[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7247592B2 - 異常検出装置、異常検出プログラム、異常検出方法及び異常検出システム - Google Patents

異常検出装置、異常検出プログラム、異常検出方法及び異常検出システム Download PDF

Info

Publication number
JP7247592B2
JP7247592B2 JP2019005542A JP2019005542A JP7247592B2 JP 7247592 B2 JP7247592 B2 JP 7247592B2 JP 2019005542 A JP2019005542 A JP 2019005542A JP 2019005542 A JP2019005542 A JP 2019005542A JP 7247592 B2 JP7247592 B2 JP 7247592B2
Authority
JP
Japan
Prior art keywords
abnormality
data
determination
unit
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019005542A
Other languages
English (en)
Other versions
JP2020113212A (ja
Inventor
一仁 竹中
秀明 三澤
大輔 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019005542A priority Critical patent/JP7247592B2/ja
Priority to US16/742,107 priority patent/US11423772B2/en
Publication of JP2020113212A publication Critical patent/JP2020113212A/ja
Application granted granted Critical
Publication of JP7247592B2 publication Critical patent/JP7247592B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096775Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Traffic Control Systems (AREA)

Description

この明細書による開示は、道路に生じた走行環境の異常を検出する異常検出の技術に関する。
特許文献1には、車載器及びセンタ装置を含み、走行環境を監視する監視システムが開示されている。特許文献1のセンタ装置では、車両から取得される運転行動データを用いて走行環境の異常地点が検出される。そしてセンタ装置は、異常地点を含むような映像を車載器から取得し、映像を用いて行われた異常内容の判断結果を取得する。
特開2018-10406号公報
特許文献1では、監視システムにおける走行環境の異常検出の詳細が開示されている。一方で、一旦検出した走行環境の異常について、その解消を判断する処理の詳細は、特許文献1に開示されていなかった。
本開示は、センタ側における負荷の増加を抑えつつ、走行環境の異常解消を精度良く検出可能な異常検出装置、異常検出プログラム、異常検出方法及び異常検出システムの提供を目的とする。
上記目的を達成するため、開示された一つの態様は、複数の車両(V)から情報を収集するセンタ(CNT)において用いられ、道路に生じた走行環境の異常を検出する異常検出装置であって、車両から運転データを取得するデータ取得部(21)と、走行環境に生じている異常について、運転データから解消の可能性を判定する解消可能性判定部(23)と、解消の可能性があると判定された異常箇所(TA)について、当該異常箇所の異常が解消しているか否かの状況判断に用いられる判断情報を蓄積する車両に当該判断情報の提供を要求する判断情報要求部(31)と、提供の要求に応じて車両から送信される判断情報を取得する判断情報取得部(32)と、判断情報を用いて判断された異常解消の判断結果を取得する判断結果取得部(34)と、を備える異常検出装置とされる。
また開示された一つの態様は、複数の車両(V)から情報を収集するセンタ(CNT)のコンピュータ(100)によって実施され、道路に生じた走行環境の異常を検出する異常検出プログラムであって、少なくとも一つの処理部(11)に、車両から運転データを取得し(S100)、走行環境に生じている異常について、運転データから解消の可能性を判定し(S107,S108)、解消の可能性があると判定された異常箇所(TA)について、当該異常箇所の異常が解消しているか否かの状況判断に用いられる判断情報を蓄積する車両に当該判断情報の提供を要求し(S109)、提供の要求に応じて車両から送信される判断情報を取得し(S120)、判断情報を用いて判断された異常解消の判断結果を取得する(S125)、ことを含む処理を実行させる異常検出プログラムとされる。
また開示された一つの態様は、複数の車両(V)から情報を収集するセンタ(CNT)のコンピュータ(100)によって実施され、道路に生じた走行環境の異常を検出する異常検出方法であって、少なくとも一つの処理部(11)にて実行される処理に、車両から運転データを取得し(S100)、走行環境に生じている異常について、運転データから解消の可能性を判定し(S107,S108)、解消の可能性があると判定された異常箇所(TA)について、当該異常箇所の異常が解消しているか否かの状況判断に用いられる判断情報を蓄積する車両に当該判断情報の提供を要求し(S109)、提供の要求に応じて車両から送信される判断情報を取得し(S120)、判断情報を用いて判断された異常解消の判断結果を取得する(S125)、というステップを含む異常検出方法とされる。
また開示された一つの態様は、車両(V)に搭載される車載器(110)と、車載器から情報を収集するセンタ(CNT)のコンピュータ(100)とを含み、道路に生じた走行環境の異常を検出する異常検出システムであって、車載器は、走行環境に異常がある異常箇所(TA)の位置情報を、センタから受信する情報受信部(111)と、異常箇所を走行中の運転データをセンタへ向けて送信するデータ送信部(121)と、を備え、コンピュータは、異常箇所での運転データをデータ送信部から取得するデータ取得部(21)と、異常箇所にて生じた走行環境の異常について、運転データから解消の可能性を判定する解消可能性判定部(23)と、解消の可能性があると判定された異常箇所について、当該異常箇所の異常が解消しているか否かの状況判断に用いられる判断情報を蓄積する車両に当該判断情報の提供を要求する判断情報要求部(31)と、提供の要求に応じて車両から送信される判断情報を取得する判断情報取得部(32)と、判断情報を用いて判断された異常解消の判断結果を取得する判断結果取得部(34)と、を備える異常検出システムとされる。
これらの態様では、走行環境に生じている異常の解消を判断情報から判断する以前に、異常解消の可能性が運転データから判定される。こうした解消可能性の判定に基づく選別によれば、判断情報を用いて異常解消を判断する機会は、解消可能性の判定よる選別が無い場合と比較して、低減され得る。以上によれば、センタ側における負荷の増加を抑えつつ、走行環境の異常解消を精度良く検出することが可能になる。
尚、上記括弧内の参照番号は、後述する実施形態における具体的な構成との対応関係の一例を示すものにすぎず、技術的範囲を何ら制限するものではない。
本開示の第一実施形態による環境監視システムの全体像を示すブロック図である。 本開示の第一実施形態によるセンタ装置にて実施される異常発生検出及び異常解消検出の全体像を説明するための図である。 異常エリアの発生から解消にいたるまでの推移を、環境監視システムの作動と共に説明する図である。 異常発生の可能性を判定する通常モデル及び閾値と、異常解消の可能性を判定する異常モデル及び閾値とについて、その詳細を模式的に示す図である。 判断結果に基づく蓄積データの更新方法の詳細を示す図であって、更新前の解消判定閾値を破線にて示し、更新後の解消判定閾値を実線にて示す図である。 センタ装置にて実施される可能性判定処理の詳細を示すフローチャートである。 センタ装置にて実施される状態判断処理の詳細を示すフローチャートである。 本開示の第二実施形態による環境監視システムの全体像を示すブロック図である。
