JP7111447B2 - Method for producing radioactive iodine adsorbent - Google Patents
Method for producing radioactive iodine adsorbent Download PDFInfo
- Publication number
- JP7111447B2 JP7111447B2 JP2017116869A JP2017116869A JP7111447B2 JP 7111447 B2 JP7111447 B2 JP 7111447B2 JP 2017116869 A JP2017116869 A JP 2017116869A JP 2017116869 A JP2017116869 A JP 2017116869A JP 7111447 B2 JP7111447 B2 JP 7111447B2
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- radioactive iodine
- impregnated
- amount
- triethylenediamine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明は放射性ヨウ素吸着材の製造方法に関し、特に、気体状のヨウ素化合物の吸着効率を高めたヨウ素吸着材の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a radioactive iodine adsorbent, and more particularly to a method for producing an iodine adsorbent with improved adsorption efficiency for gaseous iodine compounds.
軽水炉等の一般的なウラン型原子炉に用いられる核燃料において、ウラン(235U)は核分裂反応の主要元素である。ウラン(235U)の核分裂反応により生成される放射性物質の核種として、例えば、ストロンチウム(90Sr)、ヨウ素(131I)、セシウム(134Cs、137Cs)等が存在する。 Uranium ( 235 U) is a major element in nuclear fission reaction in the nuclear fuel used in general uranium reactors such as light water reactors. Examples of nuclides of radioactive substances generated by the nuclear fission reaction of uranium ( 235 U) include strontium ( 90 Sr), iodine ( 131 I), cesium ( 134 Cs, 137 Cs) and the like.
通常、核燃料であるウランは燃料棒の内部に収容されており、内部のウランの核分裂物質が外部に拡散することはない。ここで、ウランの核分裂がある程度進行した後、MOX燃料等への加工、核燃料の処分等に際し燃料棒は開封される。また、燃料棒自体の損傷のリスクもある。このような場合、原則遮蔽環境下にて作業は行われるものの、万が一の状況下での放射性同位体核種の外部への飛散のおそれはあり得る。 Normally, uranium, which is a nuclear fuel, is stored inside the fuel rod, and the fissile material of the uranium inside does not diffuse to the outside. Here, after the nuclear fission of uranium has progressed to some extent, the fuel rods are unsealed for processing into MOX fuel or the like, disposal of nuclear fuel, or the like. There is also the risk of damage to the fuel rods themselves. In such cases, although work is carried out in a shielded environment in principle, there is a possibility that radioisotope nuclides may be dispersed to the outside in an emergency situation.
ウランの核分裂により生じる放射性同位体核種において、ヨウ素は、気体のI2またはヨウ化メチル(CH3I)等の有機ヨウ素化合物として存在することが知られている。ヨウ素(131I)の半減期は約8日間ではあるものの、高エネルギーのβ線を出しながらキセノン(Xe)へ壊変する。従って、放射性ヨウ素の大気中への拡散抑制の問題は他の核種と比べても重要である。特に、人体の摂取には注意する必要があり、ヨウ素剤の服用が推奨されていることからも明らかである。 In radioisotopes produced by fission of uranium, iodine is known to exist as gaseous I 2 or organic iodine compounds such as methyl iodide (CH 3 I). Although iodine ( 131 I) has a half-life of about eight days, it decays into xenon (Xe) while emitting high-energy β-rays. Therefore, the problem of suppressing diffusion of radioactive iodine into the atmosphere is more important than other nuclides. In particular, it is necessary to pay attention to the ingestion of iodine by the human body, and it is clear from the fact that the intake of iodine preparations is recommended.
原子力発電所、原子力関連施設(再処理施設、貯蔵施設)等において、施設作業者の作業区域に空調機器には、大気中の空気に含まれる放射性ヨウ素を吸着するための吸着材が備えられている。このような施設内への設置の他に、周辺住民の避難施設の空調機器への設置も検討され始めている。それゆえ、放射性ヨウ素吸着材の需要は、今後増大すると考えられる。 In nuclear power plants, nuclear related facilities (reprocessing facilities, storage facilities), etc., air conditioners are equipped with adsorbents to adsorb radioactive iodine contained in the atmospheric air in the work areas of facility workers. there is In addition to installation in such facilities, consideration is also being given to installing air conditioners in evacuation facilities for nearby residents. Therefore, the demand for radioactive iodine adsorbents is expected to increase in the future.
