[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7126601B2 - Propylene-based resin composition and molded article - Google Patents

Propylene-based resin composition and molded article Download PDF

Info

Publication number
JP7126601B2
JP7126601B2 JP2021501887A JP2021501887A JP7126601B2 JP 7126601 B2 JP7126601 B2 JP 7126601B2 JP 2021501887 A JP2021501887 A JP 2021501887A JP 2021501887 A JP2021501887 A JP 2021501887A JP 7126601 B2 JP7126601 B2 JP 7126601B2
Authority
JP
Japan
Prior art keywords
propylene
mass
ethylene
sol
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021501887A
Other languages
Japanese (ja)
Other versions
JPWO2020175138A1 (en
Inventor
弘幸 上北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Polymer Co Ltd
Original Assignee
Prime Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Polymer Co Ltd filed Critical Prime Polymer Co Ltd
Publication of JPWO2020175138A1 publication Critical patent/JPWO2020175138A1/en
Application granted granted Critical
Publication of JP7126601B2 publication Critical patent/JP7126601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations performed on sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/50Containers, packaging elements or packages, specially adapted for particular articles or materials for living organisms, articles or materials sensitive to changes of environment or atmospheric conditions, e.g. land animals, birds, fish, water plants, non-aquatic plants, flower bulbs, cut flowers or foliage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/50Containers, packaging elements or packages, specially adapted for particular articles or materials for living organisms, articles or materials sensitive to changes of environment or atmospheric conditions, e.g. land animals, birds, fish, water plants, non-aquatic plants, flower bulbs, cut flowers or foliage
    • B65D85/52Containers, packaging elements or packages, specially adapted for particular articles or materials for living organisms, articles or materials sensitive to changes of environment or atmospheric conditions, e.g. land animals, birds, fish, water plants, non-aquatic plants, flower bulbs, cut flowers or foliage for living plants; for growing bulbs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C2049/023Combined blow-moulding and manufacture of the preform or the parison using inherent heat of the preform, i.e. 1 step blow moulding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Toxicology (AREA)
  • Botany (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Graft Or Block Polymers (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、プロピレン系樹脂組成物、および該組成物から形成される、容器に代表される成形体に関する。 TECHNICAL FIELD The present invention relates to a propylene-based resin composition and a molded article, typified by a container, formed from the composition.

ゼリー、プリン、コーヒー等の食品の包装容器(以下、食品包装容器とも記載する。)の原料としては、耐熱性、剛性および透明性に優れるプロピレン系樹脂組成物が用いられることが多い。また、食品はその保管・流通において、低温の環境で扱われることが多いため、食品包装容器には、常温における耐衝撃性だけではなく、低温時の耐衝撃性、すなわち低温耐衝撃性が求められる。 BACKGROUND ART Propylene-based resin compositions, which are excellent in heat resistance, rigidity and transparency, are often used as raw materials for packaging containers for foods such as jelly, pudding, and coffee (hereinafter also referred to as food packaging containers). In addition, food is often handled in a low-temperature environment during storage and distribution, so food packaging containers are required to have not only impact resistance at room temperature, but also impact resistance at low temperatures, that is, low-temperature impact resistance. be done.

耐衝撃性に優れるプロピレン系樹脂組成物として、プロピレン-エチレンブロック共重合体、造核剤、および低密度ポリエチレン樹脂若しくは直鎖状低密度ポリエチレン樹脂を含む組成物が知られており(例えば、特許文献1)、低温耐衝撃性に優れるプロピレン系樹脂組成物としては、プロピレンブロック共重合体とエチレン系樹脂とからなり、特定の物性を有する組成物が知られている(例えば、特許文献2、3)。 As a propylene-based resin composition having excellent impact resistance, a composition containing a propylene-ethylene block copolymer, a nucleating agent, and a low-density polyethylene resin or a linear low-density polyethylene resin is known (for example, patent Document 1), as a propylene-based resin composition excellent in low-temperature impact resistance, a composition comprising a propylene block copolymer and an ethylene-based resin and having specific physical properties is known (for example, Patent Document 2, 3).

特許文献4には、特定の樹脂構造を有する結晶性プロピレン-エチレンブロック共重合体、結晶性ポリプロピレン系樹脂、高密度ポリエチレン、および任意にエラストマーを含有するポリプロピレン系樹脂組成物が開示され、この組成物から難白化性、剛性、低温で耐衝撃性などのバランスに優れたシートやフィルムが得られること、およびこの組成物が食品容器等の用途に有用であることが記載されている。 Patent Document 4 discloses a polypropylene-based resin composition containing a crystalline propylene-ethylene block copolymer having a specific resin structure, a crystalline polypropylene-based resin, a high-density polyethylene, and optionally an elastomer. It is described that a sheet or film having an excellent balance of resistance to whitening, rigidity, and low-temperature impact resistance can be obtained from the composition, and that this composition is useful for applications such as food containers.

さらに特許文献5には、特定のプロピレン系ランダムブロック共重合体を含むプロピレン系樹脂組成物が開示され、この組成物から耐衝撃性等に優れた射出成形体を得ることができ、これを食品容器等に使用できることが記載され、さらに耐衝撃性等の機能の付与のためにこの組成物にポリエチレン樹脂を添加してもよいことが記載されている。 Furthermore, Patent Document 5 discloses a propylene-based resin composition containing a specific propylene-based random block copolymer, from which an injection-molded article having excellent impact resistance and the like can be obtained. It is described that it can be used for containers and the like, and furthermore, it is described that a polyethylene resin may be added to this composition in order to impart functions such as impact resistance.

また近年は、環境負荷、コスト等の低減の観点から、これらの容器には、薄肉化、軽量化が求められている。
これらの要求に応えるために、特許文献6では、特定のプロピレン系ブロック共重合体、シングルサイト触媒を用いて製造された特定のエチレン・α-オレフィン共重合体、および造核剤を含み、食品包装容器等の容器をはじめとする成形体を製造した際に、従来よりも薄肉化かつ軽量化した場合であっても、剛性、低温耐衝撃性および透明性に優れるプロピレン系樹脂組成物が提案されている。
Further, in recent years, from the viewpoint of reducing environmental load, cost, etc., these containers are required to be thinner and lighter.
In order to meet these demands, Patent Document 6 discloses a food product containing a specific propylene-based block copolymer, a specific ethylene/α-olefin copolymer produced using a single-site catalyst, and a nucleating agent. Proposal of a propylene-based resin composition that is excellent in rigidity, low-temperature impact resistance, and transparency even when it is made thinner and lighter than before when manufacturing molded articles such as containers such as packaging containers. It is

特開2001-26686号公報Japanese Patent Application Laid-Open No. 2001-26686 特開2002-187996号公報JP-A-2002-187996 特開2002-187997号公報JP-A-2002-187997 特開2005-26981号公報JP-A-2005-26981 国際公開第2007/116709号WO2007/116709 国際公開第2010/074001号WO2010/074001

しかしながら、従来のプロピレン系樹脂組成物から形成された食品包装容器には、薄肉成形品の高速成形性、剛性および低温耐衝撃性の観点からさらなる改善の余地があった。
そこで本発明は、薄肉の成形品の製造時であっても高速成形性に優れ、かつ剛性および低温耐衝撃性にバランスよく優れる成形品を製造することのできるプロピレン系樹脂組成物を提供することを目的とする。
However, food packaging containers formed from conventional propylene-based resin compositions have room for further improvement from the viewpoint of high-speed moldability of thin-walled molded products, rigidity, and low-temperature impact resistance.
Accordingly, the present invention provides a propylene-based resin composition which is excellent in high-speed moldability even when producing thin-walled molded articles, and which enables the production of molded articles which are excellent in well-balanced rigidity and low-temperature impact resistance. With the goal.

本発明の要旨は以下のとおりである。
[1]
下記要件(A1)~(A5)を満たすプロピレン系重合体(A)を75~92質量部、
下記要件(B1)~(B2)を満たすエチレン系重合体(B)を8~25質量部(ただし、プロピレン系重合体(A)およびエチレン系重合体(B)の合計量を100質量部とする。)、および
造核剤(C)を0.02~1.0質量部
含むプロピレン系樹脂組成物。
(A1):ASTM D-1238に準拠して、測定温度230℃、荷重2.16kgで測定したメルトフローレートが45~195g/10分である。
(A2):室温n-デカンに不溶な部分を80~92質量%、および室温n-デカンに可溶な部分を8~20質量%含む。
(A3):前記室温n-デカンに不溶な部分に占めるエチレン由来の構成単位の割合が0~1.0質量%である。
(A4):前記室温n-デカンに可溶な部分に占めるエチレン由来の構成単位の割合が25~35質量%である。
(A5):前記室温n-デカンに可溶な部分の135℃デカリン中における極限粘度[η]が1.0~3.0dl/gである。
(B1):ASTM D-1238に準拠して、測定温度190℃、荷重2.16kgで測定したメルトフローレートが、3.0~50g/10分である。
(B2):密度が940kg/m3以上である。
The gist of the present invention is as follows.
[1]
75 to 92 parts by mass of a propylene polymer (A) satisfying the following requirements (A1) to (A5);
8 to 25 parts by mass of an ethylene polymer (B) that satisfies the following requirements (B1) to (B2) (provided that the total amount of the propylene polymer (A) and the ethylene polymer (B) is 100 parts by mass) ), and a propylene-based resin composition containing 0.02 to 1.0 parts by mass of a nucleating agent (C).
(A1): According to ASTM D-1238, the melt flow rate measured at a measurement temperature of 230°C and a load of 2.16 kg is 45 to 195 g/10 minutes.
(A2): Contains 80 to 92% by mass of a portion insoluble in room temperature n-decane and 8 to 20% by mass of a portion soluble in room temperature n-decane.
(A3): The proportion of ethylene-derived structural units in the portion insoluble in n-decane at room temperature is 0 to 1.0% by mass.
(A4): The proportion of ethylene-derived structural units in the portion soluble in room temperature n-decane is 25 to 35% by mass.
(A5): The intrinsic viscosity [η] of the portion soluble in room temperature n-decane in decalin at 135° C. is 1.0 to 3.0 dl/g.
(B1): The melt flow rate is 3.0 to 50 g/10 minutes measured at a measurement temperature of 190° C. and a load of 2.16 kg according to ASTM D-1238.
(B2): The density is 940 kg/m 3 or more.

[2]
前記[1]のプロピレン系樹脂組成物を含む成形体。
[3]
前記[1]のプロピレン系樹脂組成物の射出成形体または射出ブロー成形体である前記[2]の成形体。
[2]
A molded article containing the propylene-based resin composition of the above [1].
[3]
The molded article according to the above [2], which is an injection molded article or an injection blow molded article of the propylene-based resin composition of the above [1].

[4]
容器である前記[2]または[3]に記載の成形体。
[5]
前記容器が食品包装容器である前記[4]の成形体。
[4]
The molded article according to the above [2] or [3], which is a container.
[5]
The molded article according to [4], wherein the container is a food packaging container.

[6]
前記容器の最も薄い部分の厚さが0.3~2.0mmである前記[4]または[5]の成形体。
[6]
The compact according to [4] or [5], wherein the thinnest portion of the container has a thickness of 0.3 to 2.0 mm.

[7]
前記[1]のプロピレン系樹脂組成物を射出成形または射出延伸ブロー成形する工程を含む成形品の製造方法。
[7]
A method for producing a molded article, comprising a step of injection molding or injection stretch blow molding the propylene-based resin composition of the above [1].

本発明のプロピレン系樹脂組成物によれば、薄肉の成形品の製造時であっても優れた高速成形性で、剛性および低温耐衝撃性にバランスよく優れる成形品を得ることができる。
また、本発明の成形品は、剛性および低温耐衝撃性にバランスよく優れている。
According to the propylene-based resin composition of the present invention, it is possible to obtain a molded article having excellent high-speed moldability and excellent rigidity and low-temperature impact resistance in a well-balanced manner even when producing a thin-walled molded article.
In addition, the molded article of the present invention has well-balanced rigidity and low-temperature impact resistance.

[プロピレン系樹脂組成物]
本発明のプロピレン系樹脂組成物は、後述する要件(A1)~(A5)を満たすプロピレン系重合体(A)を75~92質量部、後述する要件(B1)~(B2)を満たすエチレン系重合体(B)を8~25質量部(ただし、プロピレン系重合体(A)およびエチレン系重合体(B)の合計を100質量部とする)、および造核剤(C)を0.02~1.0質量部を含むことを特徴としている。
[Propylene resin composition]
The propylene-based resin composition of the present invention contains 75-92 parts by mass of a propylene-based polymer (A) that satisfies the requirements (A1) to (A5) described later, and an ethylene-based polymer that satisfies the requirements (B1) to (B2) described later. 8 to 25 parts by mass of the polymer (B) (where the total of the propylene-based polymer (A) and the ethylene-based polymer (B) is 100 parts by mass), and 0.02 of the nucleating agent (C) It is characterized by containing up to 1.0 parts by mass.

〔プロピレン系重合体(A)〕
本発明のプロピレン系樹脂組成物は、以下に説明する要件(A1)~(A5)を満たすプロピレン系重合体を含む。以下、「要件(A1)~(A5)を満たすプロピレン系重合体(A)」を単に「プロピレン系重合体(A)」とも記載する。
[Propylene polymer (A)]
The propylene-based resin composition of the present invention contains a propylene-based polymer that satisfies requirements (A1) to (A5) described below. Hereinafter, "the propylene-based polymer (A) that satisfies the requirements (A1) to (A5)" is also simply referred to as "the propylene-based polymer (A)".

プロピレン系重合体(A)は、好ましくは、主にプロピレン由来の構成単位からなる成分と、主にプロピレンおよびエチレン由来の構成単位からなる成分とを含むプロピレン系共重合体(いわゆるブロック共重合体)である。 The propylene-based polymer (A) is preferably a propylene-based copolymer (a so-called block copolymer ).

(要件(A1))
要件(A1)は、プロピレン系重合体(A)の、ASTM D-1238に準拠して、測定温度230℃、荷重2.16kgで測定されるメルトフローレート(以下「MFRA」とも記載する。)が45~195g/10分である、というものである。前記MFRAは、好ましくは60~170g/10分であり、より好ましくは80~120g/10分である。
(Requirement (A1))
Requirement (A1) is the melt flow rate of the propylene-based polymer (A) measured at a measurement temperature of 230° C. and a load of 2.16 kg in accordance with ASTM D-1238 (hereinafter also referred to as “MFR A ”). ) is 45 to 195 g/10 minutes. The MFR A is preferably 60-170 g/10 min, more preferably 80-120 g/10 min.

MFRAが上記範囲を下回ると、プロピレン系樹脂組成物を射出成形した際にショートショットが生じることがある。またMFRAが上記範囲を上回ると、プロピレン系樹脂組成物を射出成形した際にバリが生じることがある。If the MFR A is below the above range, short shots may occur when the propylene-based resin composition is injection molded. Also, if the MFR A exceeds the above range, burrs may occur when the propylene-based resin composition is injection molded.

(要件(A2))
要件(A2)は、プロピレン系重合体(A)が、室温n-デカンに不溶な部分(以下「Dinsol」とも記載する。)を80~92質量%、および室温n-デカンに可溶な部分(以下「Dsol」とも記載する。)を8~20質量%含む、というものである。ただし、Dinsolの割合とDsolの割合との合計を100質量%とする。好ましくは、Dinsolが82~88質量%であり、Dsolが12~18質量%である。また、室温とは、具体的には25℃である。
(Requirement (A2))
Requirement (A2) is that the propylene-based polymer (A) has a portion insoluble in room temperature n-decane (hereinafter also referred to as “D insol ”) of 80 to 92% by mass, and a portion soluble in room temperature n-decane. It contains 8 to 20% by mass of a portion (hereinafter also referred to as “D sol ”). However, the sum of the ratio of D insol and the ratio of D sol is 100% by mass. Preferably, D insol is 82-88% by weight and D sol is 12-18% by weight. Further, room temperature is specifically 25°C.

