[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7249730B2 - Steel plates, tubular moldings, and stampings - Google Patents

Steel plates, tubular moldings, and stampings Download PDF

Info

Publication number
JP7249730B2
JP7249730B2 JP2017198631A JP2017198631A JP7249730B2 JP 7249730 B2 JP7249730 B2 JP 7249730B2 JP 2017198631 A JP2017198631 A JP 2017198631A JP 2017198631 A JP2017198631 A JP 2017198631A JP 7249730 B2 JP7249730 B2 JP 7249730B2
Authority
JP
Japan
Prior art keywords
surface layer
layer
phase
base layer
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017198631A
Other languages
Japanese (ja)
Other versions
JP2019072861A (en
Inventor
雅寛 久保
嘉明 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017198631A priority Critical patent/JP7249730B2/en
Publication of JP2019072861A publication Critical patent/JP2019072861A/en
Application granted granted Critical
Publication of JP7249730B2 publication Critical patent/JP7249730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、鋼板、管状成形品、およびプレス成形品に関する。 TECHNICAL FIELD The present invention relates to steel sheets , tubular molded products, and press-formed products.

近年、自動車、航空機、船舶、建築材料、家電製品等の分野では、ユーザーのニーズに答えるため、デザイン性が重視されるようになってきている。その為、特に、外装部材の形状は複雑化する傾向にある。しかし、複雑な形状の成形品を金属板から成形するには、金属板に大きなひずみを与えることが必要であるが、加工量の増加に従いの成形品表面に微細な凹凸が生じやすく、肌荒れとなって外観上の美観を損ねるという問題がある。 In recent years, in the fields of automobiles, aircraft, ships, building materials, home electric appliances, etc., design has come to be emphasized in order to meet the needs of users. Therefore, in particular, the shape of the exterior member tends to be complicated. However, in order to mold a metal plate with a complicated shape, it is necessary to apply a large amount of strain to the metal plate. Therefore, there is a problem that the external appearance is spoiled.

例えば、特許文献1には、圧延方向と平行に凹凸の縞模様が出る(リジング)に関することが開示されている。具体的には、特許文献1には、次のことが開示されている。成形加工が圧延幅方向を主ひずみ方向とする平面ひずみ変形であるとみなしたときの平均テイラー因子を制御して、耐リジング性に優れた成形加工用アルミニウム合金圧延板が得られる。集合組織中に存在する全ての結晶方位から算出される平均テイラー因子が耐リジング性に大きく関係している。平均テイラー因子の値が特定の条件を満たすように集合組織を制御することによって、耐リジング性を確実かつ安定して向上させ得る。 For example, Patent Literature 1 discloses that uneven striped patterns appear parallel to the rolling direction (riding). Specifically, Patent Document 1 discloses the following. An aluminum alloy rolled sheet for forming with excellent ridging resistance can be obtained by controlling the average Taylor factor when forming is considered to be plane strain deformation with the rolling width direction as the main strain direction. The average Taylor factor calculated from all crystal orientations present in the texture is closely related to the ridging resistance. By controlling the texture so that the value of the average Taylor factor satisfies a specific condition, the ridging resistance can be reliably and stably improved.

また、特許文献2には、フェライト相及びマルテンサイト相を含む複相金属組織を有する鋼板(DP(Dual Phase)鋼板)において、フェライト相の硬さを制御することで、複相金属組織鋼板の表面欠陥の発生を抑制することが開示されている。 Further, in Patent Document 2, in a steel sheet (DP (Dual Phase) steel sheet) having a dual phase metal structure containing a ferrite phase and a martensite phase, by controlling the hardness of the ferrite phase, a dual phase metal structure steel sheet is obtained. Suppression of the occurrence of surface defects is disclosed.

:特許第5683193号: Patent No. 5683193 :特許第4867336号: Patent No. 4867336

ところで、特許文献1では、圧延幅方向を主ひずみ方向とする一軸引張変形が生じる金属板の成形加工において、リジングを抑制することが示されている。そのため、深絞り成形、張り出し成形等、平面ひずみ引張変形および二軸引張変形が生じる金属板の成形加工については何ら考慮されていない。 By the way, Patent Literature 1 discloses that ridging is suppressed in forming a metal plate in which uniaxial tensile deformation occurs in which the main strain direction is the rolling width direction. Therefore, no consideration is given to metal plate forming processes that cause plane strain tensile deformation and biaxial tensile deformation, such as deep drawing and stretch forming.

一方で、深絞り成形、張り出し成形等、平面ひずみ引張変形および二軸引張変形が生じる成形加工でも、近年の複雑な形状の成形品を製造することが要求されている。 On the other hand, in recent years, it has been required to manufacture molded products with complicated shapes even in forming processes that cause plane strain tensile deformation and biaxial tensile deformation, such as deep drawing and stretch forming.

しかし、例えば、DP(Dual Phase)鋼板、TRIP(鋼(Transformation Induced Plasticity)鋼板、2相ステンレス鋼板など、複相金属組織を有する金属板に対して、平面ひずみ引張変形、又は平面ひずみ引張変形および二軸引張変形が生じる成形加工を利用し、複雑な形状の成形加工を施すと、成形品の表面に凹が発達し、肌荒れとなって外観上の美観を損ねるという問題が生じる。 However, for example, DP (Dual Phase) steel plate, TRIP (steel (Transformation Induced Plasticity)) steel plate, two-phase stainless steel plate, etc., for metal plates having a multi-phase metal structure, plane strain tensile deformation, or plane strain tensile deformation and If a molding process that causes biaxial tensile deformation is used to form a complicated shape, the surface of the molded product develops depressions, roughening the surface, and detracting from the beauty of the appearance.

そこで、本発明の課題は、平面ひずみ引張変形、又は平面ひずみ引張変形および二軸引張変形が生じる成形加工を施しても、肌荒れの発生が抑制され意匠性に優れた成形品が得られる、複相金属組織を有する鋼板、並びに、肌荒れの発生が抑制され意匠性に優れた管状成形品およびプレス成形品を提供することである。 Therefore, the object of the present invention is to obtain a molded product with excellent design properties by suppressing the occurrence of surface roughness even when subjected to a molding process that causes plane strain tensile deformation, or plane strain tensile deformation and biaxial tensile deformation. An object of the present invention is to provide a steel sheet having a phase metal structure, and a tubular molded article and a press-formed article which suppress the occurrence of surface roughness and are excellent in design.

上記課題は、以下の手段により解決される。即ち、 The above problems are solved by the following means. Namely

<1>
複相金属組織を有する基層と、
前記基層の少なくとも片面に設けられ、単相金属組織を有し、前記基層の厚さ方向に沿って切断した断面領域のうち、表面から前記基層に向かう方向に表面層の平均結晶粒径の3倍までの断面領域において、硬度測定点の70%以上のビッカース硬さが、最大ビッカース硬さの90%~100%の範囲にある表面層と、
を備える鋼板
<2>
前記表面層は、前記基層の厚さ方向に沿って切断した断面領域のうち、表面から前記基層に向かう方向に表面層の平均結晶粒径の5倍までの断面領域において、硬度測定点の70%以上のビッカース硬さが、最大ビッカース硬さの90%~100%の範囲にある<1>に記載の鋼板
<3>
前記基層は、マルテンサイト、フェライト、ベイナイト、及び残留オーステナイトのうちの少なくとも2つの複相金属組織を有する鋼層である<1>又は<2>に記載の鋼板
<4>
前記表面層は、フェライトの単相金属組織を有する鋼層である<1>~<3>のいずれか1項に記載の鋼板
<5>
<1>~<4>のいずれか1項に記載の鋼板を管状成形した管状成形品。
<6>
<1>~請求項4>のいずれか1項に記載の鋼板をプレス成形したプレス成形品。
<1>
a base layer having a dual-phase metallographic structure;
It is provided on at least one side of the base layer and has a single-phase metal structure. A surface layer in which the Vickers hardness of 70% or more of the hardness measurement points is in the range of 90% to 100% of the maximum Vickers hardness in a cross-sectional area up to twice as large;
steel plate with
<2>
Of the cross-sectional area cut along the thickness direction of the base layer, the surface layer has a hardness measurement point of 70% in a cross-sectional area up to five times the average crystal grain size of the surface layer in the direction from the surface to the base layer. % or more Vickers hardness is in the range of 90% to 100% of the maximum Vickers hardness, the steel sheet according to <1>.
<3>
The steel sheet according to <1> or <2>, wherein the base layer is a steel layer having a dual-phase metal structure of at least two of martensite, ferrite, bainite, and retained austenite.
<4>
The steel sheet according to any one of <1> to <3>, wherein the surface layer is a steel layer having a ferrite single-phase metal structure.
<5>
A tubular molded product obtained by tubularly molding the steel plate according to any one of <1> to <4>.
<6>
A press-formed product obtained by press-forming the steel plate according to any one of <1> to claim 4>.

本発明によれば、平面ひずみ引張変形、又は平面ひずみ引張変形および二軸引張変形が生じる成形加工を施しても、肌荒れの発生が抑制され意匠性に優れた成形品が得られる、複相金属組織を有する鋼板、並びに、肌荒れの発生が抑制され意匠性に優れた管状成形品およびプレス成形品を提供することができる。 According to the present invention, even if a molding process that causes plane strain tensile deformation, or plane strain tensile deformation and biaxial tensile deformation is performed, the occurrence of rough surface is suppressed and a molded product with excellent design is obtained. It is possible to provide a steel sheet having a structure, and a tubular molded article and a press-molded article which are suppressed in occurrence of surface roughness and excellent in design.