従前の放射性ヨウ素の吸着材として、例えば、ヨウ化カリウムを添着した活性炭、銀を添着したゼオライト等が知られている。しかしながら、これらの吸着材のヨウ素及びヨウ素化合物の吸着性能は必ずしも十分ではなかった。そこで、活性炭にトリエチレンジアミンとヨウ化カリウムを添着した吸着材が提案されている(特許文献1,2参照)。 As conventional adsorbents for radioactive iodine, for example, activated carbon impregnated with potassium iodide, zeolite impregnated with silver, and the like are known. However, the adsorption performance of these adsorbents for iodine and iodine compounds was not always sufficient. Therefore, an adsorbent in which triethylenediamine and potassium iodide are impregnated on activated carbon has been proposed (see Patent Documents 1 and 2).
特許文献1,2に代表される放射性ヨウ素吸着材は、高温、高湿度下においても耐久性を有し、しかもヨウ素及びヨウ素化合物の両方の吸着性能を備えるため極めて好適な吸着材である。しかしながら、放射性ヨウ素の吸着性能を発揮するための添着成分は高価であり、使用量の低減が検討されてきた。 The radioactive iodine adsorbents typified by Patent Documents 1 and 2 are extremely suitable adsorbents because they are durable even under high temperature and high humidity conditions and have the ability to adsorb both iodine and iodine compounds. However, the impregnation component for exhibiting the adsorption performance of radioactive iodine is expensive, and reduction of the amount used has been studied.
その後、発明者は、放射性ヨウ素吸着材の材料、製造過程について鋭意検討を重ね、従前の条件よりも添着物質の量を低減しても十分な吸着効率が発揮されることを確認した。 After that, the inventor conducted extensive research on the materials and manufacturing processes of the radioactive iodine adsorbent, and confirmed that sufficient adsorption efficiency can be exhibited even if the amount of impregnated substance is reduced compared to the conventional conditions.
本発明は、上記状況に鑑み提案されたものであり、高温、高湿度下においても耐久性を有し、放射性ヨウ素及び放射性ヨウ素化合物の両方を含有する被処理ガス中からの放射性ヨウ素の吸着性能を備え、しかも吸着に作用する物質の使用量の低減を可能とする放射性ヨウ素吸着材の製造方法を提供する。 The present invention has been proposed in view of the above situation, and has durability even under high temperature and high humidity, and is capable of adsorbing radioactive iodine from the gas to be treated containing both radioactive iodine and radioactive iodine compounds. and capable of reducing the amount of substances acting on adsorption.
第1の発明は、放射性ヨウ素を含む被処理ガス中より放射性ヨウ素を吸着する放射性ヨウ素吸着材の製造方法であって、活性炭を酸洗浄し乾燥して基材活性炭を得る洗浄工程と、ヨウ化カリウムの水溶液と前記基材活性炭を混合し、乾燥して第1添着活性炭を得る第1添着工程と、トリエチレンジアミンの水溶液と前記第1添着活性炭を混合し、乾燥して第2添着活性炭を得る第2添着工程とを備え、前記第1添着工程における前記ヨウ化カリウムの添着量が前記放射性ヨウ素吸着材の重量の1.8~3重量%であり、前記第2添着工程における前記トリエチレンジアミンの添着量が前記放射性ヨウ素吸着材の重量の1.9~2.5重量%であることを特徴とする放射性ヨウ素吸着材の製造方法に係る。 A first invention is a method for producing a radioactive iodine adsorbent that adsorbs radioactive iodine from a gas to be treated containing radioactive iodine, comprising a cleaning step of obtaining a substrate activated carbon by washing activated carbon with an acid and drying it, and iodination. A first impregnating step of mixing an aqueous solution of potassium and the base activated carbon and drying to obtain a first impregnated activated carbon, and mixing an aqueous solution of triethylenediamine and the first impregnated activated carbon and drying to obtain a second impregnated activated carbon. and a second impregnation step, wherein the impregnation amount of the potassium iodide in the first impregnation step is 1.8 to 3 wt% of the weight of the radioactive iodine adsorbent, and the amount of triethylenediamine in the second impregnation step. It relates to a method for producing a radioactive iodine adsorbent, characterized in that the loading amount is 1.9 to 2.5% by weight of the radioactive iodine adsorbent.