プロピレン系重合体(A)において、n-デカンに不溶な部分(Dinsol)とは、通常、主にプロピレン由来の構成単位からなる成分であり、結晶性を有し、高い剛性を示すと考えられる。n-デカンに可溶な部分(Dsol)とは、通常、主にプロピレンおよびエチレン由来の構成単位からなる成分である。Dsol成分は結晶性を示さないか、もしくは結晶性が低い成分であり、ガラス転移温度が低く、耐衝撃性、およびエチレン系重合体(B)との相溶性を発現すると考えられる。これはゴム成分と言われることもある。プロピレン系重合体(A)は、通常、n-デカンに不溶な部分(Dinsol)およびn-デカンに可溶な部分(Dsol)を有するプロピレン系共重合体(いわゆるブロック共重合体)である。In the propylene-based polymer (A), the n-decane-insoluble portion (D insol ) is usually a component mainly composed of structural units derived from propylene, and is considered to have crystallinity and high rigidity. be done. The portion soluble in n-decane (D sol ) is usually a component mainly composed of structural units derived from propylene and ethylene. The D sol component does not exhibit crystallinity or has low crystallinity, and is considered to exhibit low glass transition temperature, impact resistance, and compatibility with the ethylene polymer (B). This is sometimes referred to as the rubber component. The propylene-based polymer (A) is usually a propylene-based copolymer (so-called block copolymer) having a n-decane-insoluble portion (D insol ) and an n-decane-soluble portion (D sol ). be.

solの割合が上記範囲を下回り、Dinsolの割合が上記範囲を上回ると、プロピレン系樹脂組成物から得られる成形体の耐衝撃性が低下する傾向にある。Dsolの割合が減ることにより衝撃に対しての吸収エネルギーが低下するためと考えられる。When the proportion of D sol is below the above range and the proportion of D insol exceeds the above range, the impact resistance of the molded article obtained from the propylene-based resin composition tends to decrease. This is believed to be due to the fact that the absorption energy against impact decreases as the ratio of D sol decreases.

一方、Dinsolの割合が上記範囲を下回り、Dsolの割合が上記範囲を上回ると、プロピレン系樹脂組成物の高速での成形性が劣る場合があり、またプロピレン系樹脂組成物から得られた成形体の剛性(座屈強度)が劣る場合がある。
前記Dinsolの割合および前記Dsolの割合は、後述する実施例で採用した方法により測定した場合のものである。
On the other hand, when the proportion of D insol is below the above range and the proportion of D sol exceeds the above range, the high-speed moldability of the propylene-based resin composition may be poor, and the The rigidity (buckling strength) of the molded body may be inferior.
The ratio of D insol and the ratio of D sol are those measured by the method employed in the examples described later.

(要件(A3))
要件(A3)は、前記Dinsolに占めるエチレン由来の構成単位の割合が0~1.0質量%である、というものである。この割合は、好ましくは0~0.8質量%である。なお、Dinsolの量を100質量%とする。また、前記構成単位の割合が0質量%であるとは、前記Dinsolがエチレン由来の構成単位を含まないこと、または前記構成単位の割合が検出限界以下であることを意味する。
(Requirement (A3))
Requirement (A3) is that the proportion of ethylene-derived structural units in the D insol is 0 to 1.0% by mass. This proportion is preferably between 0 and 0.8% by weight. The amount of D insol is assumed to be 100% by mass. Moreover, the ratio of the structural units being 0% by mass means that the D insol does not contain any structural units derived from ethylene, or the ratio of the structural units is below the detection limit.

前記構成単位の割合が上記範囲を超えると、プロピレン系樹脂組成物の高速での成形性が劣る場合があり、またプロピレン系樹脂組成物から得られた成形体の剛性(座屈強度)が劣る場合がある。
前記構成単位の割合は、後述する実施例で採用した方法により測定した場合のものである。
If the proportion of the structural unit exceeds the above range, the high-speed moldability of the propylene-based resin composition may be poor, and the rigidity (buckling strength) of a molded article obtained from the propylene-based resin composition may be poor. Sometimes.
The ratio of the structural units is the one measured by the method employed in the examples described later.

(要件(A4))
要件(A4)は、前記Dsolに占めるエチレン由来の構成単位の割合が25~35質量%である、というものである。なお、Dsolの量を100質量%とする。この割合は、好ましくは27~35質量%、より好ましくは28~34質量%である。
(Requirement (A4))
Requirement (A4) is that the proportion of ethylene-derived structural units in D sol is 25 to 35% by mass. The amount of D sol is assumed to be 100% by mass. This proportion is preferably 27 to 35% by weight, more preferably 28 to 34% by weight.

前記構成単位の割合が上記範囲を下回ると、プロピレン系樹脂組成物から得られた成形体の耐衝撃性が劣る傾向がある。Dsolのエチレンの割合が減ることによりガラス転移温度が低下し、結晶化度が高くなり、衝撃に対しての吸収エネルギーが低下するためと考えられる。If the ratio of the structural unit is below the above range, the impact resistance of the molded article obtained from the propylene-based resin composition tends to be poor. It is believed that the decrease in the proportion of ethylene in D sol lowers the glass transition temperature, increases the degree of crystallinity, and reduces the absorption energy against impact.

一方、前記構成単位の割合が上記範囲を上回ると、プロピレン系樹脂組成物の高速での成形性が劣る場合がある。
前記構成単位の割合は、後述する実施例で採用した方法により測定した場合のものである。
On the other hand, if the proportion of the structural unit exceeds the above range, the high-speed moldability of the propylene-based resin composition may deteriorate.
The ratio of the structural units is the one measured by the method employed in the examples described later.

(要件(A5))
要件(A5)は、前記Dsolの、135℃デカリン中における極限粘度(以下「極限粘度[ηsol]」とも記載する。)が1.0~3.0dl/gである、というものである。前記極限粘度[ηsol]は、好ましくは1.4~2.8dl/gである。
(Requirement (A5))
Requirement (A5) is that the intrinsic viscosity of D sol in decalin at 135° C. (hereinafter also referred to as “intrinsic viscosity [η sol ]”) is 1.0 to 3.0 dl/g. . The intrinsic viscosity [η sol ] is preferably 1.4 to 2.8 dl/g.

極限粘度[ηsol]が上記範囲を上回るかもしくは下回ると、プロピレン系樹脂組成物から得られた成形体の耐衝撃性が低下する場合がある。
前記極限粘度[ηsol]の値は、後述する実施例で採用した方法により測定した場合のものである。
If the intrinsic viscosity [η sol ] exceeds or falls below the above range, the impact resistance of the molded article obtained from the propylene-based resin composition may decrease.
The value of the intrinsic viscosity [η sol ] is the value measured by the method employed in the examples described later.

前記プロピレン系重合体(A)は、その製造方法に特に限定はないが、通常は、メタロセン化合物含有触媒存在下、またはチーグラーナッタ触媒存在下で、プロピレンおよびエチレンを共重合することにより得られる。 The propylene-based polymer (A) is generally obtained by copolymerizing propylene and ethylene in the presence of a metallocene compound-containing catalyst or in the presence of a Ziegler-Natta catalyst, although the method for producing the propylene-based polymer (A) is not particularly limited.

なお、プロピレン系重合体(A)は、チーグラーナッタ触媒存在下で、プロピレンおよびエチレンを共重合することにより得られることが好ましい。分子量分布が広く成形性が良好な樹脂が得られ易い為である。 The propylene-based polymer (A) is preferably obtained by copolymerizing propylene and ethylene in the presence of a Ziegler-Natta catalyst. This is because a resin having a wide molecular weight distribution and good moldability can be easily obtained.

(メタロセン化合物含有触媒)
前記メタロセン化合物含有触媒としては、メタロセン化合物、並びに、有機金属化合物、有機アルミニウムオキシ化合物およびメタロセン化合物と反応してイオン対を形成することのできる化合物から選ばれる少なくとも1種以上の化合物、さらに必要に応じて粒子状担体とからなるメタロセン触媒を挙げることができ、好ましくはアイソタクチックまたはシンジオタクチック構造等の立体規則性重合をすることのできるメタロセン触媒を挙げることができる。前記メタロセン化合物の中では、国際公開第01/27124号に例示されている架橋性メタロセン化合物、国際公開第2010/74001号の[0068]~[0076]に記載のメタロセン化合物などが好ましい。また、有機金属化合物、有機アルミニウムオキシ化合物、および遷移金属化合物と反応してイオン対を形成する化合物、さらには必要に応じて用いられる粒子状担体としては、国際公開第01/27124号、特開平11-315109号公報等に開示された化合物を制限無く使用することができる。
(Catalyst containing metallocene compound)
As the metallocene compound-containing catalyst, at least one compound selected from a metallocene compound, an organometallic compound, an organoaluminum oxy compound, and a compound capable of forming an ion pair by reacting with the metallocene compound, and, if necessary, A metallocene catalyst comprising a particulate carrier can be mentioned accordingly, and preferably a metallocene catalyst capable of stereoregular polymerization having an isotactic or syndiotactic structure can be mentioned. Among the metallocene compounds, preferred are the crosslinkable metallocene compounds exemplified in WO 01/27124 and the metallocene compounds described in [0068] to [0076] of WO 2010/74001. In addition, compounds that react with organometallic compounds, organoaluminum oxy compounds, and transition metal compounds to form ion pairs, and particulate carriers that are used as necessary are described in International Publication No. 01/27124, The compounds disclosed in Japanese Patent Application Laid-Open No. 11-315109 can be used without limitation.

(チーグラーナッタ触媒)
プロピレン系重合体(A)は、高立体規則性チーグラーナッタ触媒を用いることにより製造することができる。前記高立体規則性チーグラーナッタ触媒としては、公知の種々の触媒が使用できる。たとえば、(a)マグネシウム、チタン、ハロゲンおよび電子供与体を含有する固体状チタン触媒成分と、(b)有機金属化合物触媒成分と、(c)シクロペンチル基、シクロペンテニル基、シクロペンタジエニル基およびこれらの誘導体からなる群から選ばれる少なくとも1種の基を有する有機ケイ素化合物触媒成分とからなる触媒を用いることができ、この触媒成分は公知の方法、たとえば国際公開第2010/74001号の[0078]~[0094]に記載の方法で製造することができる。
(Ziegler-Natta catalyst)
The propylene-based polymer (A) can be produced by using a highly stereoregular Ziegler-Natta catalyst. Various known catalysts can be used as the highly stereoregular Ziegler-Natta catalyst. For example, (a) a solid titanium catalyst component containing magnesium, titanium, a halogen and an electron donor, (b) an organometallic compound catalyst component, (c) a cyclopentyl group, a cyclopentenyl group, a cyclopentadienyl group, and A catalyst consisting of an organosilicon compound catalyst component having at least one group selected from the group consisting of these derivatives can be used, and this catalyst component is prepared by a known method, for example, [0078 ] to [0094].

上記のような固体状チタン触媒成分(a)、有機金属化合物触媒成分(b)、および有機ケイ素化合物触媒成分(c)からなる触媒を用いてプロピレンの重合を行うに際して、予め予備重合を行うこともできる。予備重合は、固体状チタン触媒成分(a)、有機金属化合物触媒成分(b)、および必要に応じて有機ケイ素化合物触媒成分(c)の存在下に、オレフィンを重合させる。 When propylene is polymerized using a catalyst comprising the solid titanium catalyst component (a), the organometallic compound catalyst component (b), and the organosilicon compound catalyst component (c) as described above, prepolymerization is carried out in advance. can also The prepolymerization polymerizes the olefin in the presence of the solid titanium catalyst component (a), the organometallic compound catalyst component (b), and optionally the organosilicon compound catalyst component (c).

予備重合するオレフィンとしては、炭素数2~8のα-オレフィンを用いることができる。具体的には、エチレン、プロピレン、1-ブテン、1-オクテンなどの直鎖状のオレフィン;3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセンなどの分岐構造を有するオレフィン等を用いることができる。これらは共重合させてもよい。 As the olefin to be prepolymerized, an α-olefin having 2 to 8 carbon atoms can be used. Specifically, linear olefins such as ethylene, propylene, 1-butene, 1-octene; 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4- methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, etc. can be used. These may be copolymerized.

予備重合は、固体状チタン触媒成分(a)1g当り0.1~1000g程度、好ましくは0.3~500g程度の重合体が生成するように行うことが望ましい。予備重合量が多すぎると、本重合における(共)重合体の生成効率が低下することがある。予備重合では、本重合における系内の触媒濃度よりもかなり高い濃度で触媒を用いることができる。 The prepolymerization is desirably carried out so that about 0.1 to 1000 g, preferably about 0.3 to 500 g of polymer is produced per 1 g of the solid titanium catalyst component (a). If the prepolymerization amount is too large, the production efficiency of the (co)polymer in the main polymerization may decrease. In the prepolymerization, the catalyst can be used at a much higher concentration than in the system in the main polymerization.

本重合の際には、固体状チタン触媒成分(a)(または予備重合触媒)を重合容積1L当りチタン原子に換算して約0.0001~50ミリモル、好ましくは約0.001~10ミリモルの量で用いることが望ましい。有機金属化合物触媒成分(b)は、金属原子の量に換算して、重合系中のチタン原子1モルに対して約1~2000モル、好ましくは約2~500モル程度の量で用いることが望ましい。有機ケイ素化合物触媒成分(c)は、有機金属化合物触媒成分(b)の金属原子1モル当り約0.001~50モル、好ましくは約0.01~20モル程度の量で用いることが望ましい。 In the main polymerization, about 0.0001 to 50 millimoles, preferably about 0.001 to 10 millimoles of the solid titanium catalyst component (a) (or prepolymerization catalyst) is converted to titanium atoms per liter of polymerization volume. It is desirable to use it in quantity. The organometallic compound catalyst component (b) can be used in an amount of about 1 to 2000 mol, preferably about 2 to 500 mol, in terms of the amount of metal atoms, per 1 mol of titanium atoms in the polymerization system. desirable. The organosilicon compound catalyst component (c) is desirably used in an amount of about 0.001 to 50 mol, preferably about 0.01 to 20 mol, per 1 mol of the metal atom in the organometallic compound catalyst component (b).

(プロピレン系重合体(A)の製法)
前記プロピレン系重合体(A)は、前述のメタロセン化合物含有触媒存在下、またはチーグラーナッタ触媒存在下でプロピレンおよびエチレンを共重合することにより得られる。
(Manufacturing method of propylene-based polymer (A))
The propylene-based polymer (A) is obtained by copolymerizing propylene and ethylene in the presence of the aforementioned metallocene compound-containing catalyst or in the presence of a Ziegler-Natta catalyst.

連続多段重合により前記プロピレン系重合体(A)を製造する場合、各段においてはプロピレンを単独重合させるか、またはプロピレンとエチレンとを共重合させる。
重合は、気相重合法あるいは溶液重合法、懸濁重合法などの液相重合法いずれで行ってもよく、各段を別々の方法で行ってもよい。また連続式、半連続式のいずれの方式で行ってもよく、各段を複数の重合器たとえば2~10器の重合器に分けて行ってもよい。工業的には連続式の方法で重合することが最も好ましく、この場合2段目以降の重合を2器以上の重合器に分けて行うことが好ましく、これによりゲルの発生を抑制することができる。
When the propylene-based polymer (A) is produced by continuous multi-stage polymerization, propylene is homopolymerized or propylene and ethylene are copolymerized in each stage.
The polymerization may be carried out by any of a gas phase polymerization method, a liquid phase polymerization method such as a solution polymerization method and a suspension polymerization method, and each stage may be carried out by a separate method. Further, the polymerization may be conducted by either a continuous system or a semi-continuous system, and each stage may be divided into a plurality of polymerization vessels, for example, 2 to 10 polymerization vessels. Industrially, it is most preferable to carry out polymerization by a continuous method. In this case, it is preferable to carry out the second and subsequent polymerizations in two or more polymerization vessels, thereby suppressing the generation of gel. .

重合媒体として、不活性炭化水素類を用いてもよく、また液状のプロピレンを重合媒体としてもよい。また各段の重合条件は、重合温度が約-50~+200℃、好ましくは約20~100℃の範囲で、また重合圧力が常圧~10MPa(ゲージ圧)、好ましくは約0.2~5MPa(ゲージ圧)の範囲内で適宜選択される。 As the polymerization medium, inert hydrocarbons may be used, and liquid propylene may be used as the polymerization medium. The polymerization conditions for each stage are such that the polymerization temperature is in the range of about −50 to +200° C., preferably about 20 to 100° C., and the polymerization pressure is normal pressure to 10 MPa (gauge pressure), preferably about 0.2 to 5 MPa. (gauge pressure).

プロピレン系重合体(A)は、たとえば、2つ以上の重合器を直列につなげた反応装置で、次の二つの工程([工程1]および[工程2])を連続的に実施することによって得られる。プロピレン系重合体(A)の製造の際には、二つ以上の反応機を直列に連結した重合装置を用いそれぞれの重合装置で[工程1]を行ってもよく、また二つ以上の反応機を直列に連結した重合装置を用いそれぞれの重合装置で[工程2]を行ってもよい。また、[工程1]と[工程2]とを別々に行い、それぞれで得られた重合体を単軸押出機、多軸押出機、ニーダー、バンバリーミキサーなどを用いて溶融混練し、プロピレン系重合体(A)を製造してもよい。 The propylene-based polymer (A) can be prepared, for example, by continuously performing the following two steps ([step 1] and [step 2]) in a reactor in which two or more polymerization vessels are connected in series. can get. In the production of the propylene-based polymer (A), a polymerization apparatus in which two or more reactors are connected in series may be used and [Step 1] may be performed in each polymerization apparatus. [Step 2] may be performed in each of the polymerization apparatuses connected in series. Further, [Step 1] and [Step 2] are performed separately, and the polymers obtained in each are melt-kneaded using a single-screw extruder, a multi-screw extruder, a kneader, a Banbury mixer, etc., and propylene-based polymer Coalescence (A) may be produced.

以下、[工程1]と[工程2]とを連続して実施することによりプロピレン系重合体(A)を製造する方法について記載する。
[工程1]は、重合温度0~100℃、重合圧力常圧~5MPaゲージ圧で、プロピレンと任意にエチレンとを重合させる工程であって、エチレンを供給しないか、またはプロピレンのフィード量に比べて少量のエチレンを供給することによって、Dinsolの主成分となるプロピレン系重合体を製造する工程である。また、必要に応じて水素ガスに代表される連鎖移動剤も導入し、[工程1]で生成される重合体の極限粘度[η]を調整してもよい。
A method for producing the propylene-based polymer (A) by continuously performing [Step 1] and [Step 2] will be described below.
[Step 1] is a step of polymerizing propylene and optionally ethylene at a polymerization temperature of 0 to 100° C. and a polymerization pressure of normal pressure to 5 MPa gauge pressure. In this process, a small amount of ethylene is supplied to the D insol to produce a propylene-based polymer, which is the main component of D insol. If necessary, a chain transfer agent typified by hydrogen gas may be introduced to adjust the intrinsic viscosity [η] of the polymer produced in [Step 1].

[工程2]は、重合温度0~100℃、重合圧力常圧~5MPaゲージ圧で、プロピレンとエチレンとを共重合させる工程であって、プロピレンのフィード量に対するエチレンのフィード量の割合を[工程1]のときよりも大きくすることによって、Dsolの主成分となるプロピレン-エチレン共重合ゴムを製造する工程である。必要に応じて水素ガスに代表される連鎖移動剤も導入し、[工程2]で生成される重合体の極限粘度[η]を調整してもよい。[Step 2] is a step of copolymerizing propylene and ethylene at a polymerization temperature of 0 to 100° C. and a polymerization pressure of normal pressure to 5 MPa gauge pressure. 1] to produce propylene-ethylene copolymer rubber, which is the main component of D sol . If necessary, a chain transfer agent typified by hydrogen gas may be introduced to adjust the intrinsic viscosity [η] of the polymer produced in [Step 2].

プロピレン系重合体(A)は、上記[工程1]および[工程2]を連続的に実施することによって得られ、要件(A1)~(A5)は以下のようにして調整することができる。
要件(A1)におけるMFRAは、[工程1]または[工程2]を行う際のモノマー(すなわち、プロピレンの単独重合の場合にはプロピレン、共重合の場合にはプロピレンおよびエチレン)のフィード量に対する連鎖移動剤としての水素ガスのフィード量の割合を調整することにより調整できる。すなわち、この割合を大きくすることでMFRAを高くすることができ、この割合を小さくすることでMFRAを低くすることができる。
The propylene-based polymer (A) is obtained by continuously performing the above [Step 1] and [Step 2], and the requirements (A1) to (A5) can be adjusted as follows.
MFR A in requirement (A1) is the feed amount of monomers (that is, propylene in the case of homopolymerization of propylene, propylene and ethylene in the case of copolymerization) when performing [Step 1] or [Step 2] It can be adjusted by adjusting the feed rate of hydrogen gas as a chain transfer agent. That is, by increasing this ratio, MFR A can be increased, and by decreasing this ratio, MFR A can be decreased.

また、上記方法以外でも、重合で得られたプロピレン系重合体を有機過酸化物の存在下で溶融混練処理することによりMFRAを調整することができる。重合で得られたプロピレン系重合体を、有機過酸化物存在下での溶融混練処理を行うことによりMFRAは高くなり、有機過酸化物存在下での溶融混練処理を行う際の有機過酸化物の添加量を増やすことでMFRAはより高くなる。重合で得られたプロピレン系重合体を有機過酸化物存在下で溶融混練処理する場合、有機過酸化物は、プロピレン系重合体100質量部に対して0.005~0.05質量部使用することが望ましい。また、上記有機過酸化物存在下での溶融混練処理は、下記後処理工程後に行ってもよい。有機過酸化物としては、特に限定はなく、従来公知の有機過酸化物、たとえば2,5-ジ-メチル-2,5-ジ-(ベンゾイルパーオキシ)ヘキサン、および1,3-ビス-(t-ブチルパーオキシイソプロピル)ベンゼン)が挙げられる。In addition to the above method, the MFR A can also be adjusted by subjecting the propylene-based polymer obtained by polymerization to a melt-kneading treatment in the presence of an organic peroxide. By subjecting the propylene-based polymer obtained by polymerization to a melt-kneading treatment in the presence of an organic peroxide, the MFR A becomes higher, and the organic peroxide is reduced when the melt-kneading treatment is performed in the presence of an organic peroxide. The MFR A becomes higher by increasing the amount of additive added. When the propylene-based polymer obtained by polymerization is melt-kneaded in the presence of an organic peroxide, the organic peroxide is used in an amount of 0.005 to 0.05 parts by mass with respect to 100 parts by mass of the propylene-based polymer. is desirable. Moreover, the melt-kneading treatment in the presence of the organic peroxide may be performed after the following post-treatment step. The organic peroxide is not particularly limited, and conventionally known organic peroxides such as 2,5-di-methyl-2,5-di-(benzoylperoxy)hexane and 1,3-bis-( t-butylperoxyisopropyl)benzene).

要件(A2)における前記Dinsolの割合および前記Dsolの割合は、上記[工程1]および[工程2]の重合時間を調整することにより、調整することが出来る。つまり、全重合時間に占める[工程1]の重合時間の割合を高めることで、Dinsolの割合を大きく、Dsolの割合を小さくすることが出来る。また、全重合時間に占める[工程2]の重合時間の割合を高めることで、Dinsolの割合を小さく、Dsolの割合を大きくすることが出来る。The ratio of D insol and the ratio of D sol in requirement (A2) can be adjusted by adjusting the polymerization time in [Step 1] and [Step 2]. That is, by increasing the proportion of the polymerization time in [Step 1] in the total polymerization time, the proportion of D insol can be increased and the proportion of D sol can be decreased. Further, by increasing the ratio of the polymerization time of [Step 2] to the total polymerization time, the ratio of D insol can be decreased and the ratio of D sol can be increased.

要件(A3)における前記Dinsolに占めるエチレン由来の構成単位の割合は、[工程1]を行う際のプロピレンフィード量に対するエチレンフィード量の割合を調整することにより調整できる。つまり、このフィード量の割合を大きくすることにより、前記構成単位の割合を大きくすることができ、このフィード量の割合を小さくすることにより、前記構成単位の割合を小さくすることができる。The ratio of ethylene-derived structural units in the D insol in requirement (A3) can be adjusted by adjusting the ratio of the ethylene feed amount to the propylene feed amount during [Step 1]. That is, by increasing the feed rate, the proportion of the structural unit can be increased, and by decreasing the feed rate, the proportion of the structural unit can be decreased.

要件(A4)における前記Dsolに占めるエチレン由来の構成単位の割合は、[工程2]を行う際のプロピレンフィード量に対するエチレンフィード量の割合を調整することにより調整できる。つまり、このフィード量の割合を大きくすることにより、前記構成単位の割合を大きくすることができ、このフィード量の割合を小さくすることにより、前記構成単位の割合を小さくすることができる。The ratio of ethylene-derived structural units in D sol in requirement (A4) can be adjusted by adjusting the ratio of the ethylene feed amount to the propylene feed amount when performing [Step 2]. That is, by increasing the feed rate, the proportion of the structural unit can be increased, and by decreasing the feed rate, the proportion of the structural unit can be decreased.

要件(A5)における極限粘度[ηsol]は、[工程2]を行う際の連鎖移動剤として用いる水素ガスのフィード量により調整できる。つまり、モノマー(すなわち、プロピレンおよびエチレン)のフィード量に対する水素ガスのフィード量の割合を大きくすることにより極限粘度[ηsol]を小さくすることができ、モノマーのフィード量に対する水素ガスのフィード量の割合を小さくすることにより極限粘度[ηsol]を大きくすることができる。The limiting viscosity [η sol ] in the requirement (A5) can be adjusted by adjusting the feed amount of hydrogen gas used as a chain transfer agent when performing [Step 2]. In other words, the limiting viscosity [η sol ] can be decreased by increasing the ratio of the hydrogen gas feed rate to the monomer (i.e., propylene and ethylene) feed rate, and the ratio of the hydrogen gas feed rate to the monomer feed rate is By decreasing the ratio, the intrinsic viscosity [η sol ] can be increased.

重合終了後、必要に応じて公知の触媒失活処理工程、触媒残渣除去工程、乾燥工程等の後処理工程を行うことにより、プロピレン系重合体(A)がパウダーとして得られる。
また、プロピレン系重合体(A)として市販品を使用してもよい。
After completion of the polymerization, the propylene-based polymer (A) is obtained as a powder by carrying out known post-treatment steps such as a catalyst deactivation treatment step, a catalyst residue removal step, a drying step, and the like, if necessary.
Moreover, you may use a commercial item as a propylene-type polymer (A).

〔エチレン系重合体(B)〕
本発明のプロピレン系樹脂組成物は、以下に説明する要件(B1)~(B2)を満たすエチレン系重合体(B)を含む。以下、「要件(B1)~(B2)を満たすエチレン系重合体(B)」を単に「エチレン系重合体(B)」とも記載する。
[Ethylene polymer (B)]
The propylene-based resin composition of the present invention contains an ethylene-based polymer (B) that satisfies requirements (B1) to (B2) described below. Hereinafter, "the ethylene-based polymer (B) that satisfies the requirements (B1) to (B2)" is also simply referred to as "the ethylene-based polymer (B)".

エチレン系重合体(B)としては、エチレン単独重合体、およびエチレン・α-オレフィン共重合体が挙げられる。
前記α-オレフィンとしては炭素数3~20のα-オレフィンが挙げられ、その例としてはプロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどが挙げられる。
Examples of the ethylene-based polymer (B) include ethylene homopolymers and ethylene/α-olefin copolymers.
Examples of the α-olefins include α-olefins having 3 to 20 carbon atoms, examples of which include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1 -pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene and the like.

(要件(B1))
要件(B1)は、エチレン系重合体(B)の、ASTM D-1238に準拠して、測定温度190℃、荷重2.16kgで測定されるメルトフローレート(以下、単に「MFRB」とも記載する。)が3.0~50g/10分である、というものである。前記MFRBは、好ましくは3.0~30g/10分であり、より好ましくは3.0~20g/10分である。
(Requirement (B1))
Requirement (B1) is the melt flow rate of the ethylene polymer (B) measured at a measurement temperature of 190 ° C. and a load of 2.16 kg in accordance with ASTM D-1238 (hereinafter also simply referred to as "MFR B " ) is 3.0 to 50 g/10 minutes. The MFR B is preferably 3.0 to 30 g/10 minutes, more preferably 3.0 to 20 g/10 minutes.

MFRBが上記範囲を下回ると、プロピレン系樹脂組成物から得られる成形体の耐衝撃性が劣る場合がある。またMFRBが上記範囲を上回ると、プロピレン系樹脂組成物内で分散形状が小さくなりすぎるため、衝撃に対しての吸収エネルギーが低くなり、プロピレン系樹脂組成物から得られた成形体の耐衝撃性が劣る場合がある。If the MFR B is below the above range, the impact resistance of the molded article obtained from the propylene-based resin composition may be poor. If the MFR B exceeds the above range, the shape of dispersion in the propylene-based resin composition becomes too small, so that the energy absorbed against impact decreases, and the impact resistance of the molded product obtained from the propylene-based resin composition is reduced. may be inferior.

(要件(B2))
要件(B2)は、エチレン系重合体(B)の密度が940kg/m3以上である、というものである。前記密度は、好ましくは942kg/m3以上であり、より好ましくは945kg/m3以上であり、さらに好ましくは955~980kg/m3である。
(Requirement (B2))
Requirement (B2) is that the density of the ethylene polymer (B) is 940 kg/m 3 or more. The density is preferably 942 kg/m 3 or more, more preferably 945 kg/m 3 or more, still more preferably 955-980 kg/m 3 .

エチレン系重合体(B)の密度が上記範囲を下回ると、プロピレン系樹脂組成物の高速での成形性が劣る場合があり、またプロピレン系樹脂組成物から得られた成形体の剛性(座屈強度)が劣る場合がある。 If the density of the ethylene-based polymer (B) is below the above range, the high-speed moldability of the propylene-based resin composition may be poor, and the rigidity (buckling) of the molded product obtained from the propylene-based resin composition may strength) may be inferior.

なお、エチレン系重合体(B)の密度の値は、エチレン系重合体(B)のMFR測定時に得られるストランドを、120℃で1時間熱処理し、1時間かけて室温まで徐冷したものをサンプルとして用い、密度勾配管法によって測定した場合のものである。 The value of the density of the ethylene polymer (B) is obtained by heat-treating the strand obtained when measuring the MFR of the ethylene polymer (B) at 120°C for 1 hour and slowly cooling it to room temperature over 1 hour. It was measured by the density gradient tube method using it as a sample.

