZ内の値になると(ステップS360:YES)、処理をステップS370に進める。
なお、このステップS360の処理は、上記ステップS350の処理との兼ね合いで、充電電圧VC1の時間変化において充電電圧VC1が目標電圧範囲VZに向けて下降中の状況で行われる。したがって、プリチャージ統括部104は、充電電圧VC1が、目標電圧範囲VZの中でも上限値VZ2に近い値であるときに、ステップS360の処理をYESと判定することになる。換言すると、プリチャージ統括部104は、充電電圧VC1が目標電圧範囲VZの下限値VZ1よりも高い値であるときにステップS360をYESと判定する。目標電圧範囲VZの下限値VZ1は、異常発生時用のプリチャージ統括処理の実行中における第1バッテリ22の出力電圧VBである。
ステップS370において、プリチャージ統括部104は、正極リレー35及び負極リレー36による電気的接続をオンに切り替える。プリチャージ統括部104は、ステップS370の処理を実行すると、異常発生時用のプリチャージ統括処理の一連の処理を終了する。
異常発生時用の昇圧駆動処理について説明する。図3の(b)に示すように、コンバータ制御装置200の昇圧駆動部204は、異常発生時用のプリチャージ統括処理におけるステップS320の処理を受けて本処理を開始する。詳細には、昇圧駆動部204は、車両制御装置100のプリチャージ統括部104が出力する目標電圧範囲VZを取得すると、取得異常発生フラグFCがオンであることを条件に本処理を開始する。
昇圧駆動部204は、異常発生時用の昇圧駆動処理を開始すると、ステップS400の処理を実行する。ステップS400において、昇圧駆動部204は、双方向コンバータ50の昇圧駆動を開始する。昇圧駆動部204は、ステップS400の処理を実行すると、処理をステップS410に進める。
ステップS410において、昇圧駆動部204は、双方向コンバータ50の昇圧駆動の停止を指示する停止信号PNを取得したか否かを判定する。この停止信号PNは、異常発生時用のプリチャージ統括処理のステップS340において車両制御装置100のプリチャージ統括部104が出力する信号である。昇圧駆動部204は、停止信号PNを取得していない場合(ステップS410:NO)、再度ステップS410の処理を実行する。昇圧駆動部204は、停止信号PNを取得するまでステップS410の処理を繰り返す。昇圧駆動部204は、停止信号PNを取得すると(ステップS410:YES)、処理をステップS420に進める。
ステップS420において、昇圧駆動部204は、双方向コンバータ50の昇圧駆動を停止する。そして、コンバータ制御装置200は、異常発生時用の昇圧駆動処理の一連の処理を終了する。以上に説明した異常発生時用のプリチャージ統括処理に係る一連と、異常発生時用の昇圧駆動処理に係る一連の処理とによって、異常発生時用のプリチャージ処理が構成されている。
次に、本実施形態の作用について説明する。
車両10の走行中の時刻T1において取得異常が発生し、図4の(c)に示すように取得異常発生フラグFCがオフからオンに切り替わったものとする。この後、図4の(a)に示すように、時刻T2においてイグニッションスイッチGがオフにされ、その後の時刻T3において再度イグニッションスイッチGがオンにされたものとする。時刻T2でイグニッションスイッチGがオフにされることに応じて正極リレー35及び負極リレー36による電気的接続はオフに切り替わる。そして、時刻T3でも、正極リレー35及び負極リレー36による電気的接続はオフのままになっている。
さて、図4の(c)に示すように、イグニッションスイッチGがオンにされた時刻T3以降も取得異常が継続しているものとする。この場合、イグニッションスイッチGがオンにされると、異常発生時用のプリチャージ処理が実行される。そして、プリチャージ統括部104からの目標電圧範囲VZの出力(ステップS320)に応じて、図4の(d)に示すように、昇圧駆動部204が双方向コンバータ50の昇圧駆動を開始する(ステップS400)。なお、図4の(d)は、昇圧駆動を実行中であるか否かを便宜的に示したものである。ここで、図4の(e)に示すように、時刻T2においてイグニッションスイッチGがオフにされることに伴い、コンバータ出力電圧VDは時刻T3までにゼロに低下している。そして、上記のとおり時刻T3から双方向コンバータ50の昇圧駆動が開始されると、コンバータ出力電圧VDはゼロから大きくなる。
この後、プリチャージ統括部104は、第1コンデンサ41の充電電圧VC1を利用して、双方向コンバータ50による昇圧完了の判定を繰り返し行う(ステップS330)。そして、第1コンデンサ41の充電電圧VC1がプリチャージ処理中の第1バッテリ22の出力電圧VBに達する時刻T4になると(ステップS330:YES)、プリチャージ統括部104は停止信号PNが出力する(ステップS340)。この停止信号PNを受けて、図4の(d)に示すように、昇圧駆動部204は、双方向コンバータ50の昇圧駆動を停止する(ステップS420)。