以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態及び変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。
(第一実施形態)
図1に示す本開示の第一実施形態による環境監視システム10は、多数の車両Vから提供される情報を収集し、収集された情報を用いて道路に生じた走行環境の異常を検出する。走行環境の異常は、各車両Vに周知されるべき事象であり、具体的には、事故の発生、故障者の発生、及び路上障害物の発生等である。環境監視システム10は、検出した走行環境の異常を、交通情報として各車両Vに通知する。環境監視システム10は、多数の車両Vのそれぞれに搭載された車載器110と、遠隔地のプローブセンタCNTに設置されたセンタ装置100等とによって構成されている。
車載器110は、例えばLTE(Long Term Evolution)及び5G等の通信規格に沿った移動体通信を行う車載通信装置である。車載器110は、移動体通信の基地局、及びネットワークNW(図3参照)を介して、センタ装置100との間で情報を送受信する。車載器110の搭載により、各車両Vは、車外のネットワークNWと通信可能なコネクテッドカーとなり、且つ、道路についてのプローブ情報を収集するプローブカーとなる。
車載器110は、GNSS(Global Navigation Satellite System)受信器に加えて、車載センサ群122、映像レコーダ134及び通知実行部142等の車載構成と直接的又は間接的に電気接続されている。GNSS受信器は、車載器110に車両V(自車)の位置情報を提供する。GNSS受信器は、例えば車載されたナビゲーション装置の一部であってもよく、又は搭乗者によって車室内に持ち込まれる携帯端末の一部であってもよい。
車載センサ群122は、車両Vの運転データ(詳細は後述する)を検出するセンサ群である。映像レコーダ134は、車外カメラ133と接続されている。車外カメラ133は、車両Vの進行方向(前方)に撮像面を向けた姿勢で、車室内に設置されている(図3参照)。車外カメラ133は、車両Vの周囲のうちで例えば前方の範囲を撮影し、撮影した前方範囲の映像データを映像レコーダ134へ向けて出力する。映像レコーダ134は、車外カメラ133から入力される映像データに、位置情報及び時刻情報を紐づけて蓄積する。通知実行部142は、ナビゲーション装置のディスプレイ及び音響機器のスピーカ等の構成である。通知実行部142は、プローブセンタCNTから配信される交通情報を、表示及び音声を用いて、車両Vの搭乗者に通知する。
車載器110は、CPU、RAM、ROM、I/O及びこれらを接続するバスライン等を備えたマイクロコントローラを主体に構成されている。CPUは、RAMと結合された演算処理のためのハードウェアであり、所定のプログラムを実行可能である。ROMは、不揮発性の記憶媒体を含む構成であり、CPUによって実行される複数のプログラム等を記憶している。ROMに記憶されたプログラムには、プローブセンタCNTへの情報の送信及びプローブセンタCNTからの情報の受信を制御する通信制御プログラムが少なくとも含まれている。車載器110は、CPUによる通信制御プログラムの実行により、データ送信部121、要求受付部131、映像送信部132及び通知受信部141等の機能部を有する。
データ送信部121は、車載センサ群122と連携し、車両V(自車)に入力された運転操作、及び当該運転操作に基づく車両挙動に関連する計測データを、運転データとしてセンタ装置100に送信する。データ送信部121の取得する運転データには、例えばアクセル開度、ブレーキ踏力、操舵角、車速、前後加速度、横加速度及びヨーレート等の少なくとも一つ(望ましくは複数)が含まれている。
データ送信部121は、車両Vが道路を走行する期間において、車載センサ群122から運転データを継続的に取得する。データ送信部121は、取得した運転データを、予め規定された運転シーン毎に分割する。データ送信部121は、運転シーン毎の運転データに、当該運転データの取得場所及び取得時刻を示す情報を紐づけ、ひと纏まりの情報としてセンタ装置100へ送信する。
要求受付部131及び映像送信部132は、センタ装置100からの要求に応じて、車外カメラ133にて撮影された映像データを、センタ装置100に返信する。要求受付部131は、送信すべき映像データの撮影場所及び撮影時刻を指定した提供要求を、センタ装置100から受信する。映像送信部132は、要求受付部131にて受信された提供要求に基づき、撮影場所及び撮影時刻の合致する映像データを、映像レコーダ134から読み出す。映像送信部132は、映像データのフレームレート及び解像度等を下げる変換処理を適宜実施し、送信用の映像データを生成する。映像送信部132は、送信用の映像データを、当該映像データに紐付く撮影場所及び撮影時刻の各情報と共に、センタ装置100へ向けて送信する。尚、通信データ量を削減する上記の変換処理は、実施されなくてもよい。また、送信用の映像データにおけるフレームレート及び解像度は、移動体通信の通信環境に応じて、適宜調整されてもよい。
通知受信部141は、センタ装置100によって配信される交通情報を受信する。通知受信部141に通知される交通情報には、例えば走行環境に生じた異常について、発生場所及び範囲を示す情報と、その内容を示す情報とが含まれている。通知受信部141は、車両Vが交通情報の示す異常エリアTA(図3参照)を走行予定である場合、異常エリアTAに到達する所定距離又は所定時間前に、通知実行部142と連携し、交通情報の示す異常内容を車両Vの搭乗者(運転者)に通知する。
センタ装置100は、プローブセンタCNTに設置されたコンピュータである。一つのプローブセンタCNTには、複数のセンタ装置100が設置されていてもよい。プローブセンタCNTには、予め規定された管轄エリアを走行する多数の車両Vから、プローブ情報としての運転データが収集される。センタ装置100は、ネットワークNWに有線接続されており、各車載器110より収集された運転データを分析し、例えば渋滞及び事故等の異常の発生状況を監視する。
具体的に、センタ装置100は、道路の走行環境に異常が発生した場合、図2及び図3に示すように、異常エリアTAを走行する車両V(図3 車両V1参照)の運転データに基づき、異常発生の可能性を判定する。そして、異常発生の可能性があると判定した場合、センタ装置100は、対応する異常エリアTAを走行した車両V(図3 車両V2参照)から、この異常エリアTAの走行環境を撮影した映像データを取得する。こうして取得された映像データを判断情報(判断材料)とし、例えばオペレータによる異常発生のチェックに基づき、異常発生の確定判断が実施される。
センタ装置100は、異常発生の確定判断に従い、異常エリアマップMTAに異常エリアTAを登録すると共に、異常エリアTAに関連する情報を、交通情報として各車両の車載器110に通知する。こうして配信される交通情報に基づき、異常エリアTAを走行予定の車両V(図3 車両V3参照)では、異常エリアTAに関する情報が搭乗者に通知される。
さらに、道路環境に生じた異常が解消された場合にて、センタ装置100は、異常エリアTAであった場所を走行する車両V(図3 車両V4参照)の運転データに基づき、異常解消の可能性を判定する。そして、異常解消の可能性があると判定した場合、センタ装置100は、直前まで異常エリアTAであった場所を走行した車両V(図3 車両V5参照)から、異常エリアTAだった場所の走行環境を撮影した映像データを取得する。こうして取得された映像データを判断情報とし、例えばオペレータによる異常解消のチェックに基づき、異常解消の確定判断が実施される。そして、異常解消の確定判断に基づき、センタ装置100は、異常エリアマップMTAへの異常エリアTAの登録を解除すると共に、当該エリアについての交通情報の配信を終了する。
尚、異常発生検出において、運転データの提供車両V1と、映像データの提供車両V2とは、同一の車両Vであってもよく、又は異なる車両Vであっていてもよい。同様に、異常解消検出においても、運転データの提供車両V4と、映像データの提供車両V5とは、同一の車両Vであってもよく、又は異なる車両Vであってもよい。但し、判断情報として取得される映像データの撮影時刻は、異常発生及び異常解消の各可能判定に用いられた運転データの取得時刻と概ね同時刻であるか、又は取得時刻よりも後であることが望ましい。
以上の異常発生検出及び異常解消検出を行うセンタ装置100は、図1に示すように、処理部11、RAM12、記憶部13、I/O、及びこれらを相互接続するバスライン等を備えた演算回路を主体とするサーバ装置である。
