[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7124263B2 - Sampling heat pipe and geothermal heat pump using it - Google Patents

Sampling heat pipe and geothermal heat pump using it Download PDF

Info

Publication number
JP7124263B2
JP7124263B2 JP2018013384A JP2018013384A JP7124263B2 JP 7124263 B2 JP7124263 B2 JP 7124263B2 JP 2018013384 A JP2018013384 A JP 2018013384A JP 2018013384 A JP2018013384 A JP 2018013384A JP 7124263 B2 JP7124263 B2 JP 7124263B2
Authority
JP
Japan
Prior art keywords
pipe
heat
tube
insulating material
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018013384A
Other languages
Japanese (ja)
Other versions
JP2019132470A (en
Inventor
哲明 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2018013384A priority Critical patent/JP7124263B2/en
Publication of JP2019132470A publication Critical patent/JP2019132470A/en
Application granted granted Critical
Publication of JP7124263B2 publication Critical patent/JP7124263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、採放熱管およびそれを用いた地中熱ヒートポンプに関し、特に直接膨張方式地中熱ヒートポンプに用いられる採放熱管及びそれを用いた地中熱ヒートポンプに関する。 TECHNICAL FIELD The present invention relates to a heat collecting pipe and a geothermal heat pump using the same, and more particularly to a heat collecting pipe used in a direct expansion type geothermal heat pump and a geothermal heat pump using the same.

地中熱ヒートポンプには間接方式と直接膨張方式がある。間接方式は、ヒートポンプの室外機内に代替フロン等の冷媒と水または不凍液(ブラインと呼ぶ)との熱交換器を設け、冷媒の熱をブラインに与えることにより、このブラインを地中に設けたボアホール内に設けた樹脂または金属製のパイプに導入して、このブラインを介して間接的に地中との間で採放熱を行うものである。(特許文献1、2) There are two types of geothermal heat pumps: indirect type and direct expansion type. In the indirect method, a heat exchanger is installed in the outdoor unit of the heat pump between a refrigerant such as a CFC alternative and water or antifreeze (called brine), and the heat of the refrigerant is given to the brine. The brine is introduced into a resin or metal pipe provided inside, and heat is taken out and released from the ground indirectly through this brine. (Patent Documents 1 and 2)

一方、直接膨張方式は、銅製円管で構成した採放熱管を、間接方式と比べ浅い(深さ30m程度)地中に埋設して地中熱交換器とし、ヒートポンプの冷媒を直接地中熱交換器に導入して、地中との間で採放熱を行う方法である。このため冷媒としては代替フロン系冷媒が用いられている。 On the other hand, in the direct expansion method, a copper circular pipe is buried in the ground shallower than the indirect method (about 30m deep) to act as an underground heat exchanger. In this method, heat is extracted from the ground by introducing it into an exchanger. For this reason, CFC substitute refrigerants are used as refrigerants.

直接膨張方式は、地中熱交換器に直接冷媒を導入することから、地中熱交換器は暖房運転時に蒸発器、冷房運転時には凝縮器となるため、地中熱交換器内で冷媒の相変化を伴う流れとなる。 In the direct expansion method, the refrigerant is introduced directly into the underground heat exchanger, so the underground heat exchanger becomes an evaporator during heating operation and a condenser during cooling operation. It becomes a flow that accompanies change.

地中熱ヒートポンプにおいては、その採放熱の効率を上げるため、種々の施策が取られている。例えば、特許文献1、2などに示されるように採放熱管などに断熱材を用いて不必要な熱交換が発生することを防ぐ手だてが示されている。 In geothermal heat pumps, various measures have been taken to increase the efficiency of heat extraction. For example, as shown in Patent Documents 1 and 2, a method for preventing unnecessary heat exchange by using a heat insulating material in a heat collecting pipe or the like is shown.

また、直接膨張方式の地中熱ヒートポンプの採放熱管においては、冷媒の相変化を生じせしめていることに起因する対処が必要である。このため、例えば非特許文献1にように、U次形状の採放熱管の一部に断熱材を巻いた構成の採放熱管が提案されている。 In addition, in the direct expansion type geothermal heat pump, it is necessary to deal with the phase change of the refrigerant. For this reason, as in Non-Patent Document 1, for example, a radiation extraction tube having a configuration in which a portion of a U-shaped radiation extraction tube is wrapped with a heat insulating material has been proposed.

特開2014-005981号公報JP 2014-005981 A 特開2014-084857号公報JP 2014-084857 A

村松範彦他、日本機械学会2016年度年次大会、直膨方式地中熱ヒートポンプの交換性能-地中熱交換器の性能―、2016/9/11~14Norihiko Muramatsu et al., The Japan Society of Mechanical Engineers 2016 Annual Meeting, Exchange Performance of Direct Expansion Geothermal Heat Pump - Performance of Geothermal Heat Exchanger -, 9/11-14, 2016

冷媒の相変化を生じせしめている直接膨張方式の地中熱ヒートポンプの採放熱管において、より採放熱効果を上げる施策が求められている。 There is a demand for measures to increase the efficiency of heat collection and heat collection in direct expansion type geothermal heat pumps, which cause phase changes in the refrigerant.