第2の発明は、前記基材活性炭のBET比表面積が1173~1723m2/gである請求項1に記載の放射性ヨウ素吸着材の製造方法に係る。 A second invention relates to the method for producing a radioactive iodine adsorbent according to claim 1 , wherein the base material activated carbon has a BET specific surface area of 1173 to 1723 m 2 /g.
第1の発明に係る放射性ヨウ素吸着材の製造方法によると、放射性ヨウ素を含む被処理ガス中より放射性ヨウ素を吸着する放射性ヨウ素吸着材の製造方法であって、活性炭を酸洗浄し乾燥して基材活性炭を得る洗浄工程と、ヨウ化カリウムの水溶液と前記基材活性炭を混合し、乾燥して第1添着活性炭を得る第1添着工程と、トリエチレンジアミンの水溶液と前記第1添着活性炭を混合し、乾燥して第2添着活性炭を得る第2添着工程とを備え、前記第1添着工程における前記ヨウ化カリウムの添着量が前記放射性ヨウ素吸着材の重量の1.8~3重量%であり、前記第2添着工程における前記トリエチレンジアミンの添着量が前記放射性ヨウ素吸着材の重量の1.9~2.5重量%であるため、性状が安定しており比較的調達も容易なヨウ化カリウムを用いて、放射性ヨウ素及び放射性ヨウ素化合物の両方を含有する被処理ガス中からの放射性ヨウ素の高い吸着性能を備え、しかも吸着に作用する物質の使用量の低減を可能とする放射性ヨウ素吸着材を簡便な製造方法により得ることができる。 According to the method for producing a radioactive iodine adsorbent according to the first invention, a method for producing a radioactive iodine adsorbent that adsorbs radioactive iodine from a gas to be treated containing radioactive iodine, comprising: a first impregnation step of mixing an aqueous solution of potassium iodide and the base activated carbon and drying to obtain a first impregnated activated carbon; mixing an aqueous solution of triethylenediamine and the first impregnated activated carbon; , a second impregnation step of drying to obtain a second impregnated activated carbon, wherein the impregnation amount of the potassium iodide in the first impregnation step is 1.8 to 3% by weight of the radioactive iodine adsorbent; Since the amount of triethylenediamine impregnated in the second impregnation step is 1.9 to 2.5% by weight of the radioactive iodine adsorbent, potassium iodide, which has stable properties and is relatively easy to procure, is used. A simple radioactive iodine adsorbent that has high adsorption performance of radioactive iodine from the gas to be treated containing both radioactive iodine and radioactive iodine compounds, and that can reduce the amount of substances that act on adsorption. It can be obtained by a simple manufacturing method.
第2の発明に係る放射性ヨウ素吸着材の製造方法によると、第1の発明において、前記基材活性炭のBET比表面積が1173~1723m2/gであるため、吸着能力に影響する体積当たりの薬品添着量及び細孔容積の減少による破過時間の低下による性能低下を回避した放射性ヨウ素吸着材を製造することができる。 According to the method for producing a radioactive iodine adsorbent according to the second invention, in the first invention, the BET specific surface area of the base material activated carbon is 1173 to 1723 m 2 /g, so the amount of chemicals per volume that affects the adsorption capacity It is possible to produce a radioactive iodine adsorbent that avoids deterioration in performance due to a decrease in breakthrough time due to a decrease in the impregnation amount and pore volume.