処理部11は、RAMと結合された演算処理のためのハードウェアであり、一つ又は複数のCPU(Central Processing Unit)を含む構成である。処理部11は、CPUに加えて、GPU(Graphics Processing Unit)、FPGA(Field-Programmable Gate Array)、及び他の専用機能を備えたIPコア等を含む構成であってもよい。さらに、処理部11は、AI(Artificial Intelligence)の学習及び推論等の処理に特化した演算コア等を含む構成であってもよい。
記憶部13は、大容量のハードディスク及びフラッシュメモリ等の種々の非遷移的実体的記憶媒体(non-transitory tangible storage medium)を含む構成である。記憶部13には、走行環境における異常の発生及び解消を監視するための異常検出プログラムが少なくとも記憶されている。処理部11による異常検出プログラムの実行により、センタ装置100は、データ受信部21、異常エリア判定部22、異常状態判定部23、映像要求部31、映像受信部32、情報提示部33、判断取得部34及び通知配信部41等の機能部を有する。
データ受信部21、異常エリア判定部22及び異常状態判定部23は、異常発生及び異常解消の各可能性を、運転データに基づき判定する機能部である。こうした異常発生及び異常解消の各可能性判定のため、判定基準となるデータを格納する記憶領域として、通常モデル記憶部24及び異常エリア記憶部25等が記憶部13に確保されている。
データ受信部21は、多数の車両Vに搭載された各車載器110から随時送信される運転データを、ネットワークNWを通じて逐次受信する。
異常エリア判定部22は、異常エリア記憶部25に記憶された情報を参照可能である。異常エリア記憶部25には、現在の異常エリアTAの位置及び範囲を示す異常エリアマップMTA(図3参照)が格納されている。後述するように、映像データを基に走行環境異常として確認された異常エリアTAが、異常エリアマップMTAには登録される。異常エリアTAは、映像データに基づいて異常状態から通常状態に復帰したと確認された場合に、異常エリアマップMTAから取り除かれる。このとき、後述するように、異常エリア記憶部25からは、異常エリアTAの関連データも削除される。
異常エリア判定部22は、データ受信部21にて取得される各運転データに紐付けられた位置情報を、異常エリア記憶部25に保存された異常エリアマップMTAと照合する。異常エリア判定部22は、新規に取得される運転データ(新規データ)が、異常エリアマップMTAに登録された異常エリアTAに属しているか否かを判断する。新規データが異常エリアTA内にて取得されていた場合、異常エリア記憶部25の異常モデルMDa(後述する)に、当該新規データが追加される。
異常状態判定部23は、通常モデル記憶部24及び異常エリア記憶部25に記憶された情報を参照可能である。通常モデル記憶部24には、予め分割されたエリア毎の通常モデルMDn及び閾値THaが記憶されている(図4参照)。通常モデルMDnは、運転データに含まれる運転操作又は車両挙動の計測データについて、異常が生じていない通常状態でのデータ分布を示す内容である。閾値THaは、通常モデルMDnを構成する個々のデータを包含するよう規定される境界値である。閾値THaは、道路形状等に変化が無い場合、実質的に変化しない。
異常エリア記憶部25には、異常エリアTAに対応した異常状態の異常モデルMDa及び閾値THeが記憶されている(図4参照)。異常モデルMDaは、運転データに含まれる運転操作又は車両挙動の計測データについて、現在の異常状態でのデータ分布を示す内容である。異常モデルMDaは、異常発生毎に異常エリア記憶部25に蓄積される多数の運転データ(蓄積データ)の集合体である。閾値THeは、異常モデルMDaを構成する個々の蓄積データを包含するよう規定される境界値である。閾値THeは、発生した異常毎に変化する値であり、且つ、一つの異常においても経時的に変化し得る値である。
異常状態判定部23は、新規データについて、異常エリアTA外にて取得されたデータなのか、又は異常エリアTA内にて取得されたデータかを示す情報を、異常エリア判定部22から取得する。新規データが異常エリアTA外にて取得されていた場合、異常状態判定部23は、走行環境における異常発生の可能性を新規データから判定する。
この場合、異常状態判定部23は、通常モデルMDn及び閾値THaを通常モデル記憶部24から読み出す。異常状態判定部23は、通常モデルMDnの示す通常状態でのデータ分布と、新規データとを比較し(図2参照)、異常スコアを算出する処理により、異常発生の可能性を判定する。
異常状態判定部23は、新規の運転データの異常スコアが閾値THa未満であり、通常モデルMDnの示す通常状態のデータ分布から新規の運転データが逸脱していない場合(図4 d1参照)、異常発生の可能性がないと判定する。対して、異常状態判定部23は、新規データの異常スコアが閾値THa以上であり、通常モデルMDnの示す通常状態のデータ分布から新規データが逸脱した場合(図4 d2参照)、異常発生の可能性があると判定する。この場合、異常状態判定部23は、異常発生の可能性があることを、映像要求部31及び情報提示部33に通知する。
一方、新規データが異常エリアTA内にて取得されていた場合、異常状態判定部23は、走行環境に生じている異常についての解消の可能性を新規データから判定する。この場合、異常状態判定部23は、異常モデルMDa及び閾値THeを異常エリア記憶部25から読み出す。異常状態判定部23は、異常モデルMDaの示す現在の異常状態でのデータ分布と、新規データとの比較し(図2参照)、解消スコアを算出する処理により、異常解消の可能性を判定する。
異常状態判定部23は、新規データの解消スコアが閾値THe未満であり、現在の異常状態のデータ分布から新規データが逸脱していない場合(図4 d3参照)、異常解消の可能性がないと判定する。対して、異常状態判定部23は、新規データの変化によって解消スコアが閾値THe以上となり、現在の異常状態のデータ分布から新規データが逸脱した場合(図4 d4参照)、異常解消の可能性があると判定する。この場合、異常状態判定部23は、異常解消の可能性があることを、映像要求部31及び情報提示部33に通知する。
映像要求部31、映像受信部32、情報提示部33及び判断取得部34は、走行環境の異常発生及び異常解消の各確定判断を行う機能部である。
映像要求部31は、異常状態判定部23にて異常発生の可能性があると判定されたこと又は異常解消の可能性があると判定されたことに基づき、該当する異常エリアTA近傍の車両V2,V5(図3参照)へ向けて、異常エリアTAの映像データの提供を要求する。映像要求部31による提供要求では、センタ装置100に送信すべき映像データの撮影場所及び撮影時刻が指定される。映像要求部31は、少なくとも一台の車載器110へ向けて提供要求を送信する。
映像受信部32は、映像要求部31による提供要求に応じて、車両V2,V5(図3参照)から返信された映像データを受信する。映像データは、異常エリアTAの現在状況を把握する判断情報として、映像受信部32に取得される。そのため、異常発生の可能性がある場合に取得される映像データは、通常エリアでの異常発生を確認できる内容であることが望ましい。同様に、異常解消の可能性がある場合に取得される映像データは、異常エリアTAに生じていた異常の解消を確認できる内容であることが望ましい。
情報提示部33は、判断実行部50と連携することで、映像データを用いた異常エリアTAの現在状況の判断を可能にする。具体的に、情報提示部33は、映像受信部32にて取得された映像データを、判断実行部50に出力する。判断実行部50は、センタ装置100と接続されたコンピュータであり、道路環境を監視するオペレータが操作するオペレータ端末である。判断実行部50は、オペレータへの映像提示を行う表示器と、オペレータの入力操作を受け付ける入力部とを備えている。情報提示部33によって提示された映像データは、判断実行部50によってオペレータが内容確認可能なように表示器に再生される。
判断実行部50は、異常発生の可能性がある通常エリアの映像データを取得する場合、その通常エリアを地図上に示した地図画像と、当該通常エリアを走行中に計測された運転データとを、映像データと共に表示器に表示する。一方で、異常解消の可能性がある異常エリアTAの映像データを取得する場合、判断実行部50は、その異常エリアTAを地図上に示した地図画像と、当該異常エリアTAを走行中に計測された運転データとを、映像データと共に表示器に表示する。
