JP7111602B2 - Thermally conductive polycarbonate resin composition - Google Patents
Thermally conductive polycarbonate resin composition Download PDFInfo
- Publication number
- JP7111602B2 JP7111602B2 JP2018233435A JP2018233435A JP7111602B2 JP 7111602 B2 JP7111602 B2 JP 7111602B2 JP 2018233435 A JP2018233435 A JP 2018233435A JP 2018233435 A JP2018233435 A JP 2018233435A JP 7111602 B2 JP7111602 B2 JP 7111602B2
- Authority
- JP
- Japan
- Prior art keywords
- bis
- hydroxyphenyl
- weight
- component
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、熱伝導性ポリカーボネート樹脂組成物およびその成形品に関する。さらに詳しくは、熱伝導性、耐熱性、難燃性、剛性および絶縁性に優れた熱可塑性樹脂組成物およびその成形品に関する。 TECHNICAL FIELD The present invention relates to a thermally conductive polycarbonate resin composition and molded articles thereof. More particularly, the present invention relates to a thermoplastic resin composition excellent in thermal conductivity, heat resistance, flame retardancy, rigidity and insulation, and molded articles thereof.
ポリカーボネート樹脂は、耐熱性、難燃性に優れ、また機械強度に優れた性質を有することから自動車の内装および外装部品の分野やOA機器の分野、電気電子機器分野などに広く用いられている。近年は発生する熱を効率的に外部へ放熱するため、ポリカーボネート樹脂の熱伝導性を高めつつ、樹脂の耐熱性、難燃性、剛性、絶縁性に優れた熱可塑性樹脂組成物への要求が高まっている。 Polycarbonate resins are widely used in the fields of automobile interior and exterior parts, OA equipment, electrical and electronic equipment, etc., due to their excellent heat resistance, flame retardancy, and mechanical strength. In recent years, in order to efficiently dissipate the generated heat to the outside, there is a demand for a thermoplastic resin composition that has excellent heat resistance, flame retardancy, rigidity, and insulation while enhancing the thermal conductivity of polycarbonate resin. rising.
これらの高分子組成物の熱伝導性を更に向上させる方法として、熱伝導性の高い炭素系材料を高分子材料に充填させた熱伝導性高分子材料が提案されている。例えば、高分子材料に黒鉛化炭素繊維を添加する方法(特許文献1~3参照)、熱可塑性樹脂にピッチ系炭素繊維と鱗状黒鉛を添加する方法が公知であるが、絶縁性の低下や難燃性の低下など様々な課題があった。 As a method for further improving the thermal conductivity of these polymer compositions, a thermally conductive polymer material in which a carbonaceous material having high thermal conductivity is filled in the polymer material has been proposed. For example, a method of adding graphitized carbon fiber to a polymer material (see Patent Documents 1 to 3) and a method of adding pitch-based carbon fiber and flake graphite to a thermoplastic resin are known. There were various problems such as a decrease in combustibility.
一方、絶縁性を維持したまま熱伝導率を向上させるためには酸化アルミニウムや窒化ホウ素、窒化アルミニウム、窒化ケイ素、酸化マグネシウム、酸化亜鉛、炭化ケイ素、石英、水酸化アルミニウムなどの金属酸化物、金属窒化物、金属炭化物、金属水酸化物などの充填剤を添加することが知られているが、熱伝導性を向上させ、高い難燃性を発現させた熱可塑性樹脂を得ることは困難であった(特許文献4~7参照)。また、ポリカーボネート樹脂の絶縁性を維持したまま熱伝導性、難燃性など向上させるために特定の窒化ホウ素を使用したり、アミン系シランカップリング剤を添加することが知られているが、熱伝導性、耐熱性、難燃性、剛性が十分とはいえないのが現状である(特許文献8、9参照)。 On the other hand, in order to improve the thermal conductivity while maintaining the insulating properties, metal oxides and metals such as aluminum oxide, boron nitride, aluminum nitride, silicon nitride, magnesium oxide, zinc oxide, silicon carbide, quartz, aluminum hydroxide, etc. It is known to add fillers such as nitrides, metal carbides, and metal hydroxides, but it is difficult to obtain thermoplastic resins with improved thermal conductivity and high flame retardancy. (See Patent Documents 4 to 7). In addition, it is known to use a specific boron nitride or add an amine-based silane coupling agent to improve thermal conductivity and flame retardancy while maintaining the insulating properties of polycarbonate resin. At present, it cannot be said that conductivity, heat resistance, flame retardancy, and rigidity are sufficient (see Patent Documents 8 and 9).
上記に鑑み、本発明の目的は、熱伝導性、耐熱性、難燃性、剛性および絶縁性に優れたポリカーボネート樹脂組成物およびその成形品を提供することにある。 In view of the above, an object of the present invention is to provide a polycarbonate resin composition excellent in thermal conductivity, heat resistance, flame retardancy, rigidity and insulation, and a molded product thereof.
本発明者は上記課題を解決するため鋭意検討を行った結果、ポリカーボネート樹脂、ガラス繊維、特定の窒化ホウ素、臭素系難燃剤および含フッ素滴下防止剤を特性の割合で配合することにより、熱伝導性、耐熱性、難燃性、剛性および絶縁性に優れた熱伝導性ポリカーボネート樹脂組成物およびその成形品を得る方法を見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the inventors of the present invention found that by blending polycarbonate resin, glass fiber, specific boron nitride, brominated flame retardant and fluorine-containing anti-dripping agent in a specific ratio, heat conduction The inventors have found a method for obtaining a thermally conductive polycarbonate resin composition and a molded article thereof, which are excellent in durability, heat resistance, flame retardancy, rigidity and insulation, and have completed the present invention.
本発明によれば、上記課題は(A)ポリカーボネート樹脂(A成分)100重量部に対して、(B)ガラス繊維(B成分)20~60重量部、(C)平均粒子径が15μm~28μm、タップ密度が0.5g/ml以上である窒化ホウ素(C成分)5~40重量部、(D)臭素系難燃剤5~30重量部(D成分)および(E)含フッ素滴下防止剤(E成分)0.1~5重量部を含有することを特徴とする熱伝導性ポリカーボネート樹脂組成物にて達成される。 According to the present invention, the above problems are solved by (A) polycarbonate resin (component A) of 100 parts by weight, (B) glass fiber (component B) of 20 to 60 parts by weight, and (C) average particle size of 15 μm to 28 μm. , 5 to 40 parts by weight of boron nitride (component C) having a tap density of 0.5 g / ml or more, (D) 5 to 30 parts by weight of a brominated flame retardant (component D) and (E) a fluorine-containing anti-dripping agent ( Component E) is achieved with a thermally conductive polycarbonate resin composition characterized by containing 0.1 to 5 parts by weight.
以下、本発明の詳細について説明する。 The details of the present invention will be described below.
(A成分:ポリカーボネート樹脂)
本発明において使用されるポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
(A component: polycarbonate resin)
The polycarbonate resin used in the present invention is obtained by reacting a dihydric phenol with a carbonate precursor. Examples of reaction methods include an interfacial polymerization method, a melt transesterification method, a solid-phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’-ビフェノール、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、4,4’-(p-フェニレンジイソプロピリデン)ジフェノール、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシフェニル)エステル、ビス(4-ヒドロキシ-3-メチルフェニル)スルフィド、9,9-ビス(4-ヒドロキシフェニル)フルオレンおよび9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4-ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく、汎用されている。 Representative examples of dihydric phenols used herein include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl ) propane (commonly known as bisphenol A), 2,2-bis(4-hydroxy-3-methylphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 1,1-bis(4-hydroxyphenyl)- 1-phenylethane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 2,2-bis(4-hydroxyphenyl) Pentane, 4,4'-(p-phenylenediisopropylidene)diphenol, 4,4'-(m-phenylenediisopropylidene)diphenol, 1,1-bis(4-hydroxyphenyl)-4-isopropylcyclohexane , bis(4-hydroxyphenyl) oxide, bis(4-hydroxyphenyl) sulfide, bis(4-hydroxyphenyl) sulfoxide, bis(4-hydroxyphenyl) sulfone, bis(4-hydroxyphenyl) ketone, bis(4- hydroxyphenyl) ester, bis(4-hydroxy-3-methylphenyl)sulfide, 9,9-bis(4-hydroxyphenyl)fluorene and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene. be done. Preferred dihydric phenols are bis(4-hydroxyphenyl)alkanes, of which bisphenol A is particularly preferred from the standpoint of impact resistance and is widely used.
本発明では、汎用のポリカーボネートであるビスフェノールA系のポリカーボネート以外にも、他の2価フェノール類を用いて製造した特殊なポリカーボネ-トをA成分として使用することが可能である。 In the present invention, in addition to bisphenol A-based polycarbonates, which are general-purpose polycarbonates, special polycarbonates produced using other dihydric phenols can be used as component A.
例えば、2価フェノール成分の一部又は全部として、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(以下“Bis-TMC”と略称することがある)、9,9-ビス(4-ヒドロキシフェニル)フルオレン及び9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ-ト(単独重合体又は共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の2価フェノールは、該ポリカーボネートを構成する2価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。 For example, as part or all of the dihydric phenol component, 4,4′-(m-phenylenediisopropylidene)diphenol (hereinafter sometimes abbreviated as “BPM”), 1,1-bis(4-hydroxy phenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane (hereinafter sometimes abbreviated as "Bis-TMC"), 9,9-bis(4-hydroxyphenyl) Polycarbonate (homopolymer or copolymer) using fluorene and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene (hereinafter sometimes abbreviated as “BCF”) has dimensions due to water absorption. Suitable for applications with particularly stringent demands on change and morphological stability. These dihydric phenols other than BPA are preferably used in an amount of 5 mol % or more, particularly 10 mol % or more, of the total dihydric phenol components constituting the polycarbonate.
殊に、高剛性かつより良好な耐加水分解性が要求される場合には、樹脂組成物を構成するA成分が次の(1)~(3)の共重合ポリカーボネートであるのが特に好適である。
(1)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつBCFが20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPAが10~95モル%(より好適には50~90モル%、さらに好適には60~85モル%)であり、かつBCFが5~90モル%(より好適には10~50モル%、さらに好適には15~40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつBis-TMCが20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。
In particular, when high rigidity and better hydrolysis resistance are required, it is particularly preferable that component A constituting the resin composition is the following copolymerized polycarbonate (1) to (3). be.
(1) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, still more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF is 20 to 80 mol % (more preferably 25 to 60 mol %, still more preferably 35 to 55 mol %).
(2) BPA is 10 to 95 mol% (more preferably 50 to 90 mol%, still more preferably 60 to 85 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF is 5 to 90 mol % (more preferably 10 to 50 mol %, still more preferably 15 to 40 mol %).
(3) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, still more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and Bis - A copolymerized polycarbonate in which TMC is 20 to 80 mol% (more preferably 25 to 60 mol%, still more preferably 35 to 55 mol%).
これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。 These special polycarbonates may be used alone or in combination of two or more. Moreover, these can also be used by mixing with a widely used bisphenol A type polycarbonate.
これらの特殊なポリカーボネートの製法及び特性については、例えば、特開平6-172508号公報、特開平8-27370号公報、特開2001-55435号公報及び特開2002-117580号公報等に詳しく記載されている。 The manufacturing method and characteristics of these special polycarbonates are described in detail in, for example, JP-A-6-172508, JP-A-8-27370, JP-A-2001-55435 and JP-A-2002-117580. ing.
なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率及びTg(ガラス転移温度)を下記の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
(i)吸水率が0.05~0.15%、好ましくは0.06~0.13%であり、かつTgが120~180℃であるポリカーボネート、あるいは
(ii)Tgが160~250℃、好ましくは170~230℃であり、かつ吸水率が0.10~0.30%、好ましくは0.13~0.30%、より好ましくは0.14~0.27%であるポリカーボネート。
Among the various polycarbonates described above, those having a water absorption rate and Tg (glass transition temperature) within the following range by adjusting the copolymer composition etc. have good hydrolysis resistance of the polymer itself, and Since it is remarkably excellent in low warpage properties after molding, it is particularly suitable in fields where shape stability is required.