図4の(e)に示すように、昇圧駆動が停止された時刻T4の後、双方向コンバータ50におけるトランジスタ50Tのスイッチングが停止して実際に双方向コンバータ50による昇圧が停止するまでは、コンバータ出力電圧VDは上昇する。この上昇の途中で、コンバータ出力電圧VDは、目標電圧範囲VZの上限値VZ2を上回る。そして、双方向コンバータ50による昇圧が停止する時刻T5になると、コンバータ出力電圧VDは低下し始める(ステップS350:YES)。
この後、プリチャージ統括部104は、コンバータ出力電圧VDと共に第1コンデンサ41の充電電圧VC1が目標電圧範囲VZに向けて低下中である状況において、第1コンデンサ41の充電電圧VC1が目標電圧範囲VZ内の値になったか否かを繰り返し判定する(ステップS360)。プリチャージ統括部104は、第1コンデンサ41の充電電圧VC1が目標電圧範囲VZよりも高い値であるときには正極リレー35及び負極リレー36の切り替えを待機する。そして、プリチャージ統括部104は、第1コンデンサ41の充電電圧VC1が目標電圧範囲VZの上限値VZ2近傍の値になる時刻T6において(ステップS360:YES)、正極リレー35及び負極リレー36による電気的接続をオンに切り替える。すなわち、プリチャージ統括部104は、充電電圧VC1が目標電圧範囲VZの下限値VZ1に相当する第1バッテリ22の出力電圧VBよりも高い値であるときに正極リレー35及び負極リレー36を切り替える。
なお、正極リレー35及び負極リレー36がオンに切り替わる時刻T6以降は、第1バッテリ22と、電源回路16における正極リレー35や負極リレー36よりも負荷18側の部分とが通電される。そのため、コンバータ出力電圧VDや第1コンデンサ41の充電電圧VC1は、第1バッテリ22の出力電圧VBと略同じ値になる。
次に、本実施形態の効果について説明する。
(1)上記構成において、双方向コンバータ50の昇圧駆動の実行及び停止は、双方向コンバータ50専用の制御装置であるコンバータ制御装置200の昇圧駆動部204が行う。取得異常が発生している状況下では、昇圧駆動部204はコンバータ出力電圧VDを取得できない。そのため、昇圧駆動部204は、自身では双方向コンバータ50による昇圧完了を判定できない。そこで、取得異常が発生している状況下では、昇圧駆動部204ではなく、車両制御装置100のプリチャージ統括部104が、第1コンデンサ41の充電電圧VC1を利用して双方向コンバータ50による昇圧完了の判定を行う。この場合、双方向コンバータ50の昇圧駆動を停止させるのに際して、プリチャージ統括部104と昇圧駆動部204との間での停止信号PNの授受を含め、昇圧完了の判定後、実際に双方向コンバータ50の昇圧が停止するまでに相応の遅延がある。この遅延の間も双方向コンバータ50による昇圧は継続される。このことから、双方向コンバータ50による昇圧が実際に停止したタイミングでは、コンバータ出力電圧VDが目標電圧範囲VZを超えてしまう。そして、そのタイミングで正極リレー35及び負極リレー36による電気的接続をオンに切り替えると、これらのリレーが溶着するおそれがある。
ここで、仮に双方向コンバータ50の昇圧駆動に伴うコンバータ出力電圧VDや第1コンデンサ41の充電電圧VC1の単位時間当たりの上昇率が予め把握できるものとする。この場合、停止信号PNを出力してから実際に双方向コンバータ50による昇圧駆動が停止するまでに要する時間から逆算して、第1コンデンサ41の充電電圧VC1が目標電圧範囲VZに至るよりも前の適切なタイミングで停止信号PNをすれば、実際に双方向コンバータ50による昇圧駆動が停止するときにコンバータ出力電圧VDや第1コンデンサ41の充電電圧VC1を目標電圧範囲VZ内の値にすることが可能である。しかしながら、電源回路16に採用される第1コンデンサ41や第2コンデンサ61の静電容量に応じて、双方向コンバータ50の昇圧駆動に伴うコンバータ出力電圧VDや第1コンデンサ41の充電電圧VC1の単位時間当たりの上昇率は異なる。つまり、電源回路16に採用する製品毎に上記上昇率がばらつくことから、上記上昇率を予め把握するのは事実上困難である。
そこで、上記構成では、昇圧完了の判定後、コンバータ出力電圧VDや第1コンデンサ41の充電電圧VC1が目標電圧範囲VZの上限値VZ2を上回ることを一旦許容する。そして、プリチャージ統括部104は、双方向コンバータ50の昇圧駆動が停止されることに応じて第1コンデンサ41の充電電圧VC1が上昇から下降に転じた後、第1コンデンサ41の充電電圧VC1が目標電圧範囲VZの上限値VZ2よりも高い値であるときには、正極リレー35及び負極リレー36の切り替えを待機する。そして、プリチャージ統括部104は、第1コンデンサ41の充電電圧VC1が目標電圧範囲VZ内の値になると、正極リレー35及び負極リレー36による電気的接続をオンに切り替える。こうした構成により、取得異常が発生した場合でも、コンバータ出力電圧VDが目標電圧範囲VZ内の値であるときに、正極リレー35及び負極リレー36による電気的接続をオンに切り替えることができる。したがって、正極リレー35及び負極リレー36を切り替えたときにこれら正極リレー35及び負極リレー36が溶着することを防止できる。