本発明の製造方法により得られる放射性ヨウ素吸着材は、放射性ヨウ素(主に131I等)を含む被処理ガス中より放射性ヨウ素を吸着することによって、放射性ヨウ素の大気中への拡散を抑制するための吸着材である。ウランの核分裂により生じたヨウ素(131I等)は、ハロゲンの一種であることから反応性に富み、温度条件次第では、ヨウ素(I2)は気体として存在する。また、電離状態のI-と他の有機物との反応により有機物由来のメチル基と反応してヨウ化メチル(CH3I)等の有機ヨウ素化合物が生成することも知られている。このような気体中の放射性のヨウ素及びヨウ素化合物を含む被処理ガスに対する効率の良い吸着材として、本発明の製造方法により得られる放射性ヨウ素吸着材が提案される。 The radioactive iodine adsorbent obtained by the production method of the present invention suppresses the diffusion of radioactive iodine into the atmosphere by adsorbing radioactive iodine from the gas to be treated containing radioactive iodine (mainly 131 I etc.). is an adsorbent for Iodine ( 131 I, etc.) produced by nuclear fission of uranium is highly reactive because it is a kind of halogen, and depending on temperature conditions, iodine (I 2 ) exists as a gas. It is also known that ionized I 2 − reacts with other organic substances to react with methyl groups derived from organic substances to produce organic iodine compounds such as methyl iodide (CH 3 I). A radioactive iodine adsorbent obtained by the production method of the present invention is proposed as an efficient adsorbent for the gas to be treated containing such radioactive iodine and iodine compounds in the gas.
そこで、放射性ヨウ素吸着材について、図1の概略工程図と併せてその製造方法とともに説明する。放射性ヨウ素吸着材の主体となる材料として、基材活性炭が用意される。基材活性炭は、公知の活性炭(Activated carbon)の粒状物である。活性炭は、木材の製材、加工時に生じるオガコ(大鋸屑)や鉋屑等、廃材や間伐材、廃竹、伐採竹、ヤシ殻等のセルロース分に富む木質の植物原料の粉砕物を炭化、焼成、適宜の賦活を経て得た炭化物である。植物原料の他に、古タイヤ、フェノール樹脂等の各種樹脂製品の炭化物等も活性炭に加えることができる。そのため、基材活性炭は比較的安価かつ量的に調達可能である。 Therefore, the radioactive iodine adsorbent will be described together with its manufacturing method in conjunction with the schematic process diagram of FIG. A substrate activated carbon is prepared as a main material of the radioactive iodine adsorbent. The substrate activated carbon is known activated carbon granules. Activated carbon is used to carbonize, burn, and burn crushed woody plant materials rich in cellulose, such as sawdust and shavings generated during lumber processing and processing, waste wood, thinned wood, waste bamboo, felled bamboo, and coconut shells. It is a carbide obtained through the activation of In addition to plant materials, used tires, charcoal of various resin products such as phenolic resin, etc. can also be added to the activated carbon. Therefore, the base material activated carbon can be procured relatively inexpensively and in large quantities.
活性炭は吸着、濾過材料として使用されており、安全性が高くしかも活性炭表面に発達した細孔により幅広い物質を吸着対象とすることができる。そこで、活性炭の表面並びにその細孔への次述する添着物質等の付着、活性炭の細孔内への放射性のヨウ素及びヨウ素化合物を含む被処理ガスの浸透性能も高い。活性炭の大きさは1ないし5mm程度の粒状体であり、大きさは不定形である。活性炭の大きさや形状の制御は粉砕、破砕、篩別等により、任意である。しかしながら、放射性ヨウ素吸着材は放射性ヨウ素を含む被処理ガスを吸着の対象とする。極端に粒径が細かい場合には、目詰まり等の圧力損失が大きくなり、ガス通気にも影響が生じるおそれがある。ただし、被処理ガスを加圧しながら通気が可能であれば、粉末状活性炭の選択も可能である。 Activated carbon is used as an adsorption and filtering material, and is highly safe, and can adsorb a wide range of substances due to the pores developed on the surface of the activated carbon. Therefore, the following impregnated substances adhere to the surface of the activated carbon and its pores, and the permeation performance of radioactive iodine and gas to be treated containing iodine compounds into the pores of the activated carbon is also high. The activated carbon is granular with a size of about 1 to 5 mm, and the size is irregular. The size and shape of the activated carbon can be arbitrarily controlled by pulverization, crushing, sieving, or the like. However, the radioactive iodine adsorbent is intended to adsorb a gas to be treated containing radioactive iodine. If the particle size is extremely small, pressure loss such as clogging increases, which may affect gas ventilation. However, if the gas to be treated can be pressurized and aerated, powdered activated carbon can also be selected.
活性炭の吸着性能の評価指標として、BET法による比表面積(m2/g)が利用される。一般傾向として、比表面積が増加するほど活性炭内部の細孔は発達して吸着性能は高まる。しかしながら、吸着対象との関係では、どの範囲の大きさの細孔を発達させるべきかが重要となり、単純に比表面積の増大が吸着性能の向上に結びつかない。特に、本発明の製造方法により得られる放射性ヨウ素吸着材は有機ヨウ素化合物等を主な吸着対象とする。この場合、吸着対象の分子の大きさ等が勘案されて相対的にメソ孔(概ね2ないし50nmの範囲の細孔)を多く有する活性炭ほど好ましいと考えられる。 As an index for evaluating the adsorption performance of activated carbon, the specific surface area (m 2 /g) according to the BET method is used. As a general trend, as the specific surface area increases, the pores inside the activated carbon develop and the adsorption performance increases. However, depending on the target to be adsorbed, the size range of the pores to be developed is important, and simply increasing the specific surface area does not lead to an improvement in adsorption performance. In particular, the radioactive iodine adsorbent obtained by the production method of the present invention mainly adsorbs organic iodine compounds and the like. In this case, the activated carbon having a relatively large number of mesopores (pores in the range of approximately 2 to 50 nm) is considered preferable, considering the size of molecules to be adsorbed.
そこで、後記の実施例の検証を踏まえ、ヨウ化メチル等の有機ヨウ素化合物を吸着する際の活性炭のBET法による比表面積は1900m2/g以下と導き出される。BET法による比表面積が1900m2/gを超える場合、ヨウ化メチルの破過時間の低下による性能低下が現れる。さらに、比表面積の上限は1750m2/g以下、さらには1550m2/g以下、より好ましくは1400m2/g以下に規定される。比表面積の下限については、好ましくは1100m2/gである。比表面積の増加は吸着能力に影響する体積当たりの薬品添着量及び細孔容積の減少につながり、吸着材としての破過時間の低下をもたらす。 Therefore, based on the verification of Examples described later, the specific surface area of activated carbon by the BET method when adsorbing an organic iodine compound such as methyl iodide is derived to be 1900 m 2 /g or less. When the specific surface area by the BET method exceeds 1900 m 2 /g, the performance is deteriorated due to the reduction of the breakthrough time of methyl iodide. Furthermore, the upper limit of the specific surface area is defined as 1750 m 2 /g or less, further 1550 m 2 /g or less, more preferably 1400 m 2 /g or less. The lower limit of the specific surface area is preferably 1100 m 2 /g. An increase in the specific surface area leads to a decrease in the amount of attached chemicals per volume and a pore volume that affect the adsorption capacity, resulting in a decrease in breakthrough time as an adsorbent.
はじめに活性炭は希塩酸等の弱酸性溶液中に浸漬され、同弱酸性溶液にて煮沸される。その後、水洗と乾燥を経て次の工程に供する基材活性炭が得られる(「洗浄工程」)。安価に仕上げるため、活性炭には、前述のとおり天然物由来の原料が多く使用される。そのため、品質のばらつきが完全には払拭されない。また、活性炭の表面及び細孔内に有機物、塩類が存在していると、次に述べるアルカリ金属のヨウ化物、トリエチレンジアミンの添着は阻害されるおそれが考えられる。そこで、活性炭が希塩酸等の弱酸性溶液にて煮沸されると、有機物は分解され、また塩類も溶解可能である。結果として、事前に品質の安定化を図ることが可能となる。特に、トリエチレンジアミンは塩基性を呈する。そのため、酸洗浄により活性炭表面の塩基性基が減少することは好ましいと考えられる。 First, the activated carbon is immersed in a weakly acidic solution such as dilute hydrochloric acid and boiled in the same weakly acidic solution. Then, after washing with water and drying, the substrate activated carbon to be supplied to the next step is obtained (“washing step”). In order to finish at a low cost, many raw materials derived from natural products are used for activated carbon, as mentioned above. Therefore, the quality variation is not completely eliminated. Also, if organic substances and salts are present on the surface and in the pores of the activated carbon, it is conceivable that the following impregnation of alkali metal iodides and triethylenediamine may be inhibited. Therefore, when activated carbon is boiled in a weakly acidic solution such as dilute hydrochloric acid, organic substances are decomposed and salts can be dissolved. As a result, it is possible to stabilize the quality in advance. In particular, triethylenediamine exhibits basicity. Therefore, it is considered preferable to reduce the basic groups on the surface of the activated carbon by acid washing.
次にアルカリ金属ヨウ化物の水溶液が調製され、同水溶液と基材活性炭は混合、その後乾燥され、第1添着活性炭が得られる(「第1添着工程」)。アルカリ金属ヨウ化物は、具体的にはヨウ化カリウム(KI)またはヨウ化ナトリウム(NaI)である。それ以外のアルカリ金属の場合、当量(1モル当たりのグラム数)との関係から使用量が増え、また、価格がヨウ化カリウムよりも高価になる。ヨウ化カリウムの性状は安定しており、比較的調達も容易であることから好ましく用いられる。 Next, an aqueous solution of alkali metal iodide is prepared, and the aqueous solution and the base activated carbon are mixed and then dried to obtain the first impregnated activated carbon (“first impregnated step”). Alkali metal iodides are specifically potassium iodide (KI) or sodium iodide (NaI). In the case of other alkali metals, the amount used increases due to the relationship with the equivalent (the number of grams per mole), and the price becomes higher than that of potassium iodide. Potassium iodide is preferably used because its properties are stable and it is relatively easy to procure.
アルカリ金属ヨウ化物(ヨウ化カリウムまたはヨウ化ナトリウム)による放射性ヨウ素吸着の作用は次のとおりと考えられる。吸着材側の安定同位体のヨウ素(127I2)に被処理ガス中の放射性ヨウ素(131I2等)が接触すると、ヨウ素の核種の交換が生じる。これについては、例えば、式(i)の反応が参照される。式(i)はヨウ化カリウム「KI」の例であり、「I*」はヨウ素の放射性同位体を示す。結果、被処理ガス中の放射性ヨウ素は接触前よりも低減する。従って、アルカリ金属ヨウ化物は、被処理ガス中、単体で存在する放射性ヨウ素(131I2等)と放射性ヨウ化メチル(CH3 131I等)の放射性有機ヨウ素化合物の除去に作用する。 The action of radioactive iodine adsorption by alkali metal iodides (potassium iodide or sodium iodide) is thought to be as follows. When the stable isotope iodine ( 127 I 2 ) on the adsorbent side comes into contact with radioactive iodine ( 131 I 2 etc.) in the gas to be treated, iodine nuclide exchange occurs. In this regard, for example, reference is made to the reaction of formula (i). Formula (i) is an example of potassium iodide "KI" and "I * " denotes a radioactive isotope of iodine. As a result, radioactive iodine in the gas to be treated is reduced compared to before contact. Therefore, the alkali metal iodide acts to remove radioactive organic iodine compounds such as radioactive iodine ( 131 I 2 and the like) and radioactive methyl iodide (CH 3 131 I and the like) present alone in the gas to be treated.
ヨウ化カリウムまたはヨウ化ナトリウムは水に溶解後、基材活性炭への吹き付け塗布、浸漬等により水溶液と十分に混合される。アルカリ金属ヨウ化物の水溶液は、最終的な添着量を考慮して濃度調整される。その後、水分の蒸発に十分な温度、時間をかけて乾燥される。アルカリ金属ヨウ化物は塩であることから、乾燥時の温度を上げることも可能である。ただし、基材の熱分解を避ける必要から、概ね100ないし200℃の加熱及び乾燥条件となる。 Potassium iodide or sodium iodide is dissolved in water, and then thoroughly mixed with the aqueous solution by spray coating or immersion onto the substrate activated carbon. The concentration of the alkali metal iodide aqueous solution is adjusted in consideration of the final loading amount. After that, it is dried at a temperature and for a time sufficient to evaporate the moisture. Since the alkali metal iodide is a salt, it is possible to raise the drying temperature. However, since it is necessary to avoid thