[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7250266B1 - DC current interrupter - Google Patents

DC current interrupter Download PDF

Info

Publication number
JP7250266B1
JP7250266B1 JP2022114453A JP2022114453A JP7250266B1 JP 7250266 B1 JP7250266 B1 JP 7250266B1 JP 2022114453 A JP2022114453 A JP 2022114453A JP 2022114453 A JP2022114453 A JP 2022114453A JP 7250266 B1 JP7250266 B1 JP 7250266B1
Authority
JP
Japan
Prior art keywords
current
igbt
voltage
gate
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022114453A
Other languages
Japanese (ja)
Other versions
JP2024012743A (en
Inventor
隆一 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022114453A priority Critical patent/JP7250266B1/en
Application granted granted Critical
Publication of JP7250266B1 publication Critical patent/JP7250266B1/en
Publication of JP2024012743A publication Critical patent/JP2024012743A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

【課題】直流電流を金属接点と複数のIGBTを並列接続したハイブリッドスイッチで投入電流を減流制御し、アークなしに電流を遮断する。【解決手段】金属接点1の電流を開極時のアーク電圧で並列のIGBT4に転流して、補助接点2の信号でIGBT4で電流を遮断するが、並列接続した各IGBT4のエミッタにエミッタ抵抗5を直列接続して、ゲート電圧に負帰還させることで並列IGBT4の電流分流を補正し、投入時もIGBT4のゲートをPWM制御して突入電流を減流する。【選択図】 図1Kind Code: A1 A hybrid switch in which a metal contact and a plurality of IGBTs are connected in parallel for DC current is controlled to reduce the input current, and the current is interrupted without arcing. A current of a metal contact 1 is commutated to a parallel IGBT 4 by an arc voltage when the contact is opened, and a signal of an auxiliary contact 2 interrupts the current by the IGBT 4. are connected in series to provide negative feedback to the gate voltage to correct the current diversion of the parallel IGBT 4, and the gate of the IGBT 4 is PWM-controlled to reduce the inrush current even when the power is turned on. [Selection diagram] Fig. 1

Description

本発明は、直流電流の遮断装置に関し、特に、金属接点と半導体スイッチを並列接続したハイブリッドスイッチ構成において、半導体スイッチを複数並列に接続して大電流の直流電流の遮断を可能にした直流電流遮断装置に関する。 The present invention relates to a direct current interrupting device, and more particularly, in a hybrid switch configuration in which a metal contact and a semiconductor switch are connected in parallel, a direct current interrupting device capable of interrupting a large direct current by connecting a plurality of semiconductor switches in parallel. Regarding the device.

本発明は、金属接点スイッチは通電損失の無いが、直流電流の遮断時(金属接点の開極時)にアークが発生して電流の遮断が困難であるので、遮断時のみ半導体スイッチに接点電流を転流して遮断するハイブリッド開閉装置に関する。 In the present invention, the metal contact switch has no current loss, but when the DC current is interrupted (when the metal contact is opened), an arc is generated and it is difficult to interrupt the current. It relates to a hybrid switchgear that commutates and cuts off.

半導体スイッチで大電流を制御するには、半導体スイッチを並列接続することになるが、MOSFETを用いる場合は、導通時、直線的な純抵抗の電圧電流特性であるので並列は容易であるが、比較的大電流には向かない。そこで大電流通電が可能な半導体スイッチである絶縁ゲート型バイポーラトランジスタ(以下「IGBT」という。)を用いることになるが、IGBTの特性は、温度が上がるとスレッショルド電圧が下がり、所謂、熱暴走と呼ばれる並列分流が困難な性質がある。 In order to control a large current with a semiconductor switch, it is necessary to connect the semiconductor switches in parallel. When using a MOSFET, parallel connection is easy because the voltage-current characteristics of pure resistance are linear when conducting. Not suitable for relatively large currents. Therefore, an insulated gate bipolar transistor (hereinafter referred to as "IGBT"), which is a semiconductor switch capable of conducting large currents, is used. The so-called parallel shunt has a difficult property.

従来の直流のハイブリッド開閉装置は、絶縁ゲートを持ったパワー用MOSFETやIGBT等の半導体スイッチを単独で使用して、開極時の接点間のアーク電圧で自動的にアーク電流を半導体スイッチに転流した後、半導体スイッチのゲートで電流を遮断することが可能であったが、大電流を制御するために半導体スイッチを並列駆動するためには、並列接続されたIGBTの均等な電流分流を確保する必要がある。 Conventional DC hybrid switchgear uses semiconductor switches such as power MOSFETs and IGBTs with insulated gates, and the arc voltage between the contacts when the contacts are opened automatically transfers the arc current to the semiconductor switch. After flowing, it was possible to cut off the current at the gate of the semiconductor switch, but in order to drive the semiconductor switch in parallel to control the large current, it is necessary to ensure equal current division of the parallel-connected IGBTs. There is a need to.

本発明は金属接点とMOSFET等の半導体スイッチのハイブリッド開閉装置を、さらに大電流の直流に適用するために、大電流通電可能だが、非線形な順方向特性を持つIGBTを並列接続して直流大電流の遮断装置へ応用しようとするものである。
In order to further apply the hybrid switchgear of metal contacts and semiconductor switches such as MOSFETs to high-current direct current, the present invention connects IGBTs with non-linear forward characteristics in parallel, which are capable of carrying high current, to achieve high direct current. It is intended to be applied to the breaking device of

特許6713660号公報Japanese Patent No. 6713660

放電ハンドブック出版委員会編「放電ハンドブック」電気学会編6.4.5「接点アーク」Electric Discharge Handbook Publishing Committee Edition "Discharge Handbook" The Institute of Electrical Engineers Edition 6.4.5 "Contact Arc"