図1は、本実施形態に係る金属板の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of the metal plate according to this embodiment. 図2は、表面層の表層領域において、表面層深さ方向とビッカース硬さとの関係の一例を示す図である。FIG. 2 is a diagram showing an example of the relationship between the depth direction of the surface layer and the Vickers hardness in the surface layer region of the surface layer. 図3は、表面層の表層領域において、表面層の面方向とビッカース硬さとの関係の一例を示す図である。FIG. 3 is a diagram showing an example of the relationship between the plane direction of the surface layer and the Vickers hardness in the surface layer region of the surface layer. 表面層の平均結晶粒径の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of the average crystal grain size of a surface layer. 図5Aは、張り出し成形加工の一例を示す模式図である。FIG. 5A is a schematic diagram showing an example of the stretch forming process. 図5Bは、図5Aに示す張り出し成形加工で得られる成形品の一例を示す模式図である。FIG. 5B is a schematic diagram showing an example of a molded product obtained by the stretch forming process shown in FIG. 5A. 図6Aは、絞り張り出し成形加工の一例を示す模式図である。FIG. 6A is a schematic diagram showing an example of drawing and stretch forming. 図6Bは、図8Aに示す絞り張り出し成形加工で得られる成形品の一例を示す模式図である。FIG. 6B is a schematic diagram showing an example of a molded product obtained by the draw stretch forming process shown in FIG. 8A. 図7は、平面ひずみ引張変形、二軸引張変形、及び一軸引張変形を説明するための模式図である。FIG. 7 is a schematic diagram for explaining plane strain tensile deformation, biaxial tensile deformation, and uniaxial tensile deformation. 図8は、実施例の成形加工評価で作製した成形品を説明するための模式図である。FIG. 8 is a schematic diagram for explaining a molded article produced in the evaluation of molding processing in Examples.

以下、本発明の一実施形態について説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 An embodiment of the present invention will be described below. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.

<金属板>
本実施形態に係る金属板は、複相金属組織を有する基層と、基層の少なくとも片面に設けられ、単相金属組織を有する表面層と、を備える(図1参照)。なお、図1に示す金属板は、表面層を基層の両面に設けた態様を示している。
ただし、表面層は、金属板を成形した後、その成形品の外面(例えば、凸部を有するパネル状の成形品の場合、凸側の外面)となる側に表面層を少なくとも設けることがよい。
<Metal plate>
A metal plate according to this embodiment includes a base layer having a dual-phase metal structure and a surface layer having a single-phase metal structure provided on at least one side of the base layer (see FIG. 1). In addition, the metal plate shown in FIG. 1 has shown the aspect which provided the surface layer on both surfaces of the base layer.
However, after molding the metal plate, the surface layer is preferably provided at least on the side that will be the outer surface of the molded product (for example, in the case of a panel-shaped molded product having a convex portion, the outer surface on the convex side). .

そして、表年層は、基層の厚さ方向に沿って切断した断面領域のうち、表面から基層に向かう方向に表面層の平均結晶粒径の3倍までの断面領域において、硬度測定点の70%以上のビッカース硬さが、最大ビッカース硬さの90%~100%の範囲にある。ここで、表面層の表面とは、厚さ方向に対向する2つの面のうち、基層と対面する側とは反対側の面を示す。 Then, the surface age layer is, of the cross-sectional area cut along the thickness direction of the base layer, in the cross-sectional area up to three times the average crystal grain size of the surface layer in the direction from the surface to the base layer, the hardness measurement point 70 % Vickers hardness is in the range of 90% to 100% of the maximum Vickers hardness. Here, the surface of the surface layer means, of the two surfaces facing each other in the thickness direction, the surface opposite to the side facing the base layer.

なお、図1中、10は金属板を示し、12は基層を示し、14A及び14Bは表面層を示す。 In FIG. 1, 10 indicates a metal plate, 12 indicates a base layer, and 14A and 14B indicate surface layers.

本実施形態に係る金属板は、平面ひずみ引張変形、又は平面ひずみ引張変形および二軸引張変形が生じる成形加工を施しても、肌荒れの発生が抑制され意匠性に優れた成形品が得られる、複相金属組織を有する金属板となる。そして、本実施形態に係る金属板は、以下に示す知見により見出された。 Even if the metal plate according to the present embodiment is subjected to a molding process that causes plane strain tensile deformation, or plane strain tensile deformation and biaxial tensile deformation, the occurrence of rough skin is suppressed and a molded product with excellent design can be obtained. A metal plate having a multiphase metal structure is obtained. And the metal plate which concerns on this embodiment was discovered by the knowledge shown below.

近年、金属板の金属組織と機械特性の対応などが研究されている。そこで、発明者らは、次の検討を行った。平面ひずみ引張変形、又は平面ひずみ引張変形および二軸引張変形が生じる成形加工で、複相金属組織の変化を観察した。そして、加工後の加工品の表面性状と複相金属組織の変化との関係を検討した。その結果、発明者は、複相金属組織において、硬度が低い金属相が優先変形し、凹部となることで、肌荒れが発生し、外観上の美観を損ねていることを知見した。具体的には、発明者らは、次の知見を得た。 In recent years, the relationship between the metal structure and mechanical properties of metal plates has been studied. Therefore, the inventors conducted the following study. We observed the change of multi-phase metallographic structure during the forming process in which plane strain tensile deformation, or plane strain tensile deformation and biaxial tensile deformation occurred. Then, the relationship between the surface properties of the processed product after processing and the change in the dual-phase metal structure was examined. As a result, the inventors have found that, in the multiphase metal structure, the metal phase with low hardness is preferentially deformed to form recesses, which causes rough surface and spoils the aesthetic appearance. Specifically, the inventors obtained the following findings.

金属板の複相金属組織は、複数の金属相の間で硬度差がある。そのため、複数の金属相のうち、硬度が低い金属相が優先的に変形する。一方で、変形した金属相を観察すると、優先的に変形する金属相は、金属板の表層に存在する金属相である。 The dual-phase metallographic structure of a metal plate has hardness differences among a plurality of metal phases. Therefore, among the plurality of metal phases, the metal phase having a lower hardness is preferentially deformed. On the other hand, when the deformed metal phase is observed, the metal phase that is preferentially deformed is the metal phase present in the surface layer of the metal plate.

そこで、さらに、発明者らは、金属板の表層の金属相の厚さとその金属相の面内の強度差に着目し、検討した。その結果、発明者らは、次の知見を得た。 Therefore, the inventors further focused on the thickness of the metal phase on the surface layer of the metal plate and the in-plane strength difference of the metal phase, and studied. As a result, the inventors obtained the following findings.

金属板の表面の金属組織のうち、金属板の表層に存在する金属相の硬度差を低減すれば、金属相の均一変形を促進できる。つまり、肌荒れとなって現れる金属板の表層における、金属相の部分的な優先変形による凹部の発達が抑制できる。 Uniform deformation of the metal phase can be promoted by reducing the difference in hardness of the metal phase present in the surface layer of the metal plate among the metal structures on the surface of the metal plate. That is, it is possible to suppress the development of depressions due to partial preferential deformation of the metal phase on the surface layer of the metal plate that appears as rough skin.

そのため、複相金属組織を有する基層とし、基層の少なくとも片面に、単相金属組織を有する表面層を設ける。そして、基層の厚さ方向に沿って切断した断面領域のうち、表面から基層に向かう方向に表面層の平均結晶粒径の3倍までの断面領域において、硬度測定点の70%以上のビッカース硬さを、最大ビッカース硬さの90%~100%の範囲とする。つまり、金属板の表層を単相金属組織とし、金属相の硬度差を低減する。 Therefore, a base layer having a dual-phase metal structure is provided, and a surface layer having a single-phase metal structure is provided on at least one side of the base layer. Then, of the cross-sectional area cut along the thickness direction of the base layer, in the cross-sectional area up to three times the average crystal grain size of the surface layer in the direction from the surface to the base layer, the Vickers hardness of 70% or more of the hardness measurement point The hardness should be in the range of 90% to 100% of the maximum Vickers hardness. In other words, the surface layer of the metal plate has a single-phase metal structure to reduce the difference in hardness of the metal phase.

それにより、複相金属組織を有する金属板に対して、平面ひずみ引張変形、又は平面ひずみ引張変形および二軸引張変形が生じる成形加工を施しても、表層の金属相の部分的な優先変形を抑え、金属相の均一変形を促進できる。その結果、金属板の表面での凹部の発達、つまり肌荒れの発生が抑制できる。 As a result, even if a metal plate having a multiphase metal structure is subjected to a forming process that causes plane strain tensile deformation, or plane strain tensile deformation and biaxial tensile deformation, partial preferential deformation of the metal phase in the surface layer is performed. It can suppress and promote uniform deformation of the metal phase. As a result, it is possible to suppress the development of concave portions on the surface of the metal plate, that is, the occurrence of rough skin.

以上の知見から、本実施形態に係る金属板は、平面ひずみ引張変形、又は平面ひずみ引張変形および二軸引張変形が生じる成形加工を施しても、肌荒れの発生が抑制され意匠性に優れた成形品が得られる、複相金属組織を有する金属板となることが見出された。 From the above findings, the metal plate according to the present embodiment can suppress the occurrence of rough skin even when subjected to a forming process that causes plane strain tensile deformation, or plane strain tensile deformation and biaxial tensile deformation. It has been found to result in a metal sheet having a dual-phase metallographic structure which results in a high quality product.

以下、本実施形態に係る金属板の詳細について説明する。 Details of the metal plate according to the present embodiment will be described below.