本発明の採放熱管は、地中内に埋設するケーシング管内に納められる直接膨張方式地中熱ヒートポンプ用の採放熱管であって、該採放熱管は、本管と該本管の一部を覆う断熱材とを具備し、該本管は、冷媒が流入あるいは流出する第1、第2の流出入口と、第1の流出入口から端部までの第1の管と、第2の流出入口から端部までの第2の管とを備え、第1の管と第2の管は端部において互いに連通するように接続され、第1、第2の流出入口はケーシング管の地表面側に備えられ、端部はケーシング管が埋設された場合に採放熱管において最深に位置し、第1の管は断熱材に覆われており、少なくとも端部まで断熱材が第1の管を覆うように構成されたことを特徴とする。 The heat collection pipe of the present invention is a heat collection pipe for a direct expansion geothermal heat pump that is housed in a casing pipe buried in the ground, and the heat collection pipe comprises a main pipe and a part of the main pipe. The main pipe has first and second inlets and outlets through which the refrigerant flows in and out, a first pipe from the first inlet to an end, and a second outlet. a second pipe from the inlet to the end, the first pipe and the second pipe being connected to each other at the end so as to communicate with each other, the first and second inlets being on the ground surface side of the casing pipe and the end is located at the deepest position in the sampling and radiation pipe when the casing pipe is buried, the first pipe is covered with a heat insulating material, and the heat insulating material covers the first pipe up to at least the end It is characterized by being configured as follows.

本発明の地中熱ヒートポンプは該採放熱管を備えている。 The ground source heat pump of the present invention includes the heat collection tube.

直接膨張方式の地中熱ヒートポンプの採放熱管の効率を上げることが可能となる。 It is possible to increase the efficiency of the heat sampling/radiating pipe of the direct expansion type geothermal heat pump.

本発明の採放熱管の第1の例を示す図である。It is a figure which shows the 1st example of the heat collection tube of this invention. 本発明の採放熱管を用いた地中熱ヒートポンプの一例を示す図である。It is a figure which shows an example of the geothermal heat pump using the heat collection tube of this invention. 本発明の採放熱管の第2の例を示す図である。FIG. 10 is a diagram showing a second example of the heat-collecting/radiating tube of the present invention; 本発明の採放熱管の第3の例を示す図である。FIG. 10 is a diagram showing a third example of the heat-collecting/radiating tube of the present invention;

(実施例1)
(構成)
本発明の採放熱管の第1の例を図1に、本発明の採放熱管11を用いた地中熱ヒートポンプの一例を図2にそれぞれ示す。
(Example 1)
(Constitution)
A first example of the heat collecting pipe of the present invention is shown in FIG. 1, and an example of a geothermal heat pump using the heat collecting pipe 11 of the present invention is shown in FIG.

図1に示すように、採放熱管11は、本管4とその一部を覆う断熱材5とを有している。本管4は、冷媒の流出入口1、2を備えたU字形状の管であり、冷媒が流れる管の本体である。流出入口1、2は地中熱ヒートポンプの動作モードにより、冷媒の流入口あるいは流出口となる。また、本管4は、第1の流出入口1から端部3までの第1の管41と、第2の流出入口2から端部3までの第2の管42とを備え、第1の管41と第2の管42は端部3において互いに連通するように接続される。また、第1の管41は断熱材(保温材)5に覆われており、少なくとも断熱材5を端部3まで覆うように構成している。ここで端部3は、図2に示したように本管4を地中に設置したときに最深の位置にあたる部分である。したがって端部(あるいは端点)3は本管4の最深部あるいは最下部となる。 As shown in FIG. 1, the heat collection tube 11 has a main tube 4 and a heat insulating material 5 covering a portion of the main tube 4 . The main pipe 4 is a U-shaped pipe provided with inlets and outlets 1 and 2 for the refrigerant, and is the main body of the pipe through which the refrigerant flows. The inlets 1 and 2 are refrigerant inlets or outlets depending on the operation mode of the geothermal heat pump. Further, the main pipe 4 includes a first pipe 41 from the first inlet 1 to the end 3 and a second pipe 42 from the second inlet 2 to the end 3. The tube 41 and the second tube 42 are communicatively connected to each other at the end 3 . Also, the first pipe 41 is covered with a heat insulating material (heat insulating material) 5 and configured to cover at least the end portion 3 of the heat insulating material 5 . Here, the end portion 3 is the portion corresponding to the deepest position when the main pipe 4 is installed in the ground as shown in FIG. The end (or end point) 3 is thus the deepest or lowest point of the main pipe 4 .

図1の例では、第1の管41は、第1の流出入口1から端部3に向かって直線状に延びる直線部41aと、管41が曲げられU字形状の底部を成す曲線部41bとを有している。直線部41aと曲線部41bは、管41が曲がり始めるポイントBで管が互いに連通するように構成される。同様に第2の管42は、第2の流出入口2から端部3に向かって直線状に延びる直線部42aと、管42が曲げられU字形状の底部を成す曲線部42bとを有している。直線部42aと曲線部42bは、管42が曲がり始めるポイントCで管が互いに連通するように構成される。なお、ポイントBとポイントCは、採放熱管11を用いた地中熱ヒートポンプを地中に設置したときに水平面と平行になるように構成してもよい。 In the example of FIG. 1, the first pipe 41 has a linear portion 41a extending linearly from the first inlet/outlet 1 toward the end portion 3, and a curved portion 41b formed by bending the pipe 41 to form a U-shaped bottom. and Straight portion 41a and curved portion 41b are configured such that the tubes communicate with each other at point B where tube 41 begins to bend. Similarly, the second pipe 42 has a straight portion 42a extending straight from the second inlet/outlet 2 toward the end portion 3, and a curved portion 42b formed by bending the pipe 42 to form a U-shaped bottom. ing. Straight portion 42a and curved portion 42b are configured such that the tubes communicate with each other at point C where tube 42 begins to bend. Note that the points B and C may be configured to be parallel to the horizontal plane when the geothermal heat pump using the radiation sampling pipe 11 is installed in the ground.

なお、本管4は、例えば銅管を用いることができる。またその径は例えば3/8インチ程度のものが利用できる。 A copper pipe, for example, can be used for the main pipe 4 . Also, a diameter of about 3/8 inch, for example, can be used.

