[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7115520B2 - Sealing film and sealing structure - Google Patents

Sealing film and sealing structure Download PDF

Info

Publication number
JP7115520B2
JP7115520B2 JP2020147496A JP2020147496A JP7115520B2 JP 7115520 B2 JP7115520 B2 JP 7115520B2 JP 2020147496 A JP2020147496 A JP 2020147496A JP 2020147496 A JP2020147496 A JP 2020147496A JP 7115520 B2 JP7115520 B2 JP 7115520B2
Authority
JP
Japan
Prior art keywords
mass
epoxy resin
sealing
inorganic filler
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020147496A
Other languages
Japanese (ja)
Other versions
JP2020200478A (en
Inventor
裕介 渡瀬
大輔 藤本
豊 野村
弘邦 荻原
知世 金子
正也 鳥羽
雅彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Publication of JP2020200478A publication Critical patent/JP2020200478A/en
Priority to JP2022118529A priority Critical patent/JP2022136188A/en
Application granted granted Critical
Publication of JP7115520B2 publication Critical patent/JP7115520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、樹脂組成物、硬化物、封止用フィルム及び封止構造体に関する。 TECHNICAL FIELD The present invention relates to a resin composition, a cured product, a sealing film and a sealing structure.

電子機器の軽薄短小化に伴って、電子部品装置(半導体装置等)の小型化及び薄型化が進んでいる。半導体素子(シリコンチップ等の半導体チップ)とほぼ同じ大きさの半導体装置を用いる形態、又は、半導体装置の上に半導体装置を積む実装形態(パッケージ・オン・パッケージ)が盛んに行われており、今後、電子部品装置の小型化及び薄型化が一段と進むと予想される。 As electronic devices become lighter, thinner, and smaller, electronic component devices (semiconductor devices, etc.) are becoming smaller and thinner. A form using a semiconductor device of approximately the same size as a semiconductor element (semiconductor chip such as a silicon chip), or a mounting form (package-on-package) in which a semiconductor device is stacked on top of a semiconductor device, are widely used. From now on, it is expected that electronic component devices will be further miniaturized and thinned.

半導体素子の微細化が進展し、端子数が増加してくると、半導体素子上にすべての外部接続端子(外部接続用の端子)を設けることが難しくなる。例えば、無理に外部接続端子を設けた場合、端子間のピッチが狭くなると共に端子高さが低くなり、半導体装置を実装した後の接続信頼性の確保が難しくなる。そこで、電子部品装置の小型化及び薄型化を実現するために、新たな実装方式が多々提案されている。 As the miniaturization of semiconductor elements progresses and the number of terminals increases, it becomes difficult to provide all the external connection terminals (terminals for external connection) on the semiconductor element. For example, if external connection terminals are provided forcibly, the pitch between the terminals becomes narrower and the height of the terminals becomes lower, making it difficult to ensure connection reliability after the semiconductor device is mounted. Therefore, many new mounting methods have been proposed in order to reduce the size and thickness of electronic component devices.

例えば、半導体ウエハを個片化して作製された半導体素子を、適度な間隔を有するように再配置した後、固形又は液状の樹脂(封止樹脂)を用いて半導体素子を封止し、半導体素子の外側において半導体素子を封止する封止部分上に外部接続端子を設けることができる実装方法、及び、これを用いて作製される半導体装置が提案されている(例えば、下記特許文献1~3参照)。 For example, semiconductor elements produced by singulating a semiconductor wafer are rearranged so as to have appropriate intervals, and then the semiconductor elements are sealed using a solid or liquid resin (sealing resin) to obtain a semiconductor element. A mounting method capable of providing an external connection terminal on a sealing portion that seals a semiconductor element on the outside of the semiconductor device, and a semiconductor device manufactured using the method have been proposed (for example, Patent Documents 1 to 3 below. reference).

特許第3616615号公報Japanese Patent No. 3616615 特開2001-244372号公報Japanese Patent Application Laid-Open No. 2001-244372 特開2001-127095号公報JP-A-2001-127095

しかしながら、被封止体を封止する封止部(封止樹脂の硬化物)の熱伝導率が低い場合、放熱性が悪い。そのため、低い熱伝導率は、装置の劣化の進行、装置の発火等の原因となる。この場合、被封止体上の封止部の厚み(封止厚み)を薄膜化することで放熱性を上げることが考えられる。しかしながら、例えばPoP(Package on Package)のようなパッケージ形態では、通常別々に実装しているCPUとメモリーとを積み重ねることで実装面積を縮小できるというメリットがある一方で、装置全体の厚みが増すことから放熱性の低下が懸念されやすい。そのため、封止部の厚みを薄膜化することにより放熱性を向上させることには限界がある。 However, when the thermal conductivity of the sealing portion (cured product of the sealing resin) that seals the object to be sealed is low, heat dissipation is poor. Therefore, low thermal conductivity causes deterioration of the device, ignition of the device, and the like. In this case, it is conceivable that the thickness of the sealing portion (sealing thickness) on the object to be sealed is reduced to improve heat dissipation. However, in a package form such as PoP (Package on Package), for example, stacking the CPU and memory, which are normally mounted separately, has the advantage of reducing the mounting area. As a result, there is a concern that heat dissipation is likely to deteriorate. Therefore, there is a limit to improving heat dissipation by reducing the thickness of the sealing portion.

本発明は、上記課題を鑑みてなされたものであり、優れた熱伝導率を有する硬化物を得ることが可能な樹脂組成物、及び、その硬化物を提供することを目的とする。また、本発明は、前記樹脂組成物を用いた封止用フィルム及び封止構造体を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a resin composition capable of obtaining a cured product having excellent thermal conductivity, and a cured product thereof. Another object of the present invention is to provide a sealing film and a sealing structure using the resin composition.

従来の封止用樹脂組成物(フィルム状エポキシ樹脂組成物等)の硬化物の熱伝導率は1.2W/m・K程度である。これに対し、本発明者らは、熱硬化性成分と、酸化アルミニウムを含む特定量の無機充填材と、を含有する樹脂組成物を用いることで、優れた熱伝導率を有する硬化物を得ることが可能であることを見出し、本発明に至った。 The thermal conductivity of a cured product of a conventional encapsulating resin composition (such as a film-like epoxy resin composition) is about 1.2 W/m·K. In contrast, the present inventors obtained a cured product having excellent thermal conductivity by using a resin composition containing a thermosetting component and a specific amount of an inorganic filler containing aluminum oxide. The inventors have found that it is possible to achieve the present invention.

本発明に係る樹脂組成物は、熱硬化性成分及び無機充填材を含有する樹脂組成物であって、無機充填材が酸化アルミニウムを含み、無機充填材の含有量が、樹脂組成物の総質量(溶剤の質量を除く)を基準として72質量%以上である。 The resin composition according to the present invention is a resin composition containing a thermosetting component and an inorganic filler, wherein the inorganic filler contains aluminum oxide, and the content of the inorganic filler is the total mass of the resin composition It is 72% by mass or more based on (excluding the mass of the solvent).

本発明に係る樹脂組成物によれば、優れた熱伝導率を有する硬化物を得ることが可能であり、例えば、2.5W/m・Kを超える熱伝導率(好ましくは、2.7W/m・K以上の熱伝導率)を有する硬化物を得ることができる。封止用樹脂組成物の硬化物の熱伝導率を向上させることができれば、当該樹脂組成物の硬化物を含む封止部を備える電子部品装置(半導体装置等)の放熱性が向上し、装置の劣化の進行、装置の発火等を抑制できる。特に、本発明に係る樹脂組成物によれば、厚みを増したパッケージ形態(PoP等)で課題となる放熱性を向上させることができる。本発明に係る樹脂組成物によれば、樹脂組成物の埋め込み性を確保しつつ、優れた熱伝導率を有する硬化物を得ることができる。 According to the resin composition according to the present invention, it is possible to obtain a cured product having excellent thermal conductivity. A cured product having a thermal conductivity of m·K or more can be obtained. If the thermal conductivity of the cured product of the encapsulating resin composition can be improved, the heat dissipation of an electronic component device (semiconductor device, etc.) provided with a sealing portion containing the cured product of the resin composition can be improved. progress of deterioration, ignition of the device, etc. can be suppressed. In particular, according to the resin composition according to the present invention, it is possible to improve heat dissipation, which is a problem in thicker package forms (such as PoP). According to the resin composition of the present invention, it is possible to obtain a cured product having excellent thermal conductivity while ensuring the embedding properties of the resin composition.

前記熱硬化性成分は、熱硬化性樹脂を含んでいてもよい。前記熱硬化性樹脂は、エポキシ樹脂を含むことが好ましい。 The thermosetting component may contain a thermosetting resin. The thermosetting resin preferably contains an epoxy resin.

前記熱硬化性成分は、硬化剤を更に含んでいてもよい。前記硬化剤は、フェノール樹脂を含むことが好ましい。 The thermosetting component may further contain a curing agent. The curing agent preferably contains a phenolic resin.

前記熱硬化性成分は、硬化促進剤を更に含んでいてもよい。前記硬化促進剤は、イミダゾール化合物を含むことが好ましい。 The thermosetting component may further contain a curing accelerator. The curing accelerator preferably contains an imidazole compound.

25℃で液状のエポキシ樹脂の含有量は、樹脂組成物の総質量(溶剤の質量を除く)を基準として、5質量%以上であることが好ましく、7質量%以上であることがより好ましい。 The content of the epoxy resin that is liquid at 25° C. is preferably 5% by mass or more, more preferably 7% by mass or more, based on the total mass of the resin composition (excluding the mass of the solvent).

前記無機充填材の含有量は、樹脂組成物の総質量(溶剤の質量を除く)を基準として、93質量%以下であることが好ましく、85質量%以下であることがより好ましい。 The content of the inorganic filler is preferably 93% by mass or less, more preferably 85% by mass or less, based on the total mass of the resin composition (excluding the mass of the solvent).

前記無機充填材の平均粒子径は、0.01~25μmであることが好ましく、0.01~10μmであることがより好ましい。 The average particle size of the inorganic filler is preferably 0.01 to 25 μm, more preferably 0.01 to 10 μm.

前記無機充填材における酸化アルミニウムの含有量は、50質量%以上であることが好ましい。 The content of aluminum oxide in the inorganic filler is preferably 50% by mass or more.

本発明に係る樹脂組成物は、溶剤を更に含有してもよい。 The resin composition according to the present invention may further contain a solvent.

本発明に係る硬化物は、本発明に係る樹脂組成物の硬化物である。 A cured product according to the present invention is a cured product of the resin composition according to the present invention.

ところで、通常、半導体素子等の電子部品の封止(パッケージ方法における封止工程)は、半導体装置等の電子部品装置を製造する際の終盤に行われることが多い。この場合の実装方法では、電子部品を封止して作製した封止構造体(封止成形物)に対して、外部接続端子を配置するための配線、及び、外部接続端子を形成する工程が実施される。 By the way, sealing of electronic components such as semiconductor elements (sealing step in packaging method) is usually performed in the final stages of manufacturing electronic component devices such as semiconductor devices. In the mounting method in this case, a step of forming wiring for arranging the external connection terminals and the external connection terminals on the sealing structure (sealed molding) produced by sealing the electronic component is performed. be implemented.

従来の実装方法では、複数の電子部品(半導体素子等)を封止して得られる封止構造体をダイシングして複数の電子部品装置(半導体装置等)を得る場合がある。この場合、再配置される電子部品が多いほど、一度の工程で作製可能な電子部品装置が増えることになる。そこで、封止構造体を大きくする検討が行われている。現状は、例えば、配線形成に半導体製造装置を使用するため、封止構造体はウエハ形状に成形されており、ウエハ形状の大径化が進む傾向がある。さらに、より大判化が可能であり且つ半導体製造装置よりも安価なプリント配線板製造装置等の使用が可能となるように、封止構造体のパネル化も検討されている。 In a conventional mounting method, a plurality of electronic component devices (semiconductor devices, etc.) may be obtained by dicing a sealing structure obtained by sealing a plurality of electronic components (semiconductor elements, etc.). In this case, the more electronic components that are rearranged, the more electronic component devices that can be manufactured in one process. Therefore, studies are being conducted to increase the size of the sealing structure. At present, for example, since a semiconductor manufacturing apparatus is used for wiring formation, the sealing structure is formed in a wafer shape, and there is a tendency for the diameter of the wafer shape to increase. Furthermore, panelization of the sealing structure is also being studied so that a printed wiring board manufacturing apparatus, etc., which can be made larger and which is less expensive than a semiconductor manufacturing apparatus, can be used.

電子部品の封止には、固形又は液状の樹脂封止材を金型で成形するモールド成形が使用される場合がある。例えば、ペレット状の樹脂封止材を溶融させ、金型内に樹脂を流し込むことで封止するトランスファーモールド成形が使用される場合がある。しかしながら、トランスファーモールド成形では、溶融させた樹脂を流し込んで成形するため、大面積を封止しようとする場合、未充填部が発生する可能性がある。そこで、近年、予め金型又は被封止体に樹脂封止材を供給してから成形を行うコンプレッションモールド成形が使用され始めている。コンプレッションモールド成形では、樹脂封止材を金型又は被封止体に直接供給するため、大面積の封止でも未充填部が発生しにくい利点がある。 For sealing electronic components, there are cases where molding is used in which a solid or liquid resin sealing material is molded with a mold. For example, transfer molding may be used in which a pellet-shaped resin sealing material is melted and the resin is poured into a mold for sealing. However, in transfer molding, a melted resin is poured into the mold to form the mold, so when sealing a large area, there is a possibility that an unfilled portion may occur. Therefore, in recent years, compression molding, in which molding is performed after supplying a resin sealing material to a mold or an object to be sealed in advance, has begun to be used. In compression molding, since the resin sealing material is directly supplied to the mold or the object to be sealed, there is an advantage that unfilled portions are less likely to occur even when sealing a large area.

コンプレッションモールド成形では、トランスファーモールド成形と同様に、固形又は液状の樹脂封止材が用いられる。しかしながら、被封止体が大型化した場合、液状の樹脂封止材では、液流れ等が発生し被封止体上への均一供給が困難となる場合がある。また、樹脂を被封止体上に均一に供給する必要があるため、固形の樹脂封止材としては、従来のペレット状の樹脂ではなく、顆粒又は粉体の樹脂封止材が使用される場合がある。しかしながら、顆粒又は粉体の樹脂封止材では、樹脂封止材を金型又は被封止体上に均一に供給することは難しく、また、顆粒又は粉体であるため、樹脂封止材が発塵原となり、装置又はクリーンルームの汚染が懸念される。 Similar to transfer molding, compression molding uses a solid or liquid resin sealing material. However, when the object to be sealed becomes large, the liquid resin sealing material may cause liquid flow or the like, making it difficult to uniformly supply it onto the object to be sealed. In addition, since it is necessary to uniformly supply the resin onto the object to be sealed, as the solid resin sealing material, granules or powder resin sealing material is used instead of the conventional pellet-shaped resin. Sometimes. However, when the resin sealing material is in the form of granules or powder, it is difficult to uniformly supply the resin sealing material onto a mold or an object to be sealed. It becomes a source of dust, and there is concern about contamination of equipment or clean rooms.

また、モールド成形では、樹脂を金型内で成形するため、封止構造体を大型化するには、金型の大型化が必須となる。しかしながら、金型の大型化には、高い金型精度が求められることから技術面での難易度が上がると共に、金型の製造コストが大幅に増加する。 Further, in molding, resin is molded in a mold, and therefore, in order to increase the size of the sealing structure, it is essential to increase the size of the mold. However, increasing the size of the mold requires high mold precision, which increases technical difficulty and greatly increases the manufacturing cost of the mold.

これに対し、本発明に係る樹脂組成物は、被封止体を封止する封止用フィルムとして、フィルム状であってもよい。本発明に係る封止用フィルムは、本発明に係る樹脂組成物を含む。この場合、樹脂の被封止体上への均一供給及び発塵の低減が可能である。また、モールド成形のみならず、金型(高圧力用の金型等)を必要としない成形方法(ラミネート、プレス等)による封止が可能な埋め込み能を得ることができる。 On the other hand, the resin composition according to the present invention may be in the form of a film as a sealing film for sealing an object to be sealed. The sealing film according to the present invention contains the resin composition according to the present invention. In this case, it is possible to uniformly supply the resin onto the object to be sealed and to reduce dust generation. In addition, it is possible to obtain an embedding ability that enables sealing not only by molding, but also by a molding method (laminating, pressing, etc.) that does not require a mold (high-pressure mold, etc.).

本発明に係る封止用フィルムにおいて溶剤の含有量は、0.2~1.5質量%であることが好ましい。被封止体(例えば、半導体素子等の電子部品)の埋め込みに重要なフィルム状の樹脂組成物の最低溶融粘度は、溶剤(有機溶剤等)の含有量が多いほど低下する。これは、溶剤がフィルム状の樹脂組成物の流動性を高めるためと考えられる。また、適度な量の溶剤は、フィルム状の樹脂組成物に粘りを与え、フィルム状の支持体からの剥離、フィルム状の樹脂組成物自体の割れ等を防止しやすい。これらの効果は、溶剤が0.2~1.5質量%であるときに、他の不具合を生じることなく最大限発揮しやすい。 The solvent content in the sealing film according to the present invention is preferably 0.2 to 1.5% by mass. The minimum melt viscosity of a film-like resin composition, which is important for embedding an object to be sealed (for example, an electronic component such as a semiconductor element), decreases as the content of the solvent (organic solvent, etc.) increases. This is probably because the solvent enhances the fluidity of the film-like resin composition. In addition, an appropriate amount of the solvent imparts stickiness to the film-like resin composition, making it easy to prevent peeling from the film-like support and cracking of the film-like resin composition itself. These effects tend to be maximized without causing other problems when the solvent content is 0.2 to 1.5% by mass.

本発明に係る封止用フィルムの厚さは、20~250μmであることが好ましい。 The thickness of the sealing film according to the present invention is preferably 20-250 μm.

本発明に係る封止構造体は、被封止体と、当該被封止体を封止する封止部と、を備え、前記封止部が、本発明に係る樹脂組成物の硬化物を含む。前記被封止体は、電子部品であってもよい。 A sealing structure according to the present invention includes an object to be sealed and a sealing portion that seals the object to be sealed, and the sealing portion contains a cured product of the resin composition according to the present invention. include. The object to be sealed may be an electronic component.

本発明によれば、優れた熱伝導率を有する硬化物を得ることが可能な樹脂組成物、及び、その硬化物を提供することができる。また、本発明によれば、前記樹脂組成物を用いた封止用フィルム及び封止構造体を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the resin composition which can obtain the hardened|cured material which has the outstanding thermal conductivity, and its hardened|cured material can be provided. Moreover, according to this invention, the film for sealing and the sealing structure which used the said resin composition can be provided.

封止構造体の製造方法の一実施形態を説明するための模式断面図である。It is a schematic cross section for describing one embodiment of the manufacturing method of a sealing structure. 実施例で埋め込み性を評価するために用いたシリコンチップの配置例を示す図である。FIG. 3 is a diagram showing an example of arrangement of silicon chips used for evaluating embeddability in Examples.

本明細書中において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書中に例示する材料は、特に断らない限り、1種を単独で用いてもよく、2種以上を併用してもよい。本明細書中において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In this specification, a numerical range indicated using "to" indicates a range including the numerical values before and after "to" as the minimum and maximum values, respectively. In the numerical ranges described stepwise in this specification, the upper limit value or lower limit value of the numerical range at one step may be replaced with the upper limit value or lower limit value of the numerical range at another step. In the numerical ranges described herein, the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples. "A or B" may include either A or B, or may include both. The materials exemplified in this specification may be used singly or in combination of two or more unless otherwise specified. In this specification, the content of each component in the composition is the sum of the multiple substances present in the composition when there are multiple substances corresponding to each component in the composition, unless otherwise specified. means quantity.

「液状エポキシ樹脂」は、25℃で液状のエポキシ樹脂である。「25℃で液状」とは、E型粘度計で測定した25℃における粘度が400Pa・s以下であることを指す。 A "liquid epoxy resin" is an epoxy resin that is liquid at 25°C. “Liquid at 25° C.” means that the viscosity at 25° C. measured with an E-type viscometer is 400 Pa·s or less.

以下、本発明の一実施形態について説明する。 An embodiment of the present invention will be described below.

<樹脂組成物及び硬化物>
本実施形態に係る樹脂組成物は、熱硬化性成分及び無機充填材を含有する樹脂組成物である。熱硬化性成分としては、(A)熱硬化性樹脂(硬化剤に該当する化合物を除く)、(B)硬化剤、(C)硬化促進剤等が挙げられる。熱硬化性成分は、硬化剤及び/又は硬化促進剤を含むことなく、熱硬化性樹脂を含んでいてもよい。本実施形態に係る樹脂組成物は、熱硬化性成分に加えて(D)無機充填材を含有しており、(D)無機充填材は、酸化アルミニウムを含んでいる。本実施形態に係る樹脂組成物は、ワニス状であってもよく、フィルム状(封止用フィルム)であってもよい。本実施形態に係る硬化物は、本実施形態に係る樹脂組成物の硬化物である。
<Resin composition and cured product>
The resin composition according to this embodiment is a resin composition containing a thermosetting component and an inorganic filler. Examples of thermosetting components include (A) thermosetting resins (excluding compounds corresponding to curing agents), (B) curing agents, and (C) curing accelerators. The thermosetting component may contain thermosetting resins without curing agents and/or curing accelerators. The resin composition according to the present embodiment contains (D) an inorganic filler in addition to the thermosetting component, and the (D) inorganic filler contains aluminum oxide. The resin composition according to this embodiment may be in the form of a varnish or in the form of a film (sealing film). The cured product according to this embodiment is a cured product of the resin composition according to this embodiment.

(熱硬化性成分)
[(A)成分:熱硬化性樹脂]
熱硬化性樹脂としては、エポキシ樹脂、フェノキシ樹脂、シアネート樹脂、熱硬化性ポリイミド、メラミン樹脂、尿素樹脂、不飽和ポリエステル、アルキド樹脂、ポリウレタン等が挙げられる。熱硬化性樹脂としては、優れた熱伝導率を有する硬化物が得られやすい観点から、エポキシ樹脂が好ましい。エポキシ樹脂としては、25℃で液状のエポキシ樹脂、及び、25℃で液状ではないエポキシ樹脂からなる群より選ばれる少なくとも1種を用いることができる。
(Thermosetting component)
[(A) component: thermosetting resin]
Thermosetting resins include epoxy resins, phenoxy resins, cyanate resins, thermosetting polyimides, melamine resins, urea resins, unsaturated polyesters, alkyd resins, polyurethanes, and the like. As the thermosetting resin, an epoxy resin is preferable from the viewpoint of easily obtaining a cured product having excellent thermal conductivity. As the epoxy resin, at least one selected from the group consisting of an epoxy resin that is liquid at 25°C and an epoxy resin that is not liquid at 25°C can be used.

エポキシ樹脂は、1分子中に2個以上のグリシジル基を有する樹脂であれば特に制限なく用いることができる。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールAP型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ビスフェノールB型エポキシ樹脂、ビスフェノールBP型エポキシ樹脂、ビスフェノールC型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールG型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールS型エポキシ樹脂(ヘキサンジオールビスフェノールSジグリシジルエーテル等)、ビスフェノールP型エポキシ樹脂、ビスフェノールPH型エポキシ樹脂、ビスフェノールTMC型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、フェノールノボラック型エポキシ樹脂(オルトクレゾールノボラック型エポキシ樹脂等)、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビキシレノール型エポキシ樹脂(ビキシレノールジグリシジルエーテル等)、水添ビスフェノールA型エポキシ樹脂(水添ビスフェノールAグリシジルエーテル等)、これらの樹脂の二塩基酸変性ジグリシジルエーテル型エポキシ樹脂、脂肪族エポキシ樹脂などが挙げられる。エポキシ樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。 Epoxy resins can be used without particular limitation as long as they are resins having two or more glycidyl groups in one molecule. Examples of epoxy resins include bisphenol A type epoxy resin, bisphenol AP type epoxy resin, bisphenol AF type epoxy resin, bisphenol B type epoxy resin, bisphenol BP type epoxy resin, bisphenol C type epoxy resin, bisphenol E type epoxy resin, bisphenol F-type epoxy resin, bisphenol G-type epoxy resin, bisphenol M-type epoxy resin, bisphenol S-type epoxy resin (hexanediol bisphenol S diglycidyl ether, etc.), bisphenol P-type epoxy resin, bisphenol PH-type epoxy resin, bisphenol TMC-type epoxy resin , bisphenol Z-type epoxy resin, phenol novolak-type epoxy resin (ortho-cresol novolac-type epoxy resin, etc.), biphenyl-type epoxy resin, naphthalene-type epoxy resin, dicyclopentadiene-type epoxy resin, bixylenol-type epoxy resin (bixylenol diglycidyl ether etc.), hydrogenated bisphenol A epoxy resins (hydrogenated bisphenol A glycidyl ether, etc.), dibasic acid-modified diglycidyl ether epoxy resins of these resins, and aliphatic epoxy resins. Epoxy resins may be used alone or in combination of two or more.

液状エポキシ樹脂としては、ビスフェノールA型のグリシジルエーテル、ビスフェノールAD型のグリシジルエーテル、ビスフェノールS型のグリシジルエーテル、ビスフェノールF型のグリシジルエーテル、水添加ビスフェノールA型のグリシジルエーテル、エチレンオキシド付加体ビスフェノールA型のグリシジルエーテル、プロピレンオキシド付加体ビスフェノールA型のグリシジルエーテル、ナフタレン樹脂のグリシジルエーテル、3官能型又は4官能型のグリシジルアミン等が挙げられる。 Liquid epoxy resins include bisphenol A type glycidyl ether, bisphenol AD type glycidyl ether, bisphenol S type glycidyl ether, bisphenol F type glycidyl ether, hydrogenated bisphenol A type glycidyl ether, and ethylene oxide adduct bisphenol A type glycidyl ether. Glycidyl ether, glycidyl ether of propylene oxide adduct bisphenol A type, glycidyl ether of naphthalene resin, trifunctional or tetrafunctional glycidylamine, and the like.

市販のエポキシ樹脂としては、DIC株式会社製の「EXA-4700」(4官能ナフタレン型エポキシ樹脂)、「エピクロンHP-4032」及び「EXA-4750」(ナフタレン骨格含有多官能固形エポキシ樹脂)、日本化薬株式会社製の「NC-7000」(ナフタレン骨格含有多官能固形エポキシ樹脂)等のナフタレン型エポキシ樹脂;日本化薬株式会社製の「EPPN-502H」(トリスフェノールエポキシ樹脂)等の、フェノール類と、フェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物(トリスフェノール型エポキシ樹脂);DIC株式会社製の「エピクロンHP-7200H」(ジシクロペンタジエン骨格含有多官能固形エポキシ樹脂)等のジシクロペンタジエンアラルキル型エポキシ樹脂;日本化薬株式会社製の「NC-3000H」(ビフェニル骨格含有多官能固形エポキシ樹脂)等のビフェニルアラルキル型エポキシ樹脂;DIC株式会社製の「エピクロンN-660」、「エピクロンN-690」、「エピクロンN-740」(フェノールノボラック型エポキシ樹脂)及び「N500P-1」(オルトクレゾールノボラック型エポキシ樹脂)、日本化薬株式会社製の「EOCN-104S」等のノボラック型エポキシ樹脂;日産化学工業株式会社製の「TEPIC」等のトリス(2,3-エポキシプロピル)イソシアヌレート;DIC株式会社製の「エピクロン860」、「エピクロン900-IM」、「エピクロンEXA―4816」及び「エピクロンEXA-4822」、旭チバ株式会社製の「アラルダイトAER280」、東都化成株式会社(新日鉄住金化学株式会社)製の「エポトートYD-134」、「YD-8125」及び「YDF8170」、ジャパンエポキシレジン株式会社(三菱化学株式会社)製の「jER834」、「jER872」、「jER807」、「jER815」、「jER825」、「jER827」、「jER828」、「jER1001」、「jER1004」、「jER1007」及び「jER1009」、住友化学株式会社製の「ELA-134」、ダウケミカル社製の「DER-330」、「DER-301」及び「DER-361」等のビスフェノールA型エポキシ樹脂;ジャパンエポキシレジン株式会社(三菱化学株式会社)製の「jER806」等のビスフェノールF型エポキシ樹脂;ナガセケムテックス株式会社製の「ナデコールDLC301」等の脂肪族エポキシ樹脂などが挙げられる。これらのエポキシ樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。 Commercially available epoxy resins include "EXA-4700" (tetrafunctional naphthalene epoxy resin), "Epiclon HP-4032" and "EXA-4750" (naphthalene skeleton-containing polyfunctional solid epoxy resin) manufactured by DIC Corporation, Japan. Naphthalene-type epoxy resin such as "NC-7000" (naphthalene skeleton-containing polyfunctional solid epoxy resin) manufactured by Kayaku Co., Ltd.; phenol such as "EPPN-502H" (trisphenol epoxy resin) manufactured by Nippon Kayaku Co., Ltd. and epoxidized products of condensates of aromatic aldehydes having phenolic hydroxyl groups (trisphenol-type epoxy resins); "Epiclon HP-7200H" (dicyclopentadiene skeleton-containing polyfunctional solid epoxy resin) manufactured by DIC Corporation, etc. Dicyclopentadiene aralkyl type epoxy resin; Biphenyl aralkyl type epoxy resin such as "NC-3000H" (biphenyl skeleton-containing polyfunctional solid epoxy resin) manufactured by Nippon Kayaku Co., Ltd.; "Epiclon N-660" manufactured by DIC Corporation , "Epiclon N-690", "Epiclon N-740" (phenol novolac type epoxy resin) and "N500P-1" (ortho cresol novolac type epoxy resin), Nippon Kayaku Co., Ltd. "EOCN-104S" etc. Novolac type epoxy resin; tris (2,3-epoxypropyl) isocyanurate such as "TEPIC" manufactured by Nissan Chemical Industries, Ltd.; 4816" and "Epiclon EXA-4822", "Araldite AER280" manufactured by Asahi Chiba Co., Ltd., "Epotote YD-134", "YD-8125" and "YDF8170" manufactured by Tohto Kasei Co., Ltd. (Nippon Steel & Sumikin Chemical Co., Ltd.) , Japan Epoxy Resin Co., Ltd. (Mitsubishi Chemical Co., Ltd.) "jER834", "jER872", "jER807", "jER815", "jER825", "jER827", "jER828", "jER1001", "jER1004", Bisphenol A type epoxy resins such as "jER1007" and "jER1009", "ELA-134" manufactured by Sumitomo Chemical Co., Ltd., "DER-330" manufactured by Dow Chemical Co., "DER-301" and "DER-361"; Bisphenol F type epoxy resin such as "jER806" manufactured by Japan Epoxy Resin Co., Ltd. (Mitsubishi Chemical Corporation); manufactured by Nagase ChemteX Corporation and aliphatic epoxy resins such as "Nadecol DLC301". These epoxy resins may be used individually by 1 type, and may use 2 or more types together.

熱硬化性樹脂の含有量は、優れた流動性が得られやすい観点から、樹脂組成物の総質量(溶剤の質量を除く)を基準として、1質量%以上が好ましく、3質量%以上がより好ましく、4質量%以上が更に好ましく、4質量%以上が特に好ましく、5質量%以上が極めて好ましく、10質量%以上が非常に好ましく、15質量%以上がより一層好ましい。熱硬化性樹脂の含有量は、フィルム表面の割れ及びひびの発生を抑制しやすい観点から、樹脂組成物の総質量(溶剤の質量を除く)を基準として、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が更に好ましい。 The content of the thermosetting resin is preferably 1% by mass or more, more preferably 3% by mass or more, based on the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of easily obtaining excellent fluidity. Preferably, 4% by mass or more is more preferable, 4% by mass or more is particularly preferable, 5% by mass or more is extremely preferable, 10% by mass or more is very preferable, and 15% by mass or more is even more preferable. The content of the thermosetting resin is preferably 30% by mass or less, and 25% by mass, based on the total mass of the resin composition (excluding the mass of the solvent), from the viewpoint of easily suppressing the occurrence of cracks and cracks on the film surface. % or less is more preferable, and 20% by mass or less is even more preferable.

樹脂組成物がエポキシ樹脂を含有するエポキシ樹脂組成物である場合、エポキシ樹脂の含有量は、優れた熱伝導率を有する硬化物が得られやすい観点から、熱硬化性樹脂の総質量を基準として、50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が更に好ましい。エポキシ樹脂の含有量は、熱硬化性樹脂の総質量を基準として100質量%であってもよい。 When the resin composition is an epoxy resin composition containing an epoxy resin, the content of the epoxy resin is based on the total mass of the thermosetting resin, from the viewpoint of easily obtaining a cured product having excellent thermal conductivity. , is preferably 50% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more. The content of the epoxy resin may be 100% by weight based on the total weight of the thermosetting resin.

液状エポキシ樹脂の含有量は、フィルム表面の割れ及びひびの発生を抑制しやすい観点から、樹脂組成物の総質量(溶剤の質量を除く)を基準として、0.5質量%以上が好ましく、1質量%以上がより好ましく、3質量%以上が更に好ましく、5質量%以上が特に好ましく、7質量%以上が極めて好ましく、9質量%以上が非常に好ましい。液状エポキシ樹脂の含有量は、フィルムのタック性が過剰に高まることを抑制しやすい観点、及び、エッジフュージョンを抑制しやすい観点から、樹脂組成物の総質量(溶剤の質量を除く)を基準として、20質量%以下が好ましく、15質量%以下がより好ましく、13質量%以下が更に好ましい。 The content of the liquid epoxy resin is preferably 0.5% by mass or more based on the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of easily suppressing the occurrence of cracks and cracks on the film surface. More preferably, it is at least 3% by mass, more preferably at least 3% by mass, particularly preferably at least 5% by mass, extremely preferably at least 7% by mass, and very preferably at least 9% by mass. The content of the liquid epoxy resin is based on the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of easily suppressing an excessive increase in the tackiness of the film and from the viewpoint of easily suppressing edge fusion. , is preferably 20% by mass or less, more preferably 15% by mass or less, and even more preferably 13% by mass or less.

液状エポキシ樹脂の含有量は、フィルム表面の割れ及びひびの発生を抑制しやすい観点から、熱硬化性樹脂の総質量を基準として、20質量%以上が好ましく、30質量%以上がより好ましく、50質量%以上が更に好ましい。液状エポキシ樹脂の含有量は、フィルムのタック性が過剰に高まることを抑制しやすい観点、及び、エッジフュージョンを抑制しやすい観点から、熱硬化性樹脂の総質量を基準として、95質量%以下が好ましく、90質量%以下がより好ましく、80質量%以下が更に好ましい。液状エポキシ樹脂の含有量は、熱硬化性樹脂の総質量を基準として100質量%であってもよい。 The content of the liquid epoxy resin is preferably 20% by mass or more, more preferably 30% by mass or more, more preferably 30% by mass or more, based on the total mass of the thermosetting resin, from the viewpoint of easily suppressing the occurrence of cracks and cracks on the film surface. % or more by mass is more preferable. The content of the liquid epoxy resin is 95% by mass or less based on the total mass of the thermosetting resin, from the viewpoint of easily suppressing excessive increase in tackiness of the film and from the viewpoint of easily suppressing edge fusion. It is preferably 90% by mass or less, more preferably 80% by mass or less. The content of the liquid epoxy resin may be 100% by weight based on the total weight of the thermosetting resin.

樹脂組成物が(A)成分(エポキシ樹脂等)、(B)成分、(C)成分及び(D)成分を含有する場合、液状エポキシ樹脂の含有量は、フィルム表面の割れ及びひびの発生を抑制しやすい観点から、(A)~(D)成分の総質量を基準として、0.5質量%以上が好ましく、1質量%以上がより好ましく、3質量%以上が更に好ましく、5質量%以上が特に好ましく、7質量%以上が極めて好ましく、9質量%以上が非常に好ましい。液状エポキシ樹脂の含有量は、フィルムのタック性が過剰に高まることを抑制しやすい観点、及び、エッジフュージョンを抑制しやすい観点から、(A)~(D)成分の総質量を基準として、20質量%以下が好ましく、15質量%以下がより好ましく、13質量%以下が更に好ましい。 When the resin composition contains component (A) (epoxy resin, etc.), component (B), component (C) and component (D), the content of the liquid epoxy resin is such that cracks and cracks do not occur on the film surface. From the viewpoint of easy suppression, it is preferably 0.5% by mass or more, more preferably 1% by mass or more, still more preferably 3% by mass or more, and 5% by mass or more, based on the total mass of components (A) to (D). is particularly preferred, 7% by weight or more is very preferred, and 9% by weight or more is very preferred. The content of the liquid epoxy resin is 20 based on the total mass of the components (A) to (D) from the viewpoint of easily suppressing excessive increase in tackiness of the film and from the viewpoint of easily suppressing edge fusion. % by mass or less is preferable, 15% by mass or less is more preferable, and 13% by mass or less is even more preferable.

[(B)成分:硬化剤]
硬化剤としては、特に限定されないが、フェノール系硬化剤(フェノール樹脂等)、酸無水物系硬化剤、活性エステル系硬化剤、シアネートエステル系硬化剤などが挙げられる。(A)成分がエポキシ樹脂を含む場合、(B)硬化剤としては、グリシジル基と反応する官能基を1分子中に2個以上有する化合物であれば特に制限なく用いることができる。このような硬化剤としては、フェノール樹脂、酸無水物等が挙げられる。硬化剤としては、優れた熱伝導率を有する硬化物が得られやすい観点から、フェノール樹脂が好ましい。硬化剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
[(B) component: curing agent]
Examples of the curing agent include, but are not limited to, phenol-based curing agents (phenol resins, etc.), acid anhydride-based curing agents, active ester-based curing agents, cyanate ester-based curing agents, and the like. When the component (A) contains an epoxy resin, the curing agent (B) may be any compound having two or more functional groups that react with glycidyl groups in one molecule without any particular limitation. Examples of such curing agents include phenol resins and acid anhydrides. As the curing agent, a phenol resin is preferable from the viewpoint of easily obtaining a cured product having excellent thermal conductivity. Curing agents may be used alone or in combination of two or more.

フェノール樹脂は、1分子中に2個以上のフェノール性水酸基を有する樹脂であれば、特に制限なく公知のフェノール樹脂を用いることができる。フェノール樹脂としては、フェノール類及び/又はナフトール類とアルデヒド類とを酸性触媒下で縮合又は共縮合させて得られる樹脂、ビフェニル骨格型フェノール樹脂、パラキシリレン変性フェノール樹脂、メタキシリレン・パラキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、キシリレン変性ナフトール樹脂等が挙げられる。フェノール類としては、フェノール、クレゾール、キシレノール、レゾルシノール、カテコール、ビスフェノールA、ビスフェノールF等が挙げられる。ナフトール類としては、α-ナフトール、β-ナフトール、ジヒドロキシナフタレン等が挙げられる。アルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等が挙げられる。 As the phenol resin, any known phenol resin can be used without particular limitation as long as it is a resin having two or more phenolic hydroxyl groups in one molecule. Phenolic resins include resins obtained by condensing or co-condensing phenols and/or naphthols and aldehydes in the presence of an acidic catalyst, biphenyl skeleton-type phenolic resins, paraxylylene-modified phenolic resins, metaxylylene/paraxylylene-modified phenolic resins, and melamine. Examples include modified phenol resins, terpene-modified phenol resins, dicyclopentadiene-modified phenol resins, cyclopentadiene-modified phenol resins, polycyclic aromatic ring-modified phenol resins, and xylylene-modified naphthol resins. Phenols include phenol, cresol, xylenol, resorcinol, catechol, bisphenol A, bisphenol F and the like. Naphthols include α-naphthol, β-naphthol, dihydroxynaphthalene and the like. Aldehydes include formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde and the like.

市販のフェノール樹脂としては、DIC株式会社製の「フェノライトLF2882」、「フェノライトLF2822」、「フェノライトTD-2090」、「フェノライトTD-2149」、「フェノライトVH-4150」及び「フェノライトVH4170」、三井化学株式会社製の「XLC-LL」及び「XLC-4L」、新日鉄住金化学株式会社製の「SN-100」、「SN-300」、「SN-395」及び「SN-400」、エア・ウォーター株式会社製の「SKレジンHE910」、旭有機材工業株式会社製の「PAPS-PN2」(分子量分布集約型ノボラック樹脂)、群栄化学工業株式会社製の「ELP40」等が挙げられる。 Commercially available phenolic resins include "Phenolite LF2882", "Phenolite LF2822", "Phenolite TD-2090", "Phenolite TD-2149", "Phenolite VH-4150" and "Phenolite VH-4150" manufactured by DIC Corporation. Light VH4170”, “XLC-LL” and “XLC-4L” manufactured by Mitsui Chemicals Co., Ltd., “SN-100”, “SN-300”, “SN-395” and “SN-” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. 400”, “SK Resin HE910” manufactured by Air Water Co., Ltd., “PAPS-PN2” (molecular weight distribution-intensive novolac resin) manufactured by Asahi Organic Chemicals Industry Co., Ltd., “ELP40” manufactured by Gun Ei Chemical Industry Co., Ltd., etc. are mentioned.

硬化剤の含有量は、熱硬化性樹脂の硬化性に優れる観点から、樹脂組成物の総質量(溶剤の質量を除く)を基準として、1~20質量%が好ましく、2~15質量%がより好ましく、3~10質量%が更に好ましい。 The content of the curing agent is preferably 1 to 20% by mass, preferably 2 to 15% by mass, based on the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of excellent curability of the thermosetting resin. More preferably, 3 to 10% by mass is even more preferable.

エポキシ樹脂と硬化剤(フェノール樹脂等)との配合比率として、エポキシ樹脂のグリシジル基の当量(エポキシ当量)と、硬化剤におけるグリシジル基と反応する官能基(フェノール性水酸基等)の当量(フェノール性水酸基当量等)との比率(エポキシ樹脂のグリシジル基の当量/硬化剤におけるグリシジル基と反応する官能基の当量)は、0.7~2.0が好ましく、0.8~1.8がより好ましく、0.9~1.7が更に好ましい。前記比率が0.7以上又は2.0以下である場合、未反応のエポキシ樹脂及び/又は未反応の硬化剤が残存しにくく、所望の硬化物特性が得られやすい。 The blending ratio of the epoxy resin and the curing agent (phenolic resin, etc.) is the equivalent of the glycidyl group in the epoxy resin (epoxy equivalent) and the equivalent of the functional group (phenolic hydroxyl group, etc.) that reacts with the glycidyl group in the curing agent (phenolic The ratio (equivalent of the glycidyl group in the epoxy resin/equivalent of the functional group that reacts with the glycidyl group in the curing agent) is preferably 0.7 to 2.0, more preferably 0.8 to 1.8. Preferably, 0.9 to 1.7 is more preferable. When the ratio is 0.7 or more or 2.0 or less, unreacted epoxy resin and/or unreacted curing agent are less likely to remain, and desired cured product properties are likely to be obtained.

[(C)成分:硬化促進剤]
硬化促進剤としては、特に制限なく用いることができるが、アミン系の硬化促進剤及びリン系の硬化促進剤からなる群より選ばれる少なくとも1種が好ましい。硬化促進剤としては、特に、優れた熱伝導率を有する硬化物が得られやすい観点、誘導体が豊富である観点、及び、所望の活性温度が得られやすい観点から、アミン系の硬化促進剤が好ましく、イミダゾール化合物、脂肪族アミン及び脂環族アミンからなる群より選ばれる少なくとも1種がより好ましく、イミダゾール化合物が更に好ましい。イミダゾール化合物としては、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール等が挙げられる。硬化促進剤は、1種を単独で用いてもよく、2種以上を併用してもよい。硬化促進剤の市販品としては、四国化成工業株式会社製の「2P4MZ」及び「1B2MZ」等が挙げられる。
[(C) component: curing accelerator]
The curing accelerator may be used without any particular limitation, but is preferably at least one selected from the group consisting of amine-based curing accelerators and phosphorus-based curing accelerators. As the curing accelerator, an amine-based curing accelerator is used from the viewpoint that a cured product having excellent thermal conductivity can be easily obtained, the derivative is abundant, and the desired activation temperature can be easily obtained. Preferably, at least one selected from the group consisting of imidazole compounds, aliphatic amines and alicyclic amines is more preferable, and imidazole compounds are even more preferable. Examples of imidazole compounds include 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole and the like. A hardening accelerator may be used individually by 1 type, and may use 2 or more types together. Examples of commercially available curing accelerators include "2P4MZ" and "1B2MZ" manufactured by Shikoku Kasei Kogyo Co., Ltd.

硬化促進剤の含有量は、熱硬化性樹脂(エポキシ樹脂等)及び硬化剤(フェノール樹脂等)の合計量を基準として、下記の範囲が好ましい。硬化促進剤の含有量は、充分な硬化促進効果が得られやすい観点から、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.3質量%以上が更に好ましい。硬化促進剤の含有量は、封止用フィルムを製造する際の工程(例えば塗工及び乾燥)中、又は、封止用フィルムの保管中に硬化が進行しにくく、封止用フィルムの割れ、及び、溶融粘度の上昇に伴う成形不良を防止しやすい観点から、5質量%以下が好ましく、3質量%以下がより好ましく、1.5質量%以下が更に好ましい。これらの観点から、硬化促進剤の含有量は、0.01~5質量%が好ましく、0.1~3質量%がより好ましく、0.3~1.5質量%が更に好ましい。 The content of the curing accelerator is preferably within the following ranges based on the total amount of the thermosetting resin (epoxy resin, etc.) and the curing agent (phenol resin, etc.). The content of the curing accelerator is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and even more preferably 0.3% by mass or more, from the viewpoint of easily obtaining a sufficient curing acceleration effect. The content of the curing accelerator is such that curing does not progress easily during the steps of manufacturing the sealing film (for example, coating and drying) or during storage of the sealing film, and cracking of the sealing film, And, from the viewpoint of easily preventing molding defects due to an increase in melt viscosity, it is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1.5% by mass or less. From these points of view, the content of the curing accelerator is preferably 0.01 to 5% by mass, more preferably 0.1 to 3% by mass, even more preferably 0.3 to 1.5% by mass.

((D)成分:無機充填材)
無機充填材は、酸化アルミニウム(酸化アルミニウム粒子等)を含む。酸化アルミニウムを含む無機充填材の市販品としては、住友化学株式会社製の「AA-1.5」、デンカ株式会社製の「DAW20」等が挙げられる。
((D) component: inorganic filler)
Inorganic fillers include aluminum oxide (such as aluminum oxide particles). Commercially available inorganic fillers containing aluminum oxide include “AA-1.5” manufactured by Sumitomo Chemical Co., Ltd., “DAW20” manufactured by Denka Co., Ltd., and the like.

無機充填材は、酸化アルミニウム(酸化アルミニウム粒子等)以外の構成材料を含んでいてもよい。すなわち、本実施形態に係る樹脂組成物は、酸化アルミニウムと、酸化アルミニウム以外の構成材料とを含む粒子を含有していてもよく、酸化アルミニウム粒子と、酸化アルミニウム以外の成分を含む粒子とを含有していてもよい。 The inorganic filler may contain constituent materials other than aluminum oxide (such as aluminum oxide particles). That is, the resin composition according to the present embodiment may contain particles containing aluminum oxide and constituent materials other than aluminum oxide, and contains aluminum oxide particles and particles containing components other than aluminum oxide. You may have

無機充填材における酸化アルミニウムの含有量は、熱伝導率の向上効果に更に優れる観点から、無機充填材の総質量を基準として、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましく、90質量%以上が特に好ましい。酸化アルミニウムの含有量は、無機充填材の総質量を基準として100質量%であってもよい。 The content of aluminum oxide in the inorganic filler is preferably 50% by mass or more, more preferably 70% by mass or more, more preferably 80% by mass, based on the total mass of the inorganic filler, from the viewpoint of further improving the effect of improving thermal conductivity. % or more is more preferable, and 90% by mass or more is particularly preferable. The content of aluminum oxide may be 100% by weight based on the total weight of the inorganic filler.

酸化アルミニウム以外の構成材料としては、従来公知の無機充填材に含まれる構成材料が使用でき、特定のものに限定されない。酸化アルミニウム以外の構成材料としては、硫酸バリウム、チタン酸バリウム、シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、水酸化アルミニウム、窒化ケイ素、窒化アルミニウム等が挙げられる。シリカを含む無機充填材としては、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ等が挙げられる。酸化アルミニウム以外の構成材料としては、表面改質等により、樹脂中の分散性の向上効果、及び、ワニス中での沈降抑制効果が得られやすい観点、並びに、比較的小さい熱膨張率を有することから所望の硬化物特性が得られやすい観点から、シリカが好ましい。シリカを含む無機充填材の市販品としては、株式会社アドマテックス製の「SC2500-SXJ」、「SC5500-SXE」及び「SC2050-KC」等が挙げられる。酸化アルミニウム以外の構成材料は、1種を単独で用いてもよく、2種以上を併用してもよい。 As a constituent material other than aluminum oxide, constituent materials contained in conventionally known inorganic fillers can be used, and there is no particular limitation. Constituent materials other than aluminum oxide include barium sulfate, barium titanate, silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum hydroxide, silicon nitride, and aluminum nitride. Inorganic fillers containing silica include amorphous silica, crystalline silica, fused silica, and spherical silica. Constituent materials other than aluminum oxide should have a relatively small coefficient of thermal expansion, from the viewpoint that it is easy to obtain the effect of improving dispersibility in resin and the effect of suppressing sedimentation in varnish by surface modification etc. Silica is preferable from the viewpoint that the desired cured product properties are easily obtained from. Examples of commercially available inorganic fillers containing silica include "SC2500-SXJ", "SC5500-SXE" and "SC2050-KC" manufactured by Admatechs Co., Ltd. Constituent materials other than aluminum oxide may be used alone or in combination of two or more.