(表面層)
表面層は、単相金属組織を有する。そして、表面層は、基層の厚さ方向に沿って切断した断面領域のうち、表面から基層に向かう方向に(以下「表面層深さ方向」とも称する)表面層の平均結晶粒径の3倍までの断面領域において、硬度測定点の70%以上のビッカース硬さが、最大ビッカース硬さの90%~100%の範囲にある。
特に、肌荒れの発生を効果的に抑制する観点から、基層の厚さ方向に沿って切断した断面領域のうち、表面から基層に向かう方向に表面層の平均結晶粒径の5倍までの断面領域において、硬度測定点の70%以上のビッカース硬さが、最大ビッカース硬さの90%~100%の範囲にあることが好ましい。
なお、これら断面領域を「表面層の表層領域」とも称する。
(Surface layer)
The surface layer has a single-phase metallographic structure. Then, the surface layer has three times the average crystal grain size of the surface layer in the direction from the surface to the base layer (hereinafter also referred to as “surface layer depth direction”) in the cross-sectional area cut along the thickness direction of the base layer. The Vickers hardness of 70% or more of the hardness measurement points is in the range of 90% to 100% of the maximum Vickers hardness.
In particular, from the viewpoint of effectively suppressing the occurrence of rough skin, of the cross-sectional area cut along the thickness direction of the base layer, the cross-sectional area is up to five times the average crystal grain size of the surface layer in the direction from the surface to the base layer. In , the Vickers hardness of 70% or more of the hardness measurement point is preferably in the range of 90% to 100% of the maximum Vickers hardness.
These cross-sectional regions are also referred to as "surface layer regions of the surface layer".

そして、硬度測定点の70%以上のビッカース硬さが、最大ビッカース硬さの90%~100%の範囲にあるとは、例えば、図2及び図3に示すように、表面層の表層領域において、表面層深さ方向及び表面層の面方向(例えば、圧延方向に対して直交する方向)で、ビッカース硬さの差が小さいことを意味している。
なお、図2は、表面層の表層領域において、表面層深さ方向とビッカース硬さとの関係の一例を示す図である。図3は、表面層の表層領域において、表面層の面方向とビッカース硬さとの関係の一例を示す図である。図2~図3中、HVは、ビッカース硬さを示す。
And, when the Vickers hardness of 70% or more of the hardness measurement point is in the range of 90% to 100% of the maximum Vickers hardness, for example, as shown in FIGS. , means that the difference in Vickers hardness is small between the surface layer depth direction and the surface direction of the surface layer (for example, the direction orthogonal to the rolling direction).
FIG. 2 is a diagram showing an example of the relationship between the depth direction of the surface layer and the Vickers hardness in the surface layer region of the surface layer. FIG. 3 is a diagram showing an example of the relationship between the plane direction of the surface layer and the Vickers hardness in the surface layer region of the surface layer. 2 and 3, HV indicates Vickers hardness.

最大ビッカース硬さの90%~100%の範囲にあるビッカース硬さの硬度測定点の割合は、80%以上が好ましく、90%以上がより好ましい。この割合が大きいほど、硬度差が小さく、肌荒れの発生を効果的に抑制できる。 The proportion of Vickers hardness measurement points in the range of 90% to 100% of the maximum Vickers hardness is preferably 80% or more, more preferably 90% or more. The larger this ratio, the smaller the difference in hardness, and the more effectively the occurrence of rough skin can be suppressed.

なお、これら表面層の表層領域におけるビッカース硬さ特性は、1)単相金属組織とすること、2)単相金属組織における結晶粒の結晶方位を揃えること等で実現される。 The Vickers hardness characteristics in the surface region of these surface layers are realized by 1) providing a single-phase metal structure, and 2) aligning the crystal orientation of crystal grains in the single-phase metal structure.

ここで、表面層の平均結晶粒径は、次の方法により測定する。
測定対象の金属板の表面層から、圧延直角方向及び板厚方向に沿って切断した切断面(以下「T断面」とも称する)を有する試料を採取する。
次に、試料のT断面を研磨及びナイタールエッチングし、T断面の粒界を腐食させて発現させる。
次に光学顕微鏡により、試料のT断面のうち、表面層の表面から表面層深さ方向に200μm、幅200μmに相当する領域(つまり、表面層の表面を一辺とする200μm×200μmの領域)を500倍率で観察する。
次に、JIS G 0551(2013年)に準じた線分法により、平均結晶粒径を求める。具体的には、図4に示すように、観察画像において、表面層の表面から表面層深さ方向に長さ0.2mmの試験線を引く。この長さ0.2mmの試験線を面方向(圧延方向)に、50μm以上の間隔で5本引く。そして、5本の試験線(長さの合計1mmの試験線)が結晶粒を分断する分断長さの平均値を求め、その平均値を表面層の平均結晶粒径とする。
Here, the average grain size of the surface layer is measured by the following method.
A sample having a cross section (hereinafter also referred to as a “T cross section”) cut along the direction perpendicular to the rolling direction and the plate thickness direction is taken from the surface layer of the metal plate to be measured.
Next, the T-section of the sample is polished and etched with nital to corrode and reveal the grain boundaries of the T-section.
Next, with an optical microscope, an area corresponding to 200 μm in the depth direction of the surface layer and 200 μm in width from the surface of the surface layer in the T section of the sample (that is, a 200 μm × 200 μm area with the surface of the surface layer as one side). Observe at 500 magnification.
Next, the average crystal grain size is determined by the line segment method according to JIS G 0551 (2013). Specifically, as shown in FIG. 4, a test line with a length of 0.2 mm is drawn from the surface of the surface layer in the depth direction of the surface layer in the observed image. Five test lines having a length of 0.2 mm are drawn in the surface direction (rolling direction) at intervals of 50 μm or more. Then, the average value of the division lengths of the five test lines (test lines with a total length of 1 mm) dividing the crystal grains is obtained, and the average value is taken as the average grain size of the surface layer.

次に、ビッカース硬さは、次の通り測定する。
金属板の表面層のT断面における表面層の表層領域に対して、圧延直角方向及び板厚方向に、10μm間隔で、ビッカース硬さを測定する。硬度測定点は、100箇所以上とする。
なお、ビッカース硬さは、JIS Z 2244(2009年)に準拠してHV10を測定する。具体的な測定条件は、圧子=対面角136°のビッカース四角錐ダイヤモンド圧子、押し込み荷重=10gf、押し込み時間=20sである。
Next, Vickers hardness is measured as follows.
The Vickers hardness is measured at intervals of 10 μm in the direction perpendicular to the rolling direction and the plate thickness direction with respect to the surface layer region of the surface layer in the T section of the surface layer of the metal plate. Hardness measurement points shall be 100 or more.
In addition, Vickers hardness measures HV10 based on JISZ2244 (2009). Specific measurement conditions are: indenter = Vickers quadrangular pyramid diamond indenter with facing angle of 136°, indentation load = 10 gf, indentation time = 20 s.

そして、各硬度測定点のビッカース硬さから、最大ビッカース硬さの90%~100%の範囲にあるビッカース硬の硬度測定点の割合を求める。 Then, from the Vickers hardness at each hardness measurement point, the ratio of Vickers hardness measurement points in the range of 90% to 100% of the maximum Vickers hardness is obtained.

表面層の単相金属組織は、フェライト、オーステナイト等の単相金属組織が例示される。これらの中でも、表面層は、フェライトの単相金属組織を有する鋼層であることが好ましい。
ここで、単相金属組織とは、フェライト等の主金属相が面積率で95(好ましくは99%、理想的には100%)を示す金属組織を意味する。
The single-phase metal structure of the surface layer is exemplified by single-phase metal structures such as ferrite and austenite. Among these, the surface layer is preferably a steel layer having a ferrite single-phase metal structure.
Here, the single-phase metal structure means a metal structure in which the main metal phase such as ferrite has an area ratio of 95 (preferably 99%, ideally 100%).

表面層がフェライトの単相金属組織を有する鋼層である場合、その鋼層の化学組成は、例えば、質量%で、C:0.00050~0.0060%、Si:0.005~1.0%、Mn:0.05%~1.50%、P:0.0010%~0.100%、S:0.00030%~0.010%、Al:0.00050~0.10%、N:0.00030~0.0040%、Ti:0.0010~0.10%、Nb:0.0010~0.10%、及び、B:0~0.0030%、残部:Feおよび不純物を含有する化学組成が例示される。 When the surface layer is a steel layer having a ferrite single-phase metal structure, the chemical composition of the steel layer is, for example, C: 0.00050 to 0.0060%, Si: 0.005 to 1.0% by mass. 0%, Mn: 0.05% to 1.50%, P: 0.0010% to 0.100%, S: 0.00030% to 0.010%, Al: 0.00050 to 0.10%, N: 0.00030 to 0.0040%, Ti: 0.0010 to 0.10%, Nb: 0.0010 to 0.10%, and B: 0 to 0.0030%, balance: Fe and impurities The chemical composition contained is exemplified.

表面層の厚さが薄すぎると、肌荒れの発生を効果的に抑制でき難くなる。一方、表面層の厚さが厚すぎると、材料の強度が確保できないことがある。
よって、表面層の厚さは、平均結晶粒径の3倍以上が必要で、平均結晶粒径の5倍以上が好ましい。また,全体の板厚に対し表面層の厚さが占める割合は50%以下が好ましい。
If the thickness of the surface layer is too thin, it will be difficult to effectively suppress the occurrence of rough skin. On the other hand, if the thickness of the surface layer is too thick, the strength of the material may not be ensured.
Therefore, the thickness of the surface layer should be at least 3 times the average crystal grain size, and preferably at least 5 times the average crystal grain size. Also, the ratio of the thickness of the surface layer to the total plate thickness is preferably 50% or less.