(2)上記構成において、双方向コンバータ50の昇圧駆動に伴って双方向コンバータ50が出力する電力は、第1コンデンサ41のみならず第1ダイオード85を介して第2コンデンサ61にも至る。したがって、双方向コンバータ50が昇圧駆動されると、第1コンデンサ41及び第2コンデンサ61の双方が充電される。
さて、仮に目標電圧範囲VZの下限値を、プリチャージ処理中の第1バッテリ22の出力電圧VBよりも低い値に設定するものとする。そして、第1コンデンサ41の充電電圧VC1が目標電圧範囲VZにおける第1バッテリ22の出力電圧VBよりも低い状態で、正極リレー35及び負極リレー36による電気的接続をオンに切り替えるものとする。この場合、第1コンデンサ41よりも第1バッテリ22の方が高電圧であることから、第1バッテリ22から第1コンデンサ41へと電流が流れる。ここで、第1ダイオード85は、第1コンデンサ41から第2コンデンサ61への通電を許容する。そのため、図1の二点鎖線Q1で示すように、第1バッテリ22から第1コンデンサ41へと流れる電流は、第1コンデンサ41のみならず、第1ダイオード85を介して第2コンデンサ61へも流れる。この場合、第1コンデンサ41及び第2コンデンサ61の双方が有する静電エネルギーを加算した静電エネルギーに応じた電流が電源回路16に流れる。したがって、正極リレー35及び負極リレー36には相応に大きな電流が流れる。
一方、第1コンデンサ41の充電電圧VC1が第1バッテリ22の出力電圧VBよりも高い状態で正極リレー35及び負極リレー36をオンに切り替える場合、電源回路16に流れる電流の向きは上記の例に対して反転する。具体的には、第1バッテリ22よりも第1コンデンサ41の方が高電圧であることから、第1コンデンサ41から第1バッテリ22へと電流が流れる。このとき、第2コンデンサ61から第1バッテリ22への通電は、第1ダイオード85によって禁止される。そのため、図1の二点鎖線Q2で示すように、電源回路16では、第1コンデンサ41及び第1バッテリ22間でのみ電流が流れる。この場合、電源回路16では、第1コンデンサ41が蓄える静電容量エネルギーに応じた電流のみが流れる。したがって、正極リレー35及び負極リレー36に流れる電流は、第1コンデンサ41の充電電圧VC1が第1バッテリ22の出力電圧VBよりも低い状況でリレーを切り替える上記の例(図1の二点鎖線Q1)の場合よりも小さくなる。そのため、正極リレー35及び負極リレー36をオンに切り替えたときにこれら正極リレー35及び負極リレー36が溶着するリスクを低減できる。
(3)負荷18の駆動に必要となる電力は、負荷18毎に大きく異なる。そのため、電源回路16の接続対象となる負荷18に応じて、昇降圧コンバータ80による電圧の昇圧量は大きく異なる。ここで、第2コンデンサ61には、昇降圧コンバータ80が昇圧した電力を蓄え得る静電容量が要求される。そのため、第2コンデンサ61は、電源回路16の接続対象となる負荷18毎に、互いに大きく異なる静電容量を有したものが採用される。
一方、昇降圧コンバータ80よりも第1バッテリ22側に接続されている第1コンデンサ41は、第1バッテリ22が出力する電力を蓄え得る静電容量を有していればよい。ここで、第1バッテリ22が出力する電力は、負荷18の駆動に必要となる電力よりも相当に小さい。そのため、第1コンデンサ41に要求される静電容量は、第2コンデンサ61に要求される静電容量よりも相当に小さい。このような、静電容量のスケールの違いとの兼ね合いで、第1コンデンサ41は第2コンデンサ61に比べ、電源回路16に採用される製品毎の静電容量のばらつきが小さくなる。また、一般に第1バッテリ22は、電源回路16の接続対象となる負荷18に拘わらず、略同一の定格電圧を有するものが採用されることが多い。これらのことから、第1コンデンサ41は、電源回路16の接続対象となる負荷18に拘わらず略同一の静電容量を有したものが採用される。
さて、双方向コンバータ50の昇圧駆動が停止された後、これら第1コンデンサ41及び第2コンデンサ61が放電する際の単位時間当たりの充電電圧の低下量(以下、充電電圧の低下率と記す。)は、これらのコンデンサの静電容量によって異なる。そのため、電源回路16の接続対象となる負荷18毎に異なる静電容量のものが採用される第2コンデンサ61の場合、昇圧駆動が停止された後の充電電圧VC2の低下率は、接続対象の負荷18毎に大きく異なる。一方、電源回路16の接続対象となる負荷18に拘わらず略同一の静電容量のものが採用される第1コンデンサ41であれば、双方向コンバータ50による昇圧駆動が停止された後の充電電圧VC1の低下率は、接続対象の負荷18に拘わらず略同一である。