エチレン系重合体(B)は、従来公知の方法で製造することができる。
要件(B1)におけるMFRBは、エチレンを重合(またはエチレンおよびα-オレフィンを共重合)してエチレン系重合体(B)を製造する際に、モノマー(すなわち、エチレンの単独重合の場合にはエチレン、共重合の場合にはエチレンおよびα-オレフィン)のフィード量に対する連鎖移動剤としての水素ガスのフィード量の割合を調整することにより調整できる。すなわち、この割合を大きくすることでMFRBを高くすることができ、この割合を小さくすることでMFRBを低くすることができる。
The ethylene-based polymer (B) can be produced by a conventionally known method.
MFR B in requirement (B1) is a monomer (that is, in the case of homopolymerization of ethylene It can be adjusted by adjusting the ratio of the feed amount of hydrogen gas as a chain transfer agent to the feed amount of ethylene (or ethylene and α-olefin in the case of copolymerization). That is, the MFR B can be increased by increasing this ratio, and the MFR B can be decreased by decreasing this ratio.

要件(B2)における密度は、エチレンを重合(またはエチレンおよびα-オレフィンを共重合)してエチレン系重合体(B)を製造する際の、エチレンフィード量に対するα-オレフィンフィード量の割合を調整することにより調整できる。つまり、この割合を大きくすることにより、密度を低くすることができ、この割合を小さくすることにより、密度を高くすることができる。 The density in the requirement (B2) adjusts the ratio of the α-olefin feed amount to the ethylene feed amount when polymerizing ethylene (or copolymerizing ethylene and α-olefin) to produce the ethylene-based polymer (B). can be adjusted by That is, the density can be lowered by increasing this ratio, and the density can be increased by decreasing this ratio.

また、エチレン系重合体(B)として市販品を使用してもよい。市販品の例としては、ネオゼックス(登録商標)45200(MFR=20g/10分、密度=943kg/m3)、ネオゼックス2805JV(MFR=3.0g/10分、密度=965kg/m3)、ハイゼックス(登録商標)2200J(MFR=5.2g/10分、密度=964kg/m3)、ハイゼックス1700J(MFR=16g/10分、密度=967kg/m3)、(以上、(株)プライムポリマー製)などが挙げられる。Moreover, you may use a commercial item as an ethylene polymer (B). Examples of commercially available products include Neo-Zex (registered trademark) 45200 (MFR = 20 g/10 minutes, density = 943 kg/m 3 ), Neo-Zex 2805JV (MFR = 3.0 g/10 minutes, density = 965 kg/m 3 ), and Hi-Zex. (registered trademark) 2200J (MFR = 5.2 g/10 min, density = 964 kg/m 3 ), HI-ZEX 1700J (MFR = 16 g/10 min, density = 967 kg/m 3 ), (manufactured by Prime Polymer Co., Ltd.) ) and the like.

〔造核剤(C)〕
本発明のプロピレン系樹脂組成物は造核剤(C)を含む。
本発明のプロピレン系樹脂組成物に含まれる造核剤としては、特に限定はないが、ソルビトール系造核剤、リン系造核剤、カルボン酸金属塩系造核剤、ポリマー造核剤、無機化合物等が挙げられる。造核剤としては、ソルビトール系造核剤、リン系造核剤、ポリマー造核剤が好ましい。
[Nucleating agent (C)]
The propylene-based resin composition of the present invention contains a nucleating agent (C).
The nucleating agent contained in the propylene-based resin composition of the present invention is not particularly limited. compounds and the like. Preferred nucleating agents are sorbitol nucleating agents, phosphorus nucleating agents, and polymer nucleating agents.

ソルビトール系造核剤の具体例としては、1,2,3-トリデオキシ-4,6:5,7-ビス-O-[(4-プロピルフェニル)メチレン]-ノニトール(該化合物を含む市販品として商品名「ミラッドNX8000」シリーズ、ミリケン社製(「NX8000」は、上記化学物質+蛍光増白剤+ブルーミング剤、「NX8000K」は「NX8000」の蛍光増白剤抜き、「NX8000J」は蛍光増白剤とブルーミング剤両方抜き)が挙げられる)、1,3,2,4-ジベンジリデンソルビトール、1,3,2,4-ジ-(p-メチルベンジリデン)ソルビトール、1,3-p-クロルベンジリデン-2,4-p-メチルベンジリデンソルビトールが挙げられる。 Specific examples of sorbitol-based nucleating agents include 1,2,3-trideoxy-4,6:5,7-bis-O-[(4-propylphenyl)methylene]-nonitol (commercially available products containing the compound Product name "Mirad NX8000" series, manufactured by Milliken ("NX8000" is the above chemical substance + fluorescent brightener + blooming agent, "NX8000K" is "NX8000" without fluorescent brightener, "NX8000J" is fluorescent brightener 1,3,2,4-dibenzylidene sorbitol, 1,3,2,4-di-(p-methylbenzylidene) sorbitol, 1,3-p-chlorobenzylidene -2,4-p-methylbenzylidene sorbitol.

リン系造核剤の具体例としては、ナトリウム-ビス-(4-t-ブチルフェニル)フォスフェート、カリウム-ビス-(4-t-ブチルフェニル)フォスフェート、ナトリウム-2,2'-エチリデン-ビス(4,6-ジ-t-ブチルフェニル)フォスフェート、ナトリウム-2,2'-メチレン-ビス(4,6-ジ-t-ブチルフェニル)フォスフェート、ビス(2,4,8,10-テトラ-t-ブチル-6-ヒドロキシ-12H-ジベンゾ〔d,g〕〔1,3,2〕ジオキサホスホシン-6-オキシド)ナトリウム塩(商品名「アデカスタブ(登録商標)NA-11」、(株)ADEKA製)、ビス(2,4,8,10-テトラ-t-ブチル-6-ヒドロキシ-12H-ジベンゾ〔d,g〕〔1,3,2〕ジオキサホスホシン-6-オキシド)水酸化アルミニウム塩を主成分とする複合物(商品名「アデカスタブNA-21」、(株)ADEKA製)、リチウム-2,2'-メチレン-ビス(4,6-ジ-t-ブチルフェニル)フォスフェートと12-ヒドロキシステアリン酸とを含み、かつリチウムを必須性分として含む複合物(商品名「アデカスタブNA-71」、(株)ADEKA製)が挙げられる。 Specific examples of phosphorus-based nucleating agents include sodium-bis-(4-t-butylphenyl) phosphate, potassium-bis-(4-t-butylphenyl) phosphate, sodium-2,2'-ethylidene- Bis(4,6-di-t-butylphenyl) phosphate, sodium-2,2'-methylene-bis(4,6-di-t-butylphenyl) phosphate, bis(2,4,8,10 -tetra-t-butyl-6-hydroxy-12H-dibenzo[d,g][1,3,2]dioxaphosphocin-6-oxide) sodium salt (trade name “ADEKASTAB® NA-11”) , manufactured by ADEKA Corporation), bis(2,4,8,10-tetra-t-butyl-6-hydroxy-12H-dibenzo[d,g][1,3,2]dioxaphosphosine-6- oxide) a composite mainly composed of aluminum hydroxide salt (trade name “ADEKA STAB NA-21” manufactured by ADEKA Corporation), lithium-2,2′-methylene-bis(4,6-di-t-butyl A complex containing phenyl)phosphate and 12-hydroxystearic acid and containing lithium as an essential component (trade name “ADEKA STAB NA-71”, manufactured by ADEKA Corporation) can be mentioned.

カルボン酸金属塩造核剤の具体例としては、p-t-ブチル安息香酸アルミニウム塩、ヒドロキシ-ジ(p-t-ブチル安息香酸)アルミニウム(商品名「AL-PTBBA」、ジャパンケムテック製)、アジピン酸アルミニウム、安息香酸ナトリウムが挙げられる。 Specific examples of carboxylic acid metal salt nucleating agents include pt-butylbenzoic acid aluminum salt, hydroxy-di(pt-butylbenzoic acid) aluminum (trade name “AL-PTBBA”, manufactured by Japan Chemtech). , aluminum adipate, and sodium benzoate.

ポリマー造核剤としては分岐状α-オレフィン重合体が好適に用いられる。分岐状α-オレフィン重合体の例として、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセンの単独重合体、あるいはそれら相互の共重合体、さらにはそれらと他のα-オレフィンとの共重合体を挙げることができる。低温耐衝撃性、剛性の特性が良好であること、および経済性の観点から、特に、3-メチル-1-ブテンの重合体が好ましい。 A branched α-olefin polymer is preferably used as the polymer nucleating agent. Examples of branched α-olefin polymers include 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene , 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene homopolymers, or copolymers thereof, and can include copolymers of them with other α-olefins. Polymers of 3-methyl-1-butene are particularly preferred from the viewpoints of good low-temperature impact resistance and rigidity properties, and economic efficiency.

無機化合物の具体例としては、タルク、マイカ、炭酸カルシウムが挙げられる。
これらの造核剤の中でも、ビス(2,4,8,10-テトラ-t-ブチル-6-ヒドロキシ-12H-ジベンゾ〔d,g〕〔1,3,2〕ジオキサホスホシン-6-オキシド)ナトリウム塩、1,2,3-トリデオキシ-4,6:5,7-ビス-O-[(4-プロピフェニル)メチレン]-ノニトール、およびヒドロキシ-ジ(p-t-ブチル安息香酸)アルミニウムが好ましい。
Specific examples of inorganic compounds include talc, mica, and calcium carbonate.
Among these nucleating agents, bis(2,4,8,10-tetra-t-butyl-6-hydroxy-12H-dibenzo[d,g][1,3,2]dioxaphosphosine-6- oxide) sodium salt, 1,2,3-trideoxy-4,6:5,7-bis-O-[(4-propiphenyl)methylene]-nonitol, and hydroxy-di(pt-butylbenzoic acid) Aluminum is preferred.

これらの造核剤は1種単独で用いてもよく、2種以上を併用してもよい。
本発明のプロピレン系樹脂組成物は、造核剤(C)を含有することにより、本発明の組成物から形成される容器等の成形体の剛性に優れる。これは結晶化度の向上による高剛性化によると推定される。
また、造核剤の含量が、下記範囲より少ないと、剛性の改良効果が不十分であり、造核剤の含量が下記範囲より多いと、それ以上の改良効果は少なく、経済的でない。
These nucleating agents may be used singly or in combination of two or more.
Since the propylene-based resin composition of the present invention contains the nucleating agent (C), molded articles such as containers formed from the composition of the present invention are excellent in rigidity. It is presumed that this is due to the high rigidity due to the improvement of the degree of crystallinity.
On the other hand, if the content of the nucleating agent is less than the following range, the effect of improving rigidity is insufficient, and if the content of the nucleating agent is greater than the following range, the further improvement effect is small and uneconomical.

〔プロピレン系樹脂組成物〕
本発明のプロピレン系樹脂組成物は、前述のプロピレン系重合体(A)75~92質量部、エチレン系重合体(B)8~25質量部(ただし、プロピレン系重合体(A)およびエチレン系重合体(B)の合計を100質量部とする)、および造核剤(C)0.02~1.0質量部を含み、好ましくはプロピレン系重合体(A)86~90質量部、エチレン系重合体(B)10~14質量部、および造核剤(C)0.04~0.40質量部を含む。
[Propylene resin composition]
The propylene-based resin composition of the present invention contains 75 to 92 parts by mass of the propylene-based polymer (A) and 8 to 25 parts by mass of the ethylene-based polymer (B) (provided that the propylene-based polymer (A) and the ethylene-based The total of polymer (B) is 100 parts by mass), and 0.02 to 1.0 parts by mass of nucleating agent (C), preferably 86 to 90 parts by mass of propylene polymer (A), ethylene 10 to 14 parts by mass of the system polymer (B) and 0.04 to 0.40 parts by mass of the nucleating agent (C).

また、本発明のプロピレン系樹脂組成物は、これら3成分以外にも、本発明の目的を損なわない範囲で適宜中和剤、酸化防止剤、熱安定剤、耐候剤、滑剤、紫外線吸収剤、帯電防止剤、アンチブロッキング剤、防曇剤、気泡防止剤、分散剤、難燃剤、抗菌剤、蛍光増白剤、架橋剤、架橋助剤等の添加剤;染料、顔料等の着色剤で例示される成分(以下「他の成分」と記載する。)を含んでいてもよい。 In addition to these three components, the propylene-based resin composition of the present invention may also contain a neutralizing agent, an antioxidant, a heat stabilizer, a weathering agent, a lubricant, an ultraviolet absorber, Additives such as antistatic agents, antiblocking agents, antifogging agents, antifogging agents, dispersing agents, flame retardants, antibacterial agents, fluorescent brightening agents, cross-linking agents, and cross-linking aids; examples include coloring agents such as dyes and pigments components (hereinafter referred to as "other components").

本発明のプロピレン系樹脂組成物が、他の成分を含む場合には、他の成分の量は、プロピレン系重合体(A)およびエチレン系重合体(B)の合計100質量部に対して、通常0.01~5質量部である。 When the propylene-based resin composition of the present invention contains other components, the amount of the other components is It is usually 0.01 to 5 parts by mass.

本発明のプロピレン系樹脂組成物の、ASTM D-1238に準拠して、測定温度230℃、荷重2.16kgで測定されるメルトフローレート(以下、単に「MFR」とも記載する。)は、プロピレン系樹脂組成物を射出成形する際の流動性に優れることから、好ましくは50~140g/10分であり、より好ましくは60~120g/10分である。 The melt flow rate of the propylene-based resin composition of the present invention measured at a measurement temperature of 230° C. and a load of 2.16 kg according to ASTM D-1238 (hereinafter also simply referred to as “MFR”) is propylene It is preferably from 50 to 140 g/10 minutes, more preferably from 60 to 120 g/10 minutes, because of excellent fluidity during injection molding of the resin composition.

本発明のプロピレン系樹脂組成物のMFRは、プロピレン系重合体(A)のメルトフローレート、もしくはエチレン系重合体(B)のメルトフローレートを適宜選択することにより、あるいはプロピレン系重合体(A)およびエチレン系重合体(B)の配合割合を調製することにより調整できる。 The MFR of the propylene-based resin composition of the present invention can be determined by appropriately selecting the melt flow rate of the propylene-based polymer (A) or the melt flow rate of the ethylene-based polymer (B), or the propylene-based polymer (A ) and the ethylene-based polymer (B).

また、本発明のプロピレン系樹脂組成物のMFRは、各成分を混練機で溶融混練する際に、各成分に有機過酸化物を共存させることによっても、調整が可能である。すなわち、溶融混練を行う際に有機過酸化物を添加すること、あるいは溶融混練を行う際に、有機過酸化物の添加量を増やすことにより、プロピレン系樹脂組成物のMFRを高くすることができる。 The MFR of the propylene-based resin composition of the present invention can also be adjusted by allowing each component to coexist with an organic peroxide when melt-kneading each component with a kneader. That is, the MFR of the propylene-based resin composition can be increased by adding an organic peroxide during melt-kneading or by increasing the amount of the organic peroxide added during melt-kneading. .

前記有機過酸化物としては、特に限定はされないが、従来公知の有機過酸化物、たとえば2,5-ジ-メチル-2,5-ジ-(ベンゾイルパーオキシ)ヘキサン、1,3-ビス-(t-ブチルパーオキシイソプロピル)ベンゼンが挙げられる。有機過酸化物を使用する場合、有機過酸化物は、プロピレン系重合体(A)とエチレン・α-オレフィン共重合体(B)との合計100質量部に対して0.005~0.05質量部使用することが望ましい。 The organic peroxide is not particularly limited, but conventionally known organic peroxides such as 2,5-dimethyl-2,5-di-(benzoylperoxy)hexane, 1,3-bis- (t-butylperoxyisopropyl)benzene may be mentioned. When using an organic peroxide, the organic peroxide is 0.005 to 0.05 with respect to a total of 100 parts by mass of the propylene polymer (A) and the ethylene/α-olefin copolymer (B). It is desirable to use parts by mass.

本発明のプロピレン系樹脂組成物は、主としてDinsolを連続相、すなわち海部とし、かつDsolおよびエチレン系重合体(B)を主に島部とした、いわゆる海島構造をとる。このため、本発明のプロピレン系樹脂組成物は高い剛性と高い低温耐衝撃性とを両立できる。The propylene-based resin composition of the present invention has a so-called sea-island structure in which D insol is a continuous phase, that is, a sea portion, and D sol and the ethylene polymer (B) are mainly island portions. Therefore, the propylene-based resin composition of the present invention can achieve both high rigidity and high low-temperature impact resistance.

本発明のプロピレン系樹脂組成物の製造方法は特に限定されないが、該製造方法としては、例えば各成分を混練機で溶融混練して、プロピレン系樹脂組成物を製造する方法が挙げられる。混練機として、例えば単軸混練押出機、多軸混練押出機、ニーダー、バンバリーミキサー、ヘンシェルミキサー等が挙げられる。溶融混練条件は、混練時の剪断、加熱温度、剪断による発熱などによって溶融樹脂の劣化が起こらない限り、特に制限されない。溶融樹脂の劣化を防止する観点から、加熱温度を適正に設定したり、酸化防止剤や熱安定剤を添加したりすることは、効果的である。 The production method of the propylene-based resin composition of the present invention is not particularly limited, but examples of the production method include a method of melt-kneading each component in a kneader to produce a propylene-based resin composition. Examples of the kneader include a single-screw kneading extruder, a multi-screw kneading extruder, a kneader, a Banbury mixer, a Henschel mixer, and the like. Melt-kneading conditions are not particularly limited as long as the melted resin is not deteriorated by shearing during kneading, heating temperature, heat generation due to shearing, or the like. From the viewpoint of preventing deterioration of the molten resin, it is effective to appropriately set the heating temperature and add antioxidants and heat stabilizers.

[成形体]
本発明の成形体は、上述した本発明のプロピレン系樹脂組成物を含むことを特徴としている。その具体例としては、本発明のプロピレン系樹脂組成物を射出成形または射出ブロー成形したものが挙げられる。
[Molded body]
The molded article of the present invention is characterized by containing the propylene-based resin composition of the present invention described above. Specific examples thereof include injection molding or injection blow molding of the propylene-based resin composition of the present invention.

本発明の成形体としては、容器、家電部品、日用品等が挙げられる。中でも耐衝撃性および剛性の観点から容器が好ましい。
前記容器としては、洗髪剤、調髪剤、化粧品、洗剤、殺菌剤などの液体日用品用の包装容器;清涼飲料水、水、調味料などの液体用の食品包装容器;ゼリー、プリン、ヨーグルトなどの固体用の食品包装容器(デザートカップ);その他の薬品用の包装容器;工業用の液体用の包装容器などが挙げられる。
Examples of the molded article of the present invention include containers, household appliance parts, daily necessities, and the like. Among them, a container is preferable from the viewpoint of impact resistance and rigidity.
Examples of the container include packaging containers for liquid daily necessities such as hair wash, hair conditioner, cosmetics, detergents, and disinfectants; food packaging containers for liquids such as soft drinks, water, and seasonings; food packaging containers for solids (dessert cups); packaging containers for other chemicals; packaging containers for industrial liquids;

本発明の成形体は剛性および低温耐衝撃性にバランスよく優れることから、これらの容器の中でも、好ましくは食品包装容器(デザートカップ)として用いることができる。
デザートカップとしては、容器胴体部(最も肉厚の薄い部分)の肉厚が0.3~2.0mmの範囲であることが好ましい。本発明の成形体は、このように薄肉であっても低温耐衝撃性に優れ、その成形性にも優れている。
Since the molded article of the present invention is excellent in well-balanced rigidity and low-temperature impact resistance, it can be preferably used as a food packaging container (dessert cup) among these containers.
As for the dessert cup, it is preferable that the thickness of the container body portion (the thinnest portion) is in the range of 0.3 to 2.0 mm. The molded article of the present invention is excellent in low-temperature impact resistance even though it is thin as described above, and is also excellent in moldability.

また、本発明の成形体の製造方法は、上述した本発明のプロピレン系樹脂組成物を成形する工程を含むことを特徴としている。成形方法としては、好ましくは射出成形および射出延伸ブロー成形が挙げられる。 Further, the method for producing a molded article of the present invention is characterized by including the step of molding the propylene-based resin composition of the present invention described above. Molding methods preferably include injection molding and injection stretch blow molding.

射出成形の方法としては例えば射出成形機を用いて下記のような方法で成形を行うことができる。まず、射出機構のホッパー内にプロピレン系樹脂組成物を導入し、およそ200℃~250℃に加熱してあるシリンダーにプロピレン系樹脂組成物を送り込み、混練可塑化して溶融状態にする。これをノズルから高圧高速(最大圧力50~200MPa)で、冷却水あるいは温水等により5~50℃好ましくは10~40℃に温調された、型締め機構にて閉じられている金型内に射出する。金型からの冷却により射出されたプロピレン系樹脂組成物を冷却固化させ型締め機構にて金型を開き、成形品を得ることにより行うことができる。 As an injection molding method, for example, molding can be performed using an injection molding machine in the following manner. First, the propylene-based resin composition is introduced into the hopper of the injection mechanism, fed into a cylinder heated to about 200° C. to 250° C., kneaded and plasticized to be melted. This is poured from the nozzle at high pressure and high speed (maximum pressure 50-200 MPa) into a mold closed by a mold clamping mechanism, which is temperature-controlled to 5-50°C, preferably 10-40°C, with cooling water or warm water. inject. It can be carried out by cooling and solidifying the injected propylene-based resin composition by cooling from the mold, opening the mold with a mold clamping mechanism, and obtaining a molded product.

また、射出延伸ブロー成形としては例えば、射出成形機のホッパー内にプロピレン系樹脂組成物を導入し、およそ200℃~250℃に加熱してあるシリンダーに樹脂を送り込み、混練可塑化して溶融状態にする。これをノズルから高圧高速(最大圧力50~200MPa)で、冷却水あるいは温水等により5~80℃好ましくは10~60℃に温調された、型締め機構にて閉じられている金型内に射出成形し、そこで1.0~3.0秒間冷却してプリフォームを形成し、その後直ちに型を開き延伸ロッドを用いて縦方向へと延伸配向し、さらにブロー成形によって横方向へと延伸配向させ成形品を得ることにより行うことができる。 In injection stretch blow molding, for example, a propylene-based resin composition is introduced into the hopper of an injection molding machine, and the resin is fed into a cylinder heated to about 200° C. to 250° C., kneaded and plasticized to a molten state. do. This is poured from the nozzle at high pressure and high speed (maximum pressure 50-200 MPa) into a mold closed by a mold clamping mechanism, which is temperature-controlled to 5-80°C, preferably 10-60°C, with cooling water or warm water. Injection molding, cooling there for 1.0 to 3.0 seconds to form a preform, then immediately opening the mold and using stretch rods to stretch orient in the machine direction, and then stretch orient in the transverse direction by blow molding. It can be done by obtaining a molded product by letting it.

次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
[原料およびその物性の測定方法]
以下の方法により、原料の物性を測定した。
EXAMPLES Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these.
[Raw materials and methods for measuring their physical properties]
The physical properties of raw materials were measured by the following methods.

<プロピレン系重合体の物性>
MFR
ASTM D-1238(測定温度230℃、荷重2.16kg)に従って、プロピレン系重合体のメルトフローレート(MFR)を測定した。
<Properties of propylene-based polymer>
MFR
The melt flow rate (MFR) of the propylene-based polymer was measured according to ASTM D-1238 (measurement temperature 230°C, load 2.16 kg).

また、次のDinsolの割合を求めた際に得られた析出物(α)を測定試料として用い、ASTM D-1238(測定温度230℃、荷重2.16kg)に従って、Dinsolのメルトフローレート(MFR)を測定した。In addition, the precipitate (α) obtained when the following ratio of D insol was determined was used as a measurement sample, and the melt flow rate of D insol was determined according to ASTM D-1238 (measurement temperature 230 ° C., load 2.16 kg). (MFR) was measured.

insol の割合およびD sol の割合
プロピレン系重合体のサンプル5gにn-デカン200mlを加え、145℃、30分間加熱溶解を行い、溶液(1)を得た。
Proportion of D insol and Proportion of D sol To 5 g of a propylene polymer sample, 200 ml of n-decane was added and dissolved by heating at 145° C. for 30 minutes to obtain solution (1).

次に約2時間かけて、溶液(1)を室温(25℃)まで冷却し、25℃で30分間放置し、析出物(α)を含む溶液(2)を得た。その後、溶液(2)から析出物(α)を目開き約15μmの濾布でろ別し、析出物(α)を乾燥させた後、析出物(α)の質量を測定した。析出物(α)の質量をサンプル質量(5g)で除したものを、n-デカン不溶部(Dinsol)の割合とした。Next, solution (1) was cooled to room temperature (25° C.) over about 2 hours and allowed to stand at 25° C. for 30 minutes to obtain solution (2) containing precipitate (α). After that, the precipitate (α) was separated from the solution (2) by filtration with a filter cloth having an opening of about 15 μm, dried, and then the mass of the precipitate (α) was measured. The ratio of the n-decane insoluble portion (D insol ) was obtained by dividing the mass of the precipitate (α) by the mass of the sample (5 g).

また、析出物(α)をろ別した溶液(2)を、溶液(2)の約3倍量のアセトン中に入れ、n-デカン中に溶解していた成分を析出させ、析出物(β)を得た。その後、析出物(β)をガラスフィルター(G2、目開き約100~160μm)でろ別し、乾燥させた後、析出物(β)の質量を測定した。析出物(β)の質量をサンプル質量(5g)で除したものをn-デカン可溶部(Dsol)の割合とした。Further, the solution (2) obtained by filtering the precipitate (α) is placed in about three times the amount of acetone of the solution (2) to precipitate the components dissolved in n-decane, and the precipitate (β ). After that, the precipitate (β) was separated by filtration through a glass filter (G2, opening about 100 to 160 μm) and dried, and then the mass of the precipitate (β) was measured. The ratio of the n-decane soluble portion (D sol ) was obtained by dividing the mass of the precipitate (β) by the mass of the sample (5 g).

insol に占めるエチレン由来の構成単位の割合、およびD sol に占めるエチレン由来の構成単位の割合
前記Dinsolの割合を測定した際に得られた析出物(α)をサンプルとして用い、下記条件にて13C-NMRの測定を行った。
13C-NMR測定条件)
測定装置:日本電子製LA400型核磁気共鳴装置
測定モード:BCM(Bilevel Complete decoupling)
観測周波数:100.4MHz
観測範囲:17006.8Hz
パルス幅:C核45°(7.8μ秒)
パルス繰り返し時間:5秒
試料管:5mmφ
試料管回転数:12Hz
積算回数:20000回
測定温度:125℃
溶媒:1,2,4-トリクロロベンゼン:0.35ml/重ベンゼン:0.2ml
試料量:約40mg
Proportion of ethylene-derived structural units in D insol and ratio of ethylene-derived structural units in D sol Using the precipitate (α) obtained when measuring the proportion of D insol as a sample, the following conditions were applied. 13 C-NMR measurement was carried out.
( 13 C-NMR measurement conditions)
Measurement device: JEOL LA400 type nuclear magnetic resonance device Measurement mode: BCM (Bilevel Complete decoupling)
Observation frequency: 100.4MHz
Observation range: 17006.8Hz
Pulse width: C nucleus 45° (7.8 μs)
Pulse repetition time: 5 seconds Sample tube: 5 mmφ
Sample tube rotation speed: 12 Hz
Accumulation times: 20000 times Measurement temperature: 125°C
Solvent: 1,2,4-trichlorobenzene: 0.35 ml/heavy benzene: 0.2 ml
Sample amount: about 40 mg

測定で得られたスペクトルより、下記文献(1)に準じて、モノマー連鎖分布(トリアッド(3連子)分布)の比率を決定し、前記Dinsolに占めるエチレン由来の構成単位のモル分率(mol%)(以下E(mol%)と記す)およびプロピレン由来の構成単位のモル分率(mol%)(以下P(mol%)と記す)を算出した。求められたE(mol%)およびP(mol%)から下記(式1)に従い前記Dinsolに占めるエチレン由来の構成単位の割合(質量%)(以下E(質量%)と記す。)を算出した。From the spectrum obtained by the measurement, the ratio of the monomer chain distribution (triad (triad) distribution) was determined according to the following document (1), and the molar fraction of the ethylene-derived structural units in the D insol ( mol%) (hereinafter referred to as E (mol%)) and the molar fraction (mol%) of propylene-derived structural units (hereinafter referred to as P (mol%)) were calculated. From the obtained E (mol%) and P (mol%), the ratio (mass%) of the ethylene-derived structural unit in the D insol (hereinafter referred to as E (mass%)) is calculated according to the following (formula 1). did.

文献(1):Kakugo,M.; Naito,Y.; Mizunuma,K.; Miyatake,T., Carbon-13 NMR determination of monomer sequence distribution in ethylene-propylene copolymers preparedwith delta-titanium trichloride-diethylaluminum chloride. Macromolecules 1982, 15, (4), 1150-1152
E(質量%)=E(mol%)×28×100/[P(mol%)×42+E(mol%)×28](式1)
Reference (1): Kakugo, M.; Naito, Y.; Mizunuma, K.; Miyatake, T., Carbon-13 NMR determination of monomer sequence distribution in ethylene-propylene copolymers prepared with delta-titanium trichloride-diethylaluminum chloride. Macromolecules 1982 , 15, (4), 1150-1152
E (mass%) = E (mol%) x 28 x 100/[P (mol%) x 42 + E (mol%) x 28] (Formula 1)

さらに、サンプルを前記Dsolの割合を測定した際に得られた析出物(β)に変更したこと以外は上述のDinsolに占めるエチレン由来の構成単位の割合の測定方法と同様の方法により、Dsolに占めるエチレン由来の構成単位の割合を算出した。Furthermore, except that the sample was changed to the precipitate (β) obtained when the proportion of D sol was measured, by the same method as the above-mentioned method for measuring the proportion of ethylene-derived structural units in D insol , The proportion of ethylene-derived structural units in D sol was calculated.

sol の極限粘度[η sol
サンプルとして、前記Dsolの割合を求めた際に得られた析出物(β)を用いた。
このサンプル約25mgをデカリン25mlに溶解し、135℃のオイルバス中で比粘度ηspを測定した。
Intrinsic viscosity of D sol sol ]
As a sample, the precipitate (β) obtained when the ratio of D sol was determined was used.
About 25 mg of this sample was dissolved in 25 ml of decalin, and the specific viscosity ηsp was measured in an oil bath at 135°C.

このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度ηspを測定した。
この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として求め、この値をDsolの、デカリン中135℃で測定した極限粘度[ηsol]とした。
5 ml of the decalin solvent was added to the decalin solution to dilute it, and then the specific viscosity ηsp was measured in the same manner.
This dilution operation is repeated twice, and the value of ηsp /C when the concentration (C) is extrapolated to 0 is obtained as the intrinsic viscosity. sol ].

<エチレン系重合体の物性>
MFR
ASTM D-1238(測定温度190℃、荷重2.16kg)に従ってメルトフローレート(MFR)を測定した。
<Physical properties of ethylene polymer>
MFR
Melt flow rate (MFR) was measured according to ASTM D-1238 (measurement temperature 190°C, load 2.16 kg).

密度
メルトフローレート測定時(ASTM D-1238)に得られるストランドを、120℃で1時間熱処理し、1時間かけて室温まで徐冷したものをサンプルとして用い、密度勾配管法にて密度の測定を行い、エチレン系重合体の密度を決定した。
The strand obtained when measuring the density melt flow rate (ASTM D-1238) was heat-treated at 120 ° C. for 1 hour and slowly cooled to room temperature over 1 hour, and the density was measured by the density gradient tube method. was performed to determine the density of the ethylene-based polymer.

[組成物の原料]
〔プロピレン系重合体〕
プロピレン系重合体として、以下のプロピレン系重合体(A-1)~(A-17)を製造した。
[Raw materials of composition]
[Propylene polymer]
As the propylene-based polymer, the following propylene-based polymers (A-1) to (A-17) were produced.

[製造例1](プロピレン系重合体(A-1)の製造)
(1)固体触媒成分の調製
無水塩化マグネシウム95.2g、デカン442mlおよび2-エチルヘキシルアルコール390.6gを130℃で2時間加熱反応を行って均一溶液とした後、この溶液中に無水フタル酸21.3gを添加し、さらに130℃にて1時間攪拌混合を行い、無水フタル酸を溶解させた。
[Production Example 1] (Production of propylene-based polymer (A-1))
(1) Preparation of Solid Catalyst Component 95.2 g of anhydrous magnesium chloride, 442 ml of decane and 390.6 g of 2-ethylhexyl alcohol are heated at 130° C. for 2 hours to form a homogeneous solution, and 21 of phthalic anhydride is added to this solution. 3 g was added, and the mixture was further stirred and mixed at 130° C. for 1 hour to dissolve the phthalic anhydride.

このようにして得られた均一溶液を室温に冷却した後、-20℃に保持した四塩化チタン200ml中に、この均一溶液の75mlを1時間にわたって滴下装入した。装入終了後、この混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)5.22gを添加し、これより2時間同温度にて攪拌保持した。 After the homogeneous solution thus obtained was cooled to room temperature, 75 ml of this homogeneous solution was dropped into 200 ml of titanium tetrachloride maintained at -20° C. over 1 hour. After the completion of charging, the temperature of the mixed solution was raised to 110°C over 4 hours, and when the temperature reached 110°C, 5.22 g of diisobutyl phthalate (DIBP) was added, followed by stirring at the same temperature for 2 hours. held.

2時間の反応終了後、熱濾過にて固体部を採取し、この固体部を275mlの四塩化チタンに再懸濁させた後、再び110℃で2時間、加熱した。反応終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンにて溶液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。 After completion of the reaction for 2 hours, the solid portion was collected by hot filtration, resuspended in 275 ml of titanium tetrachloride, and heated again at 110° C. for 2 hours. After completion of the reaction, the solid portion was collected again by hot filtration and thoroughly washed with 110° C. decane and hexane until no free titanium compound was detected in the solution.

ここで、前記遊離チタン化合物の検出は次の方法で確認した。予め窒素置換した100mlの枝付きシュレンクに上記固体触媒成分の上澄み液10mlを注射器で採取し装入した。次に、窒素気流にて溶媒ヘキサンを乾燥し、さらに30分間真空乾燥した。これに、イオン交換水40ml、50容量%硫酸10mlを装入し30分間攪拌した。この水溶液をろ紙を通して100mlメスフラスコに移し、続いて鉄(II)イオンのマスキング剤としてconc.H3PO4 1mlとチタンの発色試薬として3%H22水溶液 5mlを加え、さらにイオン交換水で100mlにメスアップした。このメスフラスコを振り混ぜ、20分後にUVを用い420nmの吸光度を観測し遊離チタンの検出を行った。この吸収が観測されなくなるまで遊離チタンの洗浄除去および遊離チタンの検出を行った。Here, the detection of the free titanium compound was confirmed by the following method. 10 ml of the supernatant liquid of the solid catalyst component was collected with a syringe and charged into a 100 ml branched Schlenk tube previously purged with nitrogen. Next, the solvent hexane was dried with a stream of nitrogen, followed by vacuum drying for 30 minutes. 40 ml of ion-exchanged water and 10 ml of 50% by volume sulfuric acid were added thereto and stirred for 30 minutes. This aqueous solution was transferred to a 100 ml volumetric flask through filter paper, followed by conc. 1 ml of H 3 PO 4 and 5 ml of 3% H 2 O 2 aqueous solution as a coloring reagent for titanium were added, and the volume was made up to 100 ml with deionized water. This volumetric flask was shaken, and after 20 minutes, free titanium was detected by observing absorbance at 420 nm using UV. Free titanium was washed away and free titanium was detected until this absorption was no longer observed.

上記のように調製された固体状チタン触媒成分(a)は、デカンスラリーとして保存したが、この内の一部を触媒組成を調べる目的で乾燥した。このようにして得られた固体状チタン触媒成分(a)の組成は、チタン2.3質量%、塩素61質量%、マグネシウム19質量%、DIBP 12.5質量%であった。 The solid titanium catalyst component (a) prepared as described above was stored as a decane slurry, part of which was dried for the purpose of investigating the catalyst composition. The composition of the solid titanium catalyst component (a) thus obtained was 2.3% by weight of titanium, 61% by weight of chlorine, 19% by weight of magnesium and 12.5% by weight of DIBP.

(2)予備重合触媒成分の調製
内容積500mlの攪拌機付きの三つ口フラスコを窒素ガスで置換した後、脱水処理したヘプタンを400ml、トリエチルアルミニウム19.2mmol、ジシクロペンチルジメトキシシラン3.8mmol、上記固体状チタン触媒成分(a)4gを加えた。内温を20℃に保持し、攪拌しながらプロピレンを導入した。1時間後、攪拌を停止し結果的に固体状チタン触媒成分(a)1g当たり2gのプロピレンが重合した予備重合触媒成分(b)を得た。
(2) Preparation of Prepolymerization Catalyst Components After purging a 500 ml three-necked flask equipped with a stirrer with nitrogen gas, 400 ml of dehydrated heptane, 19.2 mmol of triethylaluminum, 3.8 mmol of dicyclopentyldimethoxysilane, and the above were added. 4 g of solid titanium catalyst component (a) was added. The internal temperature was maintained at 20° C., and propylene was introduced while stirring. After 1 hour, stirring was stopped to obtain a prepolymerized catalyst component (b) in which 2 g of propylene was polymerized per 1 g of the solid titanium catalyst component (a).

(3-1)重合-1(重合[工程1])
内容積10Lの攪拌機付きステンレス製オートクレーブを十分乾燥し、窒素置換の後、脱水処理したヘプタン6L、トリエチルアルミニウム12.5mmol、ジシクロペンチルジメトキシシラン0.6mmolを加えた。系内の窒素をプロピレンで置換した後に、水素を系内の圧力が0.80MPa-Gとなるように装入し、続いて攪拌しながらプロピレンを導入した。
(3-1) Polymerization-1 (Polymerization [Step 1])
A 10-L stainless steel autoclave equipped with a stirrer was thoroughly dried and purged with nitrogen, and then 6 L of dehydrated heptane, 12.5 mmol of triethylaluminum, and 0.6 mmol of dicyclopentyldimethoxysilane were added. After replacing nitrogen in the system with propylene, hydrogen was introduced so that the pressure in the system became 0.80 MPa-G, and then propylene was introduced while stirring.

内温が80℃、全圧が0.8MPa-Gに系内が安定した後、系内に上記予備重合触媒成分(b)をTi原子換算で0.10mmol含んだヘプタンスラリー20.8mlを加え、プロピレンを連続的に供給しながら80℃で3時間重合を行った。 After the inside of the system stabilized at an internal temperature of 80° C. and a total pressure of 0.8 MPa-G, 20.8 ml of a heptane slurry containing 0.10 mmol of the prepolymerization catalyst component (b) in terms of Ti atoms was added into the system. , while continuously supplying propylene, polymerization was carried out at 80°C for 3 hours.

(3-2)重合-2(重合[工程2])
プロピレン単独重合体の重合終了後(前記[工程1]の後)、内温を30℃まで降温し脱圧した。その後、水素を系内の圧力が0.60MPa-Gとなるように装入し、続いて組成がプロピレン/エチレン=(4.0L/分)/(2.4L/分)である混合ガスを導入した。内温60℃に調整して60分間プロピレン/エチレン共重合を行った。
(3-2) Polymerization-2 (Polymerization [Step 2])
After the completion of the polymerization of the propylene homopolymer (after the above [Step 1]), the internal temperature was lowered to 30°C and the pressure was released. After that, hydrogen was charged so that the pressure in the system was 0.60 MPa-G, followed by a mixed gas having a composition of propylene/ethylene = (4.0 L/min)/(2.4 L/min). introduced. The internal temperature was adjusted to 60° C. and propylene/ethylene copolymerization was carried out for 60 minutes.

所定時間経過したところで50mlのメタノールを添加し反応を停止し、降温、脱圧した。内容物を全量フィルター付きろ過槽へ移し60℃に昇温し固液分離した。更に、60℃のヘプタン6Lで固体部を2回洗浄した。このようにして得られたプロピレン/エチレン共重合体を真空乾燥した。得られたプロピレン系重合体(A-1)のMFRは120g/10分、Dinsolは86質量%、Dsolは14質量%、[ηsol]は2.5dl/g、Dinsol中のエチレンに由来する構成単位の割合は0質量%、Dsol中のエチレンに由来する構成単位の割合は31質量%であった。After a predetermined time, 50 ml of methanol was added to stop the reaction, and the temperature was lowered and the pressure was removed. The content was transferred to a filtration tank with a total filter and heated to 60° C. for solid-liquid separation. Furthermore, the solid portion was washed twice with 6 L of heptane at 60°C. The propylene/ethylene copolymer thus obtained was vacuum dried. The obtained propylene-based polymer (A-1) had an MFR of 120 g/10 min, D insol of 86% by mass, D sol of 14% by mass, [η sol ] of 2.5 dl/g, and ethylene in D insol . The ratio of structural units derived from was 0% by mass, and the ratio of structural units derived from ethylene in D sol was 31% by mass.

[製造例2](プロピレン系重合体(A-2)の製造)
「重合-1」において水素を系内の圧力が0.25MPa-Gとなるように装入し、「重合-2」においてプロピレン/エチレン共重合を40分間行った以外は製造例1と同様にして、重合を行った。得られたプロピレン系重合体(A-2)のMFRは60g/10分、Dinsolは92質量%、Dsolは8質量%、[ηsol]は2.5dl/g、Dinsol中のエチレンに由来する構成単位の割合は0質量%、Dsol中のエチレンに由来する構成単位の割合は31質量%であった。
[Production Example 2] (Production of propylene-based polymer (A-2))
In "Polymerization-1", hydrogen was charged so that the pressure in the system was 0.25 MPa-G, and in "Polymerization-2", the propylene/ethylene copolymerization was carried out for 40 minutes in the same manner as in Production Example 1. and polymerized. The obtained propylene-based polymer (A-2) had an MFR of 60 g/10 min, D insol of 92% by mass, D sol of 8% by mass, [η sol ] of 2.5 dl/g, and ethylene in D insol . The ratio of structural units derived from was 0% by mass, and the ratio of structural units derived from ethylene in D sol was 31% by mass.

[製造例3](プロピレン系重合体(A-3)の製造)
「重合-1」において水素を系内の圧力が1.30MPa-Gとなるように装入した以外は製造例1と同様にして、重合を行った。得られたプロピレン系重合体(A-3)のMFRは170g/10分、Dinsolは86質量%、Dsolは14質量%、[ηsol]は2.5dl/g、Dinsol中のエチレンに由来する構成単位の割合は0質量%、Dsol中のエチレンに由来する構成単位の割合は31質量%であった。
[Production Example 3] (Production of propylene-based polymer (A-3))
Polymerization was carried out in the same manner as in Production Example 1 except that in "Polymerization-1" hydrogen was introduced so that the pressure in the system was 1.30 MPa-G. The obtained propylene-based polymer (A-3) had an MFR of 170 g/10 min, D insol of 86% by mass, D sol of 14% by mass, [η sol ] of 2.5 dl/g, and ethylene in D insol . The ratio of structural units derived from was 0% by mass, and the ratio of structural units derived from ethylene in D sol was 31% by mass.

[製造例4](プロピレン系重合体(A-4)の製造)
「重合-1」において水素を系内の圧力が1.30MPa-Gとなるように装入し、「重合-2」においてプロピレン/エチレン共重合を80分間行った以外は製造例1と同様にして、重合を行った。得られたプロピレン系重合体(A-4)のMFRは140g/10分、Dinsolは80質量%、Dsolは20質量%、[ηsol]は2.5dl/g、Dinsol中のエチレンに由来する構成単位の割合は0質量%、Dsol中のエチレンに由来する構成単位の割合は31質量%であった。
[Production Example 4] (Production of propylene-based polymer (A-4))
In "Polymerization-1", hydrogen was charged so that the pressure in the system was 1.30 MPa-G, and in "Polymerization-2" the propylene/ethylene copolymerization was carried out for 80 minutes in the same manner as in Production Example 1. and polymerized. The obtained propylene-based polymer (A-4) had an MFR of 140 g/10 min, D insol of 80% by mass, D sol of 20% by mass, [η sol ] of 2.5 dl/g, and ethylene in D insol . The ratio of structural units derived from was 0% by mass, and the ratio of structural units derived from ethylene in D sol was 31% by mass.

[製造例5](プロピレン系重合体(A-5)の製造)
「重合-2」において混合ガスの組成をプロピレン/エチレン=(4.0L/分)/(1.60L/分)とした以外は製造例1と同様にして、重合を行った。得られたプロピレン系重合体(A-5)のMFRは120g/10分、Dinsolは86質量%、Dsolは14質量%、[ηsol]は2.5dl/g、Dinsol中のエチレンに由来する構成単位の割合は0質量%、Dsol中のエチレンに由来する構成単位の割合は25質量%であった。
[Production Example 5] (Production of propylene-based polymer (A-5))
Polymerization was carried out in the same manner as in Production Example 1 except that the composition of the mixed gas in "Polymerization-2" was changed to propylene/ethylene=(4.0 L/min)/(1.60 L/min). The obtained propylene-based polymer (A-5) had an MFR of 120 g/10 min, D insol of 86% by mass, D sol of 14% by mass, [η sol ] of 2.5 dl/g, and ethylene in D insol . The ratio of structural units derived from was 0% by mass, and the ratio of structural units derived from ethylene in D sol was 25% by mass.

[製造例6](プロピレン系重合体(A-6)の製造)
「重合-2」において混合ガスの組成をプロピレン/エチレン=(4.0L/分)/(2.57L/分)とした以外は製造例1と同様にして、重合を行った。得られたプロピレン系重合体(A-6)のMFRは120g/10分、Dinsolは86質量%、Dsolは14質量%、[ηsol]は2.5dl/g、Dinsol中のエチレンに由来する構成単位の割合は0質量%、Dsol中のエチレンに由来する構成単位の割合は35質量%であった。
[Production Example 6] (Production of propylene-based polymer (A-6))
Polymerization was carried out in the same manner as in Production Example 1 except that the composition of the mixed gas in "Polymerization-2" was changed to propylene/ethylene=(4.0 L/min)/(2.57 L/min). The obtained propylene-based polymer (A-6) had an MFR of 120 g/10 min, D insol of 86% by mass, D sol of 14% by mass, [η sol ] of 2.5 dl/g, and ethylene in D insol . The ratio of structural units derived from was 0% by mass, and the ratio of structural units derived from ethylene in D sol was 35% by mass.