(基層)
基層は、複相金属組織を有する。複相金属組織は、2相の金属組織であってもよいし、3相以上の金属組織であってもよい。
基層は、鋼層、銅層、アルミニウム合金層、マグネシウム合金、ステンレス合金層等が挙げられる。これらの中でも、鋼層が好ましく、具体的には、マルテンサイト、フェライト、ベイナイト、及び残留オーステナイトのうちの少なくとも2つの複相金属組織を有する鋼層がより好ましく、フェライトと、マルテンサイト、ベイナイトおよび残留オーステナイトのうち少なくとも1つと、を含む複相金属組織を有する鋼層がさらに好ましい。
(base layer)
The base layer has a dual phase metallographic structure. The dual-phase metallographic structure may be a two-phase metallographic structure, or may be a three-phase or higher-phase metallographic structure.
Examples of the base layer include a steel layer, a copper layer, an aluminum alloy layer, a magnesium alloy, a stainless alloy layer, and the like. Among these, a steel layer is preferred, and more specifically, a steel layer having a multi-phase metal structure of at least two of martensite, ferrite, bainite, and retained austenite is more preferred, and includes ferrite, martensite, bainite, and Further preferred is a steel layer having a dual-phase metallographic structure comprising at least one of retained austenite.

具体的には、基層としては、面積率で、フェライト:20~80%(好ましくは30~70%)、残部:マルテンサイト、ベイナイトおよび残留オーステナイトのうち少なくとも1つの複相金属組織を有する鋼層が好適に挙げられる。 Specifically, as the base layer, ferrite: 20 to 80% (preferably 30 to 70%) in terms of area ratio, the remainder: a steel layer having a dual-phase metal structure of at least one of martensite, bainite and retained austenite. are preferably mentioned.

より具体的には、基層としては、フェライトとマルテンサイトとを含む複相金属組織を有するDP(Dual Phase)鋼、フェライトとベイナイトと残留オーステナイトとを含む複相金属組織を有するTRIP(Transformation Induced Plasticity)鋼、フェライトとオーステナイトとを含む複相金属組織を有する2相ステンレス鋼等の層が挙げられる。 More specifically, as the base layer, DP (Dual Phase) steel having a dual phase metal structure containing ferrite and martensite, TRIP (Transformation Induced Plasticity) having a dual phase metal structure containing ferrite, bainite and retained austenite. ) steel, duplex stainless steel having a dual phase metallographic structure containing ferrite and austenite, and the like.

ここで、基層の各相の面積率は、次の通り測定する。
測定対象の金属板の基層から、圧延直角方向及び板厚方向に沿って切断した切断面(以下「T断面」とも称する)を有する試料を採取する。
次に、試料のT断面を研磨及びナイタールエッチングし、T断面の粒界を腐食させて発現させる。
次に、後方散乱電子回折パターン分析装置(EBSD装置)付き走査電子顕微鏡により、試料のT断面のうち、基層の厚み方向中央部に位置する領域(200μm×200mμ)を倍率500倍で観察する。そして、観察画面において、観察画面に対する各相の面積率を求める。
Here, the area ratio of each phase of the base layer is measured as follows.
A sample having a cross section (hereinafter also referred to as “T cross section”) cut along the direction perpendicular to the rolling direction and the plate thickness direction is taken from the base layer of the metal plate to be measured.
Next, the T-section of the sample is polished and etched with nital to corrode and reveal the grain boundaries of the T-section.
Next, a region (200 μm×200 μm) located in the center of the thickness direction of the base layer in the T cross section of the sample is observed at a magnification of 500 using a scanning electron microscope equipped with a backscattered electron diffraction pattern analysis device (EBSD device). Then, in the observation screen, the area ratio of each phase with respect to the observation screen is obtained.

なお、観察画面において、各相の識別は、次の通り行う。
フェライト,ベイナイト,およびマルテンサイトは、EBSD測定結果分析ソフトウェアOIMAnalysis version 7.2.1を用い、BCC結晶構造を持つ測定点を表示し、結晶方位分布とImage Quality Mapの値により識別する。オーステナイト(残留オーステナイト含む)は、FCC結晶構造を持つ測定点を表示し、同様の方法により識別する。
In the observation screen, each phase is identified as follows.
Ferrite, bainite, and martensite are identified using EBSD measurement result analysis software OIM Analysis version 7.2.1, displaying measurement points having a BCC crystal structure, and crystal orientation distribution and Image Quality Map values. Austenite (including retained austenite) is identified by a similar method, indicating a measurement point with an FCC crystal structure.

基層が鋼層である場合、鋼層の化学組成は、例えば、質量%で、C:0.00050~0.60%、Si:0.005~2.0%、Mn:0.05%~3.00%、P:0.0010%~0.100%、S:0.00030%~0.020%、Al:0.00050~0.10%、N:0.00030~0.050%、Ti:0.0010~0.10%、Nb:0.0010~0.10%、及び、B:0~0.0030%、残部:Feおよび不純物を含有する化学組成が例示される。 When the base layer is a steel layer, the chemical composition of the steel layer is, for example, in mass%, C: 0.00050 to 0.60%, Si: 0.005 to 2.0%, Mn: 0.05% to 3.00%, P: 0.0010% to 0.100%, S: 0.00030% to 0.020%, Al: 0.00050 to 0.10%, N: 0.00030 to 0.050% , Ti: 0.0010 to 0.10%, Nb: 0.0010 to 0.10%, B: 0 to 0.0030%, and the balance: Fe and impurities.

基層の厚さは、0.1~4.0mmが好ましい。 The thickness of the base layer is preferably 0.1 to 4.0 mm.

(金属板の製造方法)
本実施形態に係る金属板の製造方法は、特に制限はないが、例えば、次の方法が例示される。
(Method for manufacturing metal plate)
The method for manufacturing the metal plate according to this embodiment is not particularly limited, but for example, the following method is exemplified.

基層となる第一金属板、および表面層となる第二金属板を準備する。第一金属板は、次に示す熱処理(焼鈍等)により、複相金属組織を有する基層(つまり、例えば、DP鋼、TRIP鋼、2相ステンレス鋼等の層)となる金属板である。同様に、第二金属板は、次に示す熱処理(焼鈍等)により、単相金属組織を有する表面層(つまり、例えば、フェライトの単相金属組織を有する鋼層)となる金属板である。 A first metal plate serving as a base layer and a second metal plate serving as a surface layer are prepared. The first metal plate is a metal plate that becomes a base layer (that is, a layer of, for example, DP steel, TRIP steel, duplex stainless steel, etc.) having a dual-phase metal structure by heat treatment (annealing, etc.) described below. Similarly, the second metal plate is a metal plate that becomes a surface layer having a single-phase metal structure (for example, a steel layer having a ferrite single-phase metal structure) by the following heat treatment (annealing, etc.).

次に、基層となる第一金属板と、表面層となる第二金属板と、を重ね合わせる。この状態で、第一金属板と第二金属板とを溶接する。レーザ等の加熱源により、溶接した積層金属板を加熱した後、熱延する。加熱温度は、例えば、900~1200℃とする。また、例えば、熱延の圧下率は、圧下率50~95%とする。
次に、積層熱延板を水素焼鈍して、板表面の炭素を脱炭する。例えば、水素焼鈍温度は、700~1000℃とする。また、水素焼鈍時間は、1~200分とする。これら条件で水素焼鈍を実施すると、窒素焼鈍に比べ板表面の炭素濃度がより低減でき、冷延で、表面層の表層領域における結晶粒の結晶方位が圧延方向に揃いやすく、硬さの差が小さい組織となる.
次に、積層熱延板を冷延する。冷延の圧下率は、例えば、70%以上とする。冷延の圧下率を70%以上と高くすると、表面層の表層領域における結晶粒の結晶方位が圧延方向に揃いやすくなる。
次に、基層の金属組織が複相金属組織となり、かつ表面層の金属組織が単相金属組織となる温度で、焼鈍後、急冷する。例えば、フェライトの単相金属組織を有する表面層を形成する場合、焼鈍温度は、フェライトの再結晶温度である750℃以上で、かつ基層の金属組織が複相金属組織となる複数相域に相当する温度とする。
Next, the first metal plate serving as the base layer and the second metal plate serving as the surface layer are overlaid. In this state, the first metal plate and the second metal plate are welded together. After the welded laminated metal sheets are heated by a heat source such as a laser, they are hot-rolled. The heating temperature is, for example, 900-1200.degree. Further, for example, the rolling reduction of hot rolling is set to 50 to 95%.
Next, the laminated hot-rolled sheet is hydrogen-annealed to decarburize the carbon on the surface of the sheet. For example, the hydrogen annealing temperature is 700-1000.degree. Also, the hydrogen annealing time is set to 1 to 200 minutes. When hydrogen annealing is performed under these conditions, the carbon concentration on the surface of the sheet can be reduced more than nitrogen annealing. Become a small organization.
Next, the laminated hot-rolled sheet is cold-rolled. The rolling reduction of cold rolling is, for example, 70% or more. When the rolling reduction of cold rolling is increased to 70% or more, the crystal orientation of the crystal grains in the surface layer region of the surface layer tends to be aligned in the rolling direction.
Next, after annealing at a temperature at which the metallographic structure of the base layer becomes a dual-phase metallographic structure and the metallographic structure of the surface layer becomes a single-phase metallographic structure, quenching is performed. For example, when forming a surface layer having a single phase metal structure of ferrite, the annealing temperature is 750 ° C. or higher, which is the recrystallization temperature of ferrite, and the metal structure of the base layer corresponds to a multiphase region in which the metal structure is a double phase metal structure. temperature.