そこで、上記構成においてプリチャージ統括部104は、第1コンデンサ41の充電電圧VC1と第2コンデンサ61の充電電圧VC2のうち、第1コンデンサ41の充電電圧VC1を利用して正極リレー35及び負極リレー36の切り替えのタイミングを判定する。第1コンデンサ41の充電電圧VC1を利用して正極リレー35及び負極リレー36の切り替えのタイミングを判定することで、接続対象の負荷18に拘わらず、正極リレー35及び負極リレー36の切り替えタイミングが略一律に定まる。このことは、接続対象の負荷18に拘わらず、正極リレー35及び負極リレー36の切り替えの前後で統一した各種制御を実現する上で好適である。
なお、本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・許容差電圧VPを規定する限界差電圧VPMは、溶着に限らず、正極リレー35及び負極リレー36をオンにしたときにこれらのリレーの動作に異常が生じる程に大きな電流が流れない電圧差の限界値であればよい。
・目標電圧範囲VZの算出方法は、上記実施形態の例に限定されない。例えば、目標電圧範囲VZの下限値を、第1バッテリ22の出力電圧VBから許容差電圧VPを減算した値として算出してもよい。そして、目標電圧範囲VZの上限値を、第1バッテリ22の出力電圧VBとして算出してもよい。
・目標電圧範囲VZの下限値を、第1バッテリ22の出力電圧VBから許容差電圧VPを減算した値として算出し、目標電圧範囲VZの上限値を、第1バッテリ22の出力電圧VBに許容差電圧VPを加算した値として算出してもよい。この場合、目標電圧範囲VZの下限値の算出に用いる許容差電圧VPと、上限値の算出に用いる許容差電圧VPとを異なる値にしてもよい。許容差電圧VPは、限界差電圧VPM以下の値であればよい。
・許容差電圧VPをゼロにしてもよい。この場合、目標電圧範囲VZが一定の幅をもったものでなく、特定の値になる。
・正極リレー35及び負極リレー36をオンに切り替えるタイミングは、上記実施形態の例に限定されない。第1コンデンサ41の充電電圧VC1が、プリチャージ処理中の第1バッテリ22の出力電圧VB以下であるときに正極リレー35及び負極リレー36をオンに切り替えてもよい。上記変更例のように目標電圧範囲VZの下限値や上限値を変更するのに合わせて、正極リレー35及び負極リレー36をオンに切り替えるタイミングを適宜変更すればよい。第1コンデンサ41の充電電圧VC1が目標電圧範囲VZ内の値であるときに正極リレー35及び負極リレー36をオンに切り替えることができれば、正極リレー35及び負極リレー36に溶着の防止できる。
・第2コンデンサ61の充電電圧VC2を利用して正極リレー35及び負極リレー36の切り替えのタイミングを判定してもよい。製品毎の充電電圧VC2の低下率の違いを許容できるように各種制御の処理内容を構成しておけば、第2コンデンサ61の充電電圧VC2を利用しても何ら問題はない。
・コンバータ用信号は、上記実施形態の停止信号PNに限定されない。コンバータ用信号は、コンバータ出力電圧VDに関する信号であればよい。そして、このコンバータ用信号に基づいて昇圧駆動部204が双方向コンバータ50の昇圧駆動を停止できればよい。
例えば、コンバータ用信号は、第1コンデンサ41の充電電圧VC1の値を示す信号(以下、単に第1コンデンサ41の充電電圧VC1と略記する。)でもよい。この場合、コンバータ用信号、すなわち第1コンデンサ41の充電電圧VC1は、コンバータ出力電圧VDと同じ値を示す信号である。コンバータ用信号として第1コンデンサ41の充電電圧VC1を採用する場合、昇圧駆動部204において第1コンデンサ41の充電電圧VC1を利用して双方向コンバータ50による昇圧完了を判定することができる。
具体的には、プリチャージ統括部104は、昇圧駆動部204によって双方向コンバータ50の昇圧駆動が開始されると、最新の第1コンデンサ41の充電電圧VC1をコンバータ用信号として繰り返し昇圧駆動部204に出力する。そして、昇圧駆動部204は、入力される第1コンデンサ41の充電電圧VC1を、目標電圧範囲VZの下限値VZ1である第1バッテリ22の出力電圧VBと比較することを繰り返す。そして、昇圧駆動部204は、第1コンデンサ41の充電電圧VC1が第1バッテリ22の出力電圧VBに達したら、双方向コンバータ50による昇圧が完了したと判定し、双方向コンバータ50の昇圧駆動を停止する。そして、昇圧駆動部204は、双方向コンバータ50による昇圧が完了した旨の信号をプリチャージ統括部104に出力する。この後、プリチャージ統括部104は、上記実施形態の異常発生時用のプリチャージ統括処理と同様、第1コンデンサ41の充電電圧VC1が上昇から下降に転じて目標電圧範囲VZ内の値になったら、正極リレー35及び負極リレー36をオンに切り替える。こうした態様を採用した場合も、昇圧駆動部204は、コンバータ用信号としての第1コンデンサ41の充電電圧VC1に基づいて、双方向コンバータ50の昇圧駆動を停止することになる。