図1に示す例では、断熱材5は第1の管41の直線部41aを覆う断熱材51と、第1の管41の曲線部41bを覆う断熱材52とから構成されている。なお、断熱材5は、第1の流収入口1を含むまで覆ってもよい。あるいは、本管4がケーシング管6内の充填された水7の水面部分まで覆うようにしてもよい。よい好ましくは第1の流出入口から冷暖房機までの配管全てを断熱材5で覆うようにすればよい。また、性能がでれば図2示すように若干水7につかる部分までであってもよい。 In the example shown in FIG. 1 , the heat insulating material 5 is composed of a heat insulating material 51 covering the straight portion 41 a of the first pipe 41 and a heat insulating material 52 covering the curved portion 41 b of the first pipe 41 . In addition, the heat insulating material 5 may cover up to including the first flow inlet 1 . Alternatively, the main pipe 4 may cover up to the water surface portion of the water 7 filled in the casing pipe 6 . Preferably, the entire piping from the first inlet/outlet to the air conditioner should be covered with the heat insulating material 5 . Also, if the performance is good, the part slightly submerged in water 7 may be used as shown in FIG.

本例における地中熱ヒートポンプは、地面に形成されたボアホール9にケーシング管6を納め、そのケーシング管6に水7を充填するとともに上述した採放熱管11をケーシング管6内に設置する。ここで、ケーシング管6とボアホール9との間は硅砂8を充填するとよい。 In the geothermal heat pump of this example, a casing pipe 6 is placed in a borehole 9 formed in the ground, and the casing pipe 6 is filled with water 7 and the above-described sampling and radiation pipe 11 is installed in the casing pipe 6 . Here, it is preferable to fill the space between the casing pipe 6 and the borehole 9 with silica sand 8 .

冷媒は、例えば、R410AやR32などの代替フロン等を利用することができる。 As the refrigerant, for example, a CFC substitute such as R410A or R32 can be used.

本例では、地中内に埋設するケーシング管6内に納められる直接膨張方式地中熱ヒートポンプ用の採放熱管11であって、採放熱管11は本管4とその一部を覆う断熱材5とを具備し、本管4は、冷媒が流入あるいは流出する第1、第2の流出入口(1,2)と、第1の流出入口1から端部3までの第1の管41と、第2の流出入口2から端部3までの第2の管42とを備え、第1の管41と第2の管42は端部3において互いに連通するように接続され、第1、第2の流出入口はケーシング管の地表面側に備えられ、端部3は、ケーシング管が埋設された場合に採放熱管において最深に位置し、第1の管41は断熱材(保温材)5に覆われており、少なくとも端部3まで断熱材5が第1の管41を覆うように、採放熱管11を構成する。 In this example, the heat collecting pipe 11 for a direct expansion type geothermal heat pump is housed in a casing pipe 6 buried in the ground. 5, the main pipe 4 includes first and second inlets (1, 2) through which the refrigerant flows in or out, and a first pipe 41 from the first inlet 1 to the end 3. , and a second pipe 42 from the second inlet/outlet 2 to the end 3, the first pipe 41 and the second pipe 42 being connected to each other at the end 3 so as to communicate with each other. The inlet and outlet of 2 are provided on the ground surface side of the casing pipe, the end 3 is located deepest in the heat collection pipe when the casing pipe is buried, and the first pipe 41 is a heat insulating material (heat insulating material) 5 , and the heat-insulating material 5 covers the first tube 41 up to at least the end 3 .

(動作)
暖房運転においては、採放熱管11の本管4の流出入口1(第1の流出入口)から液状の冷媒を流入させる。ここで、本管4の第1の管41は端部(最下部)3までを断熱材5で覆っている。このため、液状の冷媒が地上から本管4の第1の管41を流れる際に地中から熱をもらって蒸発(気化)しない。
(motion)
In the heating operation, the liquid refrigerant is allowed to flow in from the inlet/outlet 1 (first inlet/outlet) of the main pipe 4 of the heat sampling/radiating pipe 11 . Here, the first pipe 41 of the main pipe 4 is covered with the heat insulating material 5 up to the end (lowermost part) 3 . Therefore, when the liquid refrigerant flows from the ground through the first pipe 41 of the main pipe 4, it receives heat from the ground and does not evaporate (vaporize).

つまり、本管4内での冷媒の流れが下向き流れから上向き流れに反転する部分まで(少なくとも端部3を含む部分まで)断熱材(保温材)5で覆うことにより地中熱を遮断している。この結果、本管4内の液状冷媒が流下する間に蒸発による気泡を発生させず、液状冷媒が上向き流れに反転するまで気泡の発生を排除する。換言すると断熱材5の無い第2の管42が蒸発器として動作し、断熱材5で覆われた第1の管41は気泡排除装置とみなすことができる。端部3を通過した冷媒は本管4の第2の管42を上向きに流れ、ここで地中から熱をもらって蒸発(気化)する。蒸発(気化)した暖かい冷媒は、本管4の流出入口2(第2の流出入口)から流出され、暖房に利用される。 In other words, the portion where the flow of the refrigerant in the main pipe 4 reverses from downward flow to upward flow (at least up to the portion including the end portion 3) is covered with the heat insulating material (heat insulating material) 5 to cut off the underground heat. there is As a result, while the liquid refrigerant in the main pipe 4 is flowing down, bubbles due to evaporation are not generated, and the generation of bubbles is eliminated until the liquid refrigerant reverses its upward flow. In other words, the second pipe 42 without heat insulating material 5 acts as an evaporator, and the first pipe 41 covered with heat insulating material 5 can be regarded as a bubble eliminator. The refrigerant that has passed through the end portion 3 flows upward through the second pipe 42 of the main pipe 4, where it receives heat from the ground and evaporates (vaporizes). The evaporated (vaporized) warm refrigerant flows out from the outlet 2 (second outlet) of the main pipe 4 and is used for heating.

一方、冷房運転においては、採放熱管11の本管4の流出入口2(第2の流出入口)から気体状の冷媒を流入させる。ここで、本管4の第1の管41は端部(最下部)3までを断熱材5で覆っている。このため、気体状の冷媒が地上から本管4の第2の管42を流下する間に地中に放熱して凝縮し液状冷媒となったのち、端部(最下部)3で反転して、本管4の第1の管41を経て地上まで上昇する間に液状冷媒が地中から熱をもらって再び蒸発(気化)しないように動作する。換言すると断熱材5の無い第2の管42が凝縮器として動作し、断熱材5で覆われた第1の管41は気泡排除装置とみなすことができる。端部3を通過した冷媒は本管4の第1の管41を上向きに流れ、ここで再度蒸発(気化)することなく本管4の流出入口1から液状に冷却された冷媒として取り出され、冷房に利用される。 On the other hand, in the cooling operation, the gaseous refrigerant is allowed to flow in from the inlet/outlet 2 (second inlet/outlet) of the main pipe 4 of the heat sampling/radiating pipe 11 . Here, the first pipe 41 of the main pipe 4 is covered with the heat insulating material 5 up to the end (lowermost part) 3 . For this reason, while the gaseous refrigerant flows down the second pipe 42 of the main pipe 4 from the ground, it radiates heat into the ground and condenses to become a liquid refrigerant. , while rising to the ground through the first pipe 41 of the main pipe 4, the liquid refrigerant receives heat from the ground and does not evaporate (vaporize) again. In other words, the second tube 42 without insulation 5 acts as a condenser and the first tube 41 covered with insulation 5 can be regarded as a bubble eliminator. The refrigerant that has passed through the end 3 flows upward through the first pipe 41 of the main pipe 4, where it is taken out as a liquid-cooled refrigerant from the inlet/outlet 1 of the main pipe 4 without evaporating (vaporizing) again, Used for cooling.

(実施例2)
図3に、本発明の第2の例を示す。図3は、図1の採放熱管11を採放熱管11'に置き換えた例である。具体的には図3は、端部3を超えて採放熱管11’の本管4の第2の管42の曲線部42bまで断熱材5で覆った場合を示す図であり、その他は図1に示す例と同じである。断熱材5は、第1の管41の直線部41aを覆う断熱材51と、第1の管41の曲線部41bおよび第2の管42の曲線部42bとを覆う断熱材52’とから構成されており、断熱材52’が端部3を完全に含むように構成されている。そしてこのように構成することにより、冷媒の流れる方向が完全に切り替わる部分まで覆うようにしたものである。言い換えると、端部3から、第2の管42が地表面に対し垂直方向に形成された部分まで、第2の管42が断熱材5でさらに覆われるようにしている。この結果、冷暖房時に第1の管41での気泡発生や発生した気泡の逆流をより完全に防ぎより効率を上げることが可能となる。この例では、第2の管42において断熱材5が無い部分が蒸発器(暖房運転時)あるいは凝縮器(冷房運転時)として機能する。
(Example 2)
FIG. 3 shows a second example of the invention. FIG. 3 shows an example in which the radiation sampling tube 11 of FIG. 1 is replaced with a radiation sampling tube 11'. Specifically, FIG. 3 is a diagram showing a case where the curved portion 42b of the second pipe 42 of the main pipe 4 of the heat sampling/radiating pipe 11' beyond the end portion 3 is covered with the heat insulating material 5. 1 is the same as the example shown in FIG. The heat insulating material 5 is composed of a heat insulating material 51 covering the straight portion 41 a of the first pipe 41 and a heat insulating material 52 ′ covering the curved portion 41 b of the first pipe 41 and the curved portion 42 b of the second pipe 42 . and the insulation 52 ′ is configured to completely contain the end 3 . By constructing in this manner, even the portion where the direction of flow of the refrigerant is completely switched is covered. In other words, the second pipe 42 is further covered with the heat insulating material 5 from the end 3 to the portion where the second pipe 42 is formed perpendicular to the ground surface. As a result, it is possible to more completely prevent the generation of air bubbles in the first pipe 41 and the backflow of the generated air bubbles during cooling and heating, and to improve the efficiency. In this example, the portion of the second pipe 42 without the heat insulating material 5 functions as an evaporator (during heating operation) or a condenser (during cooling operation).

なお、ポイントBとポイントCは、採放熱管11’を用いた地中熱ヒートポンプを地中に設置したときに水平面と平行になるように構成してある場合は、端部3を超えてポイントCまで断熱材5で覆うとよい。さらに好ましくは、採放熱管11’の本管4の第2の管42は、端部3から100mm以上高い位置までの断熱材52’で覆われるようにするとよい。 In addition, when the geothermal heat pump using the radiation sampling pipe 11 ′ is installed in the ground, the point B and the point C are configured to be parallel to the horizontal surface, beyond the end 3 and point It is preferable to cover up to C with the heat insulating material 5 . More preferably, the second pipe 42 of the main pipe 4 of the heat collection pipe 11' is covered with the heat insulating material 52' from the end 3 to a position higher than 100 mm.