以上の工程を経て、複相金属組織を有する基層と、単相金属組織を有し、かつ表層領域で上記ビッカース硬さ差が小さい表面層と、を有する金属板が得られる。 Through the above steps, a metal plate having a base layer having a dual-phase metallographic structure and a surface layer having a single-phase metallographic structure and having a small Vickers hardness difference in the surface layer region is obtained.

<成形品>
(管状成形品)
本実施形態に係る管状成形品は、上記本実施形態に係る金属板を管状成形した成形品である。具体的には、本実施形態に係る管状成形品は、例えば、次の方法により得ることがよい。
金属板をオープン管に管状成形する。得られたオープン管の周方向端部を突き合わせた状態で、突き当て部を溶接する。溶接した素管に対して、曲げ加工、ハイドロフォーミング(パイプの中に水を入れ,水圧でパイプを膨らませる成形加工)等の冷間加工を目的に応じて実施する。このように管状成形品を得る。
なお、例えば、素管の長手方向に曲げる曲げ加工は、平面ひずみ引張変形を生じる成形加工である。また、ハイドロフォーミングは、平面ひずみ引張変形および二軸引張変形(特に、比較的、等二軸変形に近い不等二軸引張変形)が生じる成形加工である。
そして、平面ひずみ引張変形、又は平面ひずみ引張変形および二軸引張変形が生じる成形加工を施されても、管状成形品の外周面は、本実施形態に係る金属板の表面層で構成されているため、肌荒れの発生が抑制され意匠性に優れた管状成形品となる。
<Molded product>
(tubular molded product)
A tubular molded product according to the present embodiment is a molded product obtained by molding the metal plate according to the present embodiment into a tubular shape. Specifically, the tubular molded article according to this embodiment may be obtained, for example, by the following method.
A metal plate is tubularly formed into an open tube. The butted portions are welded while the circumferential ends of the obtained open tubes are butted against each other. Cold working such as bending, hydroforming (a forming process in which water is poured into the pipe and the pipe is expanded by water pressure) is performed on the welded pipe according to the purpose. A tubular molded article is thus obtained.
In addition, for example, bending in the longitudinal direction of a blank tube is a forming process that causes plane strain tensile deformation. Also, hydroforming is a forming process in which plane strain tensile deformation and biaxial tensile deformation (in particular, unequal biaxial tensile deformation relatively close to equibiaxial deformation) occur.
Then, even if a molding process that causes plane strain tensile deformation, or plane strain tensile deformation and biaxial tensile deformation is performed, the outer peripheral surface of the tubular molded product is composed of the surface layer of the metal plate according to the present embodiment. Therefore, the occurrence of rough skin is suppressed, and a tubular molded product excellent in design is obtained.

(プレス成形品)
本実施形態に係るプレス成形品は、上記本実施形態に係る金属板をプレス成形した成形品である。具体的には、本実施形態に係るプレス成形品は、例えば、次の成形加工により得ることがよい。
そして、平面ひずみ引張変形、又は平面ひずみ引張変形および二軸引張変形が生じる成形加工を施されても、プレス成形品の外面は、本実施形態に係る金属板の表面層で構成されているため、肌荒れの発生が抑制され意匠性に優れたプレス成形品となる。
(Press molded product)
A press-formed product according to the present embodiment is a formed product obtained by press-molding the metal plate according to the present embodiment. Specifically, the press-formed product according to the present embodiment may be obtained by, for example, the following forming process.
And even if it is subjected to a molding process that causes plane strain tensile deformation, or plane strain tensile deformation and biaxial tensile deformation, the outer surface of the press-formed product is composed of the surface layer of the metal plate according to the present embodiment. , the occurrence of rough skin is suppressed, resulting in a press-molded product with excellent design.

-成形加工-
金属板には、平面ひずみ引張変形、又は平面ひずみ引張変形、又は平面ひずみ引張変形および二軸引張変形が生じる成形加工を施す。この成形加工としては、深絞り成形、張り出し成形、絞り張り出し成形、曲げ成形がある。具体的には、成形加工としては、例えば、図5Aに示すような、金属板10を張り出し成形加工する方法が挙げられる。この成形加工では、ダイス11と、ドロービード12Aが配されたホルダー12との間に金属板10の縁部を挟み込む。それにより、金属板10の縁部の表面にドロービード12Aに食い込ませて、金属板10を固定した状態とする。そして、この状態で、頂面が平坦のパンチ13を金属板10に押付けて、金属板10を張り出し成形加工する。ここで、図5Aに示す張り出し成形加工により得られる成形品の一例を図5Bに示す。
図5Aに示す張り出し成形加工では、例えば、パンチ10の側面側に位置する金属板10(成形品の側面となる部分)は、平面ひずみ変形が生じる。一方で、パンチ10の頂面に位置する金属板10(成形品の天面)は、等二軸変形、又は比較的、等二軸変形に近い不等二軸引張変形が生じる。
-Molding-
The metal plate is subjected to a forming process that causes plane strain tensile deformation, or plane strain tensile deformation, or plane strain tensile deformation and biaxial tensile deformation. The forming process includes deep drawing, stretch forming, draw stretch forming, and bending. Specifically, as the forming process, for example, there is a method of protruding the metal plate 10 as shown in FIG. 5A. In this forming process, the edge of the metal plate 10 is sandwiched between the die 11 and the holder 12 on which the draw bead 12A is arranged. As a result, the drawbead 12A is bitten into the surface of the edge of the metal plate 10, and the metal plate 10 is fixed. Then, in this state, a punch 13 having a flat top surface is pressed against the metal plate 10, and the metal plate 10 is stretched. Here, FIG. 5B shows an example of a molded product obtained by the stretch molding process shown in FIG. 5A.
In the stretch forming process shown in FIG. 5A, plane strain deformation occurs in, for example, the metal plate 10 located on the side surface side of the punch 10 (the portion that will become the side surface of the molded product). On the other hand, the metal plate 10 positioned on the top surface of the punch 10 (the top surface of the molded product) undergoes equibiaxial deformation or unequal biaxial tensile deformation relatively close to equibiaxial deformation.

また、成形加工としては、例えば、図6Aに示すような、金属板10を絞り張り出し成形加工する方法が挙げられる。この成形加工では、ダイス11と、ドロービード12Aが配されたホルダー12との間に金属板10の縁部を挟み込む。それにより、金属板10の縁部の表面にドロービード12Aに食い込ませて、金属板10を固定した状態とする。そして、この状態で、頂面が略V字状に突出しているパンチ13を金属板10に押付けて、金属板10を絞り張り出し成形加工する。ここで、図6Aに示す絞り張り出し成形加工により得られる成形品の一例を図6Bに示す。
図6Aに示す絞り張り出し成形加工では、例えば、パンチ10の側面側に位置する金属板10(成形品の側面となる部分)は、平面ひずみ変形が生じる。一方で、パンチ10の頂面に位置する金属板10(成形品の天面)は、比較的、平面ひずみ変形に近い不等二軸引張変形が生じる。
As the forming process, for example, there is a method of drawing and stretching the metal plate 10 as shown in FIG. 6A. In this forming process, the edge of the metal plate 10 is sandwiched between the die 11 and the holder 12 on which the draw bead 12A is arranged. As a result, the drawbead 12A is bitten into the surface of the edge of the metal plate 10, and the metal plate 10 is fixed. Then, in this state, the metal plate 10 is pressed against the metal plate 10 by a punch 13 whose top surface protrudes in a substantially V-shape, and the metal plate 10 is drawn and stretched. Here, FIG. 6B shows an example of a molded product obtained by the draw stretch forming process shown in FIG. 6A.
In the draw stretch forming process shown in FIG. 6A, for example, plane strain deformation occurs in the metal plate 10 located on the side surface side of the punch 10 (the portion that will become the side surface of the molded product). On the other hand, the metal plate 10 located on the top surface of the punch 10 (the top surface of the molded article) undergoes unequal biaxial tensile deformation relatively close to plane strain deformation.

ここで、本実施形態に係る成形品(管状成形品、プレス成形品)において、図7に示すように、平面ひずみ引張変形は、ε1方向に伸び、ε2方向には変形が生じない変形である。また、二軸引張変形は、ε1方向に伸び、ε2方向にも伸びが生じる変形である。具体的には、平面ひずみ引張変形は、二軸方向のひずみを各々最大主ひずみε1および最小主ひずみε2としたとき、ひずみ比β(=ε2/ε1)がβ=0となる変形である。二軸引張変形は、ひずみ比β(=ε2/ε1)が0<β≦1となる変形である。なお、ひずみ比β(=ε2/ε1)が0<β<1となる変形が不等二軸変形であり、ひずみ比β(=ε2/ε1)がβ=1となる変形が等二軸変形である。ちなみに、一軸引張変形は、ε1方向に伸び、ε2方向に縮みが生じる変形であって、ひずみ比β(=ε2/ε1)が-0.5≦β<0となる変形である。 Here, in the molded product (tubular molded product, press-molded product) according to the present embodiment, as shown in FIG. 7, the plane strain tensile deformation is a deformation that extends in the ε1 direction and does not cause deformation in the ε2 direction. . Biaxial tensile deformation is deformation in which elongation occurs in the ε1 direction and elongation also occurs in the ε2 direction. Specifically, plane strain tensile deformation is deformation in which the strain ratio β (= ε2/ε1) is β = 0 when the strain in the biaxial direction is the maximum principal strain ε1 and the minimum principal strain ε2. Biaxial tensile deformation is deformation in which the strain ratio β (=ε2/ε1) is 0<β≦1. In addition, deformation in which the strain ratio β (= ε2/ε1) is 0 < β < 1 is unequal biaxial deformation, and deformation in which the strain ratio β (= ε2/ε1) is β = 1 is equibiaxial deformation is. Incidentally, the uniaxial tensile deformation is deformation in which elongation occurs in the ε1 direction and contraction occurs in the ε2 direction, and the strain ratio β (=ε2/ε1) satisfies −0.5≦β<0.