判断実行部50を操作するプローブセンタCNTのオペレータは、オペレータ端末である判断実行部50の表示器に表示される映像データ等の情報を目視確認する。これによりオペレータは、映像データを主な判断材料として、各エリアの具体的な現在状況を把握する。そして、オペレータは、通常エリア又は異常エリアTAについての確認結果を、判断実行部50の入力部に入力する。
詳記すると、図1及び図2に示すように、異常エリアTA外の映像データを目視確認し、異常発生をチェックする場合(参照)、オペレータは、通常状態(正常,異常なし)であるのか、又は異常発生であるのかの判断結果を、判断実行部50に入力する。一方、異常エリアTA内の映像データを目視確認し、異常解消をチェックする場合、オペレータは、異常解消によって通常状態に復帰したのか、又は異常状態が継続しているのかの判断結果を、判断実行部50に入力する。異常状態の継続には、異常状態の遷移も含まれる。異常状態が遷移していた場合、オペレータは、異常状態の遷移発生を示す判断結果に加えて、当該遷移が徐々に生じているのか又は急激に生じているかについての判断結果も、判断実行部50に入力する。
判断取得部34は、映像データを用いて判断された判断結果を、判断実行部50から取得する。判断取得部34は、異常発生の可能性があった場合、通常状態の継続及び異常発生のいずれかを示す判断結果を取得する。通常状態の継続を示す判断結果を取得した場合、判断取得部34は、現在の状態を維持する。対して、異常発生を示す判断結果を取得した場合、判断取得部34は、異常エリアTAを異常エリアマップMTAに登録すると共に、当該異常エリアTAを通知する交通情報の配信実施を、通知配信部41に指示する。
一方、判断取得部34は、異常解消の可能性があった場合、異常状態の解消(通常状態への復帰)、異常状態の継続(遷移なし)、異常状態の連続的な遷移、及び異常状態の急激な遷移、のいずれかを示す判断結果を取得する。異常状態の解消を示す判断結果を取得した場合、判断取得部34は、異常エリア記憶部25における異常エリアTAの登録を解除する。その結果、異常エリアTAが異常エリアマップMTAから抹消され、且つ、当該異常エリアTAに紐付く蓄積データ(異常モデルMDa及び閾値THe)も異常エリア記憶部25から削除される。加えて判断取得部34は、登録を解除された異常エリアTAに関連する交通情報の配信終了を、通知配信部41に指示する。
異常状態の継続を示す判断結果を取得した場合、判断取得部34は、異常エリア記憶部25の蓄積データ、異常モデルMDa及び閾値THeを更新する処理により、異常解消の可能性判定に用いる判定基準をアップデートする。具体的には、判断結果にて、異常状態が遷移することなく継続していると示された場合、判断取得部34は、対応する異常モデルMDaに新規データが含まれるように、閾値THeを更新する。具体的には、図5の右上段に示すように、対応する異常モデルMDaの蓄積データの実質全て(「+」参照)と、新規データd4とを包含する範囲まで、閾値THeが拡張される。
ここで、異常状態の遷移は、徐々に生じる場合と、急激に生じる場合とがある。例えば、事故の発生、通行止めの実施、現場の処理中、渋滞の解消、といったように段階的に状態が遷移するとき、各段階での挙動が互いに類似するため、車両Vの挙動は、徐々に変化するようになる。対して、例えば通行止めの解消、風及び衝突等に起因した障害物の移動、近傍で二次的な異常の誘発等があった場合、車両Vの挙動は、急激に変化するようになる。判断取得部34は、異常状態の遷移の態様に合わせて、異常モデルMDa及び閾値THeの更新を行う。
具体的に、判断取得部34は、車両挙動が徐々に変化するような異常状態の遷移を示す判断結果を取得した場合、異常フラグを継続させつつ、対応する異常モデルMDaの蓄積データを更新する。判断取得部34は、図5の右中段に示すように、現在から所定時間よりも前(例えば10分以前)に取得されたデータを削除する(破線「+」参照)。判断取得部34は、選択的に残した蓄積データの一部(実線「+」参照)と、新規データd4とを用いて、対応する異常モデルMDa及び閾値THeをシフトさせる更新を行う。
一方、車両挙動が急激に変化する異常状態の遷移を示す判断結果を取得した場合、判断取得部34は、図5の右下段に示すように、異常フラグを継続させつつ、対応する異常モデルMDaの実質全ての蓄積データ(破線「+」参照)を削除する。このように、判断取得部34は、異常解消の判定基準を実質的にリセットする。判断取得部34は、判定基準のリセット後、運転データ(新規データd4)の蓄積を再開し、再蓄積された運転データに基づく新たな異常モデルMDa及び閾値THeを設定する。
尚、異常状態の遷移は、基本的には、車両挙動が徐々に変化する態様で生じると想定されえる。故に、判断取得部34は、通常、蓄積データの一部忘却による判定基準の更新を実施し、オプションとして、急激な変化を示す判断結果を取得した場合に、蓄積データのリセットによる判定基準の更新を実施するものとする。
通知配信部41は、各車両Vの各車載器110に交通情報を配信する機能部である。通知配信部41は、異常エリアTAとして異常エリア記憶部25に登録中の場所についての交通情報を、各車載器110の通知受信部141へ向けて送信する。通知配信部41は、上述のように、異常エリアTAの位置及び範囲と、異常内容の詳細とが、交通情報として配信可能である。通知配信部41は、異常エリアTAへ向けて走行中の車両Vを選択して交通情報を配信してもよく、又は異常エリアTA近傍の特定地点を通過した車両Vを選択して交通情報を配信してもよい。
以上説明したように、センタ装置100は、走行環境異常の発生地点を異常エリアTAとして記憶しておき、異常エリアTA外においては異常発生を検出し、異常エリアTA内においては異常解消を検出する。こうした走行環境の異常検出及び異常解消検出を実現するために、センタ装置100にて実施される一連の可能性判定処理及び状態判断処理の各詳細を、図6及び図7に基づき、図1~図5を参照しつつ説明する。
図6に示す可能性判定処理は、車載器110からの新規の運転データの取得に基づき開始される(S100)。S101では、S100にて取得した運転データに紐づく位置情報を参照し、異常エリア記憶部25に登録された異常エリアTA内に位置情報が含まれるか否かを判定する。S101にて、異常エリアTA外であると判定した場合、異常発生の可能性を判定するS102~S105に進む。
S102では、S100にて取得した運転データに対応する位置の通常モデルMDn及び閾値THaを、通常モデル記憶部24から取得し、S103に進む。S103では、運転データと通常モデルMDnとを比較して、異常スコアを算出し、S104に進む。S104では、S103にて算出した異常スコアが、S102にて取得した閾値THa以上か否かを判定する。S104にて、異常スコアが閾値THa未満であり、運転データが通常モデルMDnから逸脱していないと判定した場合、異常発生の可能性がないと推定し、可能性判定処理を終了する。
対して、異常スコアが閾値THa以上であり、運転データが通常モデルMDnから逸脱していると判定した場合、異常発生の可能性があると推定し、S105に進む。S105では、今回の運転データの計測場所を撮影した映像データの提供を、特定の提供車両V2の車載器110に要求し、可能性判定処理を終了する。
一方、S101にて、位置情報が異常エリアTA内であると判定した場合、異常解消の可能性を判定するS106~S110に進む。S106では、S100にて取得した運転データに対応する位置の異常モデルMDa及び閾値THeを、異常エリア記憶部25から取得し、S107に進む。S107では、運転データと異常モデルMDaとを比較して、解消スコアを算出し、S108に進む。S108では、S107にて算出した解消スコアが、S106にて取得した閾値THe以上か否かを判定する。S108にて、解消スコアが閾値THe未満であり、運転データが異常モデルMDaから逸脱していないと判定した場合、異常解消の可能性がないと推定し、S110に進む。S110では、対応する位置の異常モデルMDaに新規の運転データを追加し、可能性判定処理を終了する。
対して、解消スコアが閾値THe以上であり、運転データが異常モデルMDaから逸脱していると判定した場合、異常解消の可能性があると推定し、S109に進む。S109では、今回の運転データの計測場所を撮影した映像データの提供を、特定の提供車両V5の車載器110に要求し、S110に進む。この場合のS110でも、対応する位置の異常モデルMDaに新規の運転データを追加し、可能性判定処理を終了する。尚、S110では、新規の運転データを異常モデルMDaに正式には登録せず、特定の記憶領域に一時的に保存しておいてもよい。