(実施例3)
図4に、本発明の第3の例を示す。図4は、図1の採放熱管11を採放熱管11''に置き換えた例である。具体的には図4は、図1における採放熱管11の本管4の第2の管42を複数本の並行した管を備える第2の管42’に置き換えたものである。あるいは第2の管42が、分岐管部(分岐部)10を介して接続され互いに並行して配置された複数の管を備えるように構成している。図4において断熱材は、図1の例と同じように第1の管41を端部3まで覆うようにしている。これに代えて、図3の例のように端部3を超えて採放熱管4の第2の管42の曲線部42bまで断熱材5で覆うようにしてもよい。あるいはさらに複数本の並行した管への分岐管部10まで覆うようにしてもよい。
(Example 3)
FIG. 4 shows a third example of the invention. FIG. 4 shows an example in which the radiation sampling tube 11 in FIG. 1 is replaced with a radiation sampling tube 11''. Specifically, FIG. 4 is obtained by replacing the second tube 42 of the main tube 4 of the heat sampling/radiating tube 11 in FIG. 1 with a second tube 42' provided with a plurality of parallel tubes. Alternatively, the second pipe 42 is configured to include a plurality of pipes connected via branch pipe portions (branch portions) 10 and arranged in parallel with each other. In FIG. 4, the heat insulating material covers the first pipe 41 up to the end 3 as in the example of FIG. Alternatively, as in the example of FIG. 3 , the heat insulating material 5 may cover the curved portion 42 b of the second tube 42 of the radiation sampling tube 4 beyond the end 3 . Alternatively, even the branch pipe section 10 to a plurality of parallel pipes may be covered.

このような構成を取ることにより、第2の管42の一部分であって冷房運転時には凝縮器となる断熱材5を巻いていない部分において、伝熱面積を増大させることができより効率化が図られる。さらには、複数本の管それぞれの直径を、第1の管よりも小さくした銅製円管を複数本用いて凝縮部を構成すると効果的である。なお、後述する理由により並行した管の本数は奇数本で構成される(1を除く)のが好ましく、さらにその本数が3であるものがより好ましい。 By adopting such a configuration, the heat transfer area can be increased in a portion of the second pipe 42 which is not wrapped with the heat insulating material 5 and serves as a condenser during cooling operation, and efficiency can be improved. be done. Furthermore, it is effective to use a plurality of circular copper tubes each having a diameter smaller than that of the first tube to configure the condensation section. For the reasons described later, it is preferable that the number of parallel pipes is an odd number (excluding one), and more preferably three.

(実験・考察)
暖房運転時は、採放熱管が蒸発器となるため、液相冷媒が採放熱管の流入口から採放熱管の管内を流下する部分において地中から採熱して蒸発すると、流下する液相冷媒中に採放熱管表面から蒸発気泡が生じうる。このためを流下する冷媒中に蒸発による気泡生成のため浮力が発生し、冷媒流の流動抵抗が増大して、圧縮機の負荷が増大するため、その結果として消費電力が増大する。一方、冷房運転時には気相冷媒が採放熱管を流下する際に地中に放熱して凝縮し、液相の冷媒が熱交換器の最下部で反転して上昇するが、この時、ケーシング管内の水や気相冷媒が流下する部分にあたる採放熱管から凝縮時の放熱分の一部が、液状化した冷媒が上昇する部分にあたる採放熱管に伝わり、再び熱をもらって冷媒が蒸発すると地中熱交換器からの全放熱量が減少し、これにより成績係数が減少し性能が低下する。
(Experiment/Consideration)
During heating operation, the heat collection pipe acts as an evaporator, so when the liquid refrigerant collects heat from the ground and evaporates at the part where the liquid refrigerant flows down from the inlet of the heat collection pipe to the inside of the pipe, the liquid refrigerant flows down. Evaporation bubbles may be generated from the surface of the collecting heat tube. For this reason, buoyancy is generated in the refrigerant flowing down through evaporation due to the generation of bubbles, and the flow resistance of the refrigerant flow increases, increasing the load on the compressor, resulting in an increase in power consumption. On the other hand, during cooling operation, when the vapor-phase refrigerant flows down the intake/radiating pipe, it radiates heat into the ground and condenses, and the liquid-phase refrigerant reverses at the bottom of the heat exchanger and rises. Part of the heat released during condensation from the collecting and radiating pipes where the water and gaseous refrigerant flows down is transmitted to the collecting and radiating pipes where the liquefied refrigerant rises, and when the refrigerant evaporates due to the heat again, it goes underground. The total heat dissipation from the heat exchanger is reduced, which reduces the coefficient of performance and reduces performance.

これらによる性能低下を防ぐため、市販の空気熱ヒートポンプの室外機と室内機の接続銅管の断熱に使用されている微小な空気層を持つ断熱材を用いて、図1の管41aにあたる部分を覆ったところ、暖房運転時に冷媒が流下する部分にあたる採放熱管での液相冷媒の蒸発や、冷房運転時に冷媒が上昇する部分にあたる採放熱管での液相冷媒の再蒸発を抑えることができ性能は向上した。 In order to prevent performance deterioration due to these, a heat insulating material with a minute air layer, which is used for heat insulation of the connecting copper pipe between the outdoor unit and the indoor unit of a commercially available air heat pump, was used to cut the portion corresponding to the pipe 41a in FIG. By covering it, it is possible to suppress the evaporation of the liquid-phase refrigerant in the sampling/radiating pipe, which is the part where the refrigerant flows down during heating operation, and the re-evaporation of the liquid-phase refrigerant in the sampling/radiating pipe, which is the part where the refrigerant rises during cooling operation. Performance has improved.

しかしながら、地下10mより深いところでは水を充填したケーシング管内の水圧により断熱材が潰されていることを目視により確認した。このことから、断熱性能は低下していることが考えられ、ある程度性能は向上したものの、最適設計とするためには、以下の施工が必須であるとの知見を得た。 However, it was visually confirmed that the heat insulating material was crushed by the water pressure inside the casing pipe filled with water at a depth of 10 m or more underground. From this, it is considered that the insulation performance is declining, and although the performance has improved to some extent, the following construction is essential for the optimum design.

まず、U字型採放熱管において凝縮器や蒸発器として機能させる部分では、冷媒の凝縮や蒸発は極力防ぐ必要がある。特に暖房、あるいは給湯運転時に液冷媒がU字型採放熱管において冷媒が流下する部分では採放熱管壁からの受熱により蒸発気泡が液冷媒の流下中で生じると圧縮機の負荷が増大し、消費電力の増大とともに成績係数が大きく低下する可能性がある。このため、実施例1のように、採放熱管11は、少なくとも端部3まで断熱材5で覆う必要がある。好ましくは、実施例2のように採放熱管11’の本管4の第2の管42の曲線部42aまでも断熱材52’で覆うようにするとよい。さらに実施例2において、採放熱管4の第2の管42は、端部3から100mm以上高い位置までの区間を断熱するとより好ましい。 First, it is necessary to prevent condensation and evaporation of the refrigerant as much as possible in the portion of the U-shaped intake/radiator pipe that functions as a condenser and an evaporator. Especially in heating or hot water supply operation, in the part where the liquid refrigerant flows down in the U-shaped heat collecting and radiating pipe, the heat received from the wall of the collecting and radiating pipe causes evaporation bubbles in the flow of the liquid refrigerant, which increases the load on the compressor. The coefficient of performance may drop significantly as power consumption increases. For this reason, as in the first embodiment, it is necessary to cover at least the end portion 3 of the heat collection tube 11 with the heat insulating material 5 . Preferably, even the curved portion 42a of the second tube 42 of the main tube 4 of the radiation sampling tube 11' is covered with the heat insulating material 52' as in the second embodiment. Furthermore, in Example 2, it is more preferable that the second tube 42 of the heat-collecting/radiating tube 4 insulates a section from the end 3 to a position higher than 100 mm.

また、液冷媒として円管直径をDとした場合のレイノルズ数から流れは乱流であることを確認する必要があり、この時本管4の端部3から複数管への分岐管部までの直管部距離として約20D以上は必要である。 In addition, it is necessary to confirm that the flow is turbulent from the Reynolds number when the diameter of the circular pipe is D as liquid refrigerant. A distance of about 20D or more is required as the straight pipe section distance.

これにより、確実に液冷媒の流下中に蒸発した気相冷媒の混入を確実に防ぐことができるため、結果として圧縮機の消費電力の増大を大きく抑えることができ、大きく成績係数が低下することを防ぐことができ省エネ性能を維持することが可能となる。 As a result, it is possible to reliably prevent the mixture of the vapor-phase refrigerant that has evaporated while the liquid refrigerant is flowing down. can be prevented and energy saving performance can be maintained.

冷房運転時には採放熱管(11、11’、11’’)の一部を凝縮器として機能させる。気相冷媒が採放熱管(11、11’、11’’)を流下する際に地中に放熱して凝縮するため、冷媒量を増やさずに凝縮器にあたる採放熱管(11、11’、11’’)の伝熱面積を増大させるよう、採放熱管の本管4の第2の管42を直径を小さくした銅製円管を複数本用いたものとした。そして、この複数本の銅製円管を凝縮部となるよう構成した。 During the cooling operation, part of the heat-collecting/radiating pipes (11, 11', 11'') functions as a condenser. When the vapor-phase refrigerant flows down through the collecting and radiating pipes (11, 11', 11''), it radiates heat into the ground and condenses. 11''), the second pipe 42 of the main pipe 4 of the heat-collecting/radiating pipe is made of a plurality of circular copper pipes with a small diameter so as to increase the heat transfer area. Then, the plurality of copper circular tubes were configured to serve as the condensation section.

この時複数管の本数を2本、または4本で行った実験結果では、特に暖房運転である蒸発器として機能する際に複数本の円管流路内で冷媒流れに振動が見られ、安定に冷媒の蒸発が行えないことを確認した。さらに熱交換器を収めたボアホールを2本とした並列ボアホールの場合も暖房運転時の性能が安定しない場合を確認したことから、2本の組合せでは安定に流量配分を行うことが容易ではないことが分かった。したがって、採放熱管の本管4の第2の管42における凝縮部に相当する部分は奇数本(1本または3本ないしは5本)の銅製円管がよい。特に複数管の本数は3本が最適である。これは分岐管部(分岐部)を製作する際に正三角形配置とすることにより、各円管の距離を等しくすることができるため、流量配分を等しくすることが容易であることによる。実施例3にしめすようなこの構成をとることによりさらに圧縮機の消費電力の増大抑え、効率を上げることが可能となる。 At this time, in the results of experiments conducted with multiple pipes of two or four, vibrations were observed in the refrigerant flow in the multiple circular pipe flow paths, especially when functioning as an evaporator, which is a heating operation, and the flow was stable. It was confirmed that the refrigerant could not evaporate. Furthermore, in the case of parallel boreholes with two boreholes containing heat exchangers, it was confirmed that the performance during heating operation was not stable. I found out. Therefore, an odd number (1, 3 or 5) of copper circular tubes is preferable for the part corresponding to the condensing part in the second tube 42 of the main tube 4 of the heat sampling tube. In particular, the optimum number of multiple tubes is three. This is due to the fact that the equilateral triangular arrangement in manufacturing the branch pipes (branching parts) makes it possible to equalize the distances of the respective circular pipes, thereby facilitating equal distribution of flow rates. By adopting this configuration as shown in the third embodiment, it is possible to further suppress the increase in the power consumption of the compressor and improve the efficiency.

この他にもさらに、断熱材には熱伝導率の低い物質、例えばポリエチレン管やVP管を銅管の外側に施工することで断熱性能を保持しつつ、水圧による断熱材の変形を防ぎ断熱性能を維持させることで省エネ性能の低下を防ぐことができる。 In addition to this, by applying a material with low thermal conductivity, such as polyethylene pipe or VP pipe, to the outside of the copper pipe, insulation performance is maintained while preventing deformation of the insulation due to water pressure. It is possible to prevent the deterioration of energy-saving performance by maintaining

ボアホール内に収めた複数管部分の距離は最小で20m、最大で30mあれば、冷房運転時の凝縮過程が終了することがボアホール内温度変化の考察から確認しており、また、端部3から100mm以上高い位置にあたる採放熱管の本管4の第2の管42のところから地上配管部まで断熱するとより圧縮機の消費電力の増大抑え、効率を上げることが可能となる。 It has been confirmed from consideration of the temperature change in the borehole that the condensation process during cooling operation will be completed if the distance of the multiple pipe sections housed in the borehole is 20m at the minimum and 30m at the maximum. If the heat is insulated from the second pipe 42 of the main pipe 4 of the heat-sampling/radiating pipe located at a position higher than 100 mm to the above-ground pipe, the power consumption of the compressor can be suppressed and the efficiency can be improved.

なお、説明の都合上、実施の形態において採放熱管はU字形状としたが、本発明はその他の形状にも適応できる。例えば第2の管をスパイラル構造の管としてもよい。また管の断面は円形に限らず楕円や矩形等であってもよい。 For the convenience of explanation, the heat-collecting/radiating tube is U-shaped in the embodiment, but the present invention can be applied to other shapes. For example, the second tube may be a spiral tube. Further, the cross section of the tube is not limited to circular, and may be elliptical, rectangular, or the like.

1、2 流出入口
3 端部
4 本管
5 断熱材
6 ケーシング管
7 水
8 硅砂
9 ボアホール
10 分岐管部
11、11’、11’’ 採放熱管
Reference Signs List 1, 2 inlet/outlet 3 end 4 main pipe 5 heat insulating material 6 casing pipe 7 water 8 silica sand 9 borehole 10 branch pipe portions 11, 11', 11'' sampling heat pipe

Claims (10)

地中内に埋設するケーシング管内に納められる直接膨張方式地中熱ヒートポンプ用の採放熱管であって、
前記採放熱管は、本管と前記本管の一部を覆う断熱材とを具備し、
前記本管は、
液状の冷媒が流入あるいは流出する第1流出入口を有し前記第1の流出入口から端部までの第1の管と、
気体状の冷媒が流入あるいは流出する第2流出入口を有し前記第2の流出入口から前記端部までの第2の管とを備え、
前記第1の管と前記第2の管は前記端部において互いに連通するように接続され、
前記第1、第2の流出入口は前記ケーシング管の地表面側に備えられ、
前記端部は、前記ケーシング管が埋設された場合に前記採放熱管において最深に位置し、
前記第1の管は前記断熱材に覆われており、少なくとも前記端部まで前記断熱材が前記第1の管を覆い、
前記第2の管は分岐管部を介して接続され互いに並行して配置された複数の管を有し、且つ、前記複数の管のそれぞれの径は、前記第1の管の径よりも小さい採放熱管。
A sampling and radiating pipe for a direct expansion geothermal heat pump to be housed in a casing pipe buried underground,
The heat sampling/radiating pipe comprises a main pipe and a heat insulating material covering a part of the main pipe,
Said main is
a first pipe having a first inlet/outlet through which a liquid refrigerant flows in or out and extending from the first inlet/outlet to an end;
a second pipe having a second inlet/outlet for inflow or outflow of a gaseous refrigerant and extending from the second inlet/outlet to the end,
the first tube and the second tube are connected at the ends so as to communicate with each other;
The first and second inlets and outlets are provided on the ground surface side of the casing pipe,
the end is located at the deepest point in the radiation sampling tube when the casing tube is buried;
the first tube is covered with the insulating material, and the insulating material covers the first tube at least up to the end;
The second pipe has a plurality of pipes connected via branch pipe portions and arranged in parallel with each other, and the diameter of each of the plurality of pipes is smaller than the diameter of the first pipe. collection tube.
前記端部から、前記第2の管が前記地表面に対し垂直方向に形成された部分まで、前記第2の管が前記断熱材でさらに覆われた請求項1に記載の採放熱管。 2. The radiation sampling tube according to claim 1, wherein said second tube is further covered with said heat insulating material from said end portion to a portion where said second tube is formed perpendicularly to said ground surface. 前記第2の管が、前記端部から100mm以上高い位置まで前記断熱材でさらに覆われた請求項1または2のいずれかに記載の採放熱管。 3. The heat collection tube according to claim 1, wherein said second tube is further covered with said heat insulating material to a position higher than said end by 100 mm or more. 前記端部から前記分岐管部まで第2の管が前記断熱材で覆われた請求項1に記載の採放熱管。 2. The heat collection tube according to claim 1 , wherein the second tube is covered with the heat insulating material from the end portion to the branch tube portion. 前記複数の管は1を除く奇数本である請求項1に記載の採放熱管。 2. The heat collection tube according to claim 1 , wherein said plurality of tubes is an odd number excluding one. 前記複数の管は3本である請求項1に記載の採放熱管。 2. The heat collection tube according to claim 1 , wherein said plurality of tubes is three. 前記第1の流出入口から液状の前記冷媒を流した際に前記断熱材に覆われていない箇所から前記冷媒の蒸発が開始される請求項1乃至のいずれか一つに記載の採放熱管。 7. The heat collecting/radiating tube according to any one of claims 1 to 6 , wherein when the liquid refrigerant flows from the first inlet/outlet, the refrigerant starts to evaporate from a portion not covered with the heat insulating material. . 前記第2の流出入口から気体状の前記冷媒を流した際に前記断熱材に覆われている箇所に到達するまでに前記冷媒が凝縮して液状の前記冷媒になり、前記第の管の前記断熱材に覆われた採放熱管を流れる際に再び前記冷媒が蒸発しない請求項1乃至7のいずれか一つに記載の採放熱管。 When the gaseous refrigerant flows from the second inlet/outlet, the refrigerant condenses and becomes the liquid refrigerant by the time it reaches the location covered with the heat insulating material, and the first pipe. 8. The heat collecting/radiating pipe according to any one of claims 1 to 7, wherein the refrigerant does not evaporate again when flowing through the heat collecting/radiating pipe covered with the heat insulating material. 前記断熱材は水圧で変形しない部材であることを特徴とする請求項1乃至のいずれか一つに記載の採放熱管。 9. The heat collection tube according to claim 1 , wherein said heat insulating material is a member that does not deform under water pressure. 請求項1乃至のいずれか一つに記載の採放熱管を備えた地中熱ヒートポンプ。 A geothermal heat pump comprising the radiation collection pipe according to any one of claims 1 to 9 .
JP2018013384A 2018-01-30 2018-01-30 Sampling heat pipe and geothermal heat pump using it Active JP7124263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018013384A JP7124263B2 (en) 2018-01-30 2018-01-30 Sampling heat pipe and geothermal heat pump using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018013384A JP7124263B2 (en) 2018-01-30 2018-01-30 Sampling heat pipe and geothermal heat pump using it

Publications (2)

Publication Number Publication Date
JP2019132470A JP2019132470A (en) 2019-08-08
JP7124263B2 true JP7124263B2 (en) 2022-08-24

Family

ID=67544815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018013384A Active JP7124263B2 (en) 2018-01-30 2018-01-30 Sampling heat pipe and geothermal heat pump using it

Country Status (1)

Country Link
JP (1) JP7124263B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114705063B (en) * 2022-03-29 2024-04-02 张家港氢云新能源研究院有限公司 High-efficiency heat exchange vaporizer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040129408A1 (en) 2002-09-20 2004-07-08 Wiggs B. Ryland Insulated sub-surface liquid line direct expansion heat exchange unit with liquid trap
US20040206103A1 (en) 2002-12-31 2004-10-21 Wiggs B. Ryland Alternate sub-surface and optionally accessible direct expansion refrigerant flow regulating device
JP2009092350A (en) 2007-10-11 2009-04-30 Atom Kankyo Kogaku:Kk Pipe for collecting subterranean heat, subterranean heat exchanger, and heat pump utilizing subterranean heat
US20090272137A1 (en) 2008-05-02 2009-11-05 Earth To Air Systems, Llc Oil Return, Superheat and Insulation Design
JP2012083021A (en) 2010-10-12 2012-04-26 National Institute Of Advanced Industrial Science & Technology Underground heat exchanger
US20150316296A1 (en) 2009-10-28 2015-11-05 Tai-Her Yang Thermal conductive cylinder installed with u-type core piping and loop piping
JP2017067419A (en) 2015-10-02 2017-04-06 株式会社竹中工務店 Underground heat exchange mechanism

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300266A (en) * 1997-04-24 1998-11-13 Shinryo Corp Vertical type earth heat pump
US7578140B1 (en) * 2003-03-20 2009-08-25 Earth To Air Systems, Llc Deep well/long trench direct expansion heating/cooling system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040129408A1 (en) 2002-09-20 2004-07-08 Wiggs B. Ryland Insulated sub-surface liquid line direct expansion heat exchange unit with liquid trap
US20040206103A1 (en) 2002-12-31 2004-10-21 Wiggs B. Ryland Alternate sub-surface and optionally accessible direct expansion refrigerant flow regulating device
JP2009092350A (en) 2007-10-11 2009-04-30 Atom Kankyo Kogaku:Kk Pipe for collecting subterranean heat, subterranean heat exchanger, and heat pump utilizing subterranean heat
US20090272137A1 (en) 2008-05-02 2009-11-05 Earth To Air Systems, Llc Oil Return, Superheat and Insulation Design
US20150316296A1 (en) 2009-10-28 2015-11-05 Tai-Her Yang Thermal conductive cylinder installed with u-type core piping and loop piping
JP2012083021A (en) 2010-10-12 2012-04-26 National Institute Of Advanced Industrial Science & Technology Underground heat exchanger
JP2017067419A (en) 2015-10-02 2017-04-06 株式会社竹中工務店 Underground heat exchange mechanism

Also Published As

Publication number Publication date
JP2019132470A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
CN101619879B (en) Heat radiator with air pump separate type thermosiphon for machine room or machine cabinet
JP5275929B2 (en) Cooling system
JP6198452B2 (en) Intermediate medium vaporizer
WO2010070856A1 (en) In-ground heat exchanger and air conditioning system equipped with same
US10648678B2 (en) Building-integrated solar energy system
US20110048049A1 (en) Heat exchanger and air conditioning system
EP2770277B1 (en) Water heater
EP2770278B1 (en) Water heater
EP2733437B1 (en) Heat pump water heater
WO2006137269A1 (en) Sterling cooling chamber
JP7124263B2 (en) Sampling heat pipe and geothermal heat pump using it
KR101265114B1 (en) loop heat pipe for defrost of heat pump using air heat source
JP2002013841A (en) Evaporator and freezer
CN104132456B (en) Direct heat type multi-phase transformation point composite heat storage heat-pump water heater system
JP2012057836A (en) Underground heat exchanger and heat pump using the same
JP6407744B2 (en) Liquefied gas vaporizer and liquefied gas vaporization system
CN105091411A (en) Refrigerating and heating dual-purpose heat pipe type ground heat exchanger
CN215597510U (en) Indoor unit of air conditioner
JP3966260B2 (en) Heat pump water heater
CN103765127A (en) A method for chilling a building
JP2007064540A (en) Geothermal heat pump type water heater
JP5510316B2 (en) Heat exchanger and air conditioning system
JP2005003209A (en) Heat exchanger and heat pump water heater using the heat exchanger
CN2811845Y (en) Air source water heater
WO2009133708A1 (en) Heat exchanger and air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220722

R150 Certificate of patent or registration of utility model

Ref document number: 7124263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150