ただし、上記ひずみ比βの範囲は、理論値であり、例えば、金属板の表面に転写したスクライブドサークルにおける金属板成形前後(金属板変形前後)の形状変化から計測した最大主ひずみ及び最小主ひずみから算出される、各変形のひずみ比βの範囲は次の通りである。
・一軸引張変形: -0.5<β≦-0.1
・平面ひずみ引張変形: -0.1<β≦0.1
・不等二軸変形: 0.1<β≦0.8
・等二軸変形: 0.8<β≦1.0
However, the range of the strain ratio β is a theoretical value. The range of the strain ratio β for each deformation calculated from the strain is as follows.
・ Uniaxial tensile deformation: -0.5 < β ≤ -0.1
・ Plane strain tensile deformation: -0.1 < β ≤ 0.1
・Unequal biaxial deformation: 0.1<β≦0.8
・ Equibiaxial deformation: 0.8 < β ≤ 1.0

一方、成形加工では、金属板の少なくとも一部が板厚減少率10%以上30%以下となる加工量で行うことがよい。板厚減少率10%未満の加工量では、ひずみ集中が少なく、成形加工時に凹の発達が生じ難い傾向がある。そのため、プレス成形品の肌荒れ自体が発生し難い。一方、板厚減少率30%を超えると、成形加工により金属板(成形品)の破断が生じる傾向が高まる。よって、成形加工の加工量は、上記範囲とすることがよい。 On the other hand, in the forming process, it is preferable that at least a part of the metal plate is processed with a processing amount such that the plate thickness reduction rate is 10% or more and 30% or less. If the thickness reduction rate is less than 10%, strain concentration is small, and there is a tendency that recesses are less likely to develop during forming. Therefore, roughening of the surface itself of the press-molded product is less likely to occur. On the other hand, if the plate thickness reduction rate exceeds 30%, the metal plate (molded product) tends to break during molding. Therefore, it is preferable that the processing amount of the molding process is within the above range.

特に、プレス成形品の成形加工は、縁部(ダイスとホルダとで挟まれた部位)を除く金属板の全体が板厚減少率10%以上30%以下となる加工量で行ってもよい。成形するプレス成形品の形状にもよるが、特に、成形加工は、パンチの頂面に位置する金属板の部位(金属板が二軸引張変形する部位)が板厚減少率10%以上30%以下となる加工量で行うことがよい。パンチの頂面に位置する金属板の部位は、プレス成形品を外装部材として適用したとき、最も視線にさらされ易い部位となることが多い。このため、この金属板の部位を板厚減少率10%以上30%以下と多い加工量で成形加工したとき、凹部の発達を抑えると、肌荒れ抑制効果が顕著となる。 In particular, the molding of the press-formed product may be performed with a processing amount such that the thickness reduction rate of the entire metal plate excluding the edge portion (the portion sandwiched between the die and the holder) is 10% or more and 30% or less. Depending on the shape of the press-formed product to be formed, in particular, the forming process is performed so that the portion of the metal plate located on the top surface of the punch (the portion where the metal plate undergoes biaxial tensile deformation) has a plate thickness reduction rate of 10% or more and 30%. It is preferable to carry out with the following amount of processing. The portion of the metal plate positioned on the top surface of the punch is often the portion most likely to be exposed to the line of sight when the press-formed product is applied as an exterior member. Therefore, when the portion of the metal plate is formed with a large amount of processing, such as a plate thickness reduction rate of 10% or more and 30% or less, the effect of suppressing rough surface becomes remarkable by suppressing the development of concave portions.

つまり、本実施形態に係る成形品(特に、プレス成形品)は、成形品の最大板厚をD1とし、成形品の最小板厚をD2としたとき、式:10≦(D1-D2)/D1×100≦30の関係を満たす加工品であっても、肌荒れが抑制された成形品となる。 That is, the molded product (especially press-molded product) according to the present embodiment has a maximum thickness of the molded product D1 and a minimum thickness of the molded product D2. Even a processed product that satisfies the relationship of D1×100≦30 is a molded product with suppressed surface roughness.

なお、板厚減少率は、成形加工前の金属板の板厚をTiとし、成形加工後の金属板(プレス成形品)の板厚をTaとしたとき、式:板厚減少率=(Ti-Ta)/Tiで示される。 In addition, the plate thickness reduction rate is expressed by the formula: Plate thickness reduction rate = (Ti -Ta)/Ti.

ここで、本実施形態に係る成形品(管状成形品、プレス成形品)には、平面ひずみ引張変形、又は、平面ひずみ引張変形および二軸引張変形が生じる成形加工が施されている。
成形品に、平面ひずみ引張変形、又は、平面ひずみ引張変形および二軸引張変形が生じる成形加工が施されていることを確認する方法は、例えば、次の通りである。
Here, the molded product (tubular molded product, press-molded product) according to the present embodiment is subjected to a molding process that causes plane strain tensile deformation, or plane strain tensile deformation and biaxial tensile deformation.
A method for confirming that a molded product has been subjected to a molding process that causes plane strain tensile deformation, or plane strain tensile deformation and biaxial tensile deformation is as follows, for example.

成形品の3次元形状を測定し、数値解析用のメッシュを作製し、コンピュータによる逆解析によって、板材から3次元形状へ至るまでの過程を導出し、前記各メッシュにおける最大主ひずみと最小主ひずみとの比(前記β)を算出する。この算出により、平面ひずみ引張変形、又は、平面ひずみ引張変形および二軸引張変形が生じる成形加工が施されていることを確認することができる。
例えば、Comet L3D(東京貿易テクノシステム(株))等の三次元計測機により、成形品の三次元形状を測定し、得られた測定データを基に,成形品のメッシュ形状データを得る。次に、得られたメッシュ形状データを用いて、ワンステップ法(加工硬化算出ツール「HYCRASH(株式会社JSOL)」等)の数値解析により、成形品の形状を元にそれを一度平坦な板に展開し、そこからの成形品の伸び、曲げ状態などの形状情報から成形品の板厚変化、残留ひずみなどを計算する。この計算によっても、平面ひずみ引張変形、又は、平面ひずみ引張変形および二軸引張変形が生じる成形加工が施されていることを確認することができる。
Measure the three-dimensional shape of the molded product, create a mesh for numerical analysis, derive the process from the plate material to the three-dimensional shape by inverse analysis by computer, and calculate the maximum principal strain and minimum principal strain in each mesh. and the ratio (the above β) is calculated. By this calculation, it can be confirmed that the forming process is performed to cause plane strain tensile deformation, or plane strain tensile deformation and biaxial tensile deformation.
For example, the three-dimensional shape of the molded product is measured using a three-dimensional measuring machine such as Comet L3D (Tokyo Boeki Techno System Co., Ltd.), and mesh shape data of the molded product is obtained based on the obtained measurement data. Next, using the obtained mesh shape data, numerical analysis of the one-step method (work hardening calculation tool "HYCRASH (JSOL Co., Ltd.)" etc.) is performed, based on the shape of the molded product. Then, from the shape information such as elongation and bending state of the molded product, change in plate thickness, residual strain, etc. of the molded product are calculated. From this calculation, it can be confirmed that a forming process that causes plane strain tensile deformation, or plane strain tensile deformation and biaxial tensile deformation is performed.

以下、本発明を、実施例を挙げてさらに具体的に説明する。ただし、これら実施例は、本発明を制限するものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, these examples do not limit the present invention.

(試験例1):平均結晶粒径の3倍までの断面領域のHV差が小さい例(発明例)
質量%で、C:0.0029%、Si:0.012%、Mn:0.09%、P:0.02%、S:0.003%、Al:0.041%、N:0.003%、Ti:0.013%、Nb:0.023%、及び、B:0.0007%、残部:Feおよび不純物を含有する化学組成を有し、板厚10mmの表面用熱延板を準備した。
一方、質量%で、C:0.2%、Si:0.2%、Mn:1.2%、P:0.02%、S:0.003%、Al:0.03%、N:0.003%、Ti:0.2%、Nb:0.003%、及び、B:0.0018%、残部:Feおよび不純物を含有する化学組成を有し、板厚20mmの基層用熱延板を準備した。
(Test Example 1): Example where the HV difference in the cross-sectional area up to three times the average grain size is small (Invention Example)
% by mass, C: 0.0029%, Si: 0.012%, Mn: 0.09%, P: 0.02%, S: 0.003%, Al: 0.041%, N: 0.04% 003%, Ti: 0.013%, Nb: 0.023%, B: 0.0007%, and the balance: Fe and impurities, and having a thickness of 10 mm. prepared.
On the other hand, in mass%, C: 0.2%, Si: 0.2%, Mn: 1.2%, P: 0.02%, S: 0.003%, Al: 0.03%, N: 0.003%, Ti: 0.2%, Nb: 0.003%, and B: 0.0018%, and the balance: Fe and impurities. prepared the plate.