図7に示す状態判断処理は、可能性判定処理の提供要求(S105又はS109)に基づき、要求先の車両V2,V5から映像データを取得した場合に開始される(S120)。S121では、S120にて取得した映像データを用いて実施する現在状態の判断が、走行環境の異常発生の判断なのか又は異常解消の判断なのかを選別する。映像データを用いた異常発生の判断を実施する場合、S122に進む。
S122では、判断実行部50と連携し、通常エリアを撮影した映像データのオペレータへの提示と、異常発生の有無を判断した判断結果の取得とを行い、S123に進む。S123では、S122にて取得した判断結果を参照し、走行環境が正常であることを示す判断結果を取得した場合には、状態判断処理を終了する。
対して、走行環境の異常発生を示す判断結果を取得した場合、S123からS124に進む。S124では、運転データ及び映像データの示す異常の発生位置を異常エリア記憶部25に記憶させる処理により、異常エリアTAを異常エリアマップMTAに新規登録し、状態判断処理を終了する。
一方、異常発生の判断ではなく、異常解消の判断を実施する場合、S121からS125に進む。S125では、判断実行部50と連携し、異常エリアTAを撮影した映像データのオペレータへの提示と、異常解消の状況について判断した判断結果の取得とを行い、S126に進む。S126では、S125にて取得した判断結果を参照し、異常解消を示す判断結果を取得していた場合には、S127に進む。S127では、対応する異常エリアTAを異常エリア記憶部25から除去し、状態判断処理を終了する。
対して、判断結果にて異常解消が示されていなかった場合、S126からS128に進む。S128では、判断結果に基づき、別の異常状態に遷移したか否かを判定する。S128にて、別の異常状態に遷移したと判定した場合、S129に進む。S129では、対応する異常エリアTAについての蓄積データを更新し、状態判断処理を終了する。
さらに、別の異常状態に遷移せず、これまでの異常状態が継続していると判断結果に示されていた場合、S128からS130に進む。S130では、対応する異常エリアTAの蓄積データの実質全てに新規の運転データを追加することで、異常モデルMDa及び閾値THeを更新し、状態判断処理を終了する。
ここまで説明した第一実施形態では、走行環境に生じている異常の解消を映像データから判断する以前に、異常解消の可能性が運転データから判定される。こうした異常解消の可能性の判定に基づく選別によれば、映像データを用いて異常解消を判断する機会は、解消可能性の判定よる選別が無い場合と比較して、低減され得る。以上によれば、プローブセンタCNT側における負荷の増加を抑えつつ、走行環境の異常解消を精度良く検出することが可能になる。
加えて第一実施形態では、判断取得部34にて取得される判断結果に基づき、異常解消の可能性を判定する判定基準が更新される。異常解消を示す運転データの傾向は、発生した異常の内容毎に異なってくる。そのため、通常状態であれば単一のデータ分布を仮定可能であるが、異常状態のデータ分布は、異常の原因が様々であることに起因し、事前に仮定することが困難となる。
故に、異常解消可能性の判定基準を逐次更新する上記の処理によれば、異常解消の可能性判定における正常及び異常の識別性能は、さらに向上し得る。これにより、映像データを用いた異常解消を判断した結果、異常状態が遷移することなく継続していると示されるケースは、削減される。したがって、プローブセンタCNT側における負荷の増加は、いっそう抑制可能となる。
また第一実施形態では、一つの異常エリアTAに紐付く運転データが、発生した異常毎に異常エリア記憶部25に蓄積される。故に、現在の異常状態での運転データの分布が定義可能となる。そして、異常状態判定部23は、異常エリア記憶部25に蓄積された蓄積データと、新規データとの比較により、異常解消の可能性を判定する。即ち、異常状態判定部23は、現在の異常状態でのデータ分布からの逸脱に基づき、異常解消の可能性があると判定できる。以上によれば、異常エリアTAにて生じている異常の内容に対応した解消可能性の判定が、精度良く実施され得る。
さらに第一実施形態では、異常状態が遷移せずに継続していると判断結果にて示された場合、異常解消可能性の判定基準は、蓄積データの実質全てと新規データとを用いて更新される(図5上段参照)。こうした判定基準の更新によれば、現在の異常状態についての解消可能性判定の精度は、運転データの蓄積によって徐々に向上していく。その結果、不要な解消判断の実施が削減されるようになり、プローブセンタCNT側における負荷の増加は、いっそう抑制可能となる。
加えて第一実施形態では、異常状態の遷移が判断結果にて示された場合、判断取得部34は、蓄積データの一部と新規データとを用いて、異常解消可能性の判定基準を更新する。このように、蓄積データの一部のみを選択的に使用し、新規データを含めるかたちで判定基準を更新すれば、更新後の判定基準は、遷移後の異常状態について解消可能性を判定するのに好適な内容となり得る。以上によれば、解消可能性判定の精度向上により、プローブセンタCNT側の負荷増加は、いっそう抑制可能となる。
また第一実施形態の映像要求部31は、異常状態判定部23にて異常解消の可能性があると判定されたことに基づき、車両Vへ向けた映像データの提供要求を行う。即ち、映像要求部31は、異常解消の判断が必要な場合、実質的に異常解消の可能性があると判定された場合のみに、車載器110へ向けた映像データの提供要求を行う。以上によれば、異常解消の可能性がない場合、センタ装置100への映像データの送信が実施されないため、車載器110及びセンタ装置100間におけるデータ通信量は、いっそう削減可能となる。
尚、第一実施形態では、データ受信部21が「データ取得部」に相当し、異常状態判定部23が「解消可能性判定部」に相当し、異常エリア記憶部25が「異常データ記憶部」に相当する。また、映像要求部31が「判断情報要求部」に相当し、映像受信部32が「判断情報取得部」に相当し、判断取得部34が「判断結果取得部」に相当し、センタ装置100が「異常検出装置」及び「コンピュータ」に相当する。さらに、プローブセンタCNTが「センタ」に相当し、異常エリアTAが「異常箇所」に相当し、解消判定の閾値THeが「判定基準」に相当する。
(第二実施形態)
図8に示す本開示の第二実施形態は、第一実施形態の変形例である。第二実施形態の環境監視システム10では、運転データの提供車両V1(図3参照)にて、センタ装置100に送信する運転データを選別する処理が実施される。こうした選別処理を可能にするため、第二実施形態のセンタ装置100には、エリア情報送信部26がさらに設けられている。加えて、第二実施形態の車載器110には、エリア情報受信部111及び異常エリア記憶部112がさらに設けられている。
エリア情報送信部26は、各車両Vの各車載器110へ向けて、異常エリア記憶部25に記憶された最新の異常エリアTAの位置及び範囲を示す情報を配信する。エリア情報送信部26による異常エリアTAについての情報配信は、所定の時間間隔又は異常エリアTAが新規に追加されたタイミングで実施される。
エリア情報受信部111は、エリア情報送信部26によって配信される異常エリアTAの位置及び範囲の情報を受信し、異常エリア記憶部112に記憶する。その結果、異常エリア記憶部112は、センタ装置100の異常エリア記憶部25と定期的に同期される。これにより、異常エリア記憶部112には、最新の異常エリアマップMTAが保存された状態となる。
データ送信部121は、GNSS受信器より取得する位置情報を、異常エリア記憶部112に保存された異常エリアマップMTAと照合する。データ送信部121は、車載センサ群122にて新規に計測される運転データが、異常エリアマップMTAに登録された異常エリアTAに属しているか否かを判断する。位置情報が異常エリアTA内を示す場合、データ送信部121は、車載センサ群122より入力される運転データを、プローブセンタCNTへ向けて随時送信する。
一方、位置情報が異常エリアTA外を示す場合、データ送信部121は、運転データに基づき、異常発生の可能性を判定する。データ送信部121による異常発生の可能性判定は、センタ装置100の異常状態判定部23と同様に通常モデルに基づいて実施される。この場合、車載器110のROMにも、通常モデル記憶部24に記憶されているものと実質同一の通常モデルMDnが予め記憶されている。但し、異常発生の可能性があると判定する閾値は、異常状態判定部23よりも「可能性あり」と判定され易く設定される。尚、データ送信部121による異常発生の可能性判定方法は、適宜変更されてよい。一例として、データ送信部121は、予め設定された車両挙動が運転データから検出された場合に、異常発生の可能性があると判定してもよい。
データ送信部121は、異常発生の可能性があると判定したことに基づき、車載センサ群122より入力される運転データを、プローブセンタCNTへ向けて逐次送信する。対して、異常発生の可能性がないと判定した場合、データ送信部121は、プローブセンタCNTへ向けた運転データの送信を停止する。
ここまで説明した第二実施形態でも、第一実施形態と同様の効果を奏し、運転データを用いた異常解消の可能性判定に基づく選別により、映像データを用いて異常解消を判断する機会が低減される。したがって、プローブセンタCNT側における負荷の増加を抑えつつ、走行環境の異常解消を精度良く検出することが可能になる。
加えて第二実施形態では、異常エリアTA外を走行する期間にて、センタ装置100への運転データの送信が制限される。故に、車載器110及びセンタ装置100間での通信データ量のいっそうの削減が可能になる。尚、第二実施形態では、エリア情報受信部111が「情報受信部」に相当し、環境監視システム10が「異常検出システム」に相当する。
(他の実施形態)
以上、本開示の複数の実施形態について説明したが、本開示は、上記実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
上記第二実施形態の変形例1にて、車載器110は、遠隔地のプローブセンタCNTのセンタ装置100と通信し、このセンタ装置100に道路に生じた走行環境の異常に関する情報を送信する(図8参照)。車載器110は、エリア情報受信部111及びデータ送信部121を備えている。車載器110は、エリア情報受信部111にて、走行環境に異常がある異常箇所の位置情報をプローブセンタCNTから受信し、データ送信部121にて、異常箇所を走行中の運転データをプローブセンタCNTへ向けて送信する。
こうした変形例1では、センタ装置100又は車載器110において、異常箇所での運転データに基づいて、走行環境の異常について解消の可能性が判定される。加えて、解消の可能性があると判定された異常箇所の状況判断に用いられる判断情報が、さらに取得される。以上のような変形例1によっても、上記実施形態と同様の効果を奏することが可能となる。
上記実施形態の変形例2では、判断実行部から取得した判断結果を異常解消検出の判定基準に反映し、異常解消判定の閾値を更新する処理が省略される。こうした変形例2でも、運転データにおける車両挙動の異常を、走行環境異常の候補として抽出し、映像データに基づき走行環境異常を正式に判断することで、上記実施形態と同様に、プローブセンタ側の負荷低減が実現される。
さらに、異常解消の可能性判定に用いる判定基準を更新する形態であっても、その更新方法は、適宜変更されてよい。例えば上記実施形態の変形例3では、異常状態の継続を示す判断結果を取得した場合、異常状態が遷移しているか否かに関わらず、判定基準は、蓄積データの全てと新規データとを包含するように更新される。
さらに、変形例4では、異常状態の遷移を示す判断結果を取得した場合、判定基準は、異常状態の遷移の緩急に関わらず、蓄積データの一部と新規データとを包含するように更新される。尚、異常状態の遷移に伴う蓄積データの一部忘却は、上記実施形態のように時間を基準として実施されてもよく、又は他の指標を基準として実施されてもよい。例えば、蓄積データに一定の台数の車両から取得したデータが含まれるように実施されてもよい。
上記実施形態の変形例5では、異常解消の可能性がないと判定された場合でも、判断情報としての映像データの取得が実施される。例えば、異常解消を判断する際の比較用の映像データとして、異常エリアTAの走行環境を確認可能な映像データが一定の時間間隔で取得されてもよい。尚、判断情報としてプローブセンタに送信される映像データは、車両の左右側方を撮影した映像データであってもよく、車両の後方を撮影した映像データであってもよい。
上記実施形態の変形例6では、映像データに加えて、走行環境を確認するための他の情報が、判断情報としてセンタ装置に取得される。例えば、LIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)装置によって検出された点群データ等が、判断情報としてプローブセンタに提供される。判断実行部の表示器には、映像データに加えて、可視化された点群データの映像が表示される。さらに、車両側にて認識された走行環境の認識結果が、判断情報として車載器からセンタ装置に送信されてもよい。この場合、通信データ量のいっそうの削減が可能になる。
上記実施形態の変形例7では、判断情報に基づく異常発生及び異常解消の各確定判断が、機械学習によって生成された識別器を用いて実施される。即ち、オペレータの目視確認は、実施されない。こうした変形例7であれば、車載器は、映像データから特徴量を抽出する処理を行ったうえで、その出力データをセンタ装置に送信することができる。さらに、車外カメラとは異なる外界センサ(レーダ及びソナー等)による認識結果が、判断情報として、センタ装置に送信されてもよい。また、判断実行部は、センタ装置とは異なる施設に設置されていてもよい。
さらに、識別機による確定判断とオペレータによる目視確認を併用してもよい。この場合、識別機による確定判断で異常発生及び異常解消が確定できればオペレータの目視確認を実施せず、識別機による判断では確定できない場合に、オペレータによる目視確認を実施する。その結果、オペレータの目視確認の実施が削減されるようになり、プローブセンタCNT側における負荷の増加は、いっそう抑制可能となる。
上記実施形態の変形例8のセンタ装置は、異常発生検出及び異常解消検出のうちで、異常解消検出のみを実施するサーバ装置である。変形例8では、プローブセンタに設置された別のサーバ装置が、異常発生を検出する処理を実施し、異常エリアTAの情報をセンタ装置に提供する。
また上記実施形態の変形例9では、複数のセンタ装置の一つにデータ受信部、異常エリア判定部及び異常状態判定部が設けられており、他の一つに映像要求部、映像受信部、情報提示部、判断取得部及び通知配信部が設けられている。以上のように、複数のセンタ装置が異常解消検出に関連する処理を分散実施してもよい。
上記実施形態にて、センタ装置によって提供されていた各機能は、ソフトウェア及びそれを実行するハードウェア、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの複合的な組合せによっても提供可能である。さらに、こうした機能がハードウェアとしての電子回路によって提供される場合、各機能は、多数の論理回路を含むデジタル回路、又はアナログ回路によっても提供可能である。
また、上記の異常検出方法を実現するプログラム等を記憶する記憶媒体の形態も、適宜変更されてよい。例えば記憶媒体は、回路基板上に設けられた構成に限定されず、メモリカード等の形態で提供され、スロット部に挿入されて、センタ装置の制御回路に電気的に接続される構成であってよい。さらに、記憶媒体は、センタ装置へのプログラムのコピー基となる光学ディスク及びのハードディスクドライブ等であってもよい。
車載器を搭載する車両は、一般的な自家用の乗用車に限定されず、レンタカー用の車両、有人タクシー用の車両、ライドシェア用の車両、貨物車両及びバス等であってもよい。さらに、モビリティサービスに用いられる無人運転専用の車両に、車載器が搭載されてもよい。この場合、自動運転ECUにて生成される車両の制御情報が、運転データとしてセンタ装置に送信される。
本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサを構成する専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の装置及びその手法は、専用ハードウェア論理回路により、実現されてもよい。もしくは、本開示に記載の装置及びその手法は、コンピュータプログラムを実行するプロセッサと一つ以上のハードウェア論理回路との組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
V 車両、CNT プローブセンタ(センタ)、TA 異常エリア(異常箇所)、THe 閾値(判定基準)、10 環境監視システム(異常検出システム)、11 処理部、21 データ受信部(データ取得部)、23 異常状態判定部(解消可能性判定部)、25 異常エリア記憶部(異常データ記憶部)、31 映像要求部(判断情報要求部)、32 映像受信部(判断情報取得部)、34 判断取得部(判断結果取得部)、100 センタ装置(異常検出装置,コンピュータ)、110 車載器、111 エリア情報受信部(情報受信部)、121 データ送信部

Claims (9)

  1. 複数の車両(V)から情報を収集するセンタ(CNT)において用いられ、道路に生じた走行環境の異常を検出する異常検出装置であって、
    前記車両から運転データを取得するデータ取得部(21)と、
    前記走行環境に生じている異常について、前記運転データから解消の可能性を判定する解消可能性判定部(23)と、
    解消の可能性があると判定された異常箇所(TA)について、当該異常箇所の異常が解消しているか否かの状況判断に用いられる判断情報を蓄積する前記車両に当該判断情報の提供を要求する判断情報要求部(31)と、
    提供の要求に応じて前記車両から送信される前記判断情報を取得する判断情報取得部(32)と、
    前記判断情報を用いて判断された異常解消の判断結果を取得する判断結果取得部(34)と、を備える異常検出装置。
  2. 前記判断結果取得部は、前記判断結果に基づき、前記解消可能性判定部にて異常解消の可能性判定に用いられる判定基準(THe)を更新する請求項1に記載の異常検出装置。
  3. 前記異常箇所に紐付く前記運転データを、発生した異常毎に蓄積データとして蓄積する異常データ記憶部(25)、をさらに備え、
    前記解消可能性判定部は、新たに取得される前記運転データである新規データと、前記異常データ記憶部に蓄積された前記蓄積データとの比較により、異常解消の可能性を判定する請求項1又は2に記載の異常検出装置。
  4. 前記判断結果取得部は、異常状態の継続を示す前記判断結果を取得した場合に、前記異常箇所に対応する前記蓄積データの全てと、前記新規データとを用いて、前記解消可能性判定部にて異常解消の可能性判定に用いられる判定基準(THe)を更新する請求項3に記載の異常検出装置。
  5. 前記判断結果取得部は、異常状態の遷移発生と遷移の速度とを示す前記判断結果を取得した場合に、前記蓄積データの一部と前記新規データとを用いて、前記解消可能性判定部にて異常解消の可能性があると判定される判定基準(THe)を更新する請求項3又は4に記載の異常検出装置。
  6. 記判断情報要求部は、
    前記解消可能性判定部にて異常解消の可能性があると判定された場合に、前記車両へ向けて前記判断情報の提供を要求し、
    前記解消可能性判定部にて異常解消の可能性がないと判定された場合に、前記車両へ向けた前記判断情報の提供要求を行わない請求項1~5のいずれか一項に記載の異常検出装置。
  7. 複数の車両(V)から情報を収集するセンタ(CNT)のコンピュータ(100)によって実施され、道路に生じた走行環境の異常を検出する異常検出プログラムであって、
    少なくとも一つの処理部(11)に、
    前記車両から運転データを取得し(S100)、
    前記走行環境に生じている異常について、前記運転データから解消の可能性を判定し(S107,S108)、
    解消の可能性があると判定された異常箇所(TA)について、当該異常箇所の異常が解消しているか否かの状況判断に用いられる判断情報を蓄積する前記車両に当該判断情報の提供を要求し(S109)、
    提供の要求に応じて前記車両から送信される前記判断情報を取得し(S120)、
    前記判断情報を用いて判断された異常解消の判断結果を取得する(S125)、
    ことを含む処理を実行させる異常検出プログラム。
  8. 複数の車両(V)から情報を収集するセンタ(CNT)のコンピュータ(100)によって実施され、道路に生じた走行環境の異常を検出する異常検出方法であって、
    少なくとも一つの処理部(11)にて実行される処理に、
    前記車両から運転データを取得し(S100)、
    前記走行環境に生じている異常について、前記運転データから解消の可能性を判定し(S107,S108)、
    解消の可能性があると判定された異常箇所(TA)について、当該異常箇所の異常が解消しているか否かの状況判断に用いられる判断情報を蓄積する前記車両に当該判断情報の提供を要求し(S109)、
    提供の要求に応じて前記車両から送信される前記判断情報を取得し(S120)、
    前記判断情報を用いて判断された異常解消の判断結果を取得する(S125)、
    というステップを含む異常検出方法。
  9. 車両(V)に搭載される車載器(110)と、前記車載器から情報を収集するセンタ(CNT)のコンピュータ(100)とを含み、道路に生じた走行環境の異常を検出する異常検出システムであって、
    前記車載器は、
    前記走行環境に異常がある異常箇所(TA)の位置情報を、前記センタから受信する情報受信部(111)と、
    前記異常箇所を走行中の運転データを前記センタへ向けて送信するデータ送信部(121)と、を備え、
    前記コンピュータは、
    前記異常箇所での前記運転データを前記データ送信部から取得するデータ取得部(21)と、
    前記異常箇所にて生じた前記走行環境の異常について、前記運転データから解消の可能性を判定する解消可能性判定部(23)と、
    解消の可能性があると判定された前記異常箇所について、当該異常箇所の異常が解消しているか否かの状況判断に用いられる判断情報を蓄積する前記車両に当該判断情報の提供を要求する判断情報要求部(31)と、
    提供の要求に応じて前記車両から送信される前記判断情報を取得する判断情報取得部(32)と、
    前記判断情報を用いて判断された異常解消の判断結果を取得する判断結果取得部(34)と、を備える異常検出システム。
JP2019005542A 2019-01-16 2019-01-16 異常検出装置、異常検出プログラム、異常検出方法及び異常検出システム Active JP7247592B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019005542A JP7247592B2 (ja) 2019-01-16 2019-01-16 異常検出装置、異常検出プログラム、異常検出方法及び異常検出システム
US16/742,107 US11423772B2 (en) 2019-01-16 2020-01-14 Anomaly detector, anomaly detection program, anomaly detection method, anomaly detection system, and in-vehicle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019005542A JP7247592B2 (ja) 2019-01-16 2019-01-16 異常検出装置、異常検出プログラム、異常検出方法及び異常検出システム

Publications (2)

Publication Number Publication Date
JP2020113212A JP2020113212A (ja) 2020-07-27
JP7247592B2 true JP7247592B2 (ja) 2023-03-29

Family

ID=71517782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019005542A Active JP7247592B2 (ja) 2019-01-16 2019-01-16 異常検出装置、異常検出プログラム、異常検出方法及び異常検出システム

Country Status (2)

Country Link
US (1) US11423772B2 (ja)
JP (1) JP7247592B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247592B2 (ja) * 2019-01-16 2023-03-29 株式会社デンソー 異常検出装置、異常検出プログラム、異常検出方法及び異常検出システム
US12073662B2 (en) * 2019-07-31 2024-08-27 Nec Corporation Abnormality detection system, abnormality detection method, and abnormality detection program
WO2021048989A1 (ja) * 2019-09-12 2021-03-18 日本電信電話株式会社 異常検知システム、異常検知装置、異常検知方法及びプログラム
JP7318612B2 (ja) * 2020-08-27 2023-08-01 横河電機株式会社 監視装置、監視方法、および監視プログラム
CN115591742B (zh) * 2022-09-30 2023-09-12 深圳芯光智能技术有限公司 一种点胶质量识别的点胶机自动控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060296A (ja) 1999-08-20 2001-03-06 Koito Ind Ltd 情報収集システム
JP2008134754A (ja) 2006-11-28 2008-06-12 Hitachi Ltd 突発事象解消判定システム
WO2014119650A1 (ja) 2013-01-31 2014-08-07 日本電気株式会社 移動体通信装置、移動体通信方法及びプログラム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064795A (ja) * 1992-06-17 1994-01-14 Hitachi Ltd 交通状況監視方法と装置および交通流監視制御システム
JP3305940B2 (ja) * 1996-01-11 2002-07-24 株式会社東芝 交通状況予測装置
CN101533561B (zh) * 2008-03-12 2011-11-30 歌乐株式会社 交通信息管理服务器、导航终端及其方法
WO2011108052A1 (ja) 2010-03-03 2011-09-09 パナソニック株式会社 道路状況管理システム及び道路状況管理方法
CN103390346B (zh) * 2012-05-09 2015-11-18 航天信息股份有限公司 一种具有交通信息统计功能的多义性路径识别系统
JP6620479B2 (ja) 2015-09-14 2019-12-18 住友電気工業株式会社 交通情報提供システム、交通情報提供装置及び車載通信装置
US9701239B2 (en) * 2015-11-04 2017-07-11 Zoox, Inc. System of configuring active lighting to indicate directionality of an autonomous vehicle
US9878664B2 (en) * 2015-11-04 2018-01-30 Zoox, Inc. Method for robotic vehicle communication with an external environment via acoustic beam forming
US9632502B1 (en) * 2015-11-04 2017-04-25 Zoox, Inc. Machine-learning systems and techniques to optimize teleoperation and/or planner decisions
US10712160B2 (en) * 2015-12-10 2020-07-14 Uatc, Llc Vehicle traction map for autonomous vehicles
JP2017117005A (ja) 2015-12-21 2017-06-29 株式会社オートネットワーク技術研究所 事故通知システム、通知システム、車載通知装置及び事故通知方法
JP6786920B2 (ja) 2016-07-12 2020-11-18 株式会社デンソー 監視システム、車載器、センタ装置、および監視方法
US10347122B2 (en) 2016-07-12 2019-07-09 Denson Corporation Road condition monitoring system
CN107945506A (zh) * 2016-10-12 2018-04-20 胜方光电科技股份有限公司 交通影音接收与分析系统
US10186156B2 (en) * 2017-05-25 2019-01-22 Uber Technologies, Inc. Deploying human-driven vehicles for autonomous vehicle routing and localization map updating
CN107845264A (zh) * 2017-12-06 2018-03-27 西安市交通信息中心 一种基于视频监控的交通量采集系统及方法
US11022971B2 (en) * 2018-01-16 2021-06-01 Nio Usa, Inc. Event data recordation to identify and resolve anomalies associated with control of driverless vehicles
JP7247592B2 (ja) * 2019-01-16 2023-03-29 株式会社デンソー 異常検出装置、異常検出プログラム、異常検出方法及び異常検出システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060296A (ja) 1999-08-20 2001-03-06 Koito Ind Ltd 情報収集システム
JP2008134754A (ja) 2006-11-28 2008-06-12 Hitachi Ltd 突発事象解消判定システム
WO2014119650A1 (ja) 2013-01-31 2014-08-07 日本電気株式会社 移動体通信装置、移動体通信方法及びプログラム

Also Published As

Publication number Publication date
JP2020113212A (ja) 2020-07-27
US11423772B2 (en) 2022-08-23
US20200226920A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP7247592B2 (ja) 異常検出装置、異常検出プログラム、異常検出方法及び異常検出システム
CN111091706B (zh) 信息处理系统和信息处理方法
EP3159853B1 (en) Systems and methods for advanced driver assistance analytics
EP3232416A1 (en) Systems and methods for vehicle-to-vehicle communication
US10353394B2 (en) Driving assistance device and driving assistance method
US12111865B2 (en) Video analysis for efficient sorting of event data
JP5979027B2 (ja) 情報蓄積方法、及び情報集積システム
US11645914B2 (en) Apparatus and method for controlling driving of vehicle
EP3963550B1 (en) Vehicle recording system utilizing event detection
JP7579404B2 (ja) 車両停止制御装置及び車両停止制御方法
CN114179822A (zh) 用于控制配备有自动化驾驶功能的车辆的操作的方法、计算机程序和设备
WO2022240823A1 (en) Online driver delay and frequency response model
US10977882B1 (en) Driver health profile
JP2019087076A (ja) 車両検知システム、サーバ、車両検知方法、車両検知プログラム
JP2014071632A (ja) 車両用情報収集装置
DE102019215366A1 (de) Verfahren zur Bereitstellung eines Warnsignals und/oder Signals zur Ansteuerung eines Fahrzeugs
CN112238869A (zh) 车辆控制装置
JP7099116B2 (ja) 車両管理システム、車載機、およびセンタ装置
JP7131433B2 (ja) 車載用情報処理装置、車両間情報処理システム、及び情報処理システム
JP2018136878A (ja) 危険回避支援装置、危険回避支援システム、及び危険回避支援方法
JP7363062B2 (ja) 走行環境異常判定システム
US20240083455A1 (en) Function control device, function control program, automated driving control device, and storage medium
EP4459591A1 (en) Vehicle travel control device, method for acquiring vehicle position information, computer-readable recording medium, and program for acquiring vehicle position information
JP2019192058A (ja) プログラム更新装置、プログラム更新システム及びプログラム更新方法
CN113492828A (zh) 车辆控制方法及设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R151 Written notification of patent or utility model registration

Ref document number: 7247592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151