上記特許文献1に開示された金属接点と半導体スイッチの並列の直流電流の開閉装置は、a接点が閉極する前にb接点の開極で半導体スイッチが通電を開始して、a接点が閉極すると、通電はa接点で行い、接点抵抗が十分低いので、半導体スイッチには電流が流れない。
特に、IGBTはオン状態ではスレッショルド電圧が1Vから2V程度あるが、金属接点間の電圧はこれより低いのでIGBTには電流が流れない。
次に、遮断の場合は、まずa接点が開極すると、その時すでに半導体スイッチがオン状態であるので、半導体スイッチに電流が流れ、金属接点間電圧は半導体スイッチによって決まる。非特許文献1によると、金属接点間にアークが発生するには、10V~20V程度の接点間電圧と数A以上の電流が大気圧中でのアークプラズマを維持するために必要である。
電流が半導体スイッチに流れて、半導体スイッチ回路が10V以下の電圧では、電流は半導体スイッチに、短時間、インダクタンス×電流÷10Vの時間で転流が完了、結局、アークは維持できずに短時間に消滅する。
その後、a接点の開極が進んで数msから10ms後、a接点の開極完了のタイミングとして(連動する)b接点の閉極によって、半導体スイッチをゲート電圧減にして、直流電流を遮断することができる。
In the direct-current switchgear disclosed in Patent Document 1, the semiconductor switch starts energization by opening the b-contact before the a-contact is closed, and the a-contact is closed. When the contact is closed, current is passed through the a-contact, and no current flows through the semiconductor switch because the contact resistance is sufficiently low.
In particular, the IGBT has a threshold voltage of about 1V to 2V in the ON state, but the voltage between the metal contacts is lower than this, so no current flows through the IGBT.
Next, in the case of disconnection, when the a-contact opens first, the semiconductor switch is already in the ON state at that time, so current flows through the semiconductor switch and the voltage between the metal contacts is determined by the semiconductor switch. According to Non-Patent Document 1, in order to generate an arc between metal contacts, a voltage between the contacts of about 10 V to 20 V and a current of several A or more are required to maintain the arc plasma under atmospheric pressure.
When the current flows through the semiconductor switch and the voltage of the semiconductor switch circuit is 10V or less, the current flows through the semiconductor switch in a short time, the commutation is completed in the time of inductance × current ÷ 10V, after all, the arc cannot be maintained for a short time. to disappear.
After that, several ms to 10 ms after the opening of the a-contact advances, the gate voltage of the semiconductor switch is reduced by closing the b-contact (interlocking) as the timing of completion of opening of the a-contact, and the direct current is interrupted. be able to.

図2に、IGBTのゲート電圧VGEに対するコレクタ電流Icの特性を示すが、IGBTは温度特性が負特性であるため並列接続には工夫が必要である。電流が大きくなると通電発熱でスレッショルド電圧が下がり、そこに電流が集中して温度が上がるとスレッショルド電圧がさらに下がって、ますます電流が集中するという特性(所謂「熱暴走」)があって、一般には、IGBTを並列で利用するには強力な熱除去に工夫が必要となる。 FIG. 2 shows the characteristics of the collector current Ic with respect to the gate voltage V GE of the IGBT. Since the IGBT has a negative temperature characteristic, parallel connection requires some contrivance. When the current increases, the threshold voltage drops due to heat generation, and when the current concentrates and the temperature rises, the threshold voltage drops further and the current concentrates further (so-called "thermal runaway"). However, in order to use IGBTs in parallel, it is necessary to devise strong heat removal.

本発明は、上記の点に鑑みなされたものであり、金属接点と半導体スイッチを並列接続したハイブリッドスイッチ構成において、半導体スイッチであるIGBTを複数並列に接続して大電流の直流電流の遮断を可能にした直流電流遮断装置を提供することを目的にする。 The present invention has been made in view of the above points, and in a hybrid switch configuration in which a metal contact and a semiconductor switch are connected in parallel, it is possible to cut off a large direct current by connecting a plurality of IGBTs, which are semiconductor switches, in parallel. It is an object of the present invention to provide a DC current interrupting device that

本発明は、直流電源と負荷との間に挿入される直流電流遮断装置に関し、本発明の上記目的は、前記直流電源側に接続される第一の端子と前記負荷側に接続される第二の端子とを備え、前記第一の端子と前記第二の端子の間には、a接点である金属接点が接続され、前記金属接点と並列に、複数の絶縁ゲート型バイポーラトランジスタ(以下「IGBT」という。)が、前記各IGBTのコレクタが前記第一の端子に、前記各IGBTのエミッタが分流抵抗を介して前記第二の端子にそれぞれ接続され、前記各IGBTのゲートはゲート抵抗を介してゲート制御回路に接続され、さらに、前記ゲート制御回路には前記金属接点と連動するb接点である補助接点が接続され、
前記ゲート制御回路が、前記補助接点が開極されると、前記各IGBTのゲート抵抗を介して前記各IGBTのゲートに前記IGBTをオンする電圧を供給し、その後に連動する前記金属接点が閉極して前記金属接点に電流を流し、前記金属接点が開極すると、前記金属接点に流れている電流を前記各IGBTに転流させ、その後に連動する前記補助接点が閉極すると、前記ゲート制御回路が前記各IGBTのゲートに前記各IGBTをオフする電圧を供給して前記各IGBTをオフすることにより、前記第一の端子と前記第二の端子の間に流れる電流を遮断することを特徴とする直流電流遮断装置によって達成される。
The present invention relates to a direct current interrupting device inserted between a direct current power supply and a load, and the object of the present invention is to provide a first terminal connected to the direct current power supply and a second terminal connected to the load. Between the first terminal and the second terminal, a metal contact that is an a-contact is connected, and in parallel with the metal contact, a plurality of insulated gate bipolar transistors (hereinafter "IGBT ), the collector of each IGBT is connected to the first terminal, the emitter of each IGBT is connected to the second terminal via a shunt resistor, and the gate of each IGBT is connected to the first terminal via a gate resistor. is connected to a gate control circuit, and the gate control circuit is connected to an auxiliary contact, which is a b-contact that interlocks with the metal contact,
When the auxiliary contact is opened, the gate control circuit supplies a voltage for turning on the IGBT to the gate of each IGBT through the gate resistance of each IGBT, and then the metal contact associated therewith is closed. When the metal contact is opened, the current flowing through the metal contact is commutated to each of the IGBTs, and then when the associated auxiliary contact is closed, the gate The control circuit cuts off the current flowing between the first terminal and the second terminal by supplying a voltage for turning off each IGBT to the gate of each IGBT to turn off each IGBT. This is achieved by a DC current interruption device that features.

金属接点と半導体スイッチを用いた直流電流遮断装置に、短時間通電耐量が大きいIGBTを並列に用いて、大電流接点の閉極に先立って導通を開始して、開極時の遮断アークの発生を抑えることで、接点の損耗を防ぎ、並列接続したIGBTに金属接点の電流を短時間に転流して、最終的に直流電流をIGBTのゲート制御で同時遮断することで大電流高電圧の遮断が可能になる。 IGBTs with high short-term current-carrying capacity are used in parallel with a direct-current interrupter that uses metal contacts and semiconductor switches to initiate conduction prior to the closing of the high-current contacts, generating an interrupting arc when the contacts are opened. By suppressing , contact wear is prevented, the metal contact current is commutated to the parallel-connected IGBTs in a short period of time, and finally the DC current is simultaneously interrupted by IGBT gate control, thereby interrupting large currents and high voltages. becomes possible.

本発明のIGBTを並列に複数接続した直流電流遮断装置の構成図である。1 is a configuration diagram of a DC current interrupting device in which a plurality of IGBTs of the present invention are connected in parallel; FIG. 半導体スイッチIGBTの通電電流特性(温度特性)を示す図である。FIG. 4 is a diagram showing conducting current characteristics (temperature characteristics) of a semiconductor switch IGBT; 本発明の直流電流遮断装置の投入と遮断の時間シーケンスを示す図である。It is a figure which shows the time sequence of the injection|throwing-in of the DC current interruption|blocking apparatus of this invention, and interruption|blocking. IGBTのゲート電圧をパラメータにコレクタ電圧とコレクタ電流の特性を示す図である。FIG. 4 is a diagram showing characteristics of a collector voltage and a collector current with the gate voltage of an IGBT as a parameter; 本発明の直流電流遮断装置のゲート制御回路の一実施例である。1 is an embodiment of a gate control circuit for a DC current interrupter according to the present invention; 本発明の直流電流遮断装置を複数個直列接続した応用例である。It is an application example in which a plurality of DC current interrupting devices of the present invention are connected in series. 本発明の直流電流遮断装置を用いて突入電流共振を回避する実施例である。This is an embodiment for avoiding inrush current resonance using the DC current interrupting device of the present invention.

以下、本発明の実施形態について図面を参照しつつ詳細に説明する。
図1は、本発明に係る直流電流遮断装置の構成例を示す図である。直流電流遮断装置は、直流電源の正側に接続される第一の端子(正端子)と、負荷の正側に接続される第二の端子(負端子)を備える。
正端子と負端子の間には、a接点である金属接点1が配置されるとともに、金属接点1と並列にIGBT4が、コレクタ側を正端子に、エミッタ側が分流抵抗(以下「エミッタ抵抗」という。)5を介して負端子に接続されている。また、IGBT4のゲートは、ゲート抵抗6を介してゲート制御回路9に接続されている。同様にして複数のIGBT4が金属接点1に並列に接続されている。
なお、並列接続した各IGBT4のエミッタに直列接続したエミッタ抵抗5は、その抵抗に生じた電圧降下をゲート電圧に負帰還させることで並列IGBTの電流分流を補正する役目を果たす。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a configuration example of a DC current interrupting device according to the present invention. A DC current interrupting device includes a first terminal (positive terminal) connected to the positive side of a DC power supply and a second terminal (negative terminal) connected to the positive side of a load.
Between the positive terminal and the negative terminal, a metal contact 1 which is a contact is arranged, and in parallel with the metal contact 1, an IGBT 4 has a positive terminal on the collector side and a shunt resistor (hereinafter referred to as an "emitter resistor") on the emitter side. .) 5 to the negative terminal. Also, the gate of the IGBT 4 is connected to the gate control circuit 9 via the gate resistor 6 . A plurality of IGBTs 4 are connected in parallel to the metal contact 1 in the same manner.
The emitter resistors 5 connected in series with the emitters of the parallel-connected IGBTs 4 play a role of correcting the current division of the parallel IGBTs by negatively feeding back the voltage drop generated in the resistors to the gate voltage.

また、ゲート制御回路9には、b接点である補助接点2が備えられ、補助接点2の開閉信号を受けて、ゲート制御回路9がIGBT4のゲートに印加される電圧を制御する。
エミッタ抵抗5の抵抗値は低いのが好ましく、スレッショルド電圧が温度によって変化する以上の電圧を抵抗で加える。概ね、変化は1Vである。なお、エミッタ抵抗5の抵抗値は、概ね0.01Ωから0.1Ωであるが、設計に応じて変更可能である。
金属接点1の例として、ここでは、2点切の遮断器の構造を示すが、それは遮断時のアーク電圧が2直列になり、アーク電圧によるIGBT4への転流が確実になるとともに、遮断後の耐電圧の回復が早くなる効果と、開極スピードが実質2倍になる効果がある。
In addition, the gate control circuit 9 is provided with an auxiliary contact 2 which is a b-contact.
The resistance value of the emitter resistor 5 is preferably low, and a voltage higher than the threshold voltage varies with temperature is applied by the resistor. Typically, the change is 1V. The resistance value of the emitter resistor 5 is approximately 0.01Ω to 0.1Ω, but can be changed according to the design.
As an example of the metal contact 1, the structure of a double-break circuit breaker is shown here. There is an effect that the recovery of the withstand voltage of is accelerated, and an effect that the opening speed is substantially doubled.