次に、基層用熱延板の両面に、表面層用熱延板を溶接した。この溶接した積層熱延板を1100℃に加熱した後、圧下率92%で熱延した。その後、熱延後の積層熱延板を、水素焼鈍し,表面の炭素を脱炭させた。
次に、積層熱延板を、圧下率81%で冷延した。
次に、積層冷延板を、昇温速度10℃/s、均熱温度780℃、均熱時間10分で焼鈍した後、冷却速度50℃/sで急冷した。
Next, the surface layer hot-rolled sheet was welded to both surfaces of the base layer hot-rolled sheet. This welded laminated hot-rolled sheet was heated to 1100° C. and then hot-rolled at a rolling reduction of 92%. Thereafter, the laminated hot-rolled sheet after hot rolling was annealed in hydrogen to decarburize the surface carbon.
Next, the laminated hot-rolled sheet was cold-rolled at a rolling reduction of 81%.
Next, the laminated cold-rolled sheet was annealed at a heating rate of 10° C./s, a soaking temperature of 780° C. for a soaking time of 10 minutes, and then quenched at a cooling rate of 50° C./s.

以上の工程により、基層の両面に、表面層が設けられた鋼板を得た。基層、表面層の詳細は、次の通りである。
基層 :面積率で、フェライト:40%、マルテンサイト:60%の複相金属組織を有し、厚さ0.4mmのDP鋼層
表面層:面積率で、フェライト:100%の単相金属組織を有し、厚さ0.1mmの鋼層
Through the above steps, a steel sheet having surface layers provided on both sides of the base layer was obtained. The details of the base layer and the surface layer are as follows.
Base layer: A 0.4 mm thick DP steel layer having a dual-phase metallographic structure with an area ratio of ferrite: 40% and martensite: 60% Surface layer: A single-phase metallographic structure with an area ratio of ferrite: 100% and a steel layer with a thickness of 0.1 mm

(試験例2)平均結晶粒径の5倍までの断面領域のHV差が小さい例(発明例)
水素焼鈍の時間を長く変更した以外は、試験例1と同様にして、鋼板を得た。基層、表面層の詳細は、次の通りである。
基層 :面積率で、フェライト:40%、マルテンサイト:60%の複相金属組織を有し、厚さ0.4mmのDP鋼層
表面層:面積率で、フェライト:100%の単相金属組織を有し、厚さ0.1mmの鋼層
(Test Example 2) Example of a small HV difference in a cross-sectional area up to five times the average crystal grain size (Invention Example)
A steel plate was obtained in the same manner as in Test Example 1, except that the hydrogen annealing time was lengthened. The details of the base layer and the surface layer are as follows.
Base layer: A 0.4 mm thick DP steel layer having a dual-phase metallographic structure with an area ratio of ferrite: 40% and martensite: 60% Surface layer: A single-phase metallographic structure with an area ratio of ferrite: 100% and a steel layer with a thickness of 0.1 mm

(試験例3)平均結晶粒径の3倍までの断面領域のHV差が大きい例(比較例:単層型)
基層用熱延板に対して、冷延および焼鈍を施した以外は、試験例1と同様にして、面積率で、フェライト:40%、マルテンサイト:60%の複相金属組織を有し、厚さ0.4mmのDP鋼板を得た。
(Test Example 3) An example of a large HV difference in a cross-sectional area up to three times the average crystal grain size (Comparative example: single layer type)
In the same manner as in Test Example 1, except that the hot-rolled sheet for the base layer was cold-rolled and annealed, the area ratio was ferrite: 40%, martensite: 60%. A DP steel plate with a thickness of 0.4 mm was obtained.

(試験例4)平均結晶粒径の3倍までの断面領域のHVが大きい例(比較例:積層型)
焼鈍の均熱温度を740℃に変更した以外は、試験例1と同様にして、鋼板を得た。基層、表面層の詳細は、次の通りである。
基層 :面積率で、フェライト:75%、マルテンサイト:25%の複相金属組織を有し、厚さ0.4mmのDP鋼層
表面層:面積率で、フェライト:100%の単相金属組織を有し、厚さ0.1mmの鋼層
(Test Example 4) Example of large HV in the cross-sectional area up to three times the average grain size (Comparative example: laminated type)
A steel plate was obtained in the same manner as in Test Example 1, except that the soaking temperature for annealing was changed to 740°C. The details of the base layer and the surface layer are as follows.
Base layer: DP steel layer with a thickness of 0.4 mm having a dual phase metal structure of 75% ferrite and 25% martensite in area ratio Surface layer: Single phase metal structure of 100% ferrite in area ratio and a steel layer with a thickness of 0.1 mm

(測定)
得られた各例の鋼板について、既述の方法に従って、表面から基層に向かう方向に表面層の平均結晶粒径の3倍又は5倍までの断面領域におけるビッカース硬さを測定した。最大ビッカース硬さの90%~100%の範囲にあるビッカース硬さの割合を求めた。
(measurement)
For the obtained steel sheets of each example, the Vickers hardness was measured in a cross-sectional area up to 3 or 5 times the average grain size of the surface layer in the direction from the surface toward the base layer according to the method described above. The percentage of Vickers hardness in the range of 90% to 100% of the maximum Vickers hardness was determined.

ただし、試験例3のDP鋼板は、既述の方法に準じて、表面から板厚方向に鋼板の平均結晶粒径の3倍又は5倍までの断面領域におけるビッカース硬さを測定した。そして、最大ビッカース硬さの90%~100%の範囲にあるビッカース硬さの割合を求めた。 However, for the DP steel sheet of Test Example 3, Vickers hardness was measured in a cross-sectional area up to 3 or 5 times the average grain size of the steel sheet in the thickness direction from the surface according to the method described above. Then, the percentage of Vickers hardness in the range of 90% to 100% of the maximum Vickers hardness was determined.

なお、表中、平均結晶粒径の3倍までの断面領域における上記ビッカース硬さの割合を「ビッカース硬さの割合(平均結晶粒径の3倍)と表記する。また、平均結晶粒径の5倍までの断面領域における上記ビッカース硬さの割合を「ビッカース硬さの割合(平均結晶粒径の3倍)と表記する。 In the table, the Vickers hardness ratio in the cross-sectional area up to three times the average crystal grain size is expressed as "Vickers hardness ratio (three times the average crystal grain size). The ratio of the Vickers hardness in the cross-sectional area up to 5 times is expressed as "the ratio of Vickers hardness (three times the average crystal grain size)".

(評価)
-成形加工評価A-
得られた各例の鋼板に対して、張り出し加工を施し、プレス成形品を成形した。
具体的には、図8に示すように、成形品20の天板部20Aの直径R=150mm、成形品20の高さH=18mm、成形品20の縦壁部20Bの角度θ=90°の皿状のプレス成形品を成形した。
なお、この成形は、天板部20Aの評価部A(天板部20Aの中心部)となる鋼板の板厚減少率が30%である加工量で実施した。この成形品の天板部20Aの評価部Aでの変形比βは、1.0である。
(evaluation)
-Molding processing evaluation A-
The obtained steel plate of each example was stretched to form a press-formed product.
Specifically, as shown in FIG. 8, the diameter R of the top plate portion 20A of the molded product 20 is 150 mm, the height H of the molded product 20 is 18 mm, and the angle θ of the vertical wall portion 20B of the molded product 20 is 90 °. A dish-shaped press-molded product was molded.
In addition, this forming was carried out with a processing amount such that the plate thickness reduction rate of the steel plate serving as the evaluation portion A (center portion of the top plate portion 20A) of the top plate portion 20A was 30%. The deformation ratio β at the evaluation portion A of the top plate portion 20A of this molded product is 1.0.

そして、成形品の評価部Aにおいて、成形前後の「断面曲線の算術平均高さPa」を測定し、Pa増加分(成形のPa-成形のPa)を算出した。
なお、「断面曲線の算術平均高さPa」は、JIS B0601(2001)に規定された算術平均高さである。測定条件は、評価長さ:1mm、基準長さ:1mmとした。
Then, in the evaluation section A of the molded product, the "arithmetic mean height Pa of the cross-sectional curve" was measured before and after molding, and the increase in Pa (Pa after molding - Pa before molding) was calculated.
The "arithmetic mean height Pa of cross-sectional curves" is the arithmetic mean height defined in JIS B0601 (2001). The measurement conditions were an evaluation length of 1 mm and a reference length of 1 mm.

-成形加工評価B-
図8中、成形品20の天板部板20Aの評価部B(天板部20Aの中心と縁と間の中央部)の板厚減少率が25%である加工量となるように、成形品20の高さHを調整した以外は、成形加工評価Aと同様にして、プレス成形品を成形した。この成形品の評価部Bでの変形比βは、0.5である。成形品の評価部Bにおいて、Pa増加分を求めた。
-Molding processing evaluation B-
In FIG. 8, the evaluation part B (the central part between the center and the edge of the top plate part 20A) of the top plate part plate 20A of the molded product 20 is molded so that the plate thickness reduction rate is 25%. A press-formed product was formed in the same manner as in the evaluation of forming process A, except that the height H of the product 20 was adjusted. The deformation ratio β of this molded product at the evaluation portion B is 0.5. In the evaluation section B of the molded product, the increase in Pa was obtained.