[製造例7](プロピレン系重合体(A-7)の製造)
「重合-2」において水素を系内の圧力が1.0MPa-Gとなるように装入した以外は製造例1と同様にして、重合を行った。得られたプロピレン系重合体(A-7)のMFRは130g/10分、Dinsolは86質量%、Dsolは14質量%、[ηsol]は1.8dl/g、Dinsol中のエチレンに由来する構成単位の割合は0質量%、Dsol中のエチレンに由来する構成単位の割合は31質量%であった。
[Production Example 7] (Production of propylene-based polymer (A-7))
Polymerization was carried out in the same manner as in Production Example 1 except that in "Polymerization-2" hydrogen was introduced so that the pressure in the system was 1.0 MPa-G. The obtained propylene-based polymer (A-7) had an MFR of 130 g/10 min, D insol of 86% by mass, D sol of 14% by mass, [η sol ] of 1.8 dl/g, and ethylene in D insol . The ratio of structural units derived from was 0% by mass, and the ratio of structural units derived from ethylene in D sol was 31% by mass.

[製造例8](プロピレン系重合体(A-8)の製造)
「重合-2」において水素を系内の圧力が0.35MPa-Gとなるように装入した以外は製造例1と同様にして、重合を行った。得られたプロピレン系重合体(A-8)のMFRは110g/10分、Dinsolは86質量%、Dsolは14質量%、[ηsol]は3.0dl/g、Dinsol中のエチレンに由来する構成単位の割合は0質量%、Dsol中のエチレンに由来する構成単位の割合は31質量%であった。
[Production Example 8] (Production of propylene-based polymer (A-8))
Polymerization was carried out in the same manner as in Production Example 1 except that in "Polymerization-2" hydrogen was introduced so that the pressure in the system was 0.35 MPa-G. The obtained propylene-based polymer (A-8) had an MFR of 110 g/10 min, D insol of 86% by mass, D sol of 14% by mass, [η sol ] of 3.0 dl/g, and ethylene in D insol . The ratio of structural units derived from was 0% by mass, and the ratio of structural units derived from ethylene in D sol was 31% by mass.

[製造例9](プロピレン系重合体(A-9)の製造)
「重合-1」においてプロピレン導入時に重合槽内の気相部のエチレン濃度が0.8mol%(プロピレンおよびエチレンの合計を100mol%とする。)となるようにエチレンも導入した以外は製造例1と同様にして、重合を行った。得られたプロピレン系重合体(A-9)のMFRは120g/10分、Dinsolは86質量%、Dsolは14質量%、[ηsol]は2.5dl/g、Dinsol中のエチレンに由来する構成単位の割合は1.0質量%、Dsol中のエチレンに由来する構成単位の割合は31質量%であった。
[Production Example 9] (Production of propylene-based polymer (A-9))
In "Polymerization-1", except that ethylene was also introduced so that the ethylene concentration in the gas phase in the polymerization tank was 0.8 mol% (the total of propylene and ethylene was 100 mol%) when propylene was introduced. Polymerization was carried out in the same manner as above. The obtained propylene-based polymer (A-9) had an MFR of 120 g/10 min, D insol of 86% by mass, D sol of 14% by mass, [η sol ] of 2.5 dl/g, and ethylene in D insol . The ratio of structural units derived from was 1.0% by mass, and the ratio of structural units derived from ethylene in D sol was 31% by mass.

[製造例10](プロピレン系重合体(A-10)の製造)
「重合-1」において水素を系内の圧力が0.15MPa-Gとなるように装入した以外は製造例1と同様にして、重合を行った。得られたプロピレン系重合体(A-10)のMFRは40g/10分、Dinsolは86質量%、Dsolは14質量%、[ηsol]は2.5dl/g、Dinsol中のエチレンに由来する構成単位の割合は0質量%、Dsol中のエチレンに由来する構成単位の割合は31質量%であった。
[Production Example 10] (Production of propylene-based polymer (A-10))
Polymerization was carried out in the same manner as in Production Example 1 except that in "Polymerization-1" hydrogen was introduced so that the pressure in the system was 0.15 MPa-G. The obtained propylene-based polymer (A-10) had an MFR of 40 g/10 min, D insol of 86% by mass, D sol of 14% by mass, [η sol ] of 2.5 dl/g, and ethylene in D insol . The ratio of structural units derived from was 0% by mass, and the ratio of structural units derived from ethylene in D sol was 31% by mass.

[製造例11](プロピレン系重合体(A-11)の製造)
「重合-1」において水素を系内の圧力が1.80MPa-Gとなるように装入した以外は製造例1と同様にして、重合を行った。得られたプロピレン系重合体(A-11)のMFRは200g/10分、Dinsolは86質量%、Dsolは14質量%、[ηsol]は2.5dl/g、Dinsol中のエチレンに由来する構成単位の割合は0質量%、Dsol中のエチレンに由来する構成単位の割合は31質量%であった。
[Production Example 11] (Production of propylene-based polymer (A-11))
Polymerization was carried out in the same manner as in Production Example 1 except that in "Polymerization-1" hydrogen was introduced so that the pressure in the system was 1.80 MPa-G. The obtained propylene-based polymer (A-11) had an MFR of 200 g/10 min, a D insol of 86% by mass, a D sol of 14% by mass, [η sol ] of 2.5 dl/g, and ethylene in D insol . The ratio of structural units derived from was 0% by mass, and the ratio of structural units derived from ethylene in D sol was 31% by mass.

[製造例12](プロピレン系重合体(A-12)の製造)
「重合-1」において水素を系内の圧力が0.25MPa-Gとなるように装入し、「重合-2」においてプロピレン/エチレン共重合を30分間行った以外は製造例1と同様にして、重合を行った。得られたプロピレン系重合体(A-12)のMFRは65g/10分、Dinsolは94質量%、Dsolは6質量%、[ηsol]は2.5dl/g、Dinsol中のエチレンに由来する構成単位の割合は0質量%、Dsol中のエチレンに由来する構成単位の割合は31質量%であった。
[Production Example 12] (Production of propylene-based polymer (A-12))
In "Polymerization-1", hydrogen was charged so that the pressure in the system was 0.25 MPa-G, and in "Polymerization-2", propylene/ethylene copolymerization was carried out for 30 minutes in the same manner as in Production Example 1. and polymerized. The obtained propylene-based polymer (A-12) had an MFR of 65 g/10 min, D insol of 94% by mass, D sol of 6% by mass, [η sol ] of 2.5 dl/g, and ethylene in D insol . The ratio of structural units derived from was 0% by mass, and the ratio of structural units derived from ethylene in D sol was 31% by mass.

[製造例13](プロピレン系重合体(A-13)の製造)
「重合-1」において水素を系内の圧力が1.30MPa-Gとなるように装入し、「重合-2」においてプロピレン/エチレン共重合を110分間行った以外は製造例1と同様にして、重合を行った。得られたプロピレン系重合体(A-13)のMFRは100g/10分、Dinsolは75質量%、Dsolは25質量%、[ηsol]は2.5dl/g、Dinsol中のエチレンに由来する構成単位の割合は0質量%、Dsol中のエチレンに由来する構成単位の割合は31質量%であった。
[Production Example 13] (Production of propylene-based polymer (A-13))
In "Polymerization-1", hydrogen was charged so that the pressure in the system was 1.30 MPa-G, and in "Polymerization-2", propylene/ethylene copolymerization was carried out for 110 minutes in the same manner as in Production Example 1. and polymerized. The obtained propylene-based polymer (A-13) had an MFR of 100 g/10 min, D insol of 75% by mass, D sol of 25% by mass, [η sol ] of 2.5 dl/g, and ethylene in D insol . The ratio of structural units derived from was 0% by mass, and the ratio of structural units derived from ethylene in D sol was 31% by mass.

[製造例14](プロピレン系重合体(A-14)の製造)
「重合-2」において混合ガスの組成をプロピレン/エチレン=(4.0L/分)/(1.40L/分)とした以外は製造例1と同様にして、重合を行った。得られたプロピレン系重合体(A-14)のMFRは120g/10分、Dinsolは86質量%、Dsolは14質量%、[ηsol]は2.5dl/g、Dinsol中のエチレンに由来する構成単位の割合は0質量%、Dsol中のエチレンに由来する構成単位の割合は22質量%であった。
[Production Example 14] (Production of propylene-based polymer (A-14))
Polymerization was carried out in the same manner as in Production Example 1 except that the composition of the mixed gas in "Polymerization-2" was changed to propylene/ethylene=(4.0 L/min)/(1.40 L/min). The obtained propylene-based polymer (A-14) had an MFR of 120 g/10 min, D insol of 86% by mass, D sol of 14% by mass, [η sol ] of 2.5 dl/g, and ethylene in D insol . The ratio of structural units derived from was 0% by mass, and the ratio of structural units derived from ethylene in D sol was 22% by mass.

[製造例15](プロピレン系重合体(A-15)の製造)
「重合-2」において混合ガスの組成をプロピレン/エチレン=(4.0L/分)/(2.65L/分)とした以外は製造例1と同様にして、重合を行った。得られたプロピレン系重合体(A-15)のMFRは120g/10分、Dinsolは86質量%、Dsolは14質量%、[ηsol]は2.5dl/g、Dinsol中のエチレンに由来する構成単位の割合は0質量%、Dsol中のエチレンに由来する構成単位の割合は38質量%であった。
[Production Example 15] (Production of propylene-based polymer (A-15))
Polymerization was carried out in the same manner as in Production Example 1 except that the composition of the mixed gas in "Polymerization-2" was changed to propylene/ethylene=(4.0 L/min)/(2.65 L/min). The obtained propylene-based polymer (A-15) had an MFR of 120 g/10 min, D insol of 86% by mass, D sol of 14% by mass, [η sol ] of 2.5 dl/g, and ethylene in D insol . The proportion of structural units derived from was 0% by mass, and the proportion of structural units derived from ethylene in D sol was 38% by mass.

[製造例16](プロピレン系重合体(A-16)の製造)
「重合-2」において水素を系内の圧力が0.32MPa-Gとなるように装入した以外は製造例1と同様にして、重合を行った。得られたプロピレン系重合体(A-16)のMFRは100g/10分、Dinsolは86質量%、Dsolは14質量%、[ηsol]は3.2dl/g、Dinsol中のエチレンに由来する構成単位の割合は0質量%、Dsol中のエチレンに由来する構成単位の割合は31質量%であった。
[Production Example 16] (Production of propylene-based polymer (A-16))
Polymerization was carried out in the same manner as in Production Example 1 except that in "Polymerization-2" hydrogen was introduced so that the pressure in the system was 0.32 MPa-G. The obtained propylene-based polymer (A-16) had an MFR of 100 g/10 min, D insol of 86% by mass, D sol of 14% by mass, [η sol ] of 3.2 dl/g, and ethylene in D insol . The ratio of structural units derived from was 0% by mass, and the ratio of structural units derived from ethylene in D sol was 31% by mass.

[製造例17](プロピレン系重合体(A-17)の製造)
「重合-1」においてプロピレン導入時に重合槽内の気相部のエチレン濃度が0.9mol%(プロピレンおよびエチレンの合計を100mol%とする。)となるようにエチレンも導入した以外は製造例1と同様にして、重合を行った。得られたプロピレン系重合体(A-17)のMFRは120g/10分、Dinsolは86質量%、Dsolは14質量%、[ηsol]は2.5dl/g、Dinsol中のエチレンに由来する構成単位の割合は1.6質量%、Dsol中のエチレンに由来する構成単位の割合は31質量%であった。
[Production Example 17] (Production of propylene-based polymer (A-17))
In "Polymerization-1", except that ethylene was also introduced so that the ethylene concentration in the gas phase in the polymerization tank was 0.9 mol% (the total of propylene and ethylene was 100 mol%) when propylene was introduced. Polymerization was carried out in the same manner as above. The obtained propylene-based polymer (A-17) had an MFR of 120 g/10 min, D insol of 86% by mass, D sol of 14% by mass, [η sol ] of 2.5 dl/g, and ethylene in D insol . The ratio of structural units derived from was 1.6% by mass, and the ratio of structural units derived from ethylene in D sol was 31% by mass.

〔エチレン系重合体〕
エチレン系重合体として、以下の市販品を使用した。
・エチレン系重合体(B-1):ハイゼックス2200J(MFR=5.2g/10分、密度=964kg/m3
・エチレン系重合体(B-2):ハイゼックス1700J(MFR=16g/10分、密度=967kg/m3
・エチレン系重合体(B-3):ネオゼックス45200(MFR=20g/10分、密度=943kg/m3
・エチレン系重合体(B-4):ネオゼックス2805JV(MFR=3.0g/10分、密度=965kg/m3
・エチレン系重合体(B-5):ハイゼックス3300F(MFR=1.1g/10分、密度=950kg/m3
・エチレン系重合体(B-6):ネオゼックス25200J(MFR=16g/10分、密度=926kg/m3
(いずれも、(株)プライムポリマー製)
[Ethylene polymer]
The following commercially available products were used as the ethylene polymer.
Ethylene-based polymer (B-1): HI-ZEX 2200J (MFR = 5.2 g/10 minutes, density = 964 kg/m 3 )
Ethylene-based polymer (B-2): HI-ZEX 1700J (MFR = 16 g/10 min, density = 967 kg/m 3 )
Ethylene-based polymer (B-3): Neozex 45200 (MFR = 20 g/10 minutes, density = 943 kg/m 3 )
Ethylene polymer (B-4): Neozex 2805JV (MFR = 3.0 g/10 minutes, density = 965 kg/m 3 )
Ethylene-based polymer (B-5): Hi-Zex 3300F (MFR = 1.1 g/10 minutes, density = 950 kg/m 3 )
Ethylene polymer (B-6): Neozex 25200J (MFR = 16 g/10 minutes, density = 926 kg/m 3 )
(both manufactured by Prime Polymer Co., Ltd.)

〔造核剤〕
造核剤として、以下の市販品を使用した。
・造核剤(C-1):アデカスタブNA-11((株)ADEKA製)
・造核剤(C-2):ミラッドNX8000J(ミリケン社製)
・造核剤(C-3):AL-PTBBA(ジャパンケムテック製)
[Nucleating agent]
The following commercial products were used as nucleating agents.
- Nucleating agent (C-1): ADEKA STAB NA-11 (manufactured by ADEKA Co., Ltd.)
- Nucleating agent (C-2): Mirad NX8000J (manufactured by Milliken)
- Nucleating agent (C-3): AL-PTBBA (manufactured by Japan Chemtech)

[実施例1]
(1)プロピレン系樹脂組成物の製造および評価
90質量部のプロピレン系重合体(A-1)、10質量部のエチレン系重合体(B-1)、および0.1質量部の造核剤(C-1)をヘンシェルミキサーにより攪拌し混合した。
[Example 1]
(1) Production and evaluation of propylene-based resin composition
90 parts by mass of the propylene-based polymer (A-1), 10 parts by mass of the ethylene-based polymer (B-1), and 0.1 parts by mass of the nucleating agent (C-1) were stirred and mixed using a Henschel mixer. did.

得られた混合物を東芝機械株式会社製の二軸押出機(TEM35BS)を用いて下記条件にて溶融混練してストランドを得た。
・型式:TEM35BS(35mm二軸押出機)
・スクリュー回転数:300rpm
・スクリーンメッシュ:#200
・樹脂温度:220℃
The resulting mixture was melt-kneaded under the following conditions using a twin-screw extruder (TEM35BS) manufactured by Toshiba Machine Co., Ltd. to obtain strands.
・Model: TEM35BS (35mm twin screw extruder)
・Screw rotation speed: 300 rpm
・Screen mesh: #200
・Resin temperature: 220°C

得られたストランドを水冷後ペレタイザーにて切断することにより、プロピレン系樹脂組成物のペレット(1)を得た。
このペレット(1)を用いて、下記に示したとおりの方法でプロピレン系樹脂組成物のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)および融点の測定を実施した。結果を表1に示す。
The resulting strand was cooled with water and then cut with a pelletizer to obtain pellets (1) of the propylene-based resin composition.
Using this pellet (1), the melt flow rate (MFR) (ASTM D-1238, measurement temperature 230° C., load 2.16 kg) and melting point of the propylene-based resin composition were measured by the methods shown below. Carried out. Table 1 shows the results.

MFR(メルトフローレート)
ASTM D-1238(測定温度230℃、荷重2.16kg)に従ってメルトフローレート(MFR)を測定した。
MFR (melt flow rate)
Melt flow rate (MFR) was measured according to ASTM D-1238 (measurement temperature 230°C, load 2.16 kg).

融点(Tm)
JIS-K7121に従って、示差走査熱量計(DSC、パーキンエルマー社製(Diamond DSC))を用いて測定を行った。ここで測定した第3stepにおける吸熱ピークの頂点を結晶融点(Tm)と定義した。吸熱ピークが複数ある場合は最大吸熱ピーク頂点を結晶融点(Tm)と定義する。(測定条件)
測定環境:窒素ガス雰囲気
サンプル量:5mg
サンプル形状:プレスフィルム(230℃成形、厚み200~400μm)
第1step:30℃より速度10℃/分で240℃まで昇温し、10分間保持する。
第2step:10℃/分で60℃まで降温する。
第3step:10℃/分で240℃まで昇温する。
Melting point (Tm)
Measurement was performed using a differential scanning calorimeter (DSC, manufactured by PerkinElmer (Diamond DSC)) according to JIS-K7121. The apex of the endothermic peak in the third step measured here was defined as the crystalline melting point (Tm). When there are multiple endothermic peaks, the apex of the maximum endothermic peak is defined as the crystalline melting point (Tm). (Measurement condition)
Measurement environment: Nitrogen gas atmosphere Sample amount: 5 mg
Sample shape: Press film (molded at 230°C, thickness 200-400 μm)
1st step: The temperature is raised from 30° C. to 240° C. at a rate of 10° C./min and held for 10 minutes.
2nd step: The temperature is lowered to 60°C at a rate of 10°C/min.
3rd step: Heat up to 240°C at 10°C/min.

(2)容器の製造および評価
0.5mmt飲料容器成形
型締め力100トンの電動射出成形機(ファナック社製ロボショットS-2000i-100B)を用いて、シリンダー温度250℃、金型温度20℃、射出1次圧力150MPa、射出速度100mm/秒、保圧圧力80MPa、保圧時間1.3秒の条件で、プロピレン系樹脂組成物のペレット(1)を射出成形し、高さ110mm、フランジ直径70mm、側面肉厚0.5mmの容器(カップ)を射出成形した。
得られた容器を以下のように評価した。結果を表1に示す。
(2) Manufacture and evaluation of containers
0.5 mmt beverage container molding Using an electric injection molding machine (Fanuc Roboshot S-2000i-100B) with a mold clamping force of 100 tons, cylinder temperature 250 ° C., mold temperature 20 ° C., injection primary pressure 150 MPa, injection Under the conditions of a speed of 100 mm/sec, a holding pressure of 80 MPa, and a holding pressure time of 1.3 seconds, pellets (1) of the propylene-based resin composition were injection molded to a height of 110 mm, a flange diameter of 70 mm, and a side wall thickness of 0.5 mm. of containers (cups) were injection molded.
The obtained container was evaluated as follows. Table 1 shows the results.

高速成形性
上記成形条件における連続成形において、100shot間離型不良、容器変形、エジェクト時の破損等のトラブルが発生することなく成形可能となる最少サイクルタイムを測定した。
High-speed moldability In continuous molding under the above molding conditions, the minimum cycle time was measured to enable molding without problems such as mold release failure, container deformation, and breakage during ejection for 100 shots.

製品不良
容器の外観を観察した。表1、2中の記号の意味は以下のとおりである。
○:製品不良が発生しなかった
×:流動末端部であるフランジ面へのバリ発生や末端部まで充填されない現象及び充填不足による容器表面の凹み等のヒケ現象が発生した
The appearance of the defective product container was observed. The meanings of symbols in Tables 1 and 2 are as follows.
○: No product defects occurred ×: Sink phenomenon such as dents on the container surface due to the occurrence of burrs on the flange surface, which is the end of the flow, and the phenomenon that the end was not filled, and insufficient filling occurred.

剛性
得られた容器を48~72時間24℃条件下で状態調整を行い、万能試験機(島津製作所製、AG-1000KNX幅広250mm)を用いて、容器を縦の状態(開口部を下に向けた状態)で天面から荷重を加え、容器が変形するまでの最大荷重を測定した。
The container with the obtained rigidity is conditioned for 48 to 72 hours at 24 ° C., and a universal testing machine (Shimadzu Corporation, AG-1000KNX wide 250 mm) is used to hold the container in a vertical state (with the opening facing downward. A load was applied from the top surface of the container while the container was in a closed state), and the maximum load until the container was deformed was measured.

耐衝撃性
得られた容器を48~72時間24℃条件下で状態調整を行い、更に5℃の環境下で24時間以上状態調整を行った。
Impact Resistance The resulting container was conditioned at 24°C for 48-72 hours, and further conditioned at 5°C for 24 hours or more.

状態調整後の容器を-5℃環境下で容器底面が上になるように平坦な鉄板上に置き、容器上に、質量6.8kgの鉄板を100cmの高さから落下させ、容器の状態を観察した。 Place the container after conditioning on a flat iron plate so that the bottom of the container faces up in a -5 ° C environment, drop an iron plate with a mass of 6.8 kg from a height of 100 cm onto the container, and check the state of the container. Observed.

表1中の記号の意味は以下のとおりである。
○:容器がつぶれるたが亀裂または破損は発生しなかった。
×:容器に亀裂が入ったか、または容器がガラス状に破損した。
The symbols in Table 1 have the following meanings.
Good: The container was crushed, but no cracks or breakage occurred.
x: The container was cracked or glass-like broken.

[実施例2~13および比較例1~13]
プロピレン系重合体、エチレン系重合体および造核剤の種類および量を表1、2に記載のように変更したこと以外は実施例1と同様の方法により、プロピレン系樹脂組成物のペレットを製造し、容器を製造し、さらにこれらを評価した。結果を表1および2に示す。
[Examples 2 to 13 and Comparative Examples 1 to 13]
Pellets of a propylene-based resin composition were produced in the same manner as in Example 1, except that the types and amounts of the propylene-based polymer, ethylene-based polymer, and nucleating agent were changed as shown in Tables 1 and 2. , containers were manufactured, and these were further evaluated. Results are shown in Tables 1 and 2.

Figure 0007126601000001
Figure 0007126601000001

Figure 0007126601000002
Figure 0007126601000002

Claims (7)

下記要件(A1)~(A5)を満たすプロピレン系重合体(A)を75~92質量部、
下記要件(B1)~(B2)を満たすエチレン系重合体(B)を8~25質量部(ただし、プロピレン系重合体(A)およびエチレン系重合体(B)の合計量を100質量部とする。)、および
造核剤(C)を0.02~1.0質量部
含むプロピレン系樹脂組成物。
(A1):ASTM D-1238に準拠して、測定温度230℃、荷重2.16kgで測定したメルトフローレートが45~195g/10分である。
(A2):室温n-デカンに不溶な部分を80~92質量%、および室温n-デカンに可溶な部分を8~20質量%含む。
(A3):前記室温n-デカンに不溶な部分に占めるエチレン由来の構成単位の割合が0~1.0質量%である。
(A4):前記室温n-デカンに可溶な部分に占めるエチレン由来の構成単位の割合が25~35質量%である。
(A5):前記室温n-デカンに可溶な部分の135℃デカリン中における極限粘度[η]が1.0~3.0dl/gである。
(B1):ASTM D-1238に準拠して、測定温度190℃、荷重2.16kgで測定したメルトフローレートが、3.0~50g/10分である。
(B2):密度が940kg/m3以上である。
75 to 92 parts by mass of a propylene polymer (A) satisfying the following requirements (A1) to (A5);
8 to 25 parts by mass of an ethylene polymer (B) that satisfies the following requirements (B1) to (B2) (provided that the total amount of the propylene polymer (A) and the ethylene polymer (B) is 100 parts by mass) ), and a propylene-based resin composition containing 0.02 to 1.0 parts by mass of a nucleating agent (C).
(A1): According to ASTM D-1238, the melt flow rate measured at a measurement temperature of 230°C and a load of 2.16 kg is 45 to 195 g/10 minutes.
(A2): Contains 80 to 92% by mass of a portion insoluble in room temperature n-decane and 8 to 20% by mass of a portion soluble in room temperature n-decane.
(A3): The proportion of ethylene-derived structural units in the portion insoluble in n-decane at room temperature is 0 to 1.0% by mass.
(A4): The proportion of ethylene-derived structural units in the portion soluble in room temperature n-decane is 25 to 35% by mass.
(A5): The intrinsic viscosity [η] of the portion soluble in room temperature n-decane in decalin at 135° C. is 1.0 to 3.0 dl/g.
(B1): The melt flow rate is 3.0 to 50 g/10 minutes measured at a measurement temperature of 190° C. and a load of 2.16 kg according to ASTM D-1238.
(B2): The density is 940 kg/m 3 or more.
請求項1に記載のプロピレン系樹脂組成物を含む成形体。 A molded article comprising the propylene-based resin composition according to claim 1 . 請求項1に記載のプロピレン系樹脂組成物の射出成形体または射出ブロー成形体である請求項2に記載の成形体。 3. The molded article according to claim 2, which is an injection molded article or an injection blow molded article of the propylene-based resin composition according to claim 1. 容器である請求項2または3に記載の成形体。 4. The molded article according to claim 2 or 3, which is a container. 前記容器が食品包装容器である請求項4に記載の成形体。 5. The molded article according to claim 4, wherein said container is a food packaging container. 前記容器の最も薄い部分の厚さが0.3~2.0mmである請求項5に記載の成形体。 6. The molded article according to claim 5, wherein the thinnest portion of the container has a thickness of 0.3 to 2.0 mm. 請求項1に記載のプロピレン系樹脂組成物を射出成形または射出延伸ブロー成形する工程を含む成形品の製造方法。 A method for producing a molded article, comprising a step of injection molding or injection stretch blow molding the propylene-based resin composition according to claim 1 .
JP2021501887A 2019-02-26 2020-02-12 Propylene-based resin composition and molded article Active JP7126601B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019032547 2019-02-26
JP2019032547 2019-02-26
PCT/JP2020/005312 WO2020175138A1 (en) 2019-02-26 2020-02-12 Propylene resin composition and molded body

Publications (2)

Publication Number Publication Date
JPWO2020175138A1 JPWO2020175138A1 (en) 2021-11-25
JP7126601B2 true JP7126601B2 (en) 2022-08-26

Family

ID=72240067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021501887A Active JP7126601B2 (en) 2019-02-26 2020-02-12 Propylene-based resin composition and molded article

Country Status (4)

Country Link
JP (1) JP7126601B2 (en)
KR (1) KR102572905B1 (en)
CN (1) CN113474148B (en)
WO (1) WO2020175138A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161033A (en) 2004-11-10 2006-06-22 Sumitomo Chemical Co Ltd Propylene resin composition and film thereof
WO2010074001A1 (en) 2008-12-22 2010-07-01 株式会社プライムポリマー Propylene-based resin composition, moldings, and container
JP2017508035A (en) 2014-02-06 2017-03-23 ボレアリス エージー Soft and transparent impact copolymers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3690767B2 (en) * 1995-12-22 2005-08-31 三井化学株式会社 Polypropylene resin composition
JP4281157B2 (en) 1999-07-13 2009-06-17 チッソ株式会社 Polypropylene resin composition
JP2002187996A (en) 2000-12-20 2002-07-05 Sumitomo Chem Co Ltd Propylene resin composition and hollow molded container
JP2002187997A (en) 2000-12-20 2002-07-05 Sumitomo Chem Co Ltd Propylene resin composition and hollow molded container
JP2005026981A (en) 2003-07-01 2005-01-27 Seiko Epson Corp Temperature compensated piezoelectric oscillator, and mobile phone device and electronic device provided with temperature compensated piezoelectric oscillator
CN101410426B (en) 2006-03-29 2012-05-09 三井化学株式会社 Propylene-based random block copolymer, resin composition containing the same, and molded article formed therefrom
JP4932654B2 (en) * 2007-09-28 2012-05-16 三井化学株式会社 Cap for beverage bottle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161033A (en) 2004-11-10 2006-06-22 Sumitomo Chemical Co Ltd Propylene resin composition and film thereof
WO2010074001A1 (en) 2008-12-22 2010-07-01 株式会社プライムポリマー Propylene-based resin composition, moldings, and container
JP2017508035A (en) 2014-02-06 2017-03-23 ボレアリス エージー Soft and transparent impact copolymers

Also Published As

Publication number Publication date
KR102572905B1 (en) 2023-08-30
CN113474148B (en) 2023-03-17
JPWO2020175138A1 (en) 2021-11-25
WO2020175138A1 (en) 2020-09-03
KR20210092816A (en) 2021-07-26
CN113474148A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
JP3470337B2 (en) Propylene composition, method for producing the same, polypropylene composition and molded article
CN113767145B (en) Propylene resin composition and molded article
CN104277325B (en) Propylene resin composition
JP2014001343A (en) Propylene resin composition
JP2012229303A (en) Propylenic resin composition, and injection molding thereof
JP7023164B2 (en) Propylene resin composition and molded product
JP6948977B2 (en) Propylene resin composition and injection molded product
CN102958997A (en) Filled polyolefin compositions
JP7126601B2 (en) Propylene-based resin composition and molded article
JP6488916B2 (en) Propylene-based resin composition for biaxial stretch blow molding and molded body thereof
KR102411761B1 (en) Propylene-based resin composition, molded article and container
CN103665727B (en) Polypropylene-based resin composition and the mechanograph being made from it
US9187610B2 (en) Polypropylene resin composition and foamed article produced therefrom
JP7474624B2 (en) Propylene-based resin composition and injection molded product using same
JP7515284B2 (en) Propylene-based resin composition and molded article
CN101611087B (en) Polypropylene resin composition and molded article produced from the same
JP2023150350A (en) Polypropylene-based resin composition and molded body thereof
JP2022135069A (en) Propylene-based resin composition and use thereof
JP2022135068A (en) Propylene-based resin composition and use thereof
KR101842787B1 (en) Polypropylene resin composition for blow molded article integrated with handle and preparing method same
JP2015086259A (en) Propylene resin composition
JP2020158652A (en) Propylene-based polymer composition and molding thereof
JP5858803B2 (en) Inflation film, method for producing inflation film, blow molded article, method for producing blow molded article, thermoformed article and method for producing thermoformed article
CN110770292A (en) Composition comprising heterophasic propylene copolymer
JP2023130897A (en) Polypropylene resin composition, sheet, and thermoformed article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220816

R150 Certificate of patent or registration of utility model

Ref document number: 7126601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150