ここで、コンバータ用信号として第1コンデンサ41の充電電圧VC1を採用する場合、当該充電電圧VC1をプリチャージ統括部104と昇圧駆動部204との間で授受するため等のタイムラグがある。このことから、昇圧駆動部204が取得する充電電圧VC1は、リアルタイムの充電電圧VC1ではなく、タイムラグ分だけ前のタイミングの充電電圧VC1である。そのため、昇圧駆動部204において昇圧の完了を判定するタイミングは、リアルタイムの充電電圧VC1が第1バッテリ22の出力電圧VBに達したタイミングよりも遅延する。したがって、コンバータ用信号として第1コンデンサ41の充電電圧VC1を採用する場合も、双方向コンバータ50の昇圧駆動を停止した後、第1コンデンサ41の充電電圧VC1が上昇から下降に転じて目標電圧範囲VZ内の値になったら正極リレー35及び負極リレー36をオンに切り替えることで、正極リレー35及び負極リレー36の溶着を防止できる。
・電源回路16の構成は、上記実施形態の例に限定されない。例えば、第1バッテリ22の状態の監視用に、温度センサを追加してもよい。
・負荷18の構成は、上記実施形態の例に限定されない。例えば、モータジェネレータ14の数を変更してもよい。
・車両10は、内燃機関12を有さない電気自動車として構成されていてもよい。
11…電源制御装置
16…電源回路
18…負荷
22…第1バッテリ
24…第1バッテリ電圧センサ
29…第2バッテリ
35…正極リレー
36…負極リレー
41…第1コンデンサ
43…第1コンデンサ電圧センサ
50…双方向コンバータ(第1コンバータ)
52…コンバータ電圧センサ
61…第2コンデンサ
63…第2コンデンサ電圧センサ
80…昇降圧コンバータ(第2コンバータ)
85…第1ダイオード
104…プリチャージ統括部
204…昇圧駆動部

Claims (5)

  1. 第1バッテリと、
    前記第1バッテリの出力電圧を検出するバッテリ電圧センサと、
    前記第1バッテリから負荷への電気的接続をオンオフするリレーと、
    前記第1バッテリよりも定格電圧の低い第2バッテリと、
    前記第2バッテリの出力電圧を昇圧して、前記リレーよりも前記負荷側へと出力するコンバータと、
    前記コンバータの出力電圧を検出するコンバータ電圧センサと、
    前記リレーよりも前記負荷側で前記リレーに接続されているコンデンサと、
    前記コンデンサの充電電圧を検出するコンデンサ電圧センサと
    を有する電源回路に適用され、
    前記リレーによって前記第1バッテリと前記負荷との間の電気的接続をオフにした状態で、前記コンバータの出力電圧が前記第1バッテリの出力電圧に基づき定められる目標電圧範囲内の値になるまで前記コンバータの昇圧駆動を行うプリチャージ処理を実行する制御装置であって、
    前記コンバータの出力電圧を取得して、前記コンバータの出力電圧が前記目標電圧範囲内の値になるまで前記コンバータの昇圧駆動を行う昇圧駆動部と、
    前記第1バッテリの出力電圧及び前記コンデンサの充電電圧を取得すると共に、前記昇圧駆動部に前記コンバータの昇圧駆動を実行させ、且つ前記リレーの切り替えを制御するプリチャージ統括部と
    を有し、
    前記プリチャージ統括部は、前記昇圧駆動部が前記コンバータの出力電圧を取得できない取得異常が発生した状況で前記昇圧駆動部に前記コンバータの昇圧駆動を実行させる場合、前記コンバータの出力電圧に関する信号であるコンバータ用信号を前記昇圧駆動部に出力し、
    前記昇圧駆動部は、前記プリチャージ統括部から入力された前記コンバータ用信号に基づいて前記コンバータの昇圧駆動を停止し、
    前記プリチャージ統括部は、前記コンバータの昇圧駆動が停止されることに応じて前記コンデンサの充電電圧が上昇から下降に転じた後、前記コンデンサの充電電圧が前記目標電圧範囲外の値であるときには前記リレーの切り替えを待機し、前記コンデンサの充電電圧が前記目標電圧範囲内の値になると、前記リレーによる電気的接続をオンに切り替える
    電源回路の制御装置。
  2. 前記プリチャージ統括部は、前記コンデンサの充電電圧が前記第1バッテリの出力電圧に達すると、前記コンバータの昇圧駆動を停止させるための停止信号を前記コンバータ用信号として前記昇圧駆動部に出力する
    請求項1に記載の電源回路の制御装置。
  3. 前記コンデンサを第1コンデンサとしたとき、前記第1コンデンサよりも前記負荷側において前記第1コンデンサに並列に接続されている第2コンデンサと、
    前記コンバータを第1コンバータとしたとき、前記第1コンデンサ及び前記第2コンデンサの間に接続され、前記第1バッテリの出力電圧を昇圧して前記負荷側に出力する第2コンバータとを有し、
    前記第2コンバータは、前記第1コンデンサから前記第2コンデンサへの通電を許容する一方で前記第2コンデンサから前記第1コンデンサへの通電を禁止するダイオードを備え、
    前記プリチャージ統括部は、前記昇圧駆動部に前記停止信号を出力した後、前記第1コンデンサ又は前記第2コンデンサの充電電圧が前記第1バッテリの出力電圧よりも高い値であるときに、前記リレーによる電気的接続をオンに切り替える
    請求項2に記載の電源回路の制御装置。
  4. 前記プリチャージ統括部は、前記第1コンデンサと前記第2コンデンサとのうち、前記第1コンデンサの充電電圧が前記第1バッテリの出力電圧よりも高い値であるときに、前記リレーによる電気的接続をオンに切り替える
    請求項3に記載の電源回路の制御装置。
  5. 第1バッテリと、
    前記第1バッテリの出力電圧を検出するバッテリ電圧センサと、
    前記第1バッテリから負荷への電気的接続をオンオフするリレーと、
    前記第1バッテリよりも定格電圧の低い第2バッテリと、
    前記第2バッテリの出力電圧を昇圧して、前記リレーよりも前記負荷側へと出力するコンバータと、
    前記コンバータの出力電圧を検出するコンバータ電圧センサと、
    前記リレーよりも前記負荷側で前記リレーに接続されているコンデンサと、
    前記コンデンサの充電電圧を検出するコンデンサ電圧センサと
    を有する電源回路の制御装置に、
    前記リレーによって前記第1バッテリと前記負荷との間の電気的接続をオフにした状態で、前記コンバータの出力電圧が前記第1バッテリの出力電圧に基づき定められる目標電圧範囲内の値になるまで前記コンバータの昇圧駆動を行うプリチャージ処理と、
    前記コンバータの出力電圧を取得して、前記コンバータの出力電圧が前記目標電圧範囲内の値になるまで前記コンバータの昇圧駆動を行う昇圧駆動処理と、
    前記第1バッテリの出力電圧及び前記コンデンサの充電電圧を取得すると共に、前記昇圧駆動処理によって前記コンバータの昇圧駆動を実行させ、且つ前記リレーの切り替えを制御するプリチャージ統括処理とを行わせ、
    前記プリチャージ統括処理は、前記昇圧駆動処理において前記コンバータの出力電圧を取得できない取得異常が発生した状況で前記昇圧駆動処理によって前記コンバータの昇圧駆動を実行させる場合、前記コンバータの出力電圧に関する信号であるコンバータ用信号を出力する処理を含み、
    前記昇圧駆動処理は、前記プリチャージ統括処理で出力された前記コンバータ用信号に基づいて前記コンバータの昇圧駆動を停止する処理を含み、
    前記プリチャージ統括処理は、前記コンバータの昇圧駆動が停止されることに応じて前記コンデンサの充電電圧が上昇から下降に転じた後、前記コンデンサの充電電圧が前記目標電圧範囲外の値であるときには前記リレーの切り替えを待機し、前記コンデンサの充電電圧が前記目標電圧範囲内の値になると、前記リレーによる電気的接続をオンに切り替える処理を含む
    電源回路制御プログラム。
JP2020084534A 2020-05-13 2020-05-13 電源回路の制御装置、及び電源回路制御プログラム Active JP7256480B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020084534A JP7256480B2 (ja) 2020-05-13 2020-05-13 電源回路の制御装置、及び電源回路制御プログラム
US17/229,420 US20210359533A1 (en) 2020-05-13 2021-04-13 Controller for power supply circuit, storage medium storing program that controls power supply circuit, and control method for power supply circuit
CN202110494294.8A CN113676044B (zh) 2020-05-13 2021-05-07 电源电路的控制装置、控制方法及存储有程序的记录介质
DE102021112113.2A DE102021112113A1 (de) 2020-05-13 2021-05-10 Steuerungseinrichtung für eine Leistungsversorgungsschaltung, Speichermedium, das ein die Leistungsversorgungsschaltung steuerndes Programm speichert, und Steuerungsverfahren für eine Leistungsversorgungsschaltung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020084534A JP7256480B2 (ja) 2020-05-13 2020-05-13 電源回路の制御装置、及び電源回路制御プログラム

Publications (2)

Publication Number Publication Date
JP2021180559A JP2021180559A (ja) 2021-11-18
JP7256480B2 true JP7256480B2 (ja) 2023-04-12

Family

ID=78280721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020084534A Active JP7256480B2 (ja) 2020-05-13 2020-05-13 電源回路の制御装置、及び電源回路制御プログラム

Country Status (4)

Country Link
US (1) US20210359533A1 (ja)
JP (1) JP7256480B2 (ja)
CN (1) CN113676044B (ja)
DE (1) DE102021112113A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600103234A1 (it) 2016-10-14 2018-04-14 Green Seas Ventures Ldt Sistema Costruttivo afferente un sensore capacitivo di tensione
IT201800004114A1 (it) 2018-03-30 2019-09-30 Green Seas Ventures Ltd C/O Citco B V I Ltd Sistema costruttivo afferente un sensore capacitivo di tensione
EP3899557A4 (en) 2018-12-17 2022-10-26 G & W Electric Company ELECTRIC DETECTOR ASSEMBLY
US11340266B2 (en) 2018-12-17 2022-05-24 G & W Electric Company Electrical sensor assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289326A (ja) 2007-05-21 2008-11-27 Toyota Motor Corp 電力システムおよびそれを備える車両
JP2017085810A (ja) 2015-10-29 2017-05-18 トヨタ自動車株式会社 車両用電源システム
JP2019088098A (ja) 2017-11-07 2019-06-06 トヨタ自動車株式会社 電源装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3625789B2 (ja) * 2001-08-10 2005-03-02 本田技研工業株式会社 車両の電源装置
JP3582523B2 (ja) * 2002-09-17 2004-10-27 トヨタ自動車株式会社 電気負荷装置、異常処理方法、および電気負荷の異常処理をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP4103781B2 (ja) * 2003-11-19 2008-06-18 トヨタ自動車株式会社 負荷駆動回路における異常監視装置
JP4386075B2 (ja) * 2004-09-22 2009-12-16 トヨタ自動車株式会社 負荷駆動回路における異常監視装置および異常監視方法
JP4450004B2 (ja) * 2007-03-30 2010-04-14 トヨタ自動車株式会社 電源回路の制御装置および制御方法
JP4288333B1 (ja) * 2007-12-18 2009-07-01 トヨタ自動車株式会社 車両の電源装置
JP5221468B2 (ja) * 2009-02-27 2013-06-26 株式会社日立製作所 電池監視装置
US9190831B2 (en) * 2011-03-29 2015-11-17 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle incorporating the same and method for controlling power supply system
JP5979169B2 (ja) * 2014-03-14 2016-08-24 トヨタ自動車株式会社 電圧変換装置
JP6759216B2 (ja) * 2015-08-25 2020-09-23 三洋電機株式会社 電源装置とこの電源装置を備える電動車両
JP6458762B2 (ja) * 2016-04-28 2019-01-30 トヨタ自動車株式会社 自動車
JP6863046B2 (ja) * 2017-04-27 2021-04-21 トヨタ自動車株式会社 自動車
JP6879170B2 (ja) * 2017-11-08 2021-06-02 トヨタ自動車株式会社 車両用電源システム
JP7059621B2 (ja) * 2017-12-25 2022-04-26 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
JP7218659B2 (ja) * 2019-04-09 2023-02-07 トヨタ自動車株式会社 電源システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289326A (ja) 2007-05-21 2008-11-27 Toyota Motor Corp 電力システムおよびそれを備える車両
JP2017085810A (ja) 2015-10-29 2017-05-18 トヨタ自動車株式会社 車両用電源システム
JP2019088098A (ja) 2017-11-07 2019-06-06 トヨタ自動車株式会社 電源装置

Also Published As

Publication number Publication date
DE102021112113A1 (de) 2021-11-18
JP2021180559A (ja) 2021-11-18
US20210359533A1 (en) 2021-11-18
CN113676044A (zh) 2021-11-19
CN113676044B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
JP7256480B2 (ja) 電源回路の制御装置、及び電源回路制御プログラム
JP4788461B2 (ja) 電源制御装置およびリレーの異常検出方法
US7269535B2 (en) Fault diagnosing apparatus for vehicle and fault diagnosing method for vehicle
JP6487821B2 (ja) 車両の電源システム
US10703221B2 (en) Power supply control apparatus for electric vehicle
JP2015216781A (ja) 電動車両
JP6365226B2 (ja) 電動車両
US20150298551A1 (en) Electric power conversion control device for vehicle, control method, and vehicle equipped therewith
JP2007252082A (ja) 電源制御装置およびリレーの異常検出方法
WO2017061188A1 (ja) 車載型充電装置
JP6924044B2 (ja) 電圧印加制御装置
JP5338618B2 (ja) 異常判定装置、パワーコンディショナ、異常判定方法、及びプログラム
JP6187180B2 (ja) 電力変換システム
JP6595934B2 (ja) 車両用電源装置
JP5343953B2 (ja) 電圧供給装置の故障検出装置
WO2015190421A1 (ja) 電子制御装置
US20240266849A1 (en) Power supply device
US10714972B2 (en) Power supply control apparatus
JP2006288163A (ja) 負荷駆動回路における異常監視装置
JP7435206B2 (ja) 電源回路の制御装置
JP6788489B2 (ja) 電気回路およびその制御装置
JP7276236B2 (ja) 電源回路の制御装置及び電源回路制御プログラム
JP6555223B2 (ja) 燃料電池システム
US20190351851A1 (en) Onboard control device and onboard power supply device
JP2019187137A (ja) 電源システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230314

R151 Written notification of patent or utility model registration

Ref document number: 7256480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151