-成形加工評価C-
図8中、成形品20の天板部板20Aの評価部C(天板部20Aの縁部)の板厚減少率が20%である加工量となるように、成形品20の高さHを調整した以外は、成形加工評価Aと同様にして、プレス成形品を成形した。この成形品の評価部Cでの変形比βは、0.0である。そして、成形品の評価部Cにおいて、Pa増加分を求めた。
-Molding processing evaluation C-
In FIG. 8, the height H of the molded product 20 is such that the evaluation portion C (the edge of the top plate portion 20A) of the top plate portion plate 20A of the molded product 20 has a processing amount at which the plate thickness reduction rate is 20%. A press-molded product was molded in the same manner as in the molding process evaluation A, except that the was adjusted. The deformation ratio β of this molded product at the evaluation portion C is 0.0. Then, in the evaluation section C of the molded product, the increase in Pa was obtained.

なお、上記成形加工評価A~Cの成形では、成形品の評価部に相当する鋼板の表面にスクライブドサークルを転写しておき,成形前後(変形前後)のスクライブドサークルの形状変化を計測することで、最大主ひずみ、最小主ひずみを計測した。それらの値から,成形品の評価部での変形比βを算出した。 In the molding of the above molding process evaluation A to C, the scribed circle is transferred to the surface of the steel plate corresponding to the evaluation part of the molded product, and the shape change of the scribed circle before and after molding (before and after deformation) is measured. Thus, the maximum principal strain and the minimum principal strain were measured. From these values, the deformation ratio β at the evaluation part of the molded product was calculated.

Figure 0007249730000001
Figure 0007249730000001

上記結果から、複相金属組織を有する基層の少なくとも片面に、単相金属組織を有し、表面層の表層領域において、硬度測定点の70%以上のビッカース硬さが、最大ビッカース硬さの90%~100%の範囲にある表面層を設けた試験例1~2の鋼板は、平面ひずみ引張変形、又は平面ひずみ引張変形および二軸引張変形が生じる成形加工を施しても、肌荒れの発生が抑制され意匠性に優れた成形品が得られることがわかる。
一方、硬度測定点の70%未満のビッカース硬さが、最大ビッカース硬さの90%~100%の範囲にある試験例3~4の鋼板は、平面ひずみ引張変形、又は平面ひずみ引張変形および二軸引張変形が生じる成形加工を施すと、成形品に肌荒れの発生することがわかる。
From the above results, at least one side of the base layer having a dual phase metal structure has a single phase metal structure, and in the surface layer region of the surface layer, the Vickers hardness of 70% or more of the hardness measurement points is 90 of the maximum Vickers hardness. The steel sheets of Test Examples 1 and 2, which have a surface layer in the range of % to 100%, do not cause surface roughness even when subjected to forming processing that causes plane strain tensile deformation, or plane strain tensile deformation and biaxial tensile deformation. It can be seen that a molded article with excellent design property can be obtained by suppressing it.
On the other hand, the steel plates of Test Examples 3 and 4, in which the Vickers hardness of less than 70% of the hardness measurement point is in the range of 90% to 100% of the maximum Vickers hardness, are plane strain tensile deformation, or plane strain tensile deformation and two It can be seen that the surface roughening occurs in the molded product when subjected to a molding process that causes axial tensile deformation.

10 金属板
12 基層
14A 表面層
14B 表面層
10 metal plate 12 base layer 14A surface layer 14B surface layer

Claims (4)

フェライトと、マルテンサイト、ベイナイトおよび残留オーステナイトのうち少なくとも1つと、を含む複相金属組織を有する鋼層である基層と、
前記基層の少なくとも片面に設けられ、フェライトの単相金属組織を有する鋼層である表面層であって、前記基層の厚さ方向に沿って切断した断面領域のうち、表面から前記基層に向かう方向に表面層の平均結晶粒径の3倍までの断面領域において、最大ビッカース硬さの90%~100%の範囲にあるビッカース硬さの硬度測定点の割合が70%以上である表面層と、
を備える鋼板。
a base layer, which is a steel layer having a dual-phase metallographic structure containing ferrite and at least one of martensite, bainite and retained austenite;
A surface layer that is provided on at least one side of the base layer and is a steel layer having a ferrite single-phase metallographic structure, in a cross-sectional area cut along the thickness direction of the base layer, in a direction from the surface toward the base layer a surface layer in which the ratio of Vickers hardness measurement points in the range of 90% to 100% of the maximum Vickers hardness is 70% or more in a cross-sectional area up to three times the average crystal grain size of the surface layer;
steel plate with
前記表面層は、前記基層の厚さ方向に沿って切断した断面領域のうち、表面から前記基層に向かう方向に表面層の平均結晶粒径の5倍までの断面領域において、最大ビッカース硬さの90%~100%の範囲にあるビッカース硬さの硬度測定点の割合が70%以上である請求項1に記載の鋼板。 The surface layer has a maximum Vickers hardness in a cross-sectional area up to five times the average crystal grain size of the surface layer in a direction from the surface toward the base layer, out of the cross-sectional area cut along the thickness direction of the base layer. The steel sheet according to claim 1 , wherein the percentage of Vickers hardness measurement points in the range of 90% to 100% is 70% or more . 請求項1又は請求項2に記載の鋼板を管状成形した管状成形品。 A tubular molded product obtained by tubularly molding the steel plate according to claim 1 or 2. 請求項1又は請求項2に記載の鋼板をプレス成形したプレス成形品。 A press-formed product obtained by press-forming the steel plate according to claim 1 or claim 2.
JP2017198631A 2017-10-12 2017-10-12 Steel plates, tubular moldings, and stampings Active JP7249730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017198631A JP7249730B2 (en) 2017-10-12 2017-10-12 Steel plates, tubular moldings, and stampings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017198631A JP7249730B2 (en) 2017-10-12 2017-10-12 Steel plates, tubular moldings, and stampings

Publications (2)

Publication Number Publication Date
JP2019072861A JP2019072861A (en) 2019-05-16
JP7249730B2 true JP7249730B2 (en) 2023-03-31

Family

ID=66543533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017198631A Active JP7249730B2 (en) 2017-10-12 2017-10-12 Steel plates, tubular moldings, and stampings

Country Status (1)

Country Link
JP (1) JP7249730B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022127529A (en) * 2021-02-19 2022-08-31 東洋鋼鈑株式会社 Steel foil for battery container and pouch-type battery container manufactured therefrom

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794690B2 (en) * 1987-12-09 1995-10-11 株式会社クボタ Heat treatment method for clad steel pipe
JP3363590B2 (en) * 1994-05-26 2003-01-08 日新製鋼株式会社 High-strength duplex stainless steel and method for producing the same
JPH09263904A (en) * 1996-03-28 1997-10-07 Nisshin Steel Co Ltd Ferrite single phase stainless steel excellent in surface property
JP5326097B2 (en) * 2008-03-27 2013-10-30 国立大学法人 東京大学 Multi-layer steel with excellent strength-ductility balance without interfacial debonding fracture and necking fracture
EP2886332B1 (en) * 2013-12-20 2018-11-21 ThyssenKrupp Steel Europe AG Flat steel product, and method of producing a component of a motor vehicle body and of a motor vehicle body.
EP3388538B1 (en) * 2015-12-11 2022-11-09 Nippon Steel Corporation Method of producing molded product and molded product

Also Published As

Publication number Publication date
JP2019072861A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
KR101940968B1 (en) METHOD FOR MANUFACTURING MOLDED PRODUCTS
EP3181714B1 (en) Material for cold-rolled stainless steel sheets
JP2008240046A (en) High-strength steel sheet with excellent scale adhesion during hot pressing and manufacturing method thereof
JPWO2015105046A1 (en) Ferritic stainless steel and manufacturing method thereof
US11035022B2 (en) Metal sheet, method of producing metal sheet, method of producing molded product of metal sheet, and molded product of metal sheet
WO2019065508A1 (en) Annealed hot-rolled ferritic stainless steel sheet and method for producing same
JP7249730B2 (en) Steel plates, tubular moldings, and stampings
JP5930144B1 (en) Steel plate for squeezed can and method for manufacturing the same
CN107794356A (en) The manufacture method of the ferrite-group stainless steel of mouldability and the excellent that wrinkles
JP6809325B2 (en) Duplex stainless steel shaped steel and its manufacturing method
JP2019173070A (en) Al-CONTAINING FERRITIC STAINLESS STEEL MATERIAL EXCELLENT IN FABRICABILITY AND HIGH TEMPERATURE OXIDATION RESISTANCE AND WORKED ARTICLE
JP2016113670A (en) Ferritic stainless steel and method for producing the same
JP5359709B2 (en) Steel plate for drawn cans and plated steel plate for drawn cans
CN109722508B (en) Ferritic stainless steel sheet and method for producing same
JP2008240047A (en) High-strength steel sheet with excellent scale adhesion during hot pressing and manufacturing method thereof
JP2002155339A (en) Medium and high carbon steel having excellent deep drawability
JP6881666B2 (en) Manufacturing method of ferritic stainless steel sheet
JP2008127671A (en) Ferritic stainless steel sheet for clad pan having low in-plane anisotropy and superior deep drawability, and its manufacturing method
JP7167648B2 (en) Steel plate manufacturing method
JP7542389B2 (en) Ferrite-austenitic duplex stainless steel sheet, bent product, bending method for ferritic-austenitic duplex stainless steel sheet, and bending die
JP2015193027A (en) Manufacturing method of hot-rolled steel sheet
JP5900717B1 (en) Stainless steel sheet and manufacturing method thereof
JP5943105B2 (en) Steel sheet and manufacturing method thereof
TWI512116B (en) A hot-pressed steel sheet member, a method for manufacturing the same, and a steel sheet for hot pressing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220602

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220602

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220620

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220621

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220722

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220726

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220913

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221101

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230117

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230214

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230314

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R150 Certificate of patent or registration of utility model

Ref document number: 7249730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150