無機充填材は、表面改質されていてもよい。表面改質の手法は特に限定されない。処理が簡便であり、官能基の種類が豊富であり、所望の特性を付与しやすい観点から、シランカップリング剤を用いた表面改質が好ましい。 The inorganic filler may be surface-modified. The method of surface modification is not particularly limited. Surface modification using a silane coupling agent is preferable from the viewpoints of simple treatment, abundant types of functional groups, and ease of imparting desired properties.

シランカップリング剤としては、アルキルシラン、アルコキシシラン、ビニルシラン、エポキシシラン、アミノシラン、アクリルシラン、メタクリルシラン、メルカプトシラン、スルフィドシラン、イソシアネートシラン、サルファーシラン、スチリルシラン、アルキルクロロシラン等が挙げられる。 Silane coupling agents include alkylsilanes, alkoxysilanes, vinylsilanes, epoxysilanes, aminosilanes, acrylsilanes, methacrylsilanes, mercaptosilanes, sulfidesilanes, isocyanatesilanes, sulfursilanes, styrylsilanes, and alkylchlorosilanes.

シランカップリング剤の具体例としては、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、メチルトリフェノキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、ジイソプロピルジメトキシシラン、イソブチルトリメトキシシラン、ジイソブチルジメトキシシラン、イソブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n-オクチルトリエトキシシラン、n-ドデシルメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、トリフェニルシラノール、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、n-オクチルジメチルクロロシラン、テトラエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、アリルトリメトキシシラン、ジアリルジメチルシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリエトキシシラン、N-(1,3-ジメチルブチリデン)-3-アミノプロピルトリエトキシシラン、アミノシラン(フェニルアミノシラン等)等が挙げられる。シランカップリング剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 Specific examples of silane coupling agents include methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, methyltriphenoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, diisopropyldimethoxysilane, isobutyl trimethoxysilane, diisobutyldimethoxysilane, isobutyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, cyclohexylmethyldimethoxysilane, n-octyltriethoxysilane, n-dodecylmethoxysilane, phenyltrimethoxysilane, Diphenyldimethoxysilane, triphenylsilanol, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, n-octyldimethylchlorosilane, tetraethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-(2- aminoethyl)aminopropyltrimethoxysilane, 3-(2-aminoethyl)aminopropylmethyldimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane silane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, bis(3-(triethoxysilyl)propyl)disulfide, bis(3-(triethoxysilyl)propyl)tetrasulfide, vinyltriacetoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, allyltrimethoxysilane, diallyldimethylsilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3- methacryloxypropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltriethoxysilane, N-(1,3-dimethylbutylidene)-3-aminopropyltriethoxysilane , aminosilane (phenylaminosilane, etc.), and the like. Silane coupling agents may be used alone or in combination of two or more.

無機充填材の平均粒子径は、無機充填材の凝集を抑制しやすく、無機充填材の分散が容易である観点から、0.01μm以上が好ましく、0.1μm以上がより好ましく、0.3μm以上が更に好ましく、0.5μm以上が特に好ましい。無機充填材の平均粒子径は、ワニス中で無機充填材が沈降することが抑制されやすく、均質な封止用フィルムを作製しやすい観点から、25μm以下が好ましく、10μm以下がより好ましく、5μm以下が更に好ましい。これらの観点から、無機充填材の平均粒子径は、0.01~25μmが好ましく、0.01~10μmがより好ましく、0.1~10μmが更に好ましく、0.3~5μmが特に好ましく、0.5~5μmが極めて好ましい。無機充填材の平均粒子径は、10~18μmであってもよい。 The average particle size of the inorganic filler is preferably 0.01 μm or more, more preferably 0.1 μm or more, and 0.3 μm or more, from the viewpoint of easily suppressing aggregation of the inorganic filler and facilitating dispersion of the inorganic filler. is more preferable, and 0.5 μm or more is particularly preferable. The average particle size of the inorganic filler is preferably 25 μm or less, more preferably 10 μm or less, and 5 μm or less from the viewpoint of easily suppressing sedimentation of the inorganic filler in the varnish and facilitating the production of a homogeneous sealing film. is more preferred. From these viewpoints, the average particle size of the inorganic filler is preferably 0.01 to 25 μm, more preferably 0.01 to 10 μm, still more preferably 0.1 to 10 μm, particularly preferably 0.3 to 5 μm. 0.5 to 5 μm is highly preferred. The average particle size of the inorganic filler may be 10-18 μm.

樹脂組成物の流動性に優れる観点から、互いに異なる平均粒子径を有する複数の無機充填材を組み合わせて用いることが好ましい。無機充填材の組み合わせの中でも、最も大きい平均粒子径が15~25μmであることが好ましい。平均粒子径が15~25μmの無機充填材と、平均粒子径が0.5~2.5μmの無機充填材と、平均粒子径が0.1~1.0μmの無機充填材と、を組み合わせて用いることが好ましい。 From the viewpoint of excellent fluidity of the resin composition, it is preferable to use a combination of a plurality of inorganic fillers having different average particle sizes. Among combinations of inorganic fillers, it is preferable that the largest average particle size is 15 to 25 μm. A combination of an inorganic filler with an average particle size of 15 to 25 μm, an inorganic filler with an average particle size of 0.5 to 2.5 μm, and an inorganic filler with an average particle size of 0.1 to 1.0 μm It is preferable to use

「平均粒子径」とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径であり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。組み合わせた各無機充填材の平均粒子径は、混合時の各無機充填材の平均粒子径から確認できると共に、粒度分布を測定することで確認することができる。 "Average particle size" is the particle size at the point corresponding to 50% volume when the cumulative frequency distribution curve by particle size is obtained with the total volume of the particles being 100%, and the particle size distribution using the laser diffraction scattering method. It can be measured with a measuring device or the like. The average particle size of each inorganic filler combined can be confirmed from the average particle size of each inorganic filler at the time of mixing, and can be confirmed by measuring the particle size distribution.

無機充填材の含有量(酸化アルミニウムを含む無機充填材、及び、酸化アルミニウムを含まない無機充填材の合計量)は、熱伝導率を向上させる観点、及び、被封止体との熱膨張率の差によって封止構造体(例えば、半導体装置等の電子部品装置)の反りが大きくなることが抑制されやすい観点から、樹脂組成物の総質量(溶剤の質量を除く)を基準として72質量%以上である。無機充填材の含有量は、熱伝導率を更に向上させる観点、及び、封止構造体の反りが大きくなることが更に抑制されやすい観点から、樹脂組成物の総質量(溶剤の質量を除く)を基準として、72.5質量%以上が好ましく、73質量%以上がより好ましい。無機充填材の含有量は、封止用フィルムの作製の際の乾燥工程において封止用フィルムが割れてしまうことが抑制されやすい観点、及び、封止用フィルムの溶融粘度の上昇により流動性が低下することが抑制され、被封止体(電子部品等)を充分に封止しやすい観点から、樹脂組成物の総質量(溶剤の質量を除く)を基準として、93質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下が更に好ましく、84.5質量%以下が特に好ましく、81質量%以下が極めて好ましく、80質量%以下が非常に好ましい。これらの観点から、無機充填材の含有量は、樹脂組成物の総質量(溶剤の質量を除く)を基準として、72~93質量%が好ましく、72~90質量%がより好ましく、72~85質量%が更に好ましく、72~84.5質量%が特に好ましく、72.5~81質量%が極めて好ましく、73~80質量%が非常に好ましい。 The content of the inorganic filler (the total amount of the inorganic filler containing aluminum oxide and the inorganic filler not containing aluminum oxide) is determined from the viewpoint of improving the thermal conductivity and the coefficient of thermal expansion with the object to be sealed. 72% by mass based on the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint that the warping of the sealing structure (e.g., electronic component device such as a semiconductor device) is likely to be suppressed due to the difference in That's it. The content of the inorganic filler is the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of further improving the thermal conductivity and from the viewpoint of further suppressing the increase in warping of the sealing structure. is preferably 72.5% by mass or more, more preferably 73% by mass or more. The content of the inorganic filler is from the viewpoint that the sealing film is easily suppressed from cracking in the drying process during the production of the sealing film, and the fluidity is improved due to the increase in the melt viscosity of the sealing film. From the viewpoint of suppressing the decrease and making it easy to sufficiently seal the object to be sealed (electronic component, etc.), it is preferably 93% by mass or less based on the total mass of the resin composition (excluding the mass of the solvent). 90% by mass or less is more preferable, 85% by mass or less is even more preferable, 84.5% by mass or less is particularly preferable, 81% by mass or less is extremely preferable, and 80% by mass or less is extremely preferable. From these points of view, the content of the inorganic filler is preferably 72 to 93% by mass, more preferably 72 to 90% by mass, based on the total mass of the resin composition (excluding the mass of the solvent), and 72 to 85% by mass. % by weight is more preferred, 72 to 84.5% by weight is particularly preferred, 72.5 to 81% by weight is very preferred, and 73 to 80% by weight is very preferred.

酸化アルミニウムを含む無機充填材(酸化アルミニウム粒子等)の含有量は、樹脂組成物の総質量(溶剤の質量を除く)を基準として、下記の範囲であることが好ましい。酸化アルミニウムを含む無機充填材の含有量は、熱伝導率を更に向上させる観点から、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましい。酸化アルミニウムを含む無機充填材の含有量は、充分な埋め込み性を確保しやすい観点から、85質量%以下が好ましく、80質量%以下がより好ましく、75質量%以下が更に好ましい。 The content of the inorganic filler containing aluminum oxide (aluminum oxide particles, etc.) is preferably within the following range based on the total mass of the resin composition (excluding the mass of the solvent). From the viewpoint of further improving thermal conductivity, the content of the inorganic filler containing aluminum oxide is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more. The content of the inorganic filler containing aluminum oxide is preferably 85% by mass or less, more preferably 80% by mass or less, and even more preferably 75% by mass or less, from the viewpoint of easily ensuring sufficient embeddability.

((E)成分:溶剤)
本実施形態に係る樹脂組成物は、(E)溶剤を含有してもよく、(E)溶剤を含有していなくてもよい。溶剤としては、従来公知の有機溶剤を使用できる。有機溶剤としては、無機充填材以外の成分を溶解できる溶剤が好ましく、脂肪族炭化水素類、芳香族炭化水素類、テルペン類、ハロゲン類、エステル類、ケトン類、アルコール類、アルデヒド類等が挙げられる。溶剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
((E) component: solvent)
The resin composition according to the present embodiment may contain (E) a solvent, or may not contain (E) a solvent. Conventionally known organic solvents can be used as the solvent. The organic solvent is preferably a solvent capable of dissolving components other than the inorganic filler, and examples thereof include aliphatic hydrocarbons, aromatic hydrocarbons, terpenes, halogens, esters, ketones, alcohols, and aldehydes. be done. A solvent may be used individually by 1 type, and may use 2 or more types together.

溶剤としては、環境負荷が小さい観点、並びに、熱硬化性樹脂(エポキシ樹脂等)及び硬化剤(フェノール樹脂等)を溶解しやすい観点から、エステル類、ケトン類及びアルコール類からなる群より選ばれる少なくとも1種が好ましい。その中でも、熱硬化性樹脂(エポキシ樹脂等)及び硬化剤(フェノール樹脂等)を特に溶解しやすい観点から、ケトン類が好ましい。溶剤としては、室温(25℃)での揮発が少なく、乾燥時に除去しやすい観点から、アセトン、メチルエチルケトン及びメチルイソブチルケトンからなる群より選ばれる少なくとも1種が好ましい。 The solvent is selected from the group consisting of esters, ketones, and alcohols from the viewpoint of low environmental load and the viewpoint of easily dissolving thermosetting resins (epoxy resins, etc.) and curing agents (phenolic resins, etc.). At least one is preferred. Among these, ketones are preferable from the viewpoint of particularly easy dissolution of thermosetting resins (epoxy resins, etc.) and curing agents (phenolic resins, etc.). As the solvent, at least one selected from the group consisting of acetone, methyl ethyl ketone and methyl isobutyl ketone is preferable from the viewpoint of less volatilization at room temperature (25° C.) and easy removal during drying.

((F)成分:エラストマー)
本実施形態に係る樹脂組成物は、必要に応じて、(F)エラストマー(可とう剤)を含有してもよい。エラストマーは、分散性及び溶解性に優れる観点から、ポリブタジエン粒子、スチレンブタジエン粒子、アクリル系エラストマー、シリコーンパウダ、シリコーンオイル及びシリコーンオリゴマからなる群より選ばれる少なくとも1種を用いることが好ましい。エラストマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
((F) component: elastomer)
The resin composition according to the present embodiment may optionally contain (F) an elastomer (flexible agent). From the viewpoint of excellent dispersibility and solubility, it is preferable to use at least one elastomer selected from the group consisting of polybutadiene particles, styrene-butadiene particles, acrylic elastomers, silicone powders, silicone oils and silicone oligomers. One type of elastomer may be used alone, or two or more types may be used in combination.

エラストマーが粒子状である場合、エラストマーの平均粒子径に特に制限はない。eWLB(Embedded Wafer-Level Ball Grid Array)用途では、半導体素子間を埋め込む必要があることから、封止用フィルムをeWLB用途に用いる場合には、エラストマーの平均粒子径は、50μm以下であることが好ましい。エラストマーの平均粒子径は、エラストマーの分散性に優れる観点から、0.1μm以上であることが好ましい。 When the elastomer is particulate, there is no particular limitation on the average particle size of the elastomer. In eWLB (Embedded Wafer-Level Ball Grid Array) applications, it is necessary to embed between semiconductor elements. Therefore, when the sealing film is used for eWLB applications, the average particle size of the elastomer should be 50 μm or less. preferable. The average particle size of the elastomer is preferably 0.1 μm or more from the viewpoint of excellent dispersibility of the elastomer.

エラストマーの市販品としては、ナガセケムテックス株式会社製の「HTR280」等が挙げられる。また、市販のエラストマー成分の中には、エラストマー単体ではなく、予め液状樹脂(例えば、液状エポキシ樹脂)中に分散しているものもあるが、問題なく用いることができる。このような市販品としては、株式会社カネカ製の「MX-136」及び「MX-965」等が挙げられる。 Commercially available elastomers include "HTR280" manufactured by Nagase ChemteX Corporation. Moreover, some commercially available elastomer components are dispersed in a liquid resin (for example, a liquid epoxy resin) in advance instead of an elastomer alone, but they can be used without any problem. Such commercially available products include “MX-136” and “MX-965” manufactured by Kaneka Corporation.

(その他の成分)
本実施形態に係る樹脂組成物は、他の添加剤を更に含有することができる。このような添加剤の具体例としては、顔料、染料、離型剤、酸化防止剤、表面張力調整剤等を挙げることができる。
(other ingredients)
The resin composition according to this embodiment can further contain other additives. Specific examples of such additives include pigments, dyes, release agents, antioxidants, surface tension modifiers, and the like.

<封止用フィルム>
本実施形態に係る封止用フィルムは、本実施形態に係る樹脂組成物を含む。本実施形態に係る封止用フィルムは、本実施形態に係る樹脂組成物をフィルム状に成形して得られ、本実施形態に係る樹脂組成物からなる態様であってもよい。本実施形態に係る封止用フィルムは、例えば、半導体デバイスの封止、プリント配線板に配置された電子部品の埋め込み等に用いることができる。
<Film for sealing>
The sealing film according to this embodiment contains the resin composition according to this embodiment. The sealing film according to the present embodiment may be obtained by molding the resin composition according to the present embodiment into a film, and may be made of the resin composition according to the present embodiment. The encapsulating film according to the present embodiment can be used, for example, for encapsulating semiconductor devices, embedding electronic components arranged on printed wiring boards, and the like.

封止用フィルムの厚さ(膜厚)は、塗工時における面内の厚みのバラつきを抑制しやすい観点から、20μm以上が好ましく、30μm以上がより好ましく、50μm以上が更に好ましく、100μm以上が特に好ましい。封止用フィルムの厚さは、塗工時に深さ方向で一定の乾燥性が得られやすい観点から、250μm以下が好ましく、200μm以下がより好ましく、150μm以下が更に好ましい。これらの観点から、封止用フィルムの厚さは、20~250μmが好ましく、30~250μmがより好ましく、50~200μmが更に好ましく、100~150μmが特に好ましい。また、封止用フィルムを複数枚積層して、厚さ250μmを超える封止用フィルムを製造することもできる。 The thickness (film thickness) of the sealing film is preferably 20 μm or more, more preferably 30 μm or more, still more preferably 50 μm or more, and 100 μm or more, from the viewpoint of easily suppressing in-plane thickness variation during coating. Especially preferred. The thickness of the sealing film is preferably 250 µm or less, more preferably 200 µm or less, and even more preferably 150 µm or less, from the viewpoint of easily obtaining a constant drying property in the depth direction during coating. From these viewpoints, the thickness of the sealing film is preferably 20 to 250 μm, more preferably 30 to 250 μm, still more preferably 50 to 200 μm, and particularly preferably 100 to 150 μm. Also, a sealing film having a thickness exceeding 250 μm can be manufactured by laminating a plurality of sealing films.

封止用フィルムにおける無機充填材(酸化アルミニウムを含む無機充填材、及び、酸化アルミニウムを含まない無機充填材の合計量)の含有量は、封止用フィルムの総質量(溶剤の質量を除く)に対して、下記の範囲であることが好ましい。無機充填材の含有量は、熱伝導率を更に向上させる観点、及び、封止構造体の反りが大きくなることが抑制されやすい観点から、72質量%以上が好ましく、72.5質量%以上がより好ましく、73質量%以上が更に好ましい。無機充填材の含有量は、封止用フィルムの溶融粘度の上昇により流動性が低下することが抑制され、被封止体(電子部品等)を充分に封止しやすい観点から、93質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下が更に好ましく、84.5質量%以下が特に好ましく、81質量%以下が極めて好ましく、80質量%以下が非常に好ましい。これらの観点から、無機充填材の含有量は、72~93質量%が好ましく、72~90質量%がより好ましく、72~85質量%が更に好ましく、72~84.5質量%が特に好ましく、72.5~81質量%が極めて好ましく、73~80質量%が非常に好ましい。 The content of the inorganic filler in the sealing film (the total amount of the inorganic filler containing aluminum oxide and the inorganic filler not containing aluminum oxide) is the total weight of the sealing film (excluding the weight of the solvent) is preferably within the following range. The content of the inorganic filler is preferably 72% by mass or more, more preferably 72.5% by mass or more, from the viewpoint of further improving the thermal conductivity and from the viewpoint of easily suppressing the increase in warpage of the sealing structure. More preferably, 73% by mass or more is even more preferable. The content of the inorganic filler is 93% by mass from the viewpoint of suppressing the decrease in fluidity due to the increase in the melt viscosity of the sealing film and making it easy to sufficiently seal the object to be sealed (electronic parts, etc.). The following is preferable, 90% by mass or less is more preferable, 85% by mass or less is even more preferable, 84.5% by mass or less is particularly preferable, 81% by mass or less is extremely preferable, and 80% by mass or less is extremely preferable. From these viewpoints, the content of the inorganic filler is preferably 72 to 93% by mass, more preferably 72 to 90% by mass, still more preferably 72 to 85% by mass, particularly preferably 72 to 84.5% by mass, 72.5 to 81% by weight are highly preferred, and 73 to 80% by weight are very preferred.

封止用フィルムに含まれる溶剤(有機溶剤等)の含有量は、封止用フィルムの総質量(溶剤の質量を含む)に対して、下記の範囲であることが好ましい。溶剤の含有量は、封止用フィルムが脆くなり封止用フィルムの割れ等の不具合が生じること、及び、最低溶融粘度が高くなり、埋め込み性が低下することを抑制しやすい観点から、0.2質量%以上が好ましく、0.3質量%以上がより好ましく、0.5質量%以上が更に好ましく、0.6質量%以上が特に好ましく、0.7質量%以上が極めて好ましい。溶剤の含有量は、封止用フィルムの粘着性が強くなりすぎて取扱い性が低下する不具合、及び、封止用フィルムの熱硬化時における溶剤(有機溶剤等)の揮発に伴う発泡等の不具合を抑制しやすい観点から、1.5質量%以下が好ましく、1質量%以下がより好ましい。これらの観点から、溶剤の含有量は、0.2~1.5質量%が好ましく、0.3~1質量%がより好ましく、0.5~1質量%が更に好ましく、0.6~1質量%が特に好ましく、0.7~1質量%が極めて好ましい。 The content of the solvent (organic solvent, etc.) contained in the sealing film is preferably within the following range with respect to the total mass of the sealing film (including the mass of the solvent). The content of the solvent is 0.5 from the viewpoint of easily suppressing problems such as cracking of the sealing film due to fragility of the sealing film, and increasing the minimum melt viscosity and reducing the embedding property. 2 mass % or more is preferable, 0.3 mass % or more is more preferable, 0.5 mass % or more is still more preferable, 0.6 mass % or more is particularly preferable, and 0.7 mass % or more is extremely preferable. The content of the solvent is such that the adhesiveness of the sealing film becomes too strong, resulting in poor handling, and problems such as foaming due to volatilization of the solvent (organic solvent, etc.) during the heat curing of the sealing film. is preferably 1.5% by mass or less, more preferably 1% by mass or less, from the viewpoint of easily suppressing the From these viewpoints, the solvent content is preferably 0.2 to 1.5% by mass, more preferably 0.3 to 1% by mass, even more preferably 0.5 to 1% by mass, and 0.6 to 1% by mass. % by weight is particularly preferred, 0.7 to 1% by weight being very particularly preferred.

本実施形態に係る封止用フィルムは、具体的には、次のようにして作製することができる。 Specifically, the sealing film according to this embodiment can be produced as follows.

まず、本実施形態に係る樹脂組成物の構成成分((A)熱硬化性樹脂、(B)硬化剤、(C)硬化促進剤、(D)無機充填材、(E)溶剤等)を混合することでワニス(ワニス状樹脂組成物)を作製する。混合方法は、特に限定されず、ミル、ミキサ、攪拌羽根を使用できる。溶剤(有機溶剤等)は、封止用フィルムの材料である樹脂組成物の構成成分を溶解及び分散してワニスを調製するため、又は、ワニスを調製することを補助するために用いることができる。塗工後の乾燥工程で溶剤の大部分を除去することができる。 First, the constituent components of the resin composition according to the present embodiment ((A) thermosetting resin, (B) curing agent, (C) curing accelerator, (D) inorganic filler, (E) solvent, etc.) are mixed. By doing so, a varnish (varnish-like resin composition) is produced. A mixing method is not particularly limited, and a mill, mixer, or stirring blade can be used. A solvent (such as an organic solvent) can be used to dissolve and disperse the components of the resin composition that is the material of the sealing film to prepare a varnish, or to assist in the preparation of the varnish. . Most of the solvent can be removed in a drying step after coating.

このようにして作製したワニスを、支持体(フィルム状の支持体等)に塗布した後、熱風吹き付け等によって加熱乾燥することで、封止用フィルムを作製することができる。塗布(コーティング)方法としては、特に限定されないが、例えば、コンマコーター、バーコーター、キスコーター、ロールコーター、グラビアコーター、ダイコーター等の塗工装置を用いることができる。 A film for sealing can be produced by coating the varnish thus produced on a support (such as a film-like support) and drying it by heating with hot air blowing or the like. The application (coating) method is not particularly limited, and for example, a coating device such as a comma coater, bar coater, kiss coater, roll coater, gravure coater, and die coater can be used.

フィルム状の支持体としては、高分子フィルム、金属箔等を用いることができる。高分子フィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム等のポリオレフィンフィルム;ポリ塩化ビニルフィルム等のビニルフィルム;ポリエチレンテレフタレートフィルム等のポリエステルフィルム;ポリカーボネートフィルム;アセチルセルロースフィルム;テトラフルオロエチレンフィルムなどが挙げられる。金属箔としては、銅箔、アルミニウム箔等が挙げられる。 A polymer film, a metal foil, or the like can be used as the film-like support. Polymer films include polyolefin films such as polyethylene films and polypropylene films; vinyl films such as polyvinyl chloride films; polyester films such as polyethylene terephthalate films; polycarbonate films; Examples of metal foil include copper foil and aluminum foil.

支持体の厚さは、特に限定されるものではないが、作業性及び乾燥性に優れる観点から、2~200μmが好ましい。支持体の厚さが2μm以上である場合、塗工時に支持体が切れる不具合、ワニスの重さで支持体がたわむ不具合等を抑制しやすい。支持体の厚さが200μm以下である場合、乾燥工程において、塗工面及び裏面の両面から熱風が吹きつけられる場合に、ワニス中の溶剤乾燥が妨げられる不具合を抑制しやすい。 The thickness of the support is not particularly limited, but is preferably 2 to 200 μm from the viewpoint of excellent workability and drying properties. When the thickness of the support is 2 μm or more, problems such as the support being cut during coating and the support bending under the weight of the varnish can be easily suppressed. When the thickness of the support is 200 μm or less, it is easy to prevent the problem that the drying of the solvent in the varnish is hindered when hot air is blown from both the coated surface and the back surface in the drying process.

支持体上に形成された封止用フィルム上に、封止用フィルムの保護を目的とした保護層を配置してもよい。保護層を形成することで、取扱い性が向上し、巻き取りした場合に、支持体の裏面に封止用フィルムが張り付くといった不具合を回避することができる。 A protective layer for protecting the sealing film may be disposed on the sealing film formed on the support. By forming the protective layer, the handleability is improved, and the problem of the sealing film sticking to the back surface of the support when wound up can be avoided.

保護層としては、高分子フィルム、金属箔等を用いることができる。高分子フィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム等のポリオレフィンフィルム;ポリ塩化ビニルフィルム等のビニルフィルム;ポリエチレンテレフタレートフィルム等のポリエステルフィルム;ポリカーボネートフィルム;アセチルセルロースフィルム;テトラフルオロエチレンフィルムなどを例示することができる。金属箔としては、銅箔、アルミニウム箔等を例示することができる。 A polymer film, a metal foil, or the like can be used as the protective layer. Examples of polymer films include polyolefin films such as polyethylene films and polypropylene films; vinyl films such as polyvinyl chloride films; polyester films such as polyethylene terephthalate films; polycarbonate films; can. Examples of metal foil include copper foil and aluminum foil.

上述のように作製した封止用フィルムは、封止用フィルムに対して被封止体(被埋め込み対象)を向かい合った状態に配置する工程と、封止用フィルムを加熱して溶融させ、圧力を加えて被封止体を埋め込む工程と、加熱により、埋め込み能を有する封止用フィルムを熱硬化させる工程と、によって封止用フィルムの硬化体を得ることにより封止構造体(例えば、半導体装置等の電子部品装置)を製造することに用いることができる。 The sealing film produced as described above is obtained by the steps of arranging the object to be sealed (object to be embedded) facing the sealing film, heating the sealing film to melt it, and applying pressure to the sealing film. and a step of thermally curing a sealing film having embedding ability by heating to obtain a cured body of the sealing film, thereby forming a sealing structure (e.g., a semiconductor It can be used to manufacture electronic component devices such as devices.

<封止構造体>
本実施形態に係る封止構造体は、被封止体と、当該被封止体を封止する封止部と、を備え、封止部が、本実施形態に係る樹脂組成物の硬化物(本実施形態に係る封止用フィルムに含まれる樹脂組成物の硬化物等)を含む。封止構造体としては、電子部品装置等が挙げられる。電子部品装置は、電子部品と、当該電子部品を封止する封止部と、を備え、封止部が、本実施形態に係る樹脂組成物の硬化物を含む。電子部品としては、半導体素子;半導体ウエハ;集積回路;半導体デバイス;SAWフィルタ等のフィルタ;センサ等の受動部品などが挙げられる。半導体ウエハを個片化することにより得られる半導体素子を用いてもよい。電子部品装置は、電子部品として半導体素子又は半導体ウエハを備える半導体装置;プリント配線板等であってもよい。本実施形態に係る封止構造体は、複数の被封止体を備えていてもよい。複数の被封止体は、互いに同一の種類であってもよく、互いに異なる種類であってもよい。
<Sealing structure>
A sealing structure according to the present embodiment includes an object to be sealed and a sealing portion that seals the object to be sealed, and the sealing portion is a cured product of the resin composition according to the present embodiment. (such as a cured product of the resin composition contained in the sealing film according to the present embodiment). Examples of sealing structures include electronic component devices and the like. The electronic component device includes an electronic component and a sealing portion that seals the electronic component, and the sealing portion contains a cured product of the resin composition according to the present embodiment. Examples of electronic components include semiconductor elements; semiconductor wafers; integrated circuits; semiconductor devices; filters such as SAW filters; Semiconductor elements obtained by singulating a semiconductor wafer may also be used. The electronic component device may be a semiconductor device including a semiconductor element or a semiconductor wafer as an electronic component; a printed wiring board or the like. The sealing structure according to this embodiment may include a plurality of objects to be sealed. The plurality of objects to be sealed may be of the same type or of different types.

次に、本実施形態に係る封止用フィルムを用いた電子部品装置の製造方法について説明する。ここでは、電子部品が半導体素子である場合について説明する。図1は、封止構造体の製造方法の一実施形態として、電子部品装置である半導体装置の製造方法の一実施形態を説明するための模式断面図である。本実施形態に係る製造方法は、被封止体(被埋め込み対象)として、仮固定材40を有する基板30上に複数の半導体素子20を並べて配置する工程(図1(a))と、支持体1と、支持体1上に設けられた封止用フィルム2と、を備える支持体付き封止用フィルム10を半導体素子20に対向させた後、半導体素子20に封止用フィルム2を加熱下で押圧(ラミネート)することにより、封止用フィルム2に半導体素子20を埋め込む工程(図1(b))と、半導体素子20が埋め込まれた封止用フィルム2を硬化させて硬化物2aを得る工程(図1(c))と、を備える。本実施形態においては、ラミネート法によって半導体素子20を封止用フィルム2によって封止した後、封止用フィルム2を熱硬化することで、硬化物2aに埋め込まれた半導体素子20を備える封止構造体(電子部品装置)が得られているが、封止構造体をコンプレッションモールドにより得てもよい。 Next, a method for manufacturing an electronic component device using the sealing film according to this embodiment will be described. Here, a case where the electronic component is a semiconductor element will be described. FIG. 1 is a schematic cross-sectional view for explaining an embodiment of a method of manufacturing a semiconductor device, which is an electronic component device, as an embodiment of a method of manufacturing a sealing structure. The manufacturing method according to the present embodiment includes a step of arranging a plurality of semiconductor elements 20 side by side on a substrate 30 having a temporary fixing material 40 as an object to be sealed (an object to be embedded) (FIG. 1A); After facing the semiconductor element 20 with the support-attached sealing film 10 including the body 1 and the sealing film 2 provided on the support 1, the sealing film 2 is heated to the semiconductor element 20. A step of embedding the semiconductor element 20 in the sealing film 2 by pressing (laminating) below (FIG. 1(b)), and curing the sealing film 2 in which the semiconductor element 20 is embedded to obtain a cured product 2a. and a step of obtaining (FIG. 1(c)). In this embodiment, after the semiconductor element 20 is sealed with the sealing film 2 by a lamination method, the sealing film 2 is thermally cured to obtain the semiconductor element 20 embedded in the cured product 2a. Although the structure (electronic component device) is obtained, the sealed structure may be obtained by compression molding.

ラミネート法に使用するラミネータとしては、特に限定されるものではないが、例えば、ロール式、バルーン式等のラミネータが挙げられる。ラミネータは、埋め込み性に優れる観点から、真空加圧が可能なバルーン式であってもよい。 The laminator used in the lamination method is not particularly limited, but examples thereof include roll-type and balloon-type laminators. The laminator may be of a balloon type capable of vacuum pressurization from the viewpoint of excellent embedding properties.

ラミネートは、通常、支持体の軟化点以下で行う。ラミネート温度は、封止用フィルムの最低溶融粘度付近であることが好ましい。ラミネート時の圧力は、埋め込む被封止体(例えば、半導体素子等の電子部品)のサイズ、密集度等によって異なる。ラミネート時の圧力は、例えば、0.2~1.5MPaの範囲であってもよく、0.3~1.0MPaの範囲であってもよい。ラミネート時間は、特に限定されるものではないが、20~600秒であってもよく、30~300秒であってもよく、40~120秒であってもよい。 Lamination is usually carried out below the softening point of the support. The lamination temperature is preferably near the lowest melt viscosity of the sealing film. The pressure during lamination varies depending on the size, density, and the like of the object to be sealed (for example, an electronic component such as a semiconductor element) to be embedded. The pressure during lamination may range, for example, from 0.2 to 1.5 MPa, or from 0.3 to 1.0 MPa. The lamination time is not particularly limited, but may be 20 to 600 seconds, 30 to 300 seconds, or 40 to 120 seconds.

封止用フィルムの硬化は、例えば、大気下又は不活性ガス下で行うことができる。硬化温度(加熱温度)は、特に限定されるものではなく、80~280℃であってもよく、100~240℃であってもよく、120~200℃であってもよい。硬化温度が80℃以上であれば、封止用フィルムの硬化が充分に進み、不具合の発生を抑制することができる。硬化温度が280℃以下である場合は、他の材料への熱害の発生を抑制することができる傾向にある。硬化時間(加熱時間)は、特に限定されるものではなく、30~600分であってもよく、45~300分であってもよく、60~240分であってもよい。硬化時間がこれらの範囲である場合、封止用フィルムの硬化が充分に進み、より良好な生産効率が得られる。また、硬化条件は、複数の条件を組み合わせてもよい。 Curing of the sealing film can be performed, for example, under the atmosphere or under an inert gas. The curing temperature (heating temperature) is not particularly limited, and may be 80 to 280°C, 100 to 240°C, or 120 to 200°C. If the curing temperature is 80° C. or higher, the curing of the sealing film will proceed sufficiently, and the occurrence of defects can be suppressed. When the curing temperature is 280° C. or less, it tends to be possible to suppress the occurrence of heat damage to other materials. The curing time (heating time) is not particularly limited, and may be 30 to 600 minutes, 45 to 300 minutes, or 60 to 240 minutes. When the curing time is within these ranges, the curing of the sealing film proceeds sufficiently, resulting in better production efficiency. Also, the curing conditions may be a combination of multiple conditions.

以上、本発明の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更を行ってもよい。 Although the preferred embodiments of the present invention have been described above, the present invention is not necessarily limited to the above-described embodiments, and modifications may be made as appropriate without departing from the scope of the invention.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.

封止用フィルム(フィルム状エポキシ樹脂組成物)を得るためのワニス状エポキシ樹脂組成物(ワニス)の成分として以下の成分を用いた。 The following components were used as components of a varnish-like epoxy resin composition (varnish) for obtaining a sealing film (film-like epoxy resin composition).

(A)成分;熱硬化性樹脂(エポキシ樹脂)
A1:ビスフェノールF型エポキシ樹脂(三菱化学株式会社製、商品名:jER806、エポキシ当量:160g/eq、25℃にて液状を示すエポキシ樹脂)
A2:ナフタレン骨格含有多官能固形エポキシ樹脂(DIC株式会社製、商品名:EXA-4750、エポキシ当量:182g/eq、25℃にて液状を示さないエポキシ樹脂)
A3:ポリブタジエンエラストマー粒子含有ビスフェノールF型エポキシ樹脂(株式会社カネカ製、商品名:MX-136、液状エポキシ樹脂の含有量:75質量%、エラストマー粒子の含有量:25質量%、エポキシ当量:226g/eq、エラストマー粒子の平均粒子径:0.1μm、25℃にて液状を示すエポキシ樹脂を含む成分)
A4:シリコーンエラストマー粒子含有エポキシ樹脂(ビスフェノールF型液状エポキシ樹脂及びビスフェノールA型液状エポキシ樹脂の混合物。株式会社カネカ製、商品名:MX-965、液状エポキシ樹脂の含有量:75質量%、エラストマー粒子の含有量:25質量%、25℃にて液状を示すエポキシ樹脂を含む成分)
A5:オルトクレゾールノボラック型エポキシ樹脂(DIC株式会社製、商品名:N500P-1、エポキシ当量:201g/eq、25℃にて液状を示さないエポキシ樹脂)
A6:柔軟性骨格含有ビスフェノールA型エポキシ樹脂(DIC株式会社製、商品名:エピクロンEXA-4816、エポキシ当量:403g/eq、25℃にて液状を示すエポキシ樹脂)
(A) component; thermosetting resin (epoxy resin)
A1: Bisphenol F type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: jER806, epoxy equivalent: 160 g/eq, epoxy resin that exhibits a liquid state at 25°C)
A2: Naphthalene skeleton-containing polyfunctional solid epoxy resin (manufactured by DIC Corporation, trade name: EXA-4750, epoxy equivalent: 182 g/eq, epoxy resin that does not exhibit a liquid state at 25 ° C.)
A3: Bisphenol F type epoxy resin containing polybutadiene elastomer particles (manufactured by Kaneka Corporation, trade name: MX-136, content of liquid epoxy resin: 75% by mass, content of elastomer particles: 25% by mass, epoxy equivalent: 226g/ eq, average particle size of elastomer particles: 0.1 μm, component containing epoxy resin exhibiting liquid state at 25° C.)
A4: Epoxy resin containing silicone elastomer particles (mixture of bisphenol F type liquid epoxy resin and bisphenol A type liquid epoxy resin, manufactured by Kaneka Corporation, trade name: MX-965, content of liquid epoxy resin: 75% by mass, elastomer particles content: 25% by mass, a component containing an epoxy resin that exhibits a liquid state at 25 ° C.)
A5: Ortho-cresol novolac type epoxy resin (manufactured by DIC Corporation, trade name: N500P-1, epoxy equivalent: 201 g/eq, epoxy resin that does not exhibit a liquid state at 25 ° C.)
A6: Flexible skeleton-containing bisphenol A type epoxy resin (manufactured by DIC Corporation, trade name: Epiclon EXA-4816, epoxy equivalent: 403 g/eq, epoxy resin that exhibits a liquid state at 25 ° C.)

(B)成分;硬化剤(フェノール樹脂)
B1:フェノールノボラック樹脂(旭有機材工業株式会社製、商品名:PAPS-PN2、フェノール性水酸基当量:104g/eq、25℃にて液状を示さないフェノール樹脂)
B2:アルキルフェノールノボラック型樹脂(群栄化学工業株式会社製、商品名:ELP40、フェノール性水酸基当量:140g/eq)
(B) component; curing agent (phenolic resin)
B1: Phenol novolac resin (manufactured by Asahi Organic Chemicals Industry Co., Ltd., trade name: PAPS-PN2, phenolic hydroxyl group equivalent: 104 g / eq, phenolic resin that does not exhibit a liquid state at 25 ° C.)
B2: Alkylphenol novolac type resin (manufactured by Gun Ei Chemical Industry Co., Ltd., trade name: ELP40, phenolic hydroxyl group equivalent: 140 g/eq)

(C)成分;硬化促進剤
C1:2-フェニル-4-メチルイミダゾール(四国化成工業株式会社製、商品名:2P4MZ)
C2:1-ベンジル-2-メチルイミダゾール(四国化成工業株式会社製、商品名:1B2MZ)
(C) component; curing accelerator C1: 2-phenyl-4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., trade name: 2P4MZ)
C2: 1-benzyl-2-methylimidazole (manufactured by Shikoku Chemical Industry Co., Ltd., trade name: 1B2MZ)

(D)成分;無機充填材
D1:酸化アルミニウム粒子(住友化学株式会社製、商品名:AA-1.5、平均粒子径:1.5μm)
D2:酸化アルミニウム粒子(デンカ株式会社製、商品名:DAW20、平均粒子径:20μm)
D3:シリカ粒子(株式会社アドマテックス製、商品名:SC2500-SXJ、フェニルアミノシラン処理、平均粒子径:0.5μm)
D4:シリカ粒子(株式会社アドマテックス製、商品名:SC5500-SXE、フェニルアミノシラン処理、平均粒子径:1.6μm)
D5:シリカスラリ(株式会社アドマテックス製、商品名:SC2050-KC、シリコーンオリゴマ処理、平均粒子径:0.5μm、メチルイソブチルケトン溶剤カット(シリカフィラの含有量:70質量%))
(D) component; inorganic filler D1: aluminum oxide particles (manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5, average particle size: 1.5 μm)
D2: Aluminum oxide particles (manufactured by Denka Co., Ltd., trade name: DAW20, average particle size: 20 µm)
D3: Silica particles (manufactured by Admatechs Co., Ltd., trade name: SC2500-SXJ, phenylaminosilane treatment, average particle size: 0.5 μm)
D4: Silica particles (manufactured by Admatechs Co., Ltd., trade name: SC5500-SXE, phenylaminosilane treatment, average particle size: 1.6 μm)
D5: Silica slurry (manufactured by Admatechs Co., Ltd., trade name: SC2050-KC, silicone oligomer treatment, average particle size: 0.5 μm, methyl isobutyl ketone solvent cut (silica filler content: 70% by mass))

(E)成分;溶剤
E1:メチルエチルケトン
(E) component; solvent E1: methyl ethyl ketone

(F)成分;エラストマー
F1:高分子エラストマー(ナガセケムテックス株式会社製、商品名:HTR280、エポキシ変性線状エラストマー)
(F) Component; Elastomer F1: Polymeric elastomer (manufactured by Nagase ChemteX Corporation, trade name: HTR280, epoxy-modified linear elastomer)

<封止用フィルムの作製>
(実施例1)
10Lのポリエチレン容器に有機溶剤E1を172g入れた。無機充填材D1を542g前記容器に加えた後、撹拌羽根で無機充填材D1を分散して分散液を得た。この分散液に、熱硬化性樹脂A1を48g、熱硬化性樹脂A2を12g、硬化剤B1を38g加えて撹拌した。硬化剤B1が溶解したことを確認した後、硬化促進剤C1を0.8g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#200メッシュ(開口75μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物を下記フィルム状の支持体上に下記条件で塗布して、フィルム厚が100μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を支持体上に作製した。
・塗布ヘッド方式:コンマコーター
・塗布及び乾燥速度:1m/分
・乾燥条件(温度/炉長):110℃/3.3m、130℃/3.3m、140℃/3.3m
・フィルム状の支持体:38μm厚のポリエチレンテレフタレートフィルム
<Production of sealing film>
(Example 1)
172 g of the organic solvent E1 was placed in a 10 L polyethylene container. After adding 542 g of the inorganic filler D1 to the container, the inorganic filler D1 was dispersed with a stirring blade to obtain a dispersion. To this dispersion, 48 g of thermosetting resin A1, 12 g of thermosetting resin A2, and 38 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 0.8 g of the curing accelerator C1 was added, and the mixture was further stirred for 1 hour to obtain a mixed liquid. This mixed solution was filtered through a nylon #200 mesh (75 μm opening), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto the following film-like support under the following conditions to form a sealing film (film-like epoxy resin composition) having a film thickness of 100 μm on the support. made above.
・Coating head method: Comma coater ・Coating and drying speed: 1 m/min ・Drying conditions (temperature/furnace length): 110°C/3.3m, 130°C/3.3m, 140°C/3.3m
- Film-like support: polyethylene terephthalate film with a thickness of 38 µm

封止用フィルムにおける支持体とは反対側に保護層(12μm厚のポリエチレンテレフタレートフィルム)を配置することにより封止用フィルムの表面を保護した。なお、下記の各評価においては、支持体及び保護層を剥離した上で評価を行った。以下の実施例及び比較例についても同様である。 The surface of the sealing film was protected by placing a protective layer (12 μm thick polyethylene terephthalate film) on the opposite side of the sealing film to the support. In each of the following evaluations, the evaluation was performed after the support and the protective layer were peeled off. The same applies to the following examples and comparative examples.

(実施例2)
10Lのポリエチレン容器に有機溶剤E1を141g入れた。無機充填材D1を493g前記容器に加えた後、撹拌羽根で無機充填材D1を分散して分散液を得た。この分散液に、熱硬化性樹脂A1を88g、熱硬化性樹脂A2を22g、硬化剤B1を70g加えて撹拌した。硬化剤B1が溶解したことを確認した後、硬化促進剤C1を1.4g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#200メッシュ(開口75μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が100μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Example 2)
141 g of organic solvent E1 was placed in a 10 L polyethylene container. After adding 493 g of the inorganic filler D1 to the container, the inorganic filler D1 was dispersed with a stirring blade to obtain a dispersion liquid. To this dispersion, 88 g of thermosetting resin A1, 22 g of thermosetting resin A2, and 70 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 1.4 g of curing accelerator C1 was added, and the mixture was further stirred for 1 hour to obtain a mixed liquid. This mixed solution was filtered through a nylon #200 mesh (75 μm opening), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1 to obtain a sealing film (film-like epoxy resin composition) having a film thickness of 100 μm. made.

(実施例3)
10Lのポリエチレン容器に有機溶剤E1を114g入れた。無機充填材D1を401g前記容器に加えた後、攪拌羽根で無機充填材D1を分散して分散液を得た。この分散液に、熱硬化性樹脂A1を48g、熱硬化性樹脂A2を12g、硬化剤B1を38g加えて撹拌した。硬化剤B1が溶解したことを確認した後、硬化促進剤C1を0.8g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#200メッシュ(開口75μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が100μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Example 3)
114 g of organic solvent E1 was placed in a 10 L polyethylene container. After adding 401 g of the inorganic filler D1 to the container, the inorganic filler D1 was dispersed with a stirring blade to obtain a dispersion liquid. To this dispersion, 48 g of thermosetting resin A1, 12 g of thermosetting resin A2, and 38 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 0.8 g of the curing accelerator C1 was added, and the mixture was further stirred for 1 hour to obtain a mixed liquid. This mixed solution was filtered through a nylon #200 mesh (75 μm opening), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1 to obtain a sealing film (film-like epoxy resin composition) having a film thickness of 100 μm. made.

(実施例4)
10Lのポリエチレン容器に有機溶剤E1を149g入れた。無機充填材D1を423g前記容器に加えた後、無機充填材D3を104g加えて、攪拌羽根で無機充填材D1及びD3を分散して分散液を得た。無機充填材D1及びD3の平均粒子径は1.0μmであった。この分散液に、熱硬化性樹脂A1を48g、熱硬化性樹脂A2を12g、硬化剤B1を38g加えて撹拌した。硬化剤B1が溶解したことを確認した後、硬化促進剤C1を0.8g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#200メッシュ(開口75μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が100μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Example 4)
149 g of organic solvent E1 was placed in a 10 L polyethylene container. After adding 423 g of the inorganic filler D1 to the container, 104 g of the inorganic filler D3 was added, and the inorganic fillers D1 and D3 were dispersed with a stirring blade to obtain a dispersion. The average particle size of inorganic fillers D1 and D3 was 1.0 μm. To this dispersion, 48 g of thermosetting resin A1, 12 g of thermosetting resin A2, and 38 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 0.8 g of the curing accelerator C1 was added, and the mixture was further stirred for 1 hour to obtain a mixed liquid. This mixed solution was filtered through a nylon #200 mesh (75 μm opening), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1 to obtain a sealing film (film-like epoxy resin composition) having a film thickness of 100 μm. made.

(比較例1)
10Lのポリエチレン容器に有機溶剤E1を96g入れた。無機充填材D1を328g前記容器に加えた後、攪拌羽根で無機充填材D1を分散して分散液を得た。この分散液に、熱硬化性樹脂A1を144g、熱硬化性樹脂A2を36g、硬化剤B1を114g加えて撹拌した。硬化剤B1が溶解したことを確認した後、硬化促進剤C1を2.3g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#200メッシュ(開口75μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が100μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Comparative example 1)
96 g of the organic solvent E1 was placed in a 10 L polyethylene container. After adding 328 g of the inorganic filler D1 to the container, the inorganic filler D1 was dispersed with a stirring blade to obtain a dispersion liquid. To this dispersion, 144 g of thermosetting resin A1, 36 g of thermosetting resin A2, and 114 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 2.3 g of the curing accelerator C1 was added, and the mixture was further stirred for 1 hour to obtain a mixed liquid. This mixed solution was filtered through a nylon #200 mesh (75 μm opening), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1 to obtain a sealing film (film-like epoxy resin composition) having a film thickness of 100 μm. made.

(比較例2)
10Lのポリエチレン容器に有機溶剤E1を4629g入れた。無機充填材D3を6622g前記容器に加えた後、攪拌羽根で無機充填材D3を分散して分散液を得た。この分散液に、熱硬化性樹脂A1を680g、熱硬化性樹脂A2を240g、熱硬化性樹脂A3を202g、熱硬化性樹脂A4を78g、硬化剤B1を711g加えて撹拌した。硬化剤B1が溶解したことを確認した後、硬化促進剤C1を15g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#200メッシュ(開口75μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が100μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Comparative example 2)
4629 g of the organic solvent E1 was placed in a 10 L polyethylene container. After adding 6622 g of the inorganic filler D3 to the container, the inorganic filler D3 was dispersed with a stirring blade to obtain a dispersion liquid. To this dispersion, 680 g of thermosetting resin A1, 240 g of thermosetting resin A2, 202 g of thermosetting resin A3, 78 g of thermosetting resin A4, and 711 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 15 g of the curing accelerator C1 was added, and the mixture was further stirred for 1 hour to obtain a mixed liquid. This mixed solution was filtered through a nylon #200 mesh (75 μm opening), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1 to obtain a sealing film (film-like epoxy resin composition) having a film thickness of 100 μm. made.

(比較例3)
比較例1の塗布及び乾燥速度を1m/分から0.5m/分へ変更した以外は、比較例1と同様にしてフィルム厚が100μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Comparative Example 3)
A sealing film (film-like epoxy resin composition) having a film thickness of 100 μm was produced in the same manner as in Comparative Example 1, except that the coating and drying speed in Comparative Example 1 was changed from 1 m/min to 0.5 m/min. .

(実施例5)
10Lのポリエチレン容器に有機溶剤E1を83g入れた。無機充填材D5を151g前記容器に加えた後、無機充填材D2を660g、及び、無機充填材D4を53g加えて、攪拌羽根で無機充填材D2,D4及びD5を分散して分散液を得た。無機充填材D2,D4及びD5の平均粒子径は16μmであった。この分散液に、熱硬化性樹脂A5を34g、熱硬化性樹脂A6を11g、硬化剤B2を28g加えて撹拌した。硬化剤B2が溶解したことを確認した後、エラストマーF1を7g、硬化促進剤C2を0.5g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#150メッシュ(開口106μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が125μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Example 5)
83 g of the organic solvent E1 was placed in a 10 L polyethylene container. After adding 151 g of the inorganic filler D5 to the container, 660 g of the inorganic filler D2 and 53 g of the inorganic filler D4 are added, and the inorganic fillers D2, D4 and D5 are dispersed with a stirring blade to obtain a dispersion liquid. rice field. The average particle size of inorganic fillers D2, D4 and D5 was 16 μm. To this dispersion, 34 g of thermosetting resin A5, 11 g of thermosetting resin A6, and 28 g of curing agent B2 were added and stirred. After confirming that the curing agent B2 was dissolved, 7 g of the elastomer F1 and 0.5 g of the curing accelerator C2 were added and further stirred for 1 hour to obtain a mixed liquid. This mixed solution was filtered through #150 nylon mesh (opening 106 μm), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1 to obtain a sealing film (film-like epoxy resin composition) having a film thickness of 125 μm. made.

(実施例6)
10Lのポリエチレン容器に有機溶剤E1を83g入れた。無機充填材D5を98g前記容器に加えた後、無機充填材D2を430g、及び、無機充填材D4を34g加えて、攪拌羽根で無機充填材D2,D4及びD5を分散して分散液を得た。無機充填材D2,D4及びD5の平均粒子径は18μmであった。この分散液に、熱硬化性樹脂A5を21g、熱硬化性樹脂A6を7g、硬化剤B2を17g加えて撹拌した。硬化剤B2が溶解したことを確認した後、エラストマーF1を8g、硬化促進剤C1を0.14g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#150メッシュ(開口106μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が125μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Example 6)
83 g of the organic solvent E1 was placed in a 10 L polyethylene container. After adding 98 g of the inorganic filler D5 to the container, 430 g of the inorganic filler D2 and 34 g of the inorganic filler D4 are added, and the inorganic fillers D2, D4 and D5 are dispersed with a stirring blade to obtain a dispersion liquid. rice field. The average particle size of inorganic fillers D2, D4 and D5 was 18 μm. To this dispersion, 21 g of thermosetting resin A5, 7 g of thermosetting resin A6, and 17 g of curing agent B2 were added and stirred. After confirming that the curing agent B2 was dissolved, 8 g of the elastomer F1 and 0.14 g of the curing accelerator C1 were added and further stirred for 1 hour to obtain a mixed liquid. This mixed solution was filtered through #150 nylon mesh (opening 106 μm), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1 to obtain a sealing film (film-like epoxy resin composition) having a film thickness of 125 μm. made.

(実施例7)
10Lのポリエチレン容器に有機溶剤E1を83g入れた。無機充填材D3を68.6g前記容器に加えた後、無機充填材D2を463g、及び、無機充填材D4を34.3g加えて、攪拌羽根で無機充填材D2,D3及びD4を分散して分散液を得た。無機充填材D2,D3及びD4の平均粒子径は18μmであった。この分散液に、熱硬化性樹脂A5を18.3g、熱硬化性樹脂A6を4.6g、硬化剤B2を14.4g加えて撹拌した。硬化剤B2が溶解したことを確認した後、エラストマーF1を5.6g、硬化促進剤C1を0.11g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#150メッシュ(開口106μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が125μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Example 7)
83 g of the organic solvent E1 was placed in a 10 L polyethylene container. After adding 68.6 g of the inorganic filler D3 to the container, 463 g of the inorganic filler D2 and 34.3 g of the inorganic filler D4 are added, and the inorganic fillers D2, D3 and D4 are dispersed with a stirring blade. A dispersion was obtained. The average particle size of inorganic fillers D2, D3 and D4 was 18 μm. To this dispersion, 18.3 g of thermosetting resin A5, 4.6 g of thermosetting resin A6, and 14.4 g of curing agent B2 were added and stirred. After confirming that the curing agent B2 was dissolved, 5.6 g of the elastomer F1 and 0.11 g of the curing accelerator C1 were added and further stirred for 1 hour to obtain a mixed liquid. This mixed solution was filtered through #150 nylon mesh (opening 106 μm), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1 to obtain a sealing film (film-like epoxy resin composition) having a film thickness of 125 μm. made.

(実施例8)
10Lのポリエチレン容器に有機溶剤E1を83g入れた。無機充填材D3を68.6g前記容器に加えた後、無機充填材D2を463g、及び、無機充填材D4を34.3g加えて、攪拌羽根で無機充填材D2,D3及びD4を分散して分散液を得た。無機充填材D2,D3及びD4の平均粒子径は18μmであった。この分散液に、熱硬化性樹脂A5を17.9g、熱硬化性樹脂A6を4.5g、硬化剤B2を14g加えて撹拌した。硬化剤B2が溶解したことを確認した後、エラストマーF1を6.4g、硬化促進剤C1を0.11g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#150メッシュ(開口106μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が125μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Example 8)
83 g of the organic solvent E1 was placed in a 10 L polyethylene container. After adding 68.6 g of the inorganic filler D3 to the container, 463 g of the inorganic filler D2 and 34.3 g of the inorganic filler D4 are added, and the inorganic fillers D2, D3 and D4 are dispersed with a stirring blade. A dispersion was obtained. The average particle size of inorganic fillers D2, D3 and D4 was 18 μm. To this dispersion, 17.9 g of thermosetting resin A5, 4.5 g of thermosetting resin A6, and 14 g of curing agent B2 were added and stirred. After confirming that the curing agent B2 was dissolved, 6.4 g of the elastomer F1 and 0.11 g of the curing accelerator C1 were added and further stirred for 1 hour to obtain a mixed liquid. This mixed solution was filtered through #150 nylon mesh (opening 106 μm), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1 to obtain a sealing film (film-like epoxy resin composition) having a film thickness of 125 μm. made.

<評価>
(1)封止用フィルムの硬化物の熱伝導率A
下記条件で、実施例1~8及び比較例1~3の封止用フィルム(厚さ:100μm又は125μm)の両面を銅箔でラミネートし、両面銅箔付き封止用フィルムを得た。
・ラミネータ装置:株式会社名機製作所製の真空加圧ラミネータ、商品名「MVLP-500」
・ラミネート温度:90℃
・ラミネート圧力:0.5MPa
・真空引き時間:30秒
・ラミネート時間:40秒
<Evaluation>
(1) Thermal conductivity A of the cured product of the sealing film
Both sides of the sealing films (thickness: 100 μm or 125 μm) of Examples 1 to 8 and Comparative Examples 1 to 3 were laminated with copper foils under the following conditions to obtain sealing films with copper foils on both sides.
・ Laminator device: Vacuum pressurized laminator manufactured by Meiki Seisakusho Co., Ltd., trade name “MVLP-500”
・Lamination temperature: 90°C
・Lamination pressure: 0.5 MPa
・Evacuation time: 30 seconds ・Lamination time: 40 seconds

得られた両面銅箔付き封止用フィルムを、下記条件で硬化し、銅箔付きエポキシ樹脂硬化体を作製した。
・オーブン:エスペック株式会社製、商品名「SAFETY OVEN SPH-201」
・オーブン温度:140℃
・加熱時間:120分
The resulting sealing film with copper foil on both sides was cured under the following conditions to produce a cured epoxy resin with copper foil.
・ Oven: Espec Co., Ltd., trade name “SAFETY OVEN SPH-201”
・Oven temperature: 140℃
・Heating time: 120 minutes

作製した銅箔付きエポキシ樹脂硬化体の銅箔をエッチングにより除去し、エポキシ樹脂硬化体(封止用フィルムの硬化物)を得た。得られたエポキシ樹脂硬化体を1cm角にカットし、下記装置を用いて熱拡散率を測定した。
・熱拡散率測定装置:ネッチ(NETZSCH)社製の商品名「LFA447」(キセノンフラッシュアナライザー)
The copper foil of the produced cured epoxy resin body with copper foil was removed by etching to obtain a cured epoxy resin body (cured material of sealing film). The obtained epoxy resin cured product was cut into 1 cm squares, and the thermal diffusivity was measured using the following device.
・ Thermal diffusivity measurement device: trade name “LFA447” (xenon flash analyzer) manufactured by NETZSCH

また、得られたエポキシ樹脂硬化体の比重を下記比重計にて測定した。
・比重計:アルファミラージュ社製の商品名「SD200L」
Further, the specific gravity of the obtained cured epoxy resin was measured with the following hydrometer.
・ Hydrometer: Product name “SD200L” manufactured by Alpha Mirage Co., Ltd.

また、得られたエポキシ樹脂硬化体の比熱を下記条件の示差走査熱量測定にて求めた。
・示差走査熱量測定装置:TAインスツルメントジャパン社製の商品名「Q-200」
・試験条件:25℃、10分(一定)→25~60℃(10℃/min)→60℃、10分(一定)
Further, the specific heat of the epoxy resin cured product obtained was determined by differential scanning calorimetry under the following conditions.
・ Differential scanning calorimeter: trade name "Q-200" manufactured by TA Instruments Japan Co., Ltd.
・Test conditions: 25°C, 10 minutes (constant) → 25 to 60°C (10°C/min) → 60°C, 10 minutes (constant)

得られた熱拡散率、比重及び比熱を用いて、下記式(1)により熱伝導率を求めた。
熱伝導率=熱拡散率×比重×比熱・・・(1)
Using the obtained thermal diffusivity, specific gravity and specific heat, the thermal conductivity was determined by the following formula (1).
Thermal conductivity = thermal diffusivity x specific gravity x specific heat (1)

そして、下記評価基準に基づいて熱伝導率を評価した。実施例1~4の結果を表1に示す。なお、実施例5~8の熱伝導率は実施例1~4と同等(評価:A)であり、例えば、実施例5の熱伝導率は2.73W/m・Kであった。
「A」:熱伝導率>2.5W/m・K
「B」:熱伝導率≦2.5W/m・K
Then, thermal conductivity was evaluated based on the following evaluation criteria. Table 1 shows the results of Examples 1-4. The thermal conductivity of Examples 5 to 8 was equivalent to that of Examples 1 to 4 (evaluation: A). For example, the thermal conductivity of Example 5 was 2.73 W/m·K.
"A": Thermal conductivity > 2.5 W / m K
"B": thermal conductivity ≤ 2.5 W / m · K

(2)封止用フィルムの硬化物の熱伝導率B
実施例5~8の封止用フィルム(厚さ125μm)をそれぞれ4枚重ね、ハンドプレスを用いて下記条件で厚さ500μmの積層フィルムを作製した。
・ハンドプレス装置:株式会社井元製作所製の商品名「BIG HEART」
・ハンドプレス成形温度:140℃
・ハンドプレス成形時間:30分
・成形荷重:20kN
(2) Thermal conductivity B of cured product of sealing film
Four sheets of each sealing film (thickness: 125 μm) of Examples 5 to 8 were stacked, and a laminated film having a thickness of 500 μm was produced using a hand press under the following conditions.
・ Hand press device: Trade name “BIG HEART” manufactured by Imoto Manufacturing Co., Ltd.
・Hand press molding temperature: 140°C
・Hand press molding time: 30 minutes ・Forming load: 20 kN

得られた厚さ500μmの積層フィルムを下記条件で硬化し、エポキシ樹脂硬化体(封止用フィルムの硬化物)を作製した。
・オーブン:エスペック株式会社製の商品名「SAFETY OVEN SPH-201」
・オーブン温度:140℃
・加熱時間:90分
The resulting laminated film having a thickness of 500 μm was cured under the following conditions to prepare an epoxy resin cured product (cured product of sealing film).
・ Oven: Product name “SAFETY OVEN SPH-201” manufactured by Espec Co., Ltd.
・Oven temperature: 140℃
・Heating time: 90 minutes

得られたエポキシ樹脂硬化体を1cm角にカットし、熱抵抗率測定器を用いて温度傾斜法によりエポキシ樹脂硬化体の熱伝導率を測定した。そして、下記評価基準に基づいて熱伝導率を評価した。結果を表2に示す。
「A」:熱伝導率>2.5W/m・K
「B」:熱伝導率≦2.5W/m・K
The cured epoxy resin body thus obtained was cut into 1 cm squares, and the thermal conductivity of the cured epoxy resin body was measured by the temperature gradient method using a thermal resistivity measuring instrument. Then, thermal conductivity was evaluated based on the following evaluation criteria. Table 2 shows the results.
"A": Thermal conductivity > 2.5 W / m K
"B": thermal conductivity ≤ 2.5 W / m · K

(3)封止用フィルムの溶剤含有量
得られた封止用フィルムを5cm角の試料に切り出した。この試料を予め質量を測定したアルミニウムカップに入れて、試料が入ったアルミニウムカップの質量を測定した。次いで、試料をアルミニウムカップに入れたまま、180℃のオーブンで10分間加熱した後、室温(25℃)にて10分間放置した。次いで、試料が入ったアルミニウムカップの質量を再度測定した。次いで、試料が入ったアルミニウムカップの質量の測定値(加熱前及び加熱後)から、別途測定したアルミニウムカップの質量を差し引いて、加熱前及び加熱後の封止用フィルムの質量をそれぞれ求めた。そして、加熱前の封止用フィルムの質量から加熱後の封止用フィルムの質量を差し引いた値を、加熱前の封止用フィルムの質量で除して得られる割合を溶剤含有量として得た。結果を表1及び表2に示す。
(3) Solvent Content of Sealing Film The obtained sealing film was cut into a 5 cm square sample. This sample was placed in an aluminum cup whose mass had been measured in advance, and the mass of the aluminum cup containing the sample was measured. Next, while the sample was kept in the aluminum cup, it was heated in an oven at 180° C. for 10 minutes, and then left at room temperature (25° C.) for 10 minutes. The aluminum cup containing the sample was then weighed again. Next, the mass of the sealing film before and after heating was obtained by subtracting the mass of the separately measured aluminum cup from the measured mass of the aluminum cup containing the sample (before and after heating). Then, the ratio obtained by dividing the value obtained by subtracting the mass of the sealing film after heating from the mass of the sealing film before heating by the mass of the sealing film before heating was obtained as the solvent content. . The results are shown in Tables 1 and 2.

(4)埋め込み性
厚さ100μm又は125μmの封止用フィルムをそれぞれ4枚重ね、厚さが400μm又は500μmである積層フィルムを得た。以下の手順で、積層フィルムを用いて、8インチサイズのeWLBパッケージを作製した。図2は、本測定におけるシリコンチップの配置図を示す。まず、図2に示すように、SUS板50上に、厚さ350μmのシリコンチップ(7.3mm角シリコンチップ60、及び、3mm角シリコンチップ70)を配置した。次いで、積層フィルムを直径20cmの円状に切り出し、前記シリコンチップの上に載せた。次いで、コンプレッションモールド装置(アピックヤマダ株式会社製、商品名:WCM-300)を用いて、下記条件でシリコンチップを封止して封止体(封止構造体)を得た。
・コンプレッションモールド成形温度:140℃
・コンプレッションモールド圧力:2.5MPa
・コンプレッションモールド時間:10分
(4) Embedability Four layers of sealing films each having a thickness of 100 μm or 125 μm were laminated to obtain a laminate film having a thickness of 400 μm or 500 μm. An 8-inch eWLB package was produced using the laminated film in the following procedure. FIG. 2 shows a layout of silicon chips in this measurement. First, as shown in FIG. 2, silicon chips (7.3 mm square silicon chip 60 and 3 mm square silicon chip 70) having a thickness of 350 μm were arranged on the SUS plate 50. As shown in FIG. Then, the laminate film was cut into a circle with a diameter of 20 cm and placed on the silicon chip. Then, using a compression molding machine (manufactured by Apic Yamada Co., Ltd., trade name: WCM-300), the silicon chip was sealed under the following conditions to obtain a sealed body (sealed structure).
・Compression molding temperature: 140°C
・Compression mold pressure: 2.5 MPa
・Compression mold time: 10 minutes

次いで、作製した封止体を下記条件で加熱することにより硬化し、硬化体を作製した。これにより、eWLBパッケージを得た。
・オーブン:エスペック株式会社製の商品名「SAFETY OVEN SPH-201」
・オーブン温度:140℃
・加熱時間:120分
Next, the produced sealed body was cured by heating under the following conditions to produce a cured body. This resulted in an eWLB package.
・ Oven: Product name “SAFETY OVEN SPH-201” manufactured by Espec Co., Ltd.
・Oven temperature: 140℃
・Heating time: 120 minutes

作製した硬化体の埋め込み性を下記評価基準に基づいて評価した。結果を表1及び表2に示す。
「A」:ボイドなく埋め込みでき、表面が平滑であるもの
「B」:ボイドが一部に見られ、表面が平滑であるもの
「C」:ボイドが見られ、表面の平滑に劣るもの
The embeddability of the produced cured product was evaluated based on the following evaluation criteria. The results are shown in Tables 1 and 2.
"A": Can be embedded without voids and has a smooth surface "B": Some voids are seen and the surface is smooth "C": Voids are seen and the surface is inferior in smoothness

Figure 0007115520000001
Figure 0007115520000001

Figure 0007115520000002
Figure 0007115520000002

<評価結果>
表1及び表2に示したように、熱硬化性成分及び無機充填材を含有する樹脂組成物におおいて、無機充填材が酸化アルミニウムを含み、無機充填材の含有量が、樹脂組成物の総質量(溶剤の質量を除く)を基準として72質量%以上である場合、硬化物の熱伝導率に関して優れた効果を得られることが分かる。表1に示した実施例4から、無機充填材がシリカを含む場合であっても、硬化物の熱伝導率に関して優れた効果を得られることが分かる。
<Evaluation results>
As shown in Tables 1 and 2, in the resin composition containing a thermosetting component and an inorganic filler, the inorganic filler contains aluminum oxide, and the content of the inorganic filler is It can be seen that when the amount is 72% by mass or more based on the total mass (excluding the mass of the solvent), excellent effects can be obtained regarding the thermal conductivity of the cured product. From Example 4 shown in Table 1, it can be seen that even when the inorganic filler contains silica, an excellent effect on the thermal conductivity of the cured product can be obtained.

以上の結果から、熱硬化性成分及び無機充填材を含有する樹脂組成物において、無機充填材が酸化アルミニウムを含み、無機充填材の含有量が、樹脂組成物の総質量(溶剤の質量を除く)を基準として72質量%以上である場合に、硬化物の熱伝導率に関して優れた効果が得られ、埋め込み性に優れることが分かった。 From the above results, in the resin composition containing a thermosetting component and an inorganic filler, the inorganic filler contains aluminum oxide, and the content of the inorganic filler is the total weight of the resin composition (excluding the weight of the solvent ) on the basis of 72% by mass or more, it was found that an excellent effect on the thermal conductivity of the cured product is obtained and the embedding property is excellent.

1…支持体、2…封止用フィルム、2a…硬化物、10…支持体付き封止用フィルム、20…半導体素子、30…基板、40…仮固定材、50…SUS板、60…7.3mm角シリコンチップ、70…3mm角シリコンチップ。 DESCRIPTION OF SYMBOLS 1... Support body, 2... Film for sealing, 2a... Cured material, 10... Film for sealing with support body, 20... Semiconductor element, 30... Substrate, 40... Temporary fixing material, 50... SUS plate, 60... 7 .3 mm square silicon chip, 70...3 mm square silicon chip.

Claims (13)

熱硬化性成分及び無機充填材を含有する樹脂組成物を含む、封止用フィルムであって、
前記無機充填材が酸化アルミニウム及びシリカを含み、
前記無機充填材の含有量が、前記樹脂組成物の総質量(溶剤の質量を除く)を基準として72質量%以上85質量%以下であり、
前記無機充填材における酸化アルミニウムの含有量が70質量%以上であり、
前記熱硬化性成分がエポキシ樹脂及び硬化剤を含み、
25℃で液状のエポキシ樹脂の含有量が、前記樹脂組成物の総質量(溶剤の質量を除く)を基準として5質量%以上である、封止用フィルム
A sealing film comprising a resin composition containing a thermosetting component and an inorganic filler,
the inorganic filler comprises aluminum oxide and silica;
The content of the inorganic filler is 72% by mass or more and 85% by mass or less based on the total mass of the resin composition (excluding the mass of the solvent),
The content of aluminum oxide in the inorganic filler is 70% by mass or more,
the thermosetting component comprises an epoxy resin and a curing agent;
A sealing film, wherein the content of an epoxy resin that is liquid at 25°C is 5% by mass or more based on the total mass of the resin composition (excluding the mass of the solvent) .
溶剤を更に含有する、請求項1に記載の封止用フィルム。The sealing film according to Claim 1, further comprising a solvent. 前記溶剤の含有量が0.2~1.5質量%である、請求項2に記載の封止用フィルム 3. The sealing film according to claim 2, wherein the solvent content is 0.2 to 1.5% by mass . 熱硬化性成分無機充填材及び溶剤を含有する樹脂組成物を含む、封止用フィルムであって、
前記無機充填材が酸化アルミニウム及びシリカを含み、
前記無機充填材の含有量が、前記樹脂組成物の総質量(溶剤の質量を除く)を基準として72質量%以上85質量%以下であり、
前記無機充填材における酸化アルミニウムの含有量が70質量%以上であり、
前記熱硬化性成分がエポキシ樹脂及び硬化剤を含み、
前記溶剤の含有量が0.2~1.5質量%である、封止用フィルム
A sealing film comprising a resin composition containing a thermosetting component , an inorganic filler and a solvent ,
the inorganic filler comprises aluminum oxide and silica;
The content of the inorganic filler is 72% by mass or more and 85% by mass or less based on the total mass of the resin composition (excluding the mass of the solvent),
The content of aluminum oxide in the inorganic filler is 70% by mass or more,
the thermosetting component comprises an epoxy resin and a curing agent;
A film for sealing, wherein the content of the solvent is 0.2 to 1.5% by mass .
前記硬化剤がフェノール樹脂を含む、請求項1~4のいずれか一項に記載の封止用フィルムThe sealing film according to any one of Claims 1 to 4 , wherein the curing agent comprises a phenolic resin. 前記熱硬化性成分が硬化促進剤を更に含む、請求項1~5のいずれか一項に記載の封止用フィルムThe sealing film according to any one of claims 1 to 5, wherein said thermosetting component further comprises a curing accelerator. 前記硬化促進剤がイミダゾール化合物を含む、請求項に記載の封止用フィルム7. The sealing film according to claim 6 , wherein said curing accelerator comprises an imidazole compound. 25℃で液状のエポキシ樹脂の含有量が、前記樹脂組成物の総質量(溶剤の質量を除く)を基準として7質量%以上である、請求項1~のいずれか一項に記載の封止用フィルムThe seal according to any one of claims 1 to 7 , wherein the content of the epoxy resin that is liquid at 25°C is 7% by mass or more based on the total mass of the resin composition (excluding the mass of the solvent). stopping film . 前記無機充填材の平均粒子径が0.01~25μmである、請求項1~のいずれか一項に記載の封止用フィルムThe sealing film according to any one of claims 1 to 8 , wherein the inorganic filler has an average particle size of 0.01 to 25 µm. 前記無機充填材の平均粒子径が0.01~10μmである、請求項1~のいずれか一項に記載の封止用フィルムThe sealing film according to any one of claims 1 to 8 , wherein the inorganic filler has an average particle size of 0.01 to 10 µm. 厚さが20~250μmである、請求項1~10のいずれか一項に記載の封止用フィルム。 The sealing film according to any one of claims 1 to 10, which has a thickness of 20 to 250 µm. 被封止体と、当該被封止体を封止する封止部と、を備え、
前記封止部が、請求項1~11のいずれか一項に記載の封止用フィルムの硬化物を含む、封止構造体。
An object to be sealed and a sealing portion that seals the object to be sealed,
A sealing structure, wherein the sealing portion comprises a cured product of the sealing film according to any one of claims 1 to 11 .
前記被封止体が電子部品である、請求項12に記載の封止構造体。 13. The sealing structure according to claim 12 , wherein the object to be sealed is an electronic component.
JP2020147496A 2015-09-02 2020-09-02 Sealing film and sealing structure Active JP7115520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022118529A JP2022136188A (en) 2015-09-02 2022-07-26 Resin composition, cured product, sealing film, and sealing structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015172851 2015-09-02
JP2015172851 2015-09-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017538107A Division JP6763391B2 (en) 2015-09-02 2016-09-01 Resin composition, cured product, sealing film and sealing structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022118529A Division JP2022136188A (en) 2015-09-02 2022-07-26 Resin composition, cured product, sealing film, and sealing structure

Publications (2)

Publication Number Publication Date
JP2020200478A JP2020200478A (en) 2020-12-17
JP7115520B2 true JP7115520B2 (en) 2022-08-09

Family

ID=58187629

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017538107A Active JP6763391B2 (en) 2015-09-02 2016-09-01 Resin composition, cured product, sealing film and sealing structure
JP2020147496A Active JP7115520B2 (en) 2015-09-02 2020-09-02 Sealing film and sealing structure
JP2022118529A Pending JP2022136188A (en) 2015-09-02 2022-07-26 Resin composition, cured product, sealing film, and sealing structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017538107A Active JP6763391B2 (en) 2015-09-02 2016-09-01 Resin composition, cured product, sealing film and sealing structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022118529A Pending JP2022136188A (en) 2015-09-02 2022-07-26 Resin composition, cured product, sealing film, and sealing structure

Country Status (5)

Country Link
JP (3) JP6763391B2 (en)
KR (1) KR102486893B1 (en)
CN (1) CN107924886A (en)
TW (2) TWI825365B (en)
WO (1) WO2017038941A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017283A1 (en) * 2017-07-21 2019-01-24 株式会社村田製作所 Electronic component
CN111527146B (en) * 2017-12-28 2024-03-01 株式会社力森诺科 Epoxy resin composition for ball grid array package sealing, epoxy resin cured product, and electronic component device
JP7272368B2 (en) * 2018-09-27 2023-05-12 株式会社レゾナック Sealing resin composition, electronic component device, and method for manufacturing electronic component device
JP2022107395A (en) * 2021-01-08 2022-07-21 昭和電工マテリアルズ株式会社 Thermosetting resin composition and electronic component device
CN114437511A (en) * 2021-12-31 2022-05-06 江苏科化新材料科技有限公司 Epoxy resin composition and application thereof, epoxy resin molding material and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200533A (en) 2004-01-15 2005-07-28 Kyocera Chemical Corp Epoxy resin composition for sealing semiconductor and resin-sealed semiconductor device
JP2006028264A (en) 2004-07-13 2006-02-02 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic component device
JP2008274083A (en) 2007-04-27 2008-11-13 Shin Etsu Chem Co Ltd Liquid epoxy resin composition and semiconductor device
JP2010229269A (en) 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Heat-conductive epoxy resin sheet material
JP2012025907A (en) 2010-07-27 2012-02-09 Panasonic Electric Works Co Ltd Method for producing electronic part-sealing sheet-like epoxy resin composition material and electronic part
JP2013006893A (en) 2011-06-22 2013-01-10 Hitachi Chemical Co Ltd High thermal conductivity resin composition, high thermal conductivity cured product, adhesive film, sealing film, and semiconductor device using them
JP2014005359A (en) 2012-06-25 2014-01-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and electronic component device
JP2016000784A (en) 2014-06-12 2016-01-07 日東電工株式会社 Resin sheet for sealing

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166729A (en) 1980-05-06 1981-12-22 Mitsubishi Electric Corp Automatic speed aligning device
JP2001127095A (en) 1999-10-29 2001-05-11 Shinko Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2001244372A (en) 2000-03-01 2001-09-07 Seiko Epson Corp Semiconductor device and its manufacturing method
JP3995421B2 (en) * 2001-01-19 2007-10-24 株式会社ルネサステクノロジ Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP5799532B2 (en) * 2011-03-10 2015-10-28 住友ベークライト株式会社 Semiconductor sealing resin composition, semiconductor device, and method for manufacturing semiconductor device
JP6171280B2 (en) * 2012-07-31 2017-08-02 味の素株式会社 Manufacturing method of semiconductor device
JP2015106698A (en) * 2013-12-02 2015-06-08 味の素株式会社 Method for manufacturing semiconductor device
KR20160101962A (en) * 2013-12-26 2016-08-26 닛토덴코 가부시키가이샤 Method for producing semiconductor device, and thermosetting resin sheet
WO2015098842A1 (en) * 2013-12-26 2015-07-02 日東電工株式会社 Method for manufacturing semiconductor device
JP2015126124A (en) * 2013-12-26 2015-07-06 日東電工株式会社 Semiconductor package manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200533A (en) 2004-01-15 2005-07-28 Kyocera Chemical Corp Epoxy resin composition for sealing semiconductor and resin-sealed semiconductor device
JP2006028264A (en) 2004-07-13 2006-02-02 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic component device
JP2008274083A (en) 2007-04-27 2008-11-13 Shin Etsu Chem Co Ltd Liquid epoxy resin composition and semiconductor device
JP2010229269A (en) 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Heat-conductive epoxy resin sheet material
JP2012025907A (en) 2010-07-27 2012-02-09 Panasonic Electric Works Co Ltd Method for producing electronic part-sealing sheet-like epoxy resin composition material and electronic part
JP2013006893A (en) 2011-06-22 2013-01-10 Hitachi Chemical Co Ltd High thermal conductivity resin composition, high thermal conductivity cured product, adhesive film, sealing film, and semiconductor device using them
JP2014005359A (en) 2012-06-25 2014-01-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and electronic component device
JP2016000784A (en) 2014-06-12 2016-01-07 日東電工株式会社 Resin sheet for sealing

Also Published As

Publication number Publication date
CN107924886A (en) 2018-04-17
KR102486893B1 (en) 2023-01-09
KR20180048674A (en) 2018-05-10
TW201718692A (en) 2017-06-01
JP2022136188A (en) 2022-09-15
TW202126719A (en) 2021-07-16
TWI825365B (en) 2023-12-11
JP6763391B2 (en) 2020-09-30
WO2017038941A1 (en) 2017-03-09
JP2020200478A (en) 2020-12-17
TWI714625B (en) 2021-01-01
JPWO2017038941A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP7115520B2 (en) Sealing film and sealing structure
US9873771B2 (en) Film-like epoxy resin composition, method of producing film-like epoxy resin composition, and method of producing semiconductor device
JP6749887B2 (en) Sealing film and electronic component device using the same
WO2016125350A1 (en) Epoxy resin composition, film-like epoxy resin composition, cured product, and electronic device
JP6801659B2 (en) Epoxy resin composition, film epoxy resin composition and electronic device
JP6705501B2 (en) Manufacturing method of sealing structure
JP6717005B2 (en) Resin composition, cured product, resin film, sealing material and sealing structure
JP7099453B2 (en) Encapsulating film, encapsulation structure and method for manufacturing encapsulation structure
JP7115469B2 (en) Sealing film, method for manufacturing electronic component device, and electronic component device
JP7124819B2 (en) Sealing film, sealing structure, and method for producing sealing structure
JP7070559B2 (en) Encapsulating film and encapsulation structure, and methods for manufacturing these
JP2018064054A (en) Encapsulation material, and manufacturing method of encapsulation structure
JP7354666B2 (en) Sealing film, sealing structure, and method for manufacturing the sealing structure
WO2018092606A1 (en) Encapsulation film and cured product thereof, and electronic device
JP6834265B2 (en) Manufacturing method of sealing structure, sealing material and cured product
JP2024129384A (en) Sealing film and manufacturing method thereof, and electronic component device and manufacturing method thereof
WO2016204182A1 (en) Thermosetting resin composition, cured material, resin sheet, sealing structure and method for manufacturing same, and electronic component device and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R151 Written notification of patent or utility model registration

Ref document number: 7115520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350