また、金属接点1と補助接点2は開閉動作が連動機構3(不図示)によって連動しており、その動作については後述のとおりである。
さらに、金属接点1には、抵抗とコンデンサとからなるCRサージアブソーバ7と、バリスタ8が並列に接続されている。バリスタ8は、ある一定電圧で急に電流が流れ出す電圧-電流特性(電流非直線性)を持つ素子である。金属接点1にバリスタ8とコンデンサと抵抗からなるCRサージアブソーバ7を並列接続して、金属接点1の遮断後の再起電圧の上昇率を抑えて、さらに再起電圧をバリスタ8のブレークダウン電圧に抑えて、遮断電流をバリスタ8に流して、直列接続時の過電圧を抑えて減流することができる。
なお、ハイブリッドスイッチでは通電時間が短く、かつ、繰り返しは無いと思われるのでIGBT4とエミッタ抵抗5は、ヒートシンクなどの熱除去対策は不要であるのが特徴である。
そのIGBTは大電流通電耐量のある構造のゲート制御で自己消弧能力はあるが、温度特性が負特性のIGBTを多数並列接続してハイブリッド開閉装置に適用するに、金属接点から転流するのにアーク電圧に対してオン電圧が低ければ良く、短時間通電のIGBTのエミッタに、従来では考えられない大きな分流抵抗を付加することが可能で、エミッタ抵抗で負帰還をするゲート駆動にして大電流の直流ハイブリッド遮断装置を提供する。
すなわち、半導体スイッチ回路は、約10ms程度の短時間の通電とアーク電圧10V以下であれば良いので、数Vを分担するエミッタ抵抗を入れても、発熱問題も無く、均等な分流の安定化が可能である。
The opening and closing operations of the metal contact 1 and the auxiliary contact 2 are interlocked by an interlocking mechanism 3 (not shown), and the operation thereof will be described later.
Furthermore, a CR surge absorber 7 consisting of a resistor and a capacitor and a varistor 8 are connected in parallel to the metal contact 1 . The varistor 8 is an element having voltage-current characteristics (current non-linearity) in which current suddenly flows at a certain voltage. A CR surge absorber 7 consisting of a varistor 8, a capacitor, and a resistor is connected in parallel to the metal contact 1 to suppress the rise rate of the recovery voltage after the metal contact 1 is cut off, and further suppress the recovery voltage to the breakdown voltage of the varistor 8. , the breaking current can be passed through the varistor 8, and the overvoltage during series connection can be suppressed and the current can be reduced.
In the hybrid switch, the energization time is short and it is thought that there is no repetition, so the IGBT 4 and the emitter resistor 5 do not need heat removal measures such as heat sinks.
The IGBT is a gate control structure with a large current carrying capacity and has self-extinguishing ability, but when multiple IGBTs with negative temperature characteristics are connected in parallel and applied to a hybrid switchgear, commutation from the metal contact is required. As long as the on-voltage is low relative to the arc voltage, it is possible to add a large shunt resistor to the emitter of the IGBT, which is energized for a short time. A DC hybrid interrupter for current is provided.
That is, since the semiconductor switch circuit only needs to be energized for a short time of about 10 ms and the arc voltage is 10 V or less, even if an emitter resistor that shares several volts is used, there is no problem of heat generation, and even distribution of current is stabilized. It is possible.

図3は、本発明の直流電流遮断装置の電流投入(回路接続)と遮断の時間シーケンスを示す図である。
電流を流すには、金属接点1の閉極を開始すると、まず、連動する補助接点2から開極を開始する。その補助接点2が開極する電気信号をゲート制御回路9に送ると、ゲート制御回路9がIGBT4をオンする。そこで、電流はIGBT4とエミッタ抵抗5を介して正端子から負端子へと流れる。やがて数msから10ms程度の後、連動機構3が金属接点1に到達し、金属接点1の接点間の電圧が金属接触短絡状態となると、IGBT4の電流はIGBTのオン電圧と直列のエミッタ抵抗5の電圧が5V程度あるので停止する。IGBT4のゲート電圧はその後の期間は無くてもよいが、有ってもIGBT4のゲートはオン状態を維持するが電流は流れず、接点の発熱は少ないので冷却の必要はない。
FIG. 3 is a diagram showing the time sequence of current application (circuit connection) and current interruption of the DC current interruption device of the present invention.
When the metal contact 1 starts to be closed, the interlocking auxiliary contact 2 first starts to open. When an electric signal for opening the auxiliary contact 2 is sent to the gate control circuit 9 , the gate control circuit 9 turns on the IGBT 4 . Current then flows through the IGBT 4 and the emitter resistor 5 from the positive terminal to the negative terminal. After several ms to 10 ms, the interlocking mechanism 3 reaches the metal contact 1, and when the voltage between the contacts of the metal contact 1 becomes a metal contact short-circuit state, the current of the IGBT 4 reaches the emitter resistor 5 in series with the ON voltage of the IGBT. Since the voltage of is about 5V, it is stopped. Although the gate voltage of the IGBT 4 may not be applied during the subsequent period, the gate of the IGBT 4 is maintained in the ON state, but the current does not flow and the contacts generate little heat, so there is no need for cooling.

遮断時は、金属接点1の開極開始後、開極ギャップ長が得られるまでの遷移時間である約数msから10msの後、補助接点2が閉極するまでの間、IGBTのゲート制御回路9からゲート電圧が供給されてIGBTがオンになっているので、分流のためのエミッタ抵抗5の電圧数Vが加わっても金属接点1の2直列のアーク電圧より低いので、金属接点1の電流は、並列IGBT4に転流する。補助接点2が閉極することでゲート電圧がダウンしてIGBT4がオフするまでの数msから10ms程度の間、並列接続のIGBT4が全電流を通電する。 At the time of interruption, after the transition time from the start of opening of the metal contact 1 until the opening gap length is obtained, which is about several ms to 10 ms, until the auxiliary contact 2 is closed, the IGBT gate control circuit Since the gate voltage is supplied from 9 and the IGBT is turned on, even if the voltage V of the emitter resistor 5 for shunting is added, it is lower than the two series arc voltages of the metal contact 1, so the current of the metal contact 1 is commutated to parallel IGBT4. The parallel-connected IGBT 4 conducts the entire current for about several ms to 10 ms until the gate voltage is lowered by closing the auxiliary contact 2 and the IGBT 4 is turned off.

本発明に係る直流電流遮断装置で電流を遮断するには、最初に、金属接点1が開極を開始するが、既にIGBT4のゲートがオン状態であり、IGBT4のオン電圧は5V程度とアーク電圧より小さい。大気中の直流アーク電圧は、上記特許文献1にあるが、ギャップ長によらず10Vから20Vで、アーク電流が10Aから数kAでも変わらない。アーク電流は発生と当時にIGBT4へと短時間(数μs)以内に転流する。金属接点1のアークはアーク維持電流以下となって自然に消滅して、その後、アーク無しに開極する。金属接点1の開極動作に数ms~10ms程度かかり、補助接点2が閉極するとゲート制御装置9はその信号を受けて並列接続されたIGBT4の全ゲート電圧をゼロにして全電流が遮断される。 In order to interrupt the current with the direct current interrupting device according to the present invention, first, the metal contact 1 starts to open, but the gate of the IGBT 4 is already in the ON state, and the ON voltage of the IGBT 4 is about 5 V, which is the arc voltage. less than The direct-current arc voltage in the atmosphere is described in Patent Document 1 above, but is 10 V to 20 V regardless of the gap length, and does not change even if the arc current is 10 A to several kA. The arc current is commutated to the IGBT 4 within a short period of time (several μs) when it is generated. The arc of the metal contact 1 becomes less than the arc sustaining current and is naturally extinguished, and then the contact opens without arcing. The opening operation of the metal contact 1 takes about several ms to 10 ms, and when the auxiliary contact 2 closes, the gate controller 9 receives the signal and reduces the total gate voltage of the parallel-connected IGBTs 4 to zero to cut off all currents. be.

最終的に電流遮断するには、並列接続のIGBT4に金属接点1の電流を転流するが、事故などで大きくなった電流をIGBT4で減流するには、ゲート制御回路9はゲート電圧を低くして、IGBT4による定電流特性を利用して減流することも考えられる。その場合、IGBT4の限界を超え、IGBT4のジャンクションの溶断の可能性があるが、バリスタ8も動作を開始して電流を停止する。バリスタ8は酸化亜鉛(ZnO)半導体素子で、数kJのエネルギー吸収量もあり、その動作電圧でIGBT4から転流して減流する。事故電流の遮断器として減流遮断の能力も期待できる。 In order to finally cut off the current, the current of the metal contact 1 is commutated to the IGBT 4 connected in parallel. Then, it is also conceivable to reduce the current by using the constant current characteristic of the IGBT 4 . In that case, the limit of the IGBT 4 may be exceeded and the junction of the IGBT 4 may be fused, but the varistor 8 also starts operating to stop the current. The varistor 8 is a zinc oxide (ZnO) semiconductor element, and has an energy absorption amount of several kJ, and commutates from the IGBT 4 at its operating voltage to reduce the current. It can also be expected to have the capability of current reduction breaking as a fault current circuit breaker.

図4は、IGBT「RJH60F6DKP」ルネサスエレクトロニクス(株)の600V-85Aのゲート電圧をパラメータにコレクタ電流とコレクタ電圧の関係を示す図であるが、例えばゲート電圧を9Vにすれば、100Aで定電流特性を示して電流が飽和しているのが分かる。IGBTのゲート電圧の制御で事故電流を減流遮断することが可能である。 FIG. 4 is a diagram showing the relationship between the collector current and the collector voltage with the gate voltage of 600V-85A of IGBT "RJH60F6DKP" Renesas Electronics Corporation as a parameter. It can be seen that the current is saturated by showing the characteristics. It is possible to cut off the fault current by controlling the gate voltage of the IGBT.

〔ゲート制御回路の実施例:図5〕
図5は本発明に係るゲート制御回路9の実施例を示す図である。
IGBT4のコレクタの電圧をコンデンサ10は、実施例として0.05μFでIGBTのゲートにゲート抵抗6、ここでは実施例としてRg=100Ωを介して接続してあるが、IGBT4によって適宜選択される。さらに抵抗11、ここではRs=100Ωで、補助接点2を介してゲート電圧を短絡する。補助接点2には逆流防止ダイオード13を介して直流電源14(絶縁電圧源)が接続されている。出力電流制限抵抗15(1kΩ)と絶縁電圧源14でIGBT4の共通エミッタに繋いである。連動する補助接点2の閉極によって絶縁電圧源14が短絡されて、コンデンサ10の静電容量Csと抵抗11の抵抗値Rsの時定数CRでコレクタ電圧がCRの時定数で上昇することでゲート電圧をゼロにすることが出来る。すなわち補助接点2の閉極でゲート電圧はほぼゼロになる。
[Embodiment of gate control circuit: FIG. 5]
FIG. 5 is a diagram showing an embodiment of the gate control circuit 9 according to the present invention.
The voltage of the collector of the IGBT 4 is connected to the gate of the IGBT through a gate resistor 6, here Rg=100Ω as an embodiment, with a capacitor 10 of 0.05 μF as an embodiment, but it is appropriately selected by the IGBT 4. FIG. Furthermore, a resistor 11 , here Rs=100Ω, short-circuits the gate voltage via the auxiliary contact 2 . A direct-current power supply 14 (insulated voltage source) is connected to the auxiliary contact 2 via a backflow prevention diode 13 . An output current limiting resistor 15 (1 kΩ) and an insulated voltage source 14 are connected to the common emitter of the IGBT 4 . The insulated voltage source 14 is short-circuited by the closing of the interlocking auxiliary contact 2, and the collector voltage rises with the time constant CR of the capacitance Cs of the capacitor 10 and the resistance value Rs of the resistor 11, and the gate voltage can be zero. That is, when the auxiliary contact 2 is closed, the gate voltage becomes almost zero.

コレクタに接続されたコンデンサ10と抵抗11は、IGBT4のゲート電圧の積分回路となって補助接点2が閉極となってゲート遮断されるとき、積分時定数CRでIGBTの電圧が上昇する。これは遮断後の直流電流遮断装置の再起電圧の上昇率を決定するもので、直流電流遮断装置を複数直列接続した場合、直列遮断のタイミングのバラツキに対しての分圧の差を小さくする効果を奏する。 A capacitor 10 and a resistor 11 connected to the collector form an integration circuit for the gate voltage of the IGBT 4, and when the auxiliary contact 2 is closed and the gate is cut off, the voltage of the IGBT rises with an integration time constant CR. This determines the rise rate of the recovery voltage of the DC current interrupter after interruption, and when multiple DC current interrupters are connected in series, it has the effect of reducing the difference in the partial voltage against the variation in series interruption timing. play.

〔第2実施形態:図6〕
図6は本発明の直流電流遮断装置を一つのユニットとして、これを直列多段に接続して高電圧化した実施例である。
直列多段接続で高電圧化する場合、投入・遮断タイミングの同時性が重要で、1つでも遅れると電圧分担が乱れる。バリスタ8の存在で一つのユニットが先に遮断した場合、バリスタ電圧に維持して過電圧から保護しているが、他の直列されたユニットが遮断するのを待たねばならない。その間、バリスタのエネルギー吸収量が大きくなるのを考慮して選択するが、その時間は接点開閉器の機械動作の変動幅、すなわちジッターがあるので不確実性がある。
図6では、各直流電流遮断装置のb接点信号を受けて、そのNAND信号によって全直流電流遮断装置のゲート電圧を同時に制御するシーケンス制御装置16を備え、IGBTのゲートに、外部からの通信を介して、シーケンス制御装置16が直列接続された全てのユニットのb接点の閉/開状態を確認して、その後に同時に全ての直列接続された直流電流遮断装置の半導体スイッチ(IGBT)にゲート信号を出すことで、接点のジッターの影響なしに、電流の同時開閉が可能になる。その結果、バリスタ8の耐熱容量、吸収エネルギー量が削減できる。
[Second Embodiment: FIG. 6]
FIG. 6 shows an embodiment in which the DC current interrupting device of the present invention is used as one unit and connected in series in multiple stages to increase the voltage.
Simultaneity of turn-on/turn-off timing is important when increasing the voltage with series multi-stage connection, and if even one delay occurs, the voltage sharing will be disturbed. If one unit cuts off first due to the presence of the varistor 8, it is maintained at the varistor voltage to protect against overvoltage, but must wait for other series-connected units to cut off. During this period, the amount of energy absorbed by the varistor is taken into consideration when selecting, but there is uncertainty in that period because there is a range of variation in the mechanical operation of the contact switch, ie, jitter.
In FIG. 6, a sequence control device 16 is provided for receiving the b-contact signal of each DC current interrupter and simultaneously controlling the gate voltage of all the DC current interrupters by the NAND signal. , the sequence control device 16 confirms the closed/open state of the b contacts of all units connected in series, and then simultaneously sends a gate signal to the semiconductor switches (IGBTs) of all the DC current interrupters connected in series. , allows simultaneous switching of currents without the effects of jitter on the contacts. As a result, the heat resistance capacity and absorbed energy of the varistor 8 can be reduced.

〔第3実施形態:図7〕
図7に、直流配電系統の投入時の突入電流を回避する概念図を示すが、配電ルートが数kmになると線路のインダクタンスが数mHになって共振が現れ、供給側の電圧が50%以下になって停止する問題がある。電源投入時にシーケンス制御装置(不図示)が電流を計測して、過電流になる場合、IGBTのゲートの制御で電流を断続してパルス状に供給することで、負荷側のコンデンサとの共振を回避することができる。
[Third Embodiment: FIG. 7]
Fig. 7 shows a conceptual diagram for avoiding inrush current when a DC distribution system is turned on. When the distribution route is several kilometers long, the line inductance becomes several milliseconds and resonance appears, and the voltage on the supply side drops below 50%. I have a problem stopping it. When the power is turned on, the sequence controller (not shown) measures the current, and if there is an overcurrent, the current is intermittently supplied in pulses by controlling the gate of the IGBT to eliminate resonance with the capacitor on the load side. can be avoided.

直流配電系統では、400V程度の直流電圧で数kmの直流配電線を介して双方に数千μFの電解コンデンサを有した電源を開閉器で接続するが、数千μFのコンデンサと配電線の数mHのインダクタンスで電位振動を起こして供給側の電圧が低下して運転停止になる問題がある。所謂、突入電流である。
投入時、金属接点1が閉極するのに先立って、IGBT4をPWM(パルス幅変調)制御回路(不図示)で数kHzでオン・オフして、突入電流の振動を止めることができる。実質的に抵抗投入と同じ電流波形が可能である。振動の周波数は配電線が4kmとしても50Hz程度であるので10ms程度の間、PWM制御することで階段状の電流波形にすることができる。
In a DC distribution system, a DC voltage of about 400 V is used to connect power supplies with electrolytic capacitors of several thousand μF to both sides through several kilometers of DC distribution lines with switches. There is a problem that an inductance of mH causes a potential oscillation, the voltage on the supply side drops, and the operation stops. This is the so-called inrush current.
When the IGBT 4 is turned on and off at several kHz by a PWM (Pulse Width Modulation) control circuit (not shown) before the metal contact 1 is closed, the oscillation of the inrush current can be stopped. Substantially the same current waveform as resistance input is possible. Since the vibration frequency is about 50 Hz even if the distribution line is 4 km long, a stepped current waveform can be obtained by PWM control for about 10 ms.

金属接点1の閉極指令で金属接点1の駆動電磁コイルに電圧を印加して、閉極するまで10msから30msの時間がかかるので、この間IGBT4がPWM制御で導通すれば、金属接点1が閉極して全電流が金属接点1に流れるまでに突入電流は減衰して、最終的に電流はIGBT4からオン電圧の低い金属接点1側に転流する。 A voltage is applied to the drive electromagnetic coil of the metal contact 1 according to the closing command of the metal contact 1, and it takes 10ms to 30ms until the contact is closed. The inrush current attenuates until the entire current flows to the metal contact 1, and finally the current is commutated from the IGBT 4 to the metal contact 1 having a low on-voltage.

このように、電流を投入・遮断する際に、半導体スイッチであるIGBT4のオン・オフを高速にPWM制御すれば、負荷電圧、電流を制御することができる。電源投入時のラッシュ電流を、直列ハイブリッドスイッチのゲート電圧のPWM制御で回避することができる。多段のハイブリッドスイッチのIGBT4をプログラムでオン/オフして、電流を緩やかに上昇、降下することが可能である。 In this manner, the load voltage and current can be controlled by high-speed PWM control of the on/off of the IGBT 4, which is a semiconductor switch, when the current is turned on and off. Power-up rush current can be avoided with PWM control of the gate voltage of the series hybrid switch. It is possible to turn on/off the multi-stage hybrid switch IGBT 4 by a program to gradually increase or decrease the current.

過電流耐量の大きなIGBTを並列に用いて、大電流直流ハイブリッド遮断装置を提供する。さらにその直列接続で高電圧大電流のハイブリッド遮断装置とする。アーク無しに遮断するのみでなく投入時にも半導体スイッチを制御して突入電流を回避することができる。 A high-current DC hybrid circuit breaker is provided by using IGBTs with high overcurrent resistance in parallel. Furthermore, by connecting them in series, a high-voltage, high-current hybrid circuit breaker is formed. Inrush current can be avoided by controlling the semiconductor switch not only for breaking without arcing but also for closing.

1:金属接点(a接点)
2:補助接点(b接点)
3:連動機構
4: IGBT
5:エミッタ抵抗Re(分流抵抗)
6: ゲート抵抗Rg
7:CRサージアブソーバ
8:バリスタ
9:ゲート制御回路
10:コンデンサ
11:抵抗Rs
12:逆圧保護ダイオード(Diode2)
13:逆流防止ダイオード(Diode1)
14:絶縁電圧源
15:出力電流制限抵抗
1: Metal contact (a contact)
2: Auxiliary contact (b contact)
3: Interlocking mechanism 4: IGBT
5: Emitter resistor Re (shunt resistor)
6: Gate resistance Rg
7: CR surge absorber 8: Varistor 9: Gate control circuit 10: Capacitor 11: Resistor Rs
12: Reverse voltage protection diode (Diode2)
13: Backflow prevention diode (Diode1)
14: Insulated voltage source 15: Output current limiting resistor

Claims (4)

直流電源と負荷との間に挿入される直流電流遮断装置であって、前記直流電流遮断装置は、
前記直流電源側に接続される第一の端子と前記負荷側に接続される第二の端子とを備え、前記第一の端子と前記第二の端子の間には、a接点である金属接点が接続され、
前記金属接点と並列に、複数の絶縁ゲート型バイポーラトランジスタ(以下「IGBT」問いう。)が、前記各IGBTのコレクタが前記第一の端子に、前記各IGBTのエミッタが分流抵抗を介して前記第二の端子にそれぞれ接続され、
前記各IGBTのゲートはゲート抵抗を介してゲート制御回路に接続され、さらに、前記ゲート制御回路には前記金属接点と連動するb接点である補助接点が接続され、
前記ゲート制御回路が、前記補助接点が開極されると、前記各IGBTのゲート抵抗を介して前記各IGBTのゲートに前記IGBTをオンする電圧を供給し、その後に連動する前記金属接点が閉極して前記金属接点に電流を流し、
前記金属接点が開極すると、前記金属接点に流れている電流を前記各IGBTに転流させ、その後に連動する前記補助接点が閉極すると、前記ゲート制御回路が前記各IGBTのゲートに前記各IGBTをオフする電圧を供給して前記各IGBTをオフすることにより、前記第一の端子と前記第二の端子の間に流れる電流を遮断することを特徴とする直流電流遮断装置。
A DC current interrupting device inserted between a DC power supply and a load, the DC current interrupting device comprising:
A first terminal connected to the DC power supply side and a second terminal connected to the load side, wherein between the first terminal and the second terminal is a metal contact that is an a contact is connected and
In parallel with the metal contact, a plurality of insulated gate bipolar transistors (hereafter referred to as "IGBTs") are connected to the first terminal by the collector of each IGBT and the emitter of each IGBT by the shunt resistor. each connected to a second terminal,
A gate of each IGBT is connected to a gate control circuit via a gate resistor, and an auxiliary contact, which is a b-contact interlocking with the metal contact, is connected to the gate control circuit,
When the auxiliary contact is opened, the gate control circuit supplies a voltage for turning on the IGBT to the gate of each IGBT through the gate resistance of each IGBT, and then the metal contact associated therewith is closed. applying a current to the metal contact as a pole,
When the metal contacts are opened, the current flowing through the metal contacts is commutated to the respective IGBTs, and when the associated auxiliary contacts are closed thereafter, the gate control circuit causes the gates of the IGBTs to be connected to the respective IGBTs. A direct-current interrupting device, which cuts off a current flowing between the first terminal and the second terminal by supplying a voltage for turning off the IGBT to turn off each of the IGBTs.
前記ゲート制御回路が、
コンデンサ(10)と抵抗(11)と逆流防止ダイオード(13)と直流の絶縁電圧源(14)との直列接続回路を備えるとともに、
前記コンデンサ(10)と前記抵抗(11)との接続点が前記ゲート抵抗(6)に接続され、かつ、
前記抵抗(11)と前記ダイオード(13)のカソードとの接続点が前記補助接点の一端に接続され、前記補助接点の他端が前記絶縁電圧源(14)の負側に接続されているものであって、
前記補助接点が開極されると前記絶縁電圧源(14)から前記各IGBTのゲート抵抗(6)を介して前記各IGBTのゲートに前記IGBTをオンする電圧を供給し、前記補助接点が閉極すると、前記絶縁電圧源(14)を短絡して、前記各IGBTのゲートに前記各IGBTをオフする電圧を供給することを特徴とする請求項1に記載の直流電流遮断装置。
The gate control circuit is
A series connection circuit of a capacitor (10), a resistor (11), a backflow prevention diode (13), and a DC insulated voltage source (14) is provided,
A connection point between the capacitor (10) and the resistor (11) is connected to the gate resistor (6), and
A connection point between the resistor (11) and the cathode of the diode (13) is connected to one end of the auxiliary contact, and the other end of the auxiliary contact is connected to the negative side of the isolated voltage source (14). and
When the auxiliary contact is opened, a voltage for turning on the IGBT is supplied from the insulated voltage source (14) to the gate of each IGBT through the gate resistor (6) of each IGBT, and the auxiliary contact is closed. 2. The DC current interrupting device according to claim 1, wherein when the voltage is turned off, the isolation voltage source (14) is short-circuited to supply the gate of each IGBT with a voltage for turning off each IGBT.
前記金属接点と並列に、コンデンサと抵抗からなるCRサージアブソーバとバリスタを接続し、前記金属接点の開極後の再起電圧の上昇率を抑えて、さらに該再起電圧を前記バリスタのブレークダウン電圧に抑えて、前記電流を前記バリスタに流して減流する請求項1に記載の直流電流遮断装置。 A CR surge absorber consisting of a capacitor and a resistor and a varistor are connected in parallel with the metal contact to suppress the rise rate of the re-electromotive voltage after opening of the metal contact, and further reduce the re-electromotive voltage to the breakdown voltage of the varistor. 2. The DC current interrupting device according to claim 1, wherein the current is reduced by flowing the current through the varistor while suppressing the current. さらに、前記IGBTのゲート電圧をPWM制御するPWM制御回路を備え、該PWM制御回路によって前記ゲート電圧をPWM制御することにより、電源投入時の突入電流や負荷電圧を制御して電流を減流する請求項1から3までのいずれかに記載の直流電流遮断装置。
Further, a PWM control circuit for PWM-controlling the gate voltage of the IGBT is provided, and by PWM-controlling the gate voltage by the PWM control circuit, the inrush current and the load voltage at the time of power-on are controlled to reduce the current. A DC current interrupting device according to any one of claims 1 to 3.
JP2022114453A 2022-07-19 2022-07-19 DC current interrupter Active JP7250266B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022114453A JP7250266B1 (en) 2022-07-19 2022-07-19 DC current interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022114453A JP7250266B1 (en) 2022-07-19 2022-07-19 DC current interrupter

Publications (2)

Publication Number Publication Date
JP7250266B1 true JP7250266B1 (en) 2023-04-03
JP2024012743A JP2024012743A (en) 2024-01-31

Family

ID=85776294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022114453A Active JP7250266B1 (en) 2022-07-19 2022-07-19 DC current interrupter

Country Status (1)

Country Link
JP (1) JP7250266B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140126098A1 (en) 2011-07-04 2014-05-08 Mersen France Sb Sas Dc current interruption system able to open a dc line with inductive behaviour
JP2015115173A (en) 2013-12-11 2015-06-22 ケージーエス株式会社 Dc opening/closing device
WO2017018147A1 (en) 2015-07-29 2017-02-02 ソニー株式会社 Switching device, electrical moving body, and power supply system
JP2017126544A (en) 2016-01-11 2017-07-20 嶋田 隆一 Non-arc current switching device
US20220115863A1 (en) 2019-02-11 2022-04-14 Ge Energy Power Conversion Technology Limited Static dc current-limiting switching system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020036307A (en) * 2018-08-22 2020-03-05 日新電機株式会社 Overvoltage suppression circuit and DC cutoff device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140126098A1 (en) 2011-07-04 2014-05-08 Mersen France Sb Sas Dc current interruption system able to open a dc line with inductive behaviour
JP2015115173A (en) 2013-12-11 2015-06-22 ケージーエス株式会社 Dc opening/closing device
WO2017018147A1 (en) 2015-07-29 2017-02-02 ソニー株式会社 Switching device, electrical moving body, and power supply system
JP2017126544A (en) 2016-01-11 2017-07-20 嶋田 隆一 Non-arc current switching device
US20220115863A1 (en) 2019-02-11 2022-04-14 Ge Energy Power Conversion Technology Limited Static dc current-limiting switching system

Also Published As

Publication number Publication date
JP2024012743A (en) 2024-01-31

Similar Documents

Publication Publication Date Title
CN107070191B (en) Device for temporarily taking over the current of an energy transmission or distribution system as required
US7079363B2 (en) Hybrid DC electromagnetic contactor
EP2489053B1 (en) A hybrid circuit breaker
EP3051643B1 (en) Dc circuit breaker with counter current generation
EP3651175B1 (en) Circuit-breaker with reduced breakdown voltage requirement
US9948089B2 (en) DC circuit breaker device
US10483072B2 (en) Interrupter device for interrupting a direct current
CN108141209B (en) Circuit for isolating load from source
EP3242310B1 (en) Dc circuit breaker
JPS63131411A (en) Commutation circuit
EP3522196B1 (en) Switching apparatus
EP3443629B1 (en) Paralleling mechanical relays for increased current carrying and switching capacity
JP6713660B2 (en) Arc-free current switchgear
CA3053432A1 (en) Method and voltage multiplier for converting an input voltage and disconnector
CN109950866B (en) Current breaker
JP7250266B1 (en) DC current interrupter
JP2018125270A (en) DC power system safety switchgear
JP7323878B1 (en) current switchgear
JP2016181382A (en) Dc cutoff device and dc cutoff method
JP6646902B2 (en) Electromotive force control device
Tang et al. Multi-stage DC hybrid switch with slow switching
KR102609928B1 (en) direct current power supply
JP7312727B2 (en) DC interrupter
JP7165317B1 (en) DC switchgear
JP2023053591A (en) composite switch circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220907

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230310

R150 Certificate of patent or registration of utility model

Ref document number: 7250266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150