(i) a polycarbonate having a water absorption of 0.05-0.15%, preferably 0.06-0.13% and a Tg of 120-180°C, or (ii) a Tg of 160-250°C, A polycarbonate having a temperature of preferably 170 to 230° C. and a water absorption of 0.10 to 0.30%, preferably 0.13 to 0.30%, more preferably 0.14 to 0.27%.
ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62-1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。 Here, the water absorption rate of polycarbonate is a value obtained by measuring the water content after immersing a disk-shaped test piece with a diameter of 45 mm and a thickness of 3.0 mm in water at 23 ° C. for 24 hours in accordance with ISO62-1980. be. Further, Tg (glass transition temperature) is a value determined by differential scanning calorimeter (DSC) measurement in accordance with JIS K7121.
カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。 Carbonate precursors include carbonyl halides, diesters of carbonic acid and haloformates, and specific examples include phosgene, diphenyl carbonate and dihaloformates of dihydric phenols.
前記二価フェノールとカーボネート前駆体を界面重合法によってポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明のポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られたポリカーボネート樹脂の2種以上を混合した混合物であってもよい。 In producing a polycarbonate resin by interfacial polymerization of the dihydric phenol and the carbonate precursor, if necessary, a catalyst, a terminal terminator, an antioxidant for preventing oxidation of the dihydric phenol, and the like are added. may be used. The polycarbonate resin of the present invention is a branched polycarbonate resin obtained by copolymerizing a trifunctional or higher polyfunctional aromatic compound, and a polyester carbonate resin obtained by copolymerizing an aromatic or aliphatic (including alicyclic) bifunctional carboxylic acid. , copolymerized polycarbonate resins copolymerized with difunctional alcohols (including alicyclic), and polyester carbonate resins copolymerized with such difunctional carboxylic acids and difunctional alcohols. Moreover, the mixture which mixed 2 or more types of obtained polycarbonate resin may be sufficient.
分岐ポリカーボネート樹脂は、本発明のポリカーボネート樹脂組成物に、ドリップ防止性能などを付与できる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノール、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。 The branched polycarbonate resin can impart anti-drip performance and the like to the polycarbonate resin composition of the present invention. Examples of trifunctional or higher polyfunctional aromatic compounds used in such branched polycarbonate resins include phloroglucine, phloroglucide, or 4,6-dimethyl-2,4,6-tris(4-hydroxydiphenyl)heptene-2,2 ,4,6-trimethyl-2,4,6-tris(4-hydroxyphenyl)heptane, 1,3,5-tris(4-hydroxyphenyl)benzene, 1,1,1-tris(4-hydroxyphenyl) ethane, 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane, 2,6-bis(2-hydroxy-5-methylbenzyl)-4-methylphenol, 4-{4-[ trisphenols such as 1,1-bis(4-hydroxyphenyl)ethyl]benzene}-α,α-dimethylbenzylphenol, tetra(4-hydroxyphenyl)methane, bis(2,4-dihydroxyphenyl)ketone, 1, 4-bis(4,4-dihydroxytriphenylmethyl)benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and acid chlorides thereof, among others, 1,1,1-tris(4-hydroxy Phenyl)ethane and 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane are preferred, and 1,1,1-tris(4-hydroxyphenyl)ethane is particularly preferred.
分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、2価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、好ましくは0.01~1モル%、より好ましくは0.05~0.9モル%、さらに好ましくは0.05~0.8モル%である。 Structural units derived from a polyfunctional aromatic compound in the branched polycarbonate are preferably 0.01 to 1 mol %, more preferably 0.05 to 0.9 mol %, still more preferably 0.05 to 0.8 mol %.
また、特に溶融エステル交換法の場合、副反応として分岐構造単位が生ずる場合があるが、かかる分岐構造単位量についても、2価フェノールから誘導される構成単位との合計100モル%中、好ましくは0.001~1モル%、より好ましくは0.005~0.9モル%、さらに好ましくは0.01~0.8モル%であるものが好ましい。なお、かかる分岐構造の割合については1H-NMR測定により算出することが可能である。 Further, particularly in the case of the melt transesterification method, a branched structural unit may occur as a side reaction. It is preferably 0.001 to 1 mol %, more preferably 0.005 to 0.9 mol %, still more preferably 0.01 to 0.8 mol %. The ratio of such branched structures can be calculated by 1H-NMR measurement.
脂肪族の二官能性のカルボン酸は、α,ω-ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。 Aliphatic bifunctional carboxylic acids are preferably α,ω-dicarboxylic acids. Examples of aliphatic bifunctional carboxylic acids include linear saturated aliphatic dicarboxylic acids such as sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, icosanedioic acid, and cyclohexanedicarboxylic acid. Alicyclic dicarboxylic acids such as are preferably exemplified. Alicyclic diols are more suitable as bifunctional alcohols, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecanedimethanol.
本発明のポリカーボネート樹脂の製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマー固相エステル交換法、および環状カーボネート化合物の開環重合法などの反応形式は、各種の文献および特許公報などで良く知られている方法である。 Reaction formats such as the interfacial polymerization method, the melt transesterification method, the carbonate prepolymer solid phase transesterification method, and the ring-opening polymerization method of a cyclic carbonate compound, which are methods for producing the polycarbonate resin of the present invention, can be found in various literatures and patent publications. It is a well-known method in
本発明のポリカーボネート樹脂組成物を製造するにあたり、ポリカーボネート樹脂の粘度平均分子量は、12,500~32,000であることが好ましく、より好ましくは16,000~28,000、さらに好ましくは18,000~26,000である。粘度平均分子量が12,500未満のポリカーボネート樹脂では、良好な機械的特性が得られない場合がある。一方、粘度平均分子量が32,000を超えるポリカーボネート樹脂から得られる樹脂組成物は、難燃性に劣る場合がある。 In producing the polycarbonate resin composition of the present invention, the viscosity average molecular weight of the polycarbonate resin is preferably 12,500 to 32,000, more preferably 16,000 to 28,000, and still more preferably 18,000. ~26,000. A polycarbonate resin having a viscosity-average molecular weight of less than 12,500 may not provide good mechanical properties. On the other hand, a resin composition obtained from a polycarbonate resin having a viscosity average molecular weight exceeding 32,000 may be inferior in flame retardancy.
本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t-t0)/t0
[t0は塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
ηSP/c=[η]+0.45×[η]2c(但し[η]は極限粘度)
[η]=1.23×10-4M0.83
c=0.7
The viscosity-average molecular weight referred to in the present invention is obtained by using an Ostwald viscometer from a solution obtained by dissolving 0.7 g of polycarbonate in 100 ml of methylene chloride at 20° C. to determine the specific viscosity (η SP ) calculated by the following formula.
Specific viscosity (η SP ) = (tt 0 )/t 0
[t 0 is the number of seconds the methylene chloride falls, t is the number of seconds the sample solution falls]
The viscosity-average molecular weight M is calculated from the determined specific viscosity (η SP ) by the following formula.
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[η]=1.23×10 −4 M 0.83
c=0.7
尚、本発明のポリカーボネート樹脂組成物におけるポリカーボネート樹脂の粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20~30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。 The viscosity-average molecular weight of the polycarbonate resin in the polycarbonate resin composition of the present invention is calculated in the following manner. That is, the composition is mixed with 20 to 30 times its weight of methylene chloride to dissolve the soluble matter in the composition. Such soluble matter is collected by celite filtration. The solvent in the resulting solution is then removed. After removing the solvent, the solid is sufficiently dried to obtain a solid of the component soluble in methylene chloride. From a solution obtained by dissolving 0.7 g of this solid in 100 ml of methylene chloride, the specific viscosity at 20° C. is obtained in the same manner as described above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as described above.
本発明のポリカーボネート樹脂としてポリカーボネート-ポリジオルガノシロキサン共重合樹脂を使用することも出来る。ポリカーボネート-ポリジオルガノシロキサン共重合樹脂は下記一般式(1)で表される二価フェノールおよび下記一般式(3)で表されるヒドロキシアリール末端ポリジオルガノシロキサンを共重合させることにより調製される共重合樹脂であることが好ましい。 A polycarbonate-polydiorganosiloxane copolymer resin can also be used as the polycarbonate resin of the present invention. The polycarbonate-polydiorganosiloxane copolymer resin is a copolymer prepared by copolymerizing a dihydric phenol represented by the following general formula (1) and a hydroxyaryl-terminated polydiorganosiloxane represented by the following general formula (3). Resin is preferred.
一般式(1)で表される二価フェノール(I)としては、例えば、4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3,3’-ビフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、2,2-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、4,4’-ジヒドロキシジフェニルエ-テル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエ-テル、4,4’-スルホニルジフェノール、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルフィド、2,2’-ジメチル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド、2,2’-ジフェニル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルフィド、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,3-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,8-ビス(4-ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’-(1,3-アダマンタンジイル)ジフェノール、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等が挙げられる。 Examples of the dihydric phenol (I) represented by the general formula (1) include 4,4′-dihydroxybiphenyl, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1 -bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 2,2-bis(4-hydroxy-3,3'-biphenyl)propane, 2,2-bis(4-hydroxy-3-isopropyl phenyl)propane, 2,2-bis(3-t-butyl-4-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)octane, 2 , 2-bis(3-bromo-4-hydroxyphenyl)propane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, 2,2-bis(3-cyclohexyl-4-hydroxyphenyl) Propane, 1,1-bis(3-cyclohexyl-4-hydroxyphenyl)cyclohexane, bis(4-hydroxyphenyl)diphenylmethane, 9,9-bis(4-hydroxyphenyl)fluorene, 9,9-bis(4-hydroxy -3-methylphenyl)fluorene, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)cyclopentane, 4,4'-dihydroxydiphenyl ether, 4,4' -dihydroxy-3,3'-dimethyldiphenyl ether, 4,4'-sulfonyldiphenol, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxydiphenyl sulfide, 2,2'-dimethyl-4, 4'-sulfonyldiphenol, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, 2,2'-diphenyl-4,4' -sulfonyldiphenol, 4,4'-dihydroxy-3,3'-diphenyldiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-diphenyldiphenyl sulfide, 1,3-bis{2-(4-hydroxyphenyl ) propyl}benzene, 1,4-bis{2-(4-hydroxyphenyl)propyl}benzene, 1,4-bis(4-hydro xyphenyl)cyclohexane, 1,3-bis(4-hydroxyphenyl)cyclohexane, 4,8-bis(4-hydroxyphenyl)tricyclo[5.2.1.02,6]decane, 4,4′-(1, 3-adamantanediyl)diphenol, 1,3-bis(4-hydroxyphenyl)-5,7-dimethyladamantane and the like.
なかでも、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、4,4’-スルホニルジフェノール、2,2’-ジメチル-4,4’-スルホニルジフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’-スルホニルジフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2-ビス(4-ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。 Among others, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 4,4'-sulfonyldiphenol, 2,2'-dimethyl- 4,4′-sulfonyldiphenol, 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, 1,3-bis{2-(4-hydroxyphenyl)propyl}benzene, 1,4-bis{ 2-(4-Hydroxyphenyl)propyl}benzene is preferred, especially 2,2-bis(4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane (BPZ), 4,4′- Sulfonyldiphenol, 9,9-bis(4-hydroxy-3-methylphenyl)fluorene are preferred. Among them, 2,2-bis(4-hydroxyphenyl)propane, which has excellent strength and good durability, is most preferable. Moreover, these may be used alone or in combination of two or more.
上記一般式(3)で表されるヒドロキシアリール末端ポリジオルガノシロキサンとしては、例えば下記に示すような化合物が好適に用いられる。 As the hydroxyaryl-terminated polydiorganosiloxane represented by the general formula (3), for example, the following compounds are preferably used.
ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、オレフィン性の不飽和炭素-炭素結合を有するフェノール類、好適にはビニルフェノール、2-アリルフェノール、イソプロペニルフェノール、2-メトキシ-4-アリルフェノールを所定の重合度を有するポリシロキサン鎖の末端に、ハイドロシリレーション反応させることにより容易に製造される。なかでも、(2-アリルフェノール)末端ポリジオルガノシロキサン、(2-メトキシ-4-アリルフェノール)末端ポリジオルガノシロキサンが好ましく、殊に(2-アリルフェノール)末端ポリジメチルシロキサン、(2-メトキシ-4-アリルフェノール)末端ポリジメチルシロキサンが好ましい。ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、その分子量分布(Mw/Mn)が3以下であることが好ましい。さらに優れた高温成形時の低アウトガス性と低温衝撃性を発現させるために、かかる分子量分布(Mw/Mn)はより好ましくは2.5以下であり、さらに好ましくは2以下である。かかる好適な範囲の上限を超えると高温成形時のアウトガス発生量が多く、また、低温衝撃性に劣る場合がある。 Hydroxyaryl-terminated polydiorganosiloxane (II) is selected from phenols having olefinically unsaturated carbon-carbon bonds, preferably vinylphenol, 2-allylphenol, isopropenylphenol, 2-methoxy-4-allylphenol. It is easily produced by subjecting the end of a polysiloxane chain having a degree of polymerization to a hydrosilylation reaction. Among them, (2-allylphenol)-terminated polydiorganosiloxane and (2-methoxy-4-allylphenol)-terminated polydiorganosiloxane are preferred, and (2-allylphenol)-terminated polydimethylsiloxane, (2-methoxy-4 -allylphenol) terminated polydimethylsiloxane is preferred. The hydroxyaryl-terminated polydiorganosiloxane (II) preferably has a molecular weight distribution (Mw/Mn) of 3 or less. The molecular weight distribution (Mw/Mn) is more preferably 2.5 or less, still more preferably 2 or less, in order to achieve even better low-outgassing properties and low-temperature impact resistance during high-temperature molding. If the upper limit of the preferred range is exceeded, a large amount of outgas is generated during high-temperature molding, and the low-temperature impact resistance may be poor.
また、高度な耐衝撃性を実現するためにヒドロキシアリール末端ポリジオルガノシロキサン(II)のジオルガノシロキサン重合度(p+q)は10~300が適切である。かかるジオルガノシロキサン重合度(p+q)は好ましくは10~200、より好ましくは12~150、更に好ましくは14~100である。かかる好適な範囲の下限未満では、ポリカーボネート-ポリジオルガノシロキサン共重合体の特徴である耐衝撃性が有効に発現せず、かかる好適な範囲の上限を超えると外観不良が現れる。 Moreover, the diorganosiloxane polymerization degree (p+q) of the hydroxyaryl-terminated polydiorganosiloxane (II) is suitably 10 to 300 in order to achieve high impact resistance. Such a diorganosiloxane polymerization degree (p+q) is preferably 10-200, more preferably 12-150, still more preferably 14-100. Below the lower limit of the preferred range, impact resistance characteristic of the polycarbonate-polydiorganosiloxane copolymer is not effectively exhibited, and above the upper limit of the preferred range, poor appearance appears.
A成分で使用されるポリカーボネート-ポリジオルガノシロキサン共重合樹脂全重量に占めるポリジオルガノシロキサン含有量は0.1~50重量%が好ましい。かかるポリジオルガノシロキサン成分含有量はより好ましくは0.5~30重量%、さらに好ましくは1~20重量%である。かかる好適な範囲の下限以上では、耐衝撃性や難燃性に優れ、かかる好適な範囲の上限以下では、成形条件の影響を受けにくい安定した外観が得られやすい。かかるポリジオルガノシロキサン重合度、ポリジオルガノシロキサン含有量は、1H-NMR測定により算出することが可能である。 The polydiorganosiloxane content in the total weight of the polycarbonate-polydiorganosiloxane copolymer resin used as component A is preferably 0.1 to 50% by weight. The content of such polydiorganosiloxane component is more preferably 0.5 to 30% by weight, more preferably 1 to 20% by weight. Above the lower limit of the preferred range, the impact resistance and flame retardancy are excellent, and below the upper limit of the preferred range, a stable appearance that is less susceptible to molding conditions is likely to be obtained. Such polydiorganosiloxane polymerization degree and polydiorganosiloxane content can be calculated by 1H-NMR measurement.
本発明において、ヒドロキシアリール末端ポリジオルガノシロキサン(II)は1種のみを用いてもよく、また、2種以上を用いてもよい。 In the present invention, only one type of hydroxyaryl-terminated polydiorganosiloxane (II) may be used, or two or more types may be used.
また、本発明の妨げにならない範囲で、上記二価フェノール(I)、ヒドロキシアリール末端ポリジオルガノシロキサン(II)以外の他のコモノマーを共重合体の全重量に対して10重量%以下の範囲で併用することもできる。 In addition, other comonomers than the dihydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) are added in an amount of 10% by weight or less based on the total weight of the copolymer, as long as they do not interfere with the present invention. They can also be used in combination.
本発明においては、あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中における二価フェノール(I)と炭酸エステル形成性化合物の反応により末端クロロホルメート基を有するオリゴマーを含む混合溶液を調製する。 In the present invention, a mixed solution containing an oligomer having a terminal chloroformate group is prepared in advance by reacting a dihydric phenol (I) and a carbonate-forming compound in a mixed solution of a water-insoluble organic solvent and an alkaline aqueous solution. do.
二価フェノール(I)のオリゴマーを生成するにあたり、本発明の方法に用いられる二価フェノール(I)の全量を一度にオリゴマーにしてもよく、又は、その一部を後添加モノマーとして後段の界面重縮合反応に反応原料として添加してもよい。後添加モノマーとは、後段の重縮合反応を速やかに進行させるために加えるものであり、必要のない場合には敢えて加える必要はない。 In producing the oligomer of dihydric phenol (I), the whole amount of dihydric phenol (I) used in the method of the present invention may be converted into an oligomer at one time, or part of it may be used as a post-addition monomer to form an interface in the latter stage. It may be added as a reaction raw material to the polycondensation reaction. The post-addition monomer is added in order to facilitate the subsequent polycondensation reaction, and it is not necessary to add it unless necessary.
このオリゴマー生成反応の方式は特に限定はされないが、通常、酸結合剤の存在下、溶媒中で行う方式が好適である。 The system of this oligomer-forming reaction is not particularly limited, but a system in which the reaction is carried out in a solvent in the presence of an acid binder is usually preferred.
炭酸エステル形成性化合物の使用割合は、反応の化学量論比(当量)を考慮して適宜調整すればよい。また、ホスゲン等のガス状の炭酸エステル形成性化合物を使用する場合、これを反応系に吹き込む方法が好適に採用できる。 The proportion of the carbonate-forming compound to be used may be appropriately adjusted in consideration of the stoichiometric ratio (equivalents) of the reaction. When a gaseous carbonate-forming compound such as phosgene is used, a method of blowing it into the reaction system can be preferably employed.
前記酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。酸結合剤の使用割合も、上記同様に、反応の化学量論比(当量)を考慮して適宜定めればよい。具体的には、オリゴマーの形成に使用する二価フェノール(I)のモル数(通常1モルは2当量に相当)に対して2当量若しくはこれより若干過剰量の酸結合剤を用いることが好ましい。 Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof. The ratio of the acid binder to be used may also be appropriately determined in consideration of the stoichiometric ratio (equivalents) of the reaction in the same manner as described above. Specifically, it is preferable to use 2 equivalents or a slightly excess amount of the acid binder with respect to the number of moles of the dihydric phenol (I) used to form the oligomer (usually 1 mol corresponds to 2 equivalents). .
前記溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレン等の炭化水素溶媒、塩化メチレン、クロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレン等のハロゲン化炭化水素溶媒が好適に用いられる。 As the solvent, solvents inert to various reactions, such as those used in the production of known polycarbonates, may be used singly or as a mixed solvent. Typical examples include hydrocarbon solvents such as xylene, halogenated hydrocarbon solvents such as methylene chloride and chlorobenzene, and the like. Halogenated hydrocarbon solvents such as methylene chloride are particularly preferred.
オリゴマー生成の反応圧力は特に制限はなく、常圧、加圧、減圧のいずれでもよいが、通常常圧下で反応を行うことが有利である。反応温度は-20~50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は他の条件に左右され一概に規定できないが、通常、0.2~10時間で行われる。オリゴマー生成反応のpH範囲は、公知の界面反応条件と同様であり、pHは常に10以上に調製される。 The reaction pressure for oligomer production is not particularly limited and may be normal pressure, increased pressure or reduced pressure, but it is usually advantageous to carry out the reaction under normal pressure. The reaction temperature is selected from the range of −20 to 50° C. In many cases, heat is generated with polymerization, so water cooling or ice cooling is desirable. Although the reaction time depends on other conditions and cannot be defined unconditionally, it is usually carried out in 0.2 to 10 hours. The pH range of the oligomer-forming reaction is the same as the well-known interfacial reaction conditions, and the pH is always adjusted to 10 or higher.
本発明はこのようにして、末端クロロホルメート基を有する二価フェノール(I)のオリゴマーを含む混合溶液を得た後、該混合溶液を攪拌しながら分子量分布(Mw/Mn)が3以下まで高度に精製された一般式(4)で表わされるヒドロキシアリール末端ポリジオルガノシロキサン(II)を二価フェノール(I)に加え、該ヒドロキシアリール末端ポリジオルガノシロキサン(II)と該オリゴマーを界面重縮合させることによりポリカーボネート-ポリジオルガノシロキサン共重合体を得る。 In the present invention, after obtaining a mixed solution containing an oligomer of dihydric phenol (I) having a terminal chloroformate group, the mixed solution is stirred until the molecular weight distribution (Mw/Mn) is 3 or less. A highly purified hydroxyaryl-terminated polydiorganosiloxane (II) represented by the general formula (4) is added to the dihydric phenol (I), and the hydroxyaryl-terminated polydiorganosiloxane (II) and the oligomer are subjected to interfacial polycondensation. A polycarbonate-polydiorganosiloxane copolymer is thus obtained.
界面重縮合反応を行うにあたり、酸結合剤を反応の化学量論比(当量)を考慮して適宜追加してもよい。酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。具体的には、使用するヒドロキシアリール末端ポリジオルガノシロキサン(II)、又は上記の如く二価フェノール(I)の一部を後添加モノマーとしてこの反応段階に添加する場合には、後添加分の二価フェノール(I)とヒドロキシアリール末端ポリジオルガノシロキサン(II)との合計モル数(通常1モルは2当量に相当)に対して2当量若しくはこれより過剰量のアルカリを用いることが好ましい。 In carrying out the interfacial polycondensation reaction, an acid binder may be added as appropriate in consideration of the stoichiometric ratio (equivalents) of the reaction. Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof. Specifically, if a portion of the hydroxyaryl-terminated polydiorganosiloxane (II) used or, as noted above, the dihydric phenol (I) is added to this reaction step as a post-add monomer, two of the post-add monomers It is preferable to use 2 equivalents or more of the alkali with respect to the total number of moles of the phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) (usually 1 mol corresponds to 2 equivalents).
二価フェノール(I)のオリゴマーとヒドロキシアリール末端ポリジオルガノシロキサン(II)との界面重縮合反応による重縮合は、上記混合液を激しく攪拌することにより行われる。 Interfacial polycondensation reaction between the oligomer of dihydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) is carried out by vigorously stirring the mixture.
かかる重合反応においては、末端停止剤或いは分子量調節剤が通常使用される。末端停止剤としては一価のフェノール性水酸基を有する化合物が挙げられ、通常のフェノール、p-tert-ブチルフェノール、p-クミルフェノール、トリブロモフェノールなどの他に、長鎖アルキルフェノール、脂肪族カルボン酸クロライド、脂肪族カルボン酸、ヒドロキシ安息香酸アルキルエステル、ヒドロキシフェニルアルキル酸エステル、アルキルエーテルフェノールなどが例示される。その使用量は用いる全ての二価フェノール系化合物100モルに対して、100~0.5モル、好ましくは50~2モルの範囲であり、二種以上の化合物を併用することも当然に可能である。 Terminal terminator or molecular weight modifier is usually used in such polymerization reaction. Examples of terminal terminating agents include compounds having a monovalent phenolic hydroxyl group, and in addition to ordinary phenol, p-tert-butylphenol, p-cumylphenol, tribromophenol, etc., long-chain alkylphenols and aliphatic carboxylic acids. Examples include chlorides, aliphatic carboxylic acids, hydroxybenzoic acid alkyl esters, hydroxyphenyl alkyl acid esters, and alkyl ether phenols. The amount used is in the range of 100 to 0.5 mol, preferably 50 to 2 mol, per 100 mol of all dihydric phenol compounds used, and it is of course possible to use two or more kinds of compounds together. be.
重縮合反応を促進するために、トリエチルアミンのような第三級アミン又は第四級アンモニウム塩などの触媒を添加してもよい。 A catalyst such as a tertiary amine such as triethylamine or a quaternary ammonium salt may be added to facilitate the polycondensation reaction.
かかる重合反応の反応時間は、好ましくは30分以上、更に好ましくは50分以上である。所望に応じ、亜硫酸ナトリウム、ハイドロサルファイドなどの酸化防止剤を少量添加してもよい。 The reaction time for such a polymerization reaction is preferably 30 minutes or longer, more preferably 50 minutes or longer. If desired, a small amount of antioxidant such as sodium sulfite, hydrosulfide, etc. may be added.
分岐化剤を上記の二価フェノール系化合物と併用して分岐化ポリカーボネート-ポリジオルガノシロキサンとすることができる。かかる分岐ポリカーボネート-ポリジオルガノシロキサン共重合樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノール、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。分岐ポリカーボネート-ポリジオルガノシロキサン共重合樹脂中の多官能性化合物の割合は、ポリカーボネート-ポリジオルガノシロキサン共重合樹脂全量中、好ましくは0.001~1モル%、より好ましくは0.005~0.9モル%、さらに好ましくは0.01~0.8モル%、特に好ましくは0.05~0.4モル%である。なお、かかる分岐構造量については1H-NMR測定により算出することが可能である。 A branching agent can be used in combination with the above dihydric phenolic compound to form a branched polycarbonate-polydiorganosiloxane. Examples of trifunctional or higher polyfunctional aromatic compounds used in such branched polycarbonate-polydiorganosiloxane copolymer resins include phloroglucine, phloroglucide, or 4,6-dimethyl-2,4,6-tris(4-hydroxydiphenyl ) heptene-2, 2,4,6-trimethyl-2,4,6-tris(4-hydroxyphenyl)heptane, 1,3,5-tris(4-hydroxyphenyl)benzene, 1,1,1-tris (4-hydroxyphenyl)ethane, 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane, 2,6-bis(2-hydroxy-5-methylbenzyl)-4-methylphenol, trisphenols such as 4-{4-[1,1-bis(4-hydroxyphenyl)ethyl]benzene}-α,α-dimethylbenzylphenol, tetra(4-hydroxyphenyl)methane, bis(2,4-dihydroxy phenyl)ketone, 1,4-bis(4,4-dihydroxytriphenylmethyl)benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and acid chlorides thereof, among others, 1,1,1 -tris(4-hydroxyphenyl)ethane and 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane are preferred, and 1,1,1-tris(4-hydroxyphenyl)ethane is particularly preferred. . The ratio of the polyfunctional compound in the branched polycarbonate-polydiorganosiloxane copolymer resin is preferably 0.001 to 1 mol %, more preferably 0.005 to 0.9, based on the total amount of the polycarbonate-polydiorganosiloxane copolymer resin. mol %, more preferably 0.01 to 0.8 mol %, particularly preferably 0.05 to 0.4 mol %. Incidentally, such a branched structure amount can be calculated by 1H-NMR measurement.
反応圧力は、減圧、常圧、加圧のいずれでも可能であるが、通常は、常圧若しくは反応系の自圧程度で好適に行い得る。反応温度は-20~50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は反応温度等の他の条件によって異なるので一概に規定はできないが、通常、0.5~10時間で行われる。 The reaction pressure can be any of reduced pressure, normal pressure, and increased pressure, but usually normal pressure or the self-pressure of the reaction system is suitable. The reaction temperature is selected from the range of −20 to 50° C. In many cases, heat is generated with polymerization, so water cooling or ice cooling is desirable. The reaction time varies depending on other conditions such as the reaction temperature and cannot be generally defined, but is usually 0.5 to 10 hours.
場合により、得られたポリカーボネート-ポリジオルガノシロキサン共重合樹脂に適宜物理的処理(混合、分画など)及び/又は化学的処理(ポリマー反応、架橋処理、部分分解処理など)を施して所望の還元粘度[ηSP/c]のポリカーボネート-ポリジオルガノシロキサン共重合樹脂として取得することもできる。 In some cases, the obtained polycarbonate-polydiorganosiloxane copolymer resin is appropriately subjected to physical treatment (mixing, fractionation, etc.) and/or chemical treatment (polymer reaction, cross-linking treatment, partial decomposition treatment, etc.) to achieve the desired reduction. It can also be obtained as a polycarbonate-polydiorganosiloxane copolymer resin with a viscosity of [η SP /c].
得られた反応生成物(粗生成物)は公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のポリカーボネート-ポリジオルガノシロキサン共重合樹脂として回収することができる。 The resulting reaction product (crude product) is subjected to various post-treatments such as known separation and purification methods, and can be recovered as a polycarbonate-polydiorganosiloxane copolymer resin of desired purity (purity).
ポリカーボネート-ポリジオルガノシロキサン共重合樹脂成形品中のポリジオルガノシロキサンドメインの平均サイズは、1~40nmの範囲が好ましい。かかる平均サイズはより好ましくは1~30nm、更に好ましくは5~25nmである。かかる好適な範囲の下限未満では、耐衝撃性や難燃性が十分に発揮されず、かかる好適な範囲の上限を超えると耐衝撃性が安定して発揮されない場合がある。これにより耐衝撃性および外観に優れたポリカーボネート樹脂組成物が提供される。 The average size of the polydiorganosiloxane domains in the polycarbonate-polydiorganosiloxane copolymer resin molding is preferably in the range of 1 to 40 nm. Such average size is more preferably 1 to 30 nm, more preferably 5 to 25 nm. Below the lower limit of the preferred range, sufficient impact resistance and flame retardancy may not be exhibited, and above the upper limit of the preferred range, impact resistance may not be exhibited stably. This provides a polycarbonate resin composition excellent in impact resistance and appearance.
本発明におけるポリカーボネート-ポリジオルガノシロキサン共重合樹脂成形品のポリジオルガノシロキサンドメインの平均ドメインサイズ、規格化分散は、小角エックス線散乱法(Small Angle X-ray Scattering:SAXS)により評価した。小角エックス線散乱法とは、散乱角(2θ)<10°以内の小角領域で生じる散漫な散乱・回折を測定する方法である。この小角エックス線散乱法では、物質中に1~100nm程度の大きさの電子密度の異なる領域があると、その電子密度差によりエックス線の散漫散乱が計測される。この散乱角と散乱強度に基づいて測定対象物の粒子径を求める。ポリカーボネートポリマーのマトリックス中にポリジオルガノシロキサンドメインが分散した凝集構造となるポリカーボネート-ポリジオルガノシロキサン共重合樹脂の場合、ポリカーボネートマトリックスとポリジオルガノシロキサンドメインの電子密度差により、エックス線の散漫散乱が生じる。散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度Iを測定して、小角エックス線散乱プロファイルを測定し、ポリジオルガノシロキサンドメインが球状ドメインであり、粒径分布のばらつきが存在すると仮定して、仮の粒径と仮の粒径分布モデルから、市販の解析ソフトウェアを用いてシミュレーションを行い、ポリジオルガノシロキサンドメインの平均サイズと粒径分布(規格化分散)を求める。小角エックス線散乱法によれば、透過型電子顕微鏡による観察では正確に測定できない、ポリカーボネートポリマーのマトリックス中に分散したポリジオルガノシロキサンドメインの平均サイズと粒径分布を、精度よく、簡便に、再現性良く測定することができる。平均ドメインサイズとは個々のドメインサイズの数平均を意味する。規格化分散とは、粒径分布の広がりを平均サイズで規格化したパラメータを意味する。具体的には、ポリジオルガノシロキサンドメインサイズの分散を平均ドメインサイズで規格化した値であり、下記式(1)で表される。 The average domain size and normalized dispersion of the polydiorganosiloxane domains of the polycarbonate-polydiorganosiloxane copolymer resin molded article in the present invention were evaluated by small angle X-ray scattering (SAXS). The small-angle X-ray scattering method is a method of measuring diffuse scattering/diffraction occurring in a small-angle region within a scattering angle (2θ)<10°. In this small-angle X-ray scattering method, if there are regions with different electron densities on the order of 1 to 100 nm in a substance, diffuse scattering of X-rays is measured from the difference in electron densities. Based on this scattering angle and scattering intensity, the particle diameter of the object to be measured is determined. In the case of a polycarbonate-polydiorganosiloxane copolymer resin having an aggregate structure in which polydiorganosiloxane domains are dispersed in a polycarbonate polymer matrix, diffuse scattering of X-rays occurs due to the electron density difference between the polycarbonate matrix and the polydiorganosiloxane domains. The scattering intensity I at each scattering angle (2θ) in the range of less than 10° scattering angle (2θ) is measured to measure the small-angle X-ray scattering profile, and the polydiorganosiloxane domain is a spherical domain and the particle size distribution varies. Assuming the presence of , the average size and particle size distribution (normalized dispersion) of the polydiorganosiloxane domains are obtained by performing a simulation using commercially available analysis software from the provisional particle size and the provisional particle size distribution model. The small-angle X-ray scattering method enables accurate, simple, and reproducible analysis of the average size and particle size distribution of polydiorganosiloxane domains dispersed in a polycarbonate polymer matrix, which cannot be accurately measured by transmission electron microscopy. can be measured. Average domain size means the number average of individual domain sizes. The normalized dispersion means a parameter obtained by normalizing the spread of the particle size distribution by the average size. Specifically, it is a value obtained by normalizing the polydiorganosiloxane domain size distribution by the average domain size, and is represented by the following formula (1).
本発明に関連して用いる用語「平均ドメインサイズ」、「規格化分散」は、かかる小角エックス線散乱法により、実施例記載の方法で作製した3段型プレートの厚み1.0mm部を測定することにより得られる測定値を示す。また、粒子間相互作用(粒子間干渉)を考慮しない孤立粒子モデルにて解析を行った。 The terms "average domain size" and "normalized dispersion" used in connection with the present invention refer to measurement of a 1.0 mm thick portion of a three-tiered plate produced by the method described in Examples by the small-angle X-ray scattering method. Measured values obtained by In addition, the analysis was performed using an isolated particle model that does not consider the interaction between particles (interference between particles).
(B成分:ガラス繊維)
本発明で使用されるガラス繊維はガラス繊維を切断または粉砕したものであり、一般に
合成樹脂用強化材として使用されるものである。該ガラス繊維は、樹脂組成物中の平均繊維長が30~900μmであり、かつ平均L/Dが10~300を満足するガラス繊維であることが好ましい。ここでいうLはガラス繊維の平均長さ、Dは丸型断面を有するガラス繊維の場合は平均直径であり、扁平断面ガラス繊維の場合は、断面の長径の平均値を言う。平均繊維長は30~500μmであることがより好ましく、L/Dは10~200であることがより好ましい。L/Dが10より小さいと耐熱性が発現しない場合があり、300よりも大きいと成形品の外観や成形性が低下する場合があるため、好ましくない。また、平均繊維長が30μmより小さいと耐熱性が発現しない場合があり、900μmより大きいと成形品の外観や成形性が低下する場合がある。さらに、ガラス繊維の直径は特に制限する必要がないが、3~50μmの範囲が好ましい。50μmを超えると成形品の外観が損なわれる場合があり、好ましくない。
(B component: glass fiber)
The glass fiber used in the present invention is obtained by cutting or pulverizing glass fiber, and is generally used as a reinforcing material for synthetic resins. The glass fiber preferably has an average fiber length of 30 to 900 μm and an average L/D of 10 to 300 in the resin composition. Herein, L is the average length of the glass fiber, D is the average diameter in the case of the glass fiber having a round cross section, and the average major diameter of the cross section in the case of the flat cross section glass fiber. More preferably, the average fiber length is 30-500 μm, and the L/D is more preferably 10-200. If the L/D is less than 10, heat resistance may not be exhibited, and if it is greater than 300, the appearance and moldability of the molded product may deteriorate, which is not preferable. If the average fiber length is less than 30 μm, the heat resistance may not be exhibited, and if it exceeds 900 μm, the appearance and moldability of the molded product may be deteriorated. Furthermore, the diameter of the glass fiber is not particularly limited, but is preferably in the range of 3-50 μm. If it exceeds 50 μm, the appearance of the molded product may be impaired, which is not preferable.
ガラス繊維としては、丸型断面を有するガラス繊維および扁平断面ガラス繊維が好ましく、丸型断面を有するガラス繊維がより好ましい。 As the glass fiber, a glass fiber having a round cross section and a flat cross section glass fiber are preferable, and a glass fiber having a round cross section is more preferable.
ガラス繊維のガラス組成は、Aガラス、Cガラス、Tガラス、NCRガラス、HMEガラスおよびEガラス等に代表される各種のガラス組成が適用され、特に限定されない。 Various glass compositions such as A glass, C glass, T glass, NCR glass, HME glass, and E glass are applied to the glass composition of the glass fiber, and are not particularly limited.
B成分の含有量は、A成分100重量部に対して、20~60重量部であり、好ましくは20~55重量部、より好ましくは20~50重量部である。B成分の含有量が20重量部未満である場合十分な耐熱性が得られず剛性も不足し、60重量部より多くなると、成形性が低下する。 The content of component B is 20 to 60 parts by weight, preferably 20 to 55 parts by weight, more preferably 20 to 50 parts by weight, per 100 parts by weight of component A. When the content of the B component is less than 20 parts by weight, sufficient heat resistance cannot be obtained and the rigidity is insufficient.
(C成分:窒化ホウ素)
窒化ホウ素としては立方晶窒化ホウ素、六方晶窒化ホウ素等が挙げられ、六方晶窒化ホウ素が好ましい。また、窒化ホウ素には、球状、鱗片状、およびそれらの凝集体などがあり、本発明にはいずれも使用することができる。なかでも鱗片状、鱗片状の凝集体を用いるとより熱伝導性の良好な組成物が得られるとともに機械物性等が良好となるので好ましい。
(C component: boron nitride)
Examples of boron nitride include cubic boron nitride, hexagonal boron nitride and the like, and hexagonal boron nitride is preferred. Moreover, boron nitride includes spherical, scaly, aggregates thereof, and the like, and any of them can be used in the present invention. Among them, it is preferable to use scale-like or scale-like aggregates, since a composition having better thermal conductivity can be obtained and mechanical properties and the like can be improved.
窒化ホウ素の平均粒子径(D50)はレーザー回折・散乱法にて測定した数値にて15~28μmであり、15~25μmが好ましく、17~25μmがより好ましい。平均粒子径が15μm未満では樹脂組成物製造時の押出安定性が悪く生産性が低下する。平均粒子径が28μmを超えると熱伝導性が低下する。 The average particle size (D50) of boron nitride is 15 to 28 μm, preferably 15 to 25 μm, more preferably 17 to 25 μm, as measured by a laser diffraction/scattering method. If the average particle size is less than 15 µm, the extrusion stability during production of the resin composition is poor, resulting in a decrease in productivity. If the average particle size exceeds 28 μm, the thermal conductivity will decrease.
窒化ホウ素のタップ密度は0.5g/ml以上であり、好ましくは0.52g/ml以上、より好ましくは0.55g/ml以上である。なお、上限は特に限定されないが、1.0g/ml以下が好ましく、より好ましくは0.9g/ml以下である。タップ密度が0.5g/ml未満では押出安定性が悪く生産性が低下する。 Boron nitride has a tap density of 0.5 g/ml or more, preferably 0.52 g/ml or more, and more preferably 0.55 g/ml or more. Although the upper limit is not particularly limited, it is preferably 1.0 g/ml or less, more preferably 0.9 g/ml or less. If the tap density is less than 0.5 g/ml, extrusion stability is poor and productivity is lowered.
C成分の含有量はA成分100重量部に対して、5~40重量部であり、好ましくは5~35重量部、より好ましくは10~30重量部である。C成分の含有量が5重量部未満の場合には剛性が低いうえ、熱伝導性が低く、40重量部を超えると押出加工性が低下する。 The content of component C is 5 to 40 parts by weight, preferably 5 to 35 parts by weight, more preferably 10 to 30 parts by weight, per 100 parts by weight of component A. When the content of the C component is less than 5 parts by weight, the rigidity and thermal conductivity are low, and when it exceeds 40 parts by weight, the extrusion processability is deteriorated.
(D成分:臭素系難燃剤)
本発明において用いる臭素系難燃剤としては、例えば臭素含有率20重量%以上の臭素化ビスフェノールA型ポリカーボネート難燃剤、臭素化ビスフェノールA型エポキシ樹脂およびその末端グリシジル基の一部または全部を封鎖した変性物、臭素化ジフェニルエーテル難燃剤、臭素化イミド難燃剤、臭素化ポリスチレン難燃剤等を挙げることができる。
(Component D: brominated flame retardant)
The brominated flame retardant used in the present invention includes, for example, a brominated bisphenol A polycarbonate flame retardant having a bromine content of 20% by weight or more, a brominated bisphenol A epoxy resin, and a modified resin obtained by blocking some or all of its terminal glycidyl groups. , brominated diphenyl ether flame retardants, brominated imide flame retardants, brominated polystyrene flame retardants, and the like.
具体例としては、デカブロモジフェニルオキサイド、オクタブロモジフェニルオキサイド、テトラブロモジフェニルオキサイド、テトラブロモ無水フタル酸、ヘキサブロモシクロドデカン、ビス(2,4,6-トリブロモフェノキシ)エタン、エチレンビステトラブロモフタルイミド、ヘキサブロモベンゼン、1,1‐スルホニル[3,5‐ジブロモ‐4‐(2,3-ジブロモプロポキシ)]ベンゼン、ポリジブロモフェニレンオキサイド、テトラブロムビスフェノールS、トリス(2,3‐ジブロモプロピル‐1)イソシアヌレート、トリブロモフェノール、トリブロモフェニルアリルエーテル、トリブロモネオペンチルアルコール、ブロム化ポリスチレン、ブロム化ポリエチレン、テトラブロムビスフェノールA、テトラブロムビスフェノールA誘導体、テトラブロムビスフェノールA‐エポキシオリゴマーまたはポリマー、テトラブロムビスフェノールA‐カーボネートオリゴマーまたはポリマー、ブロム化フェノールノボラックエポキシなどのブロム化エポキシ樹脂、テトラブロムビスフェノールA‐ビス(2-ヒドロキシジエチルエーテル)、テトラブロムビスフェノールA‐ビス(2,3‐ジブロモプロピルエーテル)、テトラブロムビスフェノールA‐ビス(アリルエーテル)、テトラブロモシクロオクタン、エチレンビスペンタブロモジフェニル、トリス(トリブロモネオペンチル)ホスフェート、ポリ(ペンタブロモベンジルポリアクリレート)、オクタブロモトリメチルフェニルインダン、ジブロモネオペンチルグリコール、ペンタブロモベンジルポリアクリレート、ジブロモクレジルグリシジルエーテル、N,N′‐エチレン‐ビス‐テトラブロモフタルイミドなどが挙げられる。なかでも、テトラブロムビスフェノールA-エポキシオリゴマー、テトラブロムビスフェノールA-カーボネートオリゴマー、ブロム化エポキシ樹脂等が挙げられる。 Specific examples include decabromodiphenyl oxide, octabromodiphenyl oxide, tetrabromodiphenyl oxide, tetrabromophthalic anhydride, hexabromocyclododecane, bis(2,4,6-tribromophenoxy)ethane, ethylenebistetrabromophthalimide, Hexabromobenzene, 1,1-sulfonyl[3,5-dibromo-4-(2,3-dibromopropoxy)]benzene, polydibromophenylene oxide, tetrabromobisphenol S, tris(2,3-dibromopropyl-1) Isocyanurate, tribromophenol, tribromophenyl allyl ether, tribromoneopentyl alcohol, brominated polystyrene, brominated polyethylene, tetrabromobisphenol A, tetrabromobisphenol A derivatives, tetrabromobisphenol A-epoxy oligomers or polymers, tetrabromo bisphenol A-carbonate oligomers or polymers, brominated epoxy resins such as brominated phenolic novolac epoxy, tetrabromobisphenol A-bis(2-hydroxydiethyl ether), tetrabromobisphenol A-bis(2,3-dibromopropyl ether), Tetrabromobisphenol A-bis(allyl ether), tetrabromocyclooctane, ethylenebispentabromodiphenyl, tris(tribromoneopentyl)phosphate, poly(pentabromobenzylpolyacrylate), octabromotrimethylphenylindane, dibromoneopentyl glycol , pentabromobenzyl polyacrylate, dibromocresyl glycidyl ether, N,N'-ethylene-bis-tetrabromophthalimide, and the like. Among them, tetrabromobisphenol A-epoxy oligomers, tetrabromobisphenol A-carbonate oligomers, brominated epoxy resins and the like can be mentioned.
本発明の臭素系難燃剤としては、臭素化ポリカーボネート(オリゴマーを含む)が特に好適である。臭素化ポリカーボネートは耐熱性に優れ、かつ大幅に難燃性を向上できる。本発明で使用する臭素化ポリカーボネートは、下記一般式(5)で表される構成単位が全構成単位の少なくとも60モル%、好ましくは少なくとも80モル%であり、特に好ましくは実質的に下記一般式(5)で表される構成単位からなる臭素化ポリカーボネート化合物である。 Brominated polycarbonates (including oligomers) are particularly suitable as the brominated flame retardant of the present invention. Brominated polycarbonate is excellent in heat resistance and can greatly improve flame retardancy. In the brominated polycarbonate used in the present invention, structural units represented by the following general formula (5) account for at least 60 mol%, preferably at least 80 mol%, of all structural units, and particularly preferably substantially It is a brominated polycarbonate compound consisting of structural units represented by (5).
また、かかる式(5)において、好適にはRはメチレン基、エチレン基、イソプロピリデン基、-SO2-、特に好ましくはイソプロピリデン基を示す。
Further, in such formula (5), R preferably represents a methylene group, an ethylene group, an isopropylidene group, or -SO 2 -, particularly preferably an isopropylidene group.
臭素化ポリカーボネートは、残存するクロロホーメート基末端が少なく、末端塩素量が0.3ppm以下であることが好ましく、より好ましくは0.2ppm以下である。かかる末端塩素量は、試料を塩化メチレンに溶解し、4-(p-ニトロベンジル)ピリジンを加えて末端塩素(末端クロロホーメート)と反応させ、これを紫外可視分光光度計(日立製作所製U-3200)により測定して求めることができる。末端塩素量が0.3ppm以下であると、樹脂組成物の熱安定性がより良好となり、更に高温の成形が可能となり、その結果成形加工性により優れた樹脂組成物が提供される。 The brominated polycarbonate has few remaining chloroformate group terminals, and preferably has a terminal chlorine content of 0.3 ppm or less, more preferably 0.2 ppm or less. Such terminal chlorine content was determined by dissolving a sample in methylene chloride, adding 4-(p-nitrobenzyl)pyridine to react with terminal chlorine (terminal chloroformate), and measuring this with an ultraviolet-visible spectrophotometer (Hitachi U -3200). When the terminal chlorine content is 0.3 ppm or less, the thermal stability of the resin composition becomes better, and molding at high temperatures becomes possible, and as a result, a resin composition with excellent moldability is provided.
また臭素化ポリカーボネートは、残存する水酸基末端が少ないことが好ましい。より具体的には臭素化ポリカーボネートの構成単位1モルに対して、末端水酸基量が0.0005モル以下であることが好ましく、より好ましくは0.0003モル以下である。末端水酸基量は、試料を重クロロホルムに溶解し、1H-NMR法により測定して求めることができる。かかる末端水酸基量であると、樹脂組成物の熱安定性が更に向上し好ましい。 In addition, the brominated polycarbonate preferably has few remaining terminal hydroxyl groups. More specifically, the amount of terminal hydroxyl groups is preferably 0.0005 mol or less, more preferably 0.0003 mol or less, per 1 mol of the structural unit of the brominated polycarbonate. The amount of terminal hydroxyl groups can be obtained by dissolving a sample in deuterated chloroform and measuring by 1 H-NMR method. Such a terminal hydroxyl group amount is preferable because the thermal stability of the resin composition is further improved.
臭素化ポリカーボネートの比粘度は、好ましくは0.015~0.1の範囲、より好ましくは0.015~0.08の範囲である。臭素化ポリカーボネートの比粘度は、前述した本発明のA成分であるポリカーボネート樹脂の粘度平均分子量を算出するに際し使用した上記比粘度の算出式に従って算出されたものである。 The specific viscosity of the brominated polycarbonate is preferably in the range of 0.015-0.1, more preferably in the range of 0.015-0.08. The specific viscosity of the brominated polycarbonate is calculated according to the formula for calculating the specific viscosity used in calculating the viscosity average molecular weight of the polycarbonate resin as component A of the present invention.
D成分の含有量は、A成分100重量部に対して、5~30重量部であり、好ましくは5~25重量部、より好ましくは5~20重量部である。含有量が5重量部未満では、難燃性が改善されず、30重量部を超えると押出加工性が低下する。 The content of component D is 5 to 30 parts by weight, preferably 5 to 25 parts by weight, more preferably 5 to 20 parts by weight, per 100 parts by weight of component A. If the content is less than 5 parts by weight, the flame retardancy is not improved, and if it exceeds 30 parts by weight, the extrusion workability is lowered.
(E成分:含フッ素滴下防止剤)
本発明の樹脂組成物は、含フッ素滴下防止剤を含有する。かかる含フッ素滴下防止剤を上記難燃剤と併用することにより、より良好な難燃性を得ることができる。かかる含フッ素滴下防止剤としては、フィブリル形成能を有する含フッ素ポリマーを挙げることができ、かかるポリマーとしてはポリテトラフルオロエチレン、テトラフルオロエチレン系共重合体(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、など)、米国特許第4379910号公報に示されるような部分フッ素化ポリマー、フッ素化ジフェノールから製造されるポリカーボネート樹脂などを挙げることかできるが、好ましくはポリテトラフルオロエチレン(以下PTFEと称することがある)である。
(Component E: fluorine-containing anti-dripping agent)
The resin composition of the present invention contains a fluorine-containing anti-dripping agent. Better flame retardancy can be obtained by using such a fluorine-containing anti-dripping agent together with the flame retardant. Examples of such a fluorine-containing anti-dripping agent include fluorine-containing polymers having fibril-forming ability. polymers, etc.), partially fluorinated polymers as shown in U.S. Pat. No. 4,379,910, polycarbonate resins produced from fluorinated diphenols, etc., but preferably polytetrafluoroethylene (hereinafter referred to as PTFE is sometimes called).
フィブリル形成能を有するポリテトラフルオロエチレン(フィブリル化PTFE)は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その数平均分子量は、150万~数千万の範囲である。かかる下限はより好ましくは300万である。かかる数平均分子量は、特開平6-145520号公報に開示されているとおり、380℃でのポリテトラフルオロエチレンの溶融粘度に基づき算出される。即ち、フィブリル化PTFEは、かかる公報に記載された方法で測定される380℃における溶融粘度が107~1013poiseの範囲であり、好ましくは108~1012poiseの範囲である。 Polytetrafluoroethylene (fibrillated PTFE) having fibril-forming ability has an extremely high molecular weight, and exhibits a tendency to become fibrous by binding PTFE to each other by an external action such as a shearing force. Its number average molecular weight ranges from 1.5 million to tens of millions. Such a lower limit is more preferably 3 million. Such number average molecular weight is calculated based on the melt viscosity of polytetrafluoroethylene at 380° C., as disclosed in JP-A-6-145520. That is, fibrillated PTFE has a melt viscosity of 107 to 1013 poise, preferably 108 to 1012 poise at 380° C. measured by the method described in the publication.
かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、更に良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。また、特開平6-145520号公報に開示されているとおり、かかるフィブリル化PTFEを芯とし、低分子量のポリテトラフルオロエチレンを殻とした構造を有するものも好ましく利用される。 Such PTFE can be used not only in a solid form but also in an aqueous dispersion form. In addition, PTFE having such fibril-forming ability improves its dispersibility in resin, and it is also possible to use a PTFE mixture in which it is mixed with other resins in order to obtain better flame retardancy and mechanical properties. be. Further, as disclosed in JP-A-6-145520, those having such a fibrillated PTFE as a core and a low-molecular-weight polytetrafluoroethylene as a shell are also preferably used.
フィブリル化PTFEの市販品としては例えば三井・デュポンフロロケミカル(株)のテフロン(登録商標)6J、ダイキン化学工業(株)のポリフロンMPA FA500、F-201Lなどを挙げることができる。フィブリル化PTFEの水性分散液の市販品としては、旭アイシーアイフロロポリマーズ(株)製のフルオンAD-1、AD-936、ダイキン工業(株)製のフルオンD-1、D-2、三井・デュポンフロロケミカル(株)製のテフロン(登録商標)30Jなどを代表として挙げることができる。 Examples of commercial products of fibrillated PTFE include Teflon (registered trademark) 6J manufactured by DuPont Fluorochemicals of Mitsui Co., Ltd., Polyflon MPA FA500 and F-201L manufactured by Daikin Chemical Industries, Ltd., and the like. Commercially available aqueous dispersions of fibrillated PTFE include Fluon AD-1 and AD-936 manufactured by Asahi ICI Fluoropolymers Co., Ltd.; Fluon D-1 and D-2 manufactured by Daikin Industries, Ltd.; Teflon (registered trademark) 30J manufactured by DuPont Fluorochemical Co., Ltd. can be mentioned as a representative.
混合形態のフィブリル化PTFEとしては、(1)フィブリル化PTFEの水性分散液と有機重合体の水性分散液または溶液とを混合し共沈殿を行い共凝集混合物を得る方法(特開昭60-258263号公報、特開昭63-154744号公報などに記載された方法)、(2)フィブリル化PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4-272957号公報に記載された方法)、(3)フィブリル化PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06-220210号公報、特開平08-188653号公報などに記載された方法)、(4)フィブリル化PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9-95583号公報に記載された方法)、および(5)PTFEの水性分散液と有機重合体分散液を均一に混合後、更に該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11-29679号などに記載された方法)により得られたものが使用できる。これらの混合形態のフィブリル化PTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3800」(商品名)、GEスペシャリティーケミカルズ社製 「BLENDEX B449」(商品名)およびPacific Interchem Corporation社製「POLY TS AD001」(商品名)などが例示される。 Mixed forms of fibrillated PTFE include (1) a method of mixing an aqueous dispersion of fibrillated PTFE and an aqueous dispersion or solution of an organic polymer to co-precipitate to obtain a co-aggregated mixture (JP-A-60-258263; (2) A method of mixing an aqueous dispersion of fibrillated PTFE and dried organic polymer particles (described in JP-A-4-272957). (3) A method in which an aqueous dispersion of fibrillated PTFE and a solution of organic polymer particles are uniformly mixed, and the respective media are simultaneously removed from the mixture (JP-A-06-220210, JP-A-06-220210; 08-188653, etc.), (4) a method of polymerizing a monomer that forms an organic polymer in an aqueous dispersion of fibrillated PTFE (described in JP-A-9-95583, method), and (5) a method of uniformly mixing an aqueous PTFE dispersion and an organic polymer dispersion, further polymerizing a vinyl monomer in the mixed dispersion, and then obtaining a mixture (JP-A-11- 29679, etc.) can be used. Commercially available products of fibrillated PTFE in a mixed form include "METABLEN A3800" (trade name) manufactured by Mitsubishi Rayon Co., Ltd., "BLENDEX B449" (trade name) manufactured by GE Specialty Chemicals, and "" manufactured by Pacific Interchem Corporation. POLY TS AD001" (trade name) is exemplified.
上記フィブリル化PTFEは機械的強度を低下させないため、できる限り微分散されることが好ましい。かかる微分散を達成する手段として、上記混合形態のフィブリル化PTFEは有利である。また水性分散液形態のものを溶融混練機に直接供給する方法も微分散には有利である。但し水性分散液形態のものはやや色相が悪化する点に配慮を要する。混合形態におけるフィブリル化PTFEの割合としては、かかる混合物100重量%中、フィブリル化PTFEが10~80重量%が好ましく、より好ましくは15~75重量%である。フィブリル化PTFEの割合がかかる範囲にある場合は、フィブリル化PTFEの良好な分散性を達成することができる。 Since the fibrillated PTFE does not reduce the mechanical strength, it is preferably dispersed as finely as possible. As a means of achieving such fine dispersion, the mixed form of fibrillated PTFE is advantageous. A method of directly supplying the aqueous dispersion form to the melt-kneader is also advantageous for fine dispersion. However, it should be noted that the hue of the aqueous dispersion is slightly deteriorated. The proportion of fibrillated PTFE in the mixed form is preferably 10 to 80% by weight, more preferably 15 to 75% by weight, based on 100% by weight of the mixture. When the proportion of fibrillated PTFE is within this range, good dispersibility of fibrillated PTFE can be achieved.
E成分の含有量は、A成分100重量部に対して、0.1~5重量部であり、好ましくは0.2~3重量部、より好ましくは0.2~0.8重量部である。含有量が0.1重量部未満では難燃性が低下し、5重量部を超えると押出加工性が低下する。 The content of component E is 0.1 to 5 parts by weight, preferably 0.2 to 3 parts by weight, more preferably 0.2 to 0.8 parts by weight with respect to 100 parts by weight of component A. . If the content is less than 0.1 parts by weight, the flame retardancy is lowered, and if it exceeds 5 parts by weight, the extrusion workability is lowered.
(F成分:ホスフェート化合物)
本発明の樹脂組成物はホスフェート化合物を含有することができる。ホスフェート化合物としては、例えば、モノメチルホスフェート、モノエチルホスフェート、モノトリメチルホスフェート、モノ-n-ブチルホスフェート、モノヘキシルホスフェート、モノヘプチルホスフェート、モノオクチルホスフェート、モノノニルホスフェート、モノデシルホスフェート、モノドデシルホスフェート、モノラウリルホスフェート、モノオレイルホスフェート、モノテトラデシルホスフェート、モノフェニルホスフェート、モノベンジルホスフェート、モノ(4-ドデシル)フェニルホスフェート、モノ(4-メチルフェニル)ホスフェート、モノ(4-エチルフェニル)ホスフェート、モノ(4-プロピルフェニル)ホスフェート、モノ(4-ドデシルフェニル)ホスフェート、モノトリルホスフェート、モノキシリルホスフェート、モノビフェニルホスフェート、モノナフチルホスフェート、及びモノアントリルホスフェート等のモノアルキルホスフェート類及びモノアリールホスフェート類を包含し、これらは単独で用いられてもよく、或は2種以上の混合物として、例えばモノアルキルホスフェートとモノアリールホスフェートとの混合物として用いられてもよい。但し、上記リン化合物を2種以上の混合物として用いる場合、モノアルキルホスフェートの比率が50%以上を占めていることが好ましく、90%以上を占めていることがより好ましく、特に100%を占めていることがさらに好ましい。
(F component: phosphate compound)
The resin composition of the present invention can contain a phosphate compound. Phosphate compounds include, for example, monomethyl phosphate, monoethyl phosphate, monotrimethyl phosphate, mono-n-butyl phosphate, monohexyl phosphate, monoheptyl phosphate, monooctyl phosphate, monononyl phosphate, monodecyl phosphate, monododecyl phosphate, mono Lauryl phosphate, monooleyl phosphate, monotetradecyl phosphate, monophenyl phosphate, monobenzyl phosphate, mono(4-dodecyl)phenyl phosphate, mono(4-methylphenyl)phosphate, mono(4-ethylphenyl)phosphate, mono(4 -propylphenyl)phosphate, mono(4-dodecylphenyl)phosphate, monotolyl phosphate, monoxylyl phosphate, monobiphenyl phosphate, mononaphthyl phosphate, and monoanthryl phosphate. However, these may be used alone or as a mixture of two or more, such as a mixture of monoalkyl phosphate and monoaryl phosphate. However, when the phosphorus compound is used as a mixture of two or more kinds, the ratio of the monoalkyl phosphate is preferably 50% or more, more preferably 90% or more, and particularly 100%. More preferably.
F成分の含有量は、A成分100重量部に対して、0.01~1重量部であることが好ましく、より好ましくは0.02~0.8重量部である。含有量が0.01重量部未満では成形熱安定性に劣る場合があり、1重量部を超えると耐湿熱性が低下する場合がある。 The content of component F is preferably 0.01 to 1 part by weight, more preferably 0.02 to 0.8 part by weight, per 100 parts by weight of component A. If the content is less than 0.01 part by weight, the molding heat stability may be poor, and if it exceeds 1 part by weight, the moist heat resistance may be lowered.
(その他の添加剤について)
また、本発明の組成物は必要に応じて種々の特開2016-160278号公報に記載の公知の添加剤を添加することができる。
(About other additives)
Further, the composition of the present invention can be added with various known additives described in JP-A-2016-160278 as necessary.
(樹脂組成物の製造)
本発明の樹脂組成物の調製には任意の方法が採用される。例えばA成分、B成分、C成分、D成分、E成分および任意に他の成分を予備混合し、その後溶融混練し、ペレット化する方法を挙げることができる。予備混合の手段としては、ナウターミキサー、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などを挙げることができる。予備混合においては必要に応じて押出造粒器やブリケッティングマシーンなどにより造粒を行うこともできる。他の方法としては例えば、パウダーの形態を有するものを含む場合、かかるパウダーの一部と配合する添加剤とをブレンドしてパウダーで希釈した添加剤のマスターバッチを製造し、かかるマスターバッチを利用する方法が挙げられる。予備混合後、ベント式二軸押出機に代表される溶融混練機で溶融混練、およびペレタイザー等の機器によりペレット化する。溶融混練機としては他にバンバリーミキサー、混練ロール、恒熱撹拌容器などを挙げることができるが、ベント式二軸押出機が好ましい。
(Manufacture of resin composition)
Any method may be employed to prepare the resin composition of the present invention. For example, A component, B component, C component, D component, E component and optionally other components are premixed, then melt-kneaded and pelletized. Means for premixing include a Nauta mixer, a V-type blender, a Henschel mixer, a mechanochemical device, an extrusion mixer, and the like. In pre-mixing, granulation can be performed by an extrusion granulator, a briquetting machine, or the like, if necessary. As another method, for example, when including those in the form of powder, a masterbatch of the additive diluted with the powder is produced by blending a part of the powder and the additive to be mixed, and the masterbatch is used. method. After pre-mixing, the mixture is melt-kneaded by a melt-kneader typified by a vented twin-screw extruder, and pelletized by a device such as a pelletizer. Other examples of the melt-kneader include a Banbury mixer, a kneading roll, a constant temperature stirring vessel and the like, but a vented twin-screw extruder is preferred.
他に、各成分を予備混合することなく、それぞれ独立に二軸押出機に代表される溶融混練機に供給する方法も取ることができる。また一部の成分を予備混合した後、残りの成分と独立に溶融混練機に供給する方法が挙げられる。特に無機充填材が配合される場合には、無機充填材は押出機途中の供給口から溶融樹脂中にサイドフィーダーの如き供給装置を用いて供給されることが好ましい。予備混合の手段や造粒に関しては、前記と同様である。なお、配合する成分に液状のものがある場合には、溶融混練機への供給にいわゆる液注装置、または液添装置を使用することができる。 In addition, a method of supplying each component independently to a melt-kneader typified by a twin-screw extruder without pre-mixing each component can also be adopted. Alternatively, a method of premixing a part of the components and then supplying the mixture to the melt-kneader independently of the remaining components may be used. Especially when an inorganic filler is blended, it is preferable to feed the inorganic filler into the molten resin from a feed port in the middle of the extruder using a feeding device such as a side feeder. The premixing means and granulation are the same as those described above. When the components to be blended include liquid components, a so-called liquid injection device or liquid addition device can be used for supplying the components to the melt-kneader.
押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。 As the extruder, it is preferable to use an extruder having a vent capable of degassing moisture in the raw material and volatile gas generated from the melt-kneaded resin. A vacuum pump is preferably installed from the vent for efficiently discharging generated moisture and volatile gas to the outside of the extruder. It is also possible to install a screen in front of the die portion of the extruder to remove foreign matters and the like mixed in the extruded raw material to remove the foreign matters from the resin composition. Such screens include wire meshes, screen changers, sintered metal plates (such as disk filters), and the like.
溶融混練機としては二軸押出機の他にバンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機などを挙げることができる。 Examples of the melt-kneader include a Banbury mixer, a kneading roll, a single-screw extruder, and a multi-screw extruder having three or more screws, in addition to the twin-screw extruder.
上記の如く押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。更にかかるペレットの製造においては、光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を用いて、ペレットの形状分布の狭小化、ミスカット物の低減、運送または輸送時に発生する微小粉の低減、並びにストランドやペレット内部に発生する気泡(真空気泡)の低減を適宜行うことができる。これらの処方により成形のハイサイクル化、およびシルバーの如き不良発生割合の低減を行うことができる。またペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1~5mm、より好ましくは1.5~4mm、さらに好ましくは2~3.3mmである。一方、円柱の長さは好ましくは1~30mm、より好ましくは2~5mm、さらに好ましくは2.5~3.5mmである。 The resin extruded as described above is either directly cut and pelletized, or is pelletized by forming strands and then cutting the strands with a pelletizer. It is preferable to clean the atmosphere around the extruder when it is necessary to reduce the influence of external dust during pelletization. Furthermore, in the production of such pellets, various methods already proposed for polycarbonate resins for optical discs are used to narrow the shape distribution of pellets, reduce miscuts, and reduce fine powder generated during transportation. , and air bubbles (vacuum air bubbles) generated inside the strands and pellets can be appropriately reduced. These formulations enable high-cycle molding and a reduction in the proportion of defects such as silver. The shape of the pellets can be any general shape such as columnar, prismatic, and spherical, but is more preferably columnar. The diameter of such a cylinder is preferably 1-5 mm, more preferably 1.5-4 mm, still more preferably 2-3.3 mm. On the other hand, the length of the cylinder is preferably 1-30 mm, more preferably 2-5 mm, and even more preferably 2.5-3.5 mm.
本発明の樹脂組成物は通常上記の如く製造されたペレットを射出成形して成形品を得ることにより各種製品を製造することができる。かかる射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、多色成形、サンドイッチ成形、および超高速射出成形などを挙げることができる。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。 Various products can be produced from the resin composition of the present invention by injection molding the pellets produced as described above to obtain molded articles. In such injection molding, not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including a method of injecting supercritical fluid), insert molding, in-mold coating molding, heat insulation Mold molding, rapid heating and cooling mold molding, two-color molding, multi-color molding, sandwich molding, and ultra-high-speed injection molding can be mentioned. For molding, either cold runner method or hot runner method can be selected.
また本発明の樹脂組成物は、押出成形により各種異形押出成形品、シート、フィルムなどの形で使用することもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。更に特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形などにより成形品とすることも可能である。 Also, the resin composition of the present invention can be used in the form of various profile extrudates, sheets, films, etc. by extrusion molding. In addition, the inflation method, calender method, casting method, and the like can be used for forming sheets and films. Further, it can be molded as a heat-shrinkable tube by subjecting it to a specific stretching operation. The resin composition of the present invention can also be molded by rotational molding, blow molding, or the like.
本発明の樹脂組成物が利用される成形品は、各種電子・電気機器部品、カメラ部品、OA機器部品、精密機械部品、機械部品、車両部品(特に車両用内外装部品)、その他農業資材、搬送容器、遊戯具および雑貨などの各種用途に有用であり、その奏する産業上の効果は格別である。 Molded articles using the resin composition of the present invention include various electronic and electrical equipment parts, camera parts, OA equipment parts, precision machine parts, machine parts, vehicle parts (especially interior and exterior parts for vehicles), other agricultural materials, It is useful for various uses such as transport containers, toys, and miscellaneous goods, and its industrial effects are exceptional.
更に本発明の樹脂組成物からなる成形品には、各種の表面処理を行うことが可能である。ここでいう表面処理とは、蒸着(物理蒸着、化学蒸着など)、メッキ(電気メッキ、無電解メッキ、溶融メッキなど)、塗装、コーティング、印刷などの樹脂成形品の表層上に新たな層を形成させるものであり、通常の熱可塑性樹脂に用いられる方法が適用できる。表面処理としては、具体的には、ハードコート、撥水・撥油コート、紫外線吸収コート、赤外線吸収コート、並びにメタライジング(蒸着など)などの各種の表面処理が例示される。ハードコートは特に好ましくかつ必要とされる表面処理である。加えて、本発明の樹脂組成物は、改良された金属密着性を有することから、蒸着処理およびメッキ処理の適用も好ましい。かようにして金属層が設けられた成形品は、電磁波シールド部品、導電部品、およびアンテナ部品などに利用できる。かかる部品は特にシート状およびフィルム状が好ましい。 Furthermore, various surface treatments can be applied to molded articles made of the resin composition of the present invention. Surface treatment here refers to deposition (physical vapor deposition, chemical vapor deposition, etc.), plating (electroplating, electroless plating, hot dipping, etc.), painting, coating, printing, etc. It is to be formed, and a method used for ordinary thermoplastic resins can be applied. Specific examples of the surface treatment include hard coating, water-repellent/oil-repellent coating, ultraviolet-absorbing coating, infrared-absorbing coating, and various surface treatments such as metallizing (vapor deposition, etc.). A hard coat is a particularly preferred and required surface treatment. In addition, since the resin composition of the present invention has improved adhesion to metals, the application of vapor deposition and plating is also preferred. Molded articles provided with a metal layer in this way can be used for electromagnetic wave shield parts, conductive parts, antenna parts, and the like. Sheet-like and film-like forms are particularly preferred for such parts.
本発明の樹脂組成物が利用される成形品の具体例としては、生活資材・建材・インテリア用品やOA機器・家電製品の内部部品やハウジングなどへの応用に好適なものである。これらの製品としては例えば、パソコン、ノートパソコン、CRTディスプレー、プリンター、携帯端末、携帯電話、コピー機、ファックス、記録媒体(CD、CD-ROM、DVD、PD、FDDなど)ドライブ、パラボラアンテナ、電動工具、VTR、テレビ、アイロン、ヘアードライヤー、炊飯器、電子レンジ、音響機器、オーディオ・レーザーディスク(登録商標)・コンパクトディスクなどの音声機器、照明機器、冷蔵庫、エアコン、タイプライター、ワードプロセッサー、スーツケースや清掃用具などの生活資材などを挙げることができ、これらの筐体などの各種部品に本発明の熱可塑性樹脂組成物から形成された樹脂製品を使用することができる。またその他の樹脂製品としては、ディフレクター部品、カーナビケーション部品、カーステレオ部品、充電インフラ部品、自動車内外装部品などの車両用部品を挙げることができる。 Specific examples of molded articles using the resin composition of the present invention are those suitable for applications such as living materials, building materials, interior goods, internal parts and housings of OA equipment and home electric appliances. Examples of these products include personal computers, notebook computers, CRT displays, printers, mobile terminals, mobile phones, copiers, fax machines, recording media (CD, CD-ROM, DVD, PD, FDD, etc.) drives, parabolic antennas, electric Tools, VTRs, TVs, irons, hair dryers, rice cookers, microwave ovens, audio equipment, audio equipment such as audio equipment, laser discs (registered trademark) and compact discs, lighting equipment, refrigerators, air conditioners, typewriters, word processors, suitcases and household materials such as cleaning tools, etc., and the resin products formed from the thermoplastic resin composition of the present invention can be used for various parts such as these housings. Other resin products include vehicle parts such as deflector parts, car navigation parts, car stereo parts, charging infrastructure parts, and automobile interior and exterior parts.
本発明のポリカーボネート樹脂組成物は、熱伝導性、耐熱性、難燃性、剛性および絶縁性に優れているため、屋外/屋内に限らず、自動車用途、インフラ設備用途、住宅設備用途、建材用途、生活資材用途、OA・EE用途、屋外機器用途、その他の各種分野において幅広く有用である。したがって本発明の奏する産業上の効果は極めて大である。 Since the polycarbonate resin composition of the present invention is excellent in thermal conductivity, heat resistance, flame retardancy, rigidity and insulation, it can be used not only for outdoor/indoor use, but also for automotive applications, infrastructure equipment applications, housing equipment applications, and building material applications. , household material applications, OA/EE applications, outdoor equipment applications, and other various fields. Therefore, the industrial effects of the present invention are extremely large.
本発明者が現在最良と考える発明の形態は、上記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。 The best mode of the invention that the present inventors consider to be the best possible range is a summary of the preferable ranges of the above requirements, and representative examples thereof are described in the following examples. Of course, the present invention is not limited to these forms.
以下に実施例をあげて本発明を更に説明する。なお、評価は下記の方法によって実施した。
(熱伝導性ポリカーボネート樹脂組成物の評価)
(i)熱伝導率
下記の方法で得られた引張りダンベル片(ISO規格ISO527-1および2準拠)の中央部分を所定の大きさ(100mm×10mm×3mmt)に切削し、レーザーフラッシュ装置(NETZSCH社製キセノンレーザーフラッシュアナライザLFA447型)を使用して、サンプルの流動方向の熱拡散率を測定し、熱伝導率を算出した。
(ii)荷重たわみ温度
下記の方法で得られたISO曲げ試験片を用いISO75-1および2に従い、1.80MPaの荷重で荷重たわみ温度を測定した。
(iii)曲げ弾性率
下記の方法で得られたISO曲げ試験片を用い、ISO178に従い、曲げ弾性率の測定を実施した。
(iv)難燃性
下記の方法で得られたUL試験片を用いて、UL94に従い、厚み2.8mmにおけるV(垂直難燃試験)試験を実施した。
(v)押出加工性
押出時の安定性に関して以下の基準で評価を実施した。
押出時にシュートアップが発生せず、ストランドも安定している:〇
押出時にシュートアップが発生しないが、ストランドが不安定で、ペレット化が困難:△
押出時にシュートアップが発生して、ペレット化が困難:×
(vi)絶縁性
IEC60250に従い表面抵抗率を測定し、以下の基準で評価を実施した。
表面抵抗率が1×1015以上:〇
表面抵抗率が1×1015未満:×
The present invention will be further described with reference to the following examples. In addition, evaluation was implemented by the following method.
(Evaluation of thermally conductive polycarbonate resin composition)
(i) Thermal conductivity The center part of a tensile dumbbell piece (ISO standard ISO527-1 and 2 compliant) obtained by the following method is cut into a predetermined size (100 mm × 10 mm × 3 mmt), and a laser flash device (NETZSCH) Using a xenon laser flash analyzer LFA447 (manufactured by the same company), the thermal diffusivity of the sample in the flow direction was measured, and the thermal conductivity was calculated.
(ii) Deflection temperature under load An ISO bending test piece obtained by the following method was used to measure the deflection temperature under load under a load of 1.80 MPa according to ISO75-1 and 2.
(iii) Flexural modulus Using an ISO flexural test piece obtained by the following method, the flexural modulus was measured according to ISO178.
(iv) Flame Retardancy Using a UL test piece obtained by the following method, a V (vertical flame retardance test) test at a thickness of 2.8 mm was carried out according to UL94.
(v) Extrusion Processability Stability during extrusion was evaluated according to the following criteria.
No shoot-up during extrusion and stable strands: 〇 No shoot-up during extrusion, but unstable strands and difficult to pelletize: △
Shoot-up occurs during extrusion, making pelletization difficult: ×
(vi) Insulation The surface resistivity was measured according to IEC60250 and evaluated according to the following criteria.
Surface resistivity of 1 × 10 15 or more: ○ Surface resistivity of less than 1 × 10 15 : ×
[実施例1~10、比較例1~10]
表1および表2に示す組成で、B成分のガラス繊維を除く成分からなる混合物を押出機の第1供給口から供給した。かかる混合物はV型ブレンダーで混合して得た。B成分のガラス繊維は、第2供給口からサイドフィーダーを用いて供給した。押出は径30mmφのベント式二軸押出機((株)日本製鋼所TEX30α―38.5BW-3V)を使用し、スクリュー回転数230rpm、吐出量25kg/h、ベントの真空度3kPaで溶融混錬し、ペレットを得た。なお、押出温度については、第1供給口からダイス部分まで300℃で実施した。得られたペレットの一部は、120℃で6時間熱風循環式乾燥機にて乾燥した後、射出成型機を用いて、シリンダー温度300℃、金型温度90℃にて評価用の引張ダンベル片(ISO527-1および2準拠)、ISO曲げ試験片(ISO178およびISO179準拠)およびUL試験片を成形した。
[Examples 1 to 10, Comparative Examples 1 to 10]
A mixture having the composition shown in Tables 1 and 2 and consisting of the components excluding the glass fiber of component B was supplied from the first supply port of the extruder. Such a mixture was obtained by mixing in a V-blender. The glass fiber of component B was supplied from the second supply port using a side feeder. Extrusion uses a vented twin-screw extruder (Japan Steel Works, Ltd. TEX30α-38.5BW-3V) with a diameter of 30 mmφ, screw rotation speed 230 rpm, discharge rate 25 kg / h, and melt kneading at a vent vacuum degree of 3 kPa. and obtained pellets. The extrusion temperature was 300° C. from the first supply port to the die. Some of the obtained pellets were dried in a hot air circulation dryer at 120°C for 6 hours, and then molded into tensile dumbbell pieces for evaluation at a cylinder temperature of 300°C and a mold temperature of 90°C using an injection molding machine. (according to ISO 527-1 and 2), ISO bending test pieces (according to ISO 178 and ISO 179) and UL test pieces were molded.
なお、表1、表2中の記号表記の各成分は以下の通りである。
(A成分)
A-1:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量19,700のポリカーボネート樹脂粉末、帝人(株)製 パンライトL-1225WX(製品名))
A-2:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量22,200のポリカーボネート樹脂ペレット、帝人(株)製 パンライトL-1225Y(製品名))
(B成分)
B-1:ガラス繊維(日東紡績(株)製 CSG 3PE-455(商品名)、繊維径13μm、カット長3mm、ウレタン系集束剤)
(C成分)
C-1:窒化ホウ素(Dandong Chemical Engineering Institute製 HS(製品名)、板状 レーザー回析・散乱法により測定される平均粒子径(D50):20μm タップ密度:0.6g/ml)
C-2:窒化ホウ素(Dandong Chemical Engineering Institute製 HN(製品名)、板状 レーザー回析・散乱法により測定される平均粒子径(D50):10μm タップ密度:0.3g/ml)
C-3:窒化ホウ素(Dandong Chemical Engineering Institute製 HSL(製品名)、板状 レーザー回析・散乱法により測定される平均粒子径(D50):30μm タップ密度:0.6g/ml)
(D成分)
D-1:臭素系難燃剤(帝人(株)製 ファイヤガードFG8500(商品名))
(E成分)
E-1:含フッ素滴下防止剤(ダイキン工業(株)製 ポリフロンMPA FA500H(商品名))
(F成分)
F-1:ホスフェート化合物(大八化学工業(株)製 TMP(商品名))
In addition, each component of symbol notation in Table 1 and Table 2 is as follows.
(A component)
A-1: Aromatic polycarbonate resin (Polycarbonate resin powder with a viscosity average molecular weight of 19,700 made from bisphenol A and phosgene by a conventional method, Panlite L-1225WX (product name) manufactured by Teijin Limited)
A-2: Aromatic polycarbonate resin (polycarbonate resin pellets with a viscosity average molecular weight of 22,200 made from bisphenol A and phosgene by a conventional method, Panlite L-1225Y (product name) manufactured by Teijin Limited)
(B component)
B-1: Glass fiber (manufactured by Nitto Boseki Co., Ltd., CSG 3PE-455 (trade name), fiber diameter 13 μm, cut length 3 mm, urethane-based sizing agent)
(C component)
C-1: Boron nitride (HS (product name) manufactured by Dandong Chemical Engineering Institute, plate-like, average particle size (D50) measured by laser diffraction/scattering method: 20 μm, tap density: 0.6 g/ml)
C-2: Boron nitride (HN (product name) manufactured by Dandong Chemical Engineering Institute, plate-like average particle size measured by laser diffraction/scattering method (D50): 10 μm tap density: 0.3 g/ml)
C-3: Boron nitride (HSL (product name) manufactured by Dandong Chemical Engineering Institute, plate-like average particle size measured by laser diffraction/scattering method (D50): 30 μm tap density: 0.6 g/ml)
(D component)
D-1: Brominated flame retardant (Fireguard FG8500 (trade name) manufactured by Teijin Limited)
(E component)
E-1: Fluorine-containing anti-dripping agent (Polyflon MPA FA500H (trade name) manufactured by Daikin Industries, Ltd.)
(F component)
F-1: Phosphate compound (TMP (trade name) manufactured by Daihachi Chemical Industry Co., Ltd.)
Claims (3)
A molded article comprising the thermally conductive polycarbonate resin composition according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018233435A JP7111602B2 (en) | 2018-12-13 | 2018-12-13 | Thermally conductive polycarbonate resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018233435A JP7111602B2 (en) | 2018-12-13 | 2018-12-13 | Thermally conductive polycarbonate resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020094137A JP2020094137A (en) | 2020-06-18 |
JP7111602B2 true JP7111602B2 (en) | 2022-08-02 |
Family
ID=71084565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018233435A Active JP7111602B2 (en) | 2018-12-13 | 2018-12-13 | Thermally conductive polycarbonate resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7111602B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111534075B (en) * | 2020-06-29 | 2021-09-17 | 四川大学 | Thermoplastic heat-conducting composite material and preparation method thereof |
WO2023228768A1 (en) * | 2022-05-24 | 2023-11-30 | 帝人株式会社 | Thermoplastic resin composition and molded article formed from same |
CN116632744A (en) * | 2023-05-15 | 2023-08-22 | 镇江加勒智慧电力科技股份有限公司 | Bus duct capable of reducing vibration and noise |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016160278A (en) | 2015-02-26 | 2016-09-05 | 帝人株式会社 | Insulating thermally conductive polycarbonate resin composition |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3257951B2 (en) * | 1996-05-24 | 2002-02-18 | 帝人化成株式会社 | Aromatic polycarbonate resin composition and molded article |
-
2018
- 2018-12-13 JP JP2018233435A patent/JP7111602B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016160278A (en) | 2015-02-26 | 2016-09-05 | 帝人株式会社 | Insulating thermally conductive polycarbonate resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP2020094137A (en) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7081882B2 (en) | Method for manufacturing polycarbonate-based resin composition | |
KR101723699B1 (en) | Polycarbonate/polydiorganosiloxane copolymer | |
US9127155B2 (en) | Phosphorus free flame retardant composition | |
US9255200B2 (en) | Heat resistance in polycarbonate compositions | |
JP5466445B2 (en) | Transparent flame retardant aromatic polycarbonate resin composition and molded article thereof | |
JP2013001801A (en) | Flame-retardant polycarbonate resin composition | |
JP2011046913A (en) | Polycarbonate/polydiorganosiloxane copolymer | |
US12084572B2 (en) | Impeller and resin composition therefor | |
JP7111602B2 (en) | Thermally conductive polycarbonate resin composition | |
JP5073203B2 (en) | Polycarbonate resin composition, molded product thereof, and film and sheet | |
JP5973282B2 (en) | Polycarbonate resin composition and molded body | |
JP7303058B2 (en) | Thermally conductive polycarbonate resin composition | |
JP6073700B2 (en) | Reinforced polycarbonate resin composition | |
JP6495683B2 (en) | Insulating heat conductive polycarbonate resin composition | |
JP6782576B2 (en) | Polycarbonate resin composition | |
JP7311357B2 (en) | Thermally conductive polycarbonate resin composition | |
JP7311355B2 (en) | Polycarbonate resin composition | |
JP6250409B2 (en) | Thermally conductive polycarbonate resin composition and molded product | |
JP2021066831A (en) | Polycarbonate resin composition | |
JP7311356B2 (en) | Polycarbonate resin composition | |
JP4595303B2 (en) | Conductive thermoplastic polycarbonate resin composition having flame retardancy and molded article thereof | |
WO2024053274A1 (en) | Polycarbonate resin composition and molded article formed of same | |
JP2024124629A (en) | Polycarbonate resin composition and molded article made thereof | |
JP2024075019A (en) | Thermoplastic resin composition and molded article comprising the same | |
JP2024080311A (en) | Polycarbonate resin composition and molded article comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210917 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220630 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220705 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220721 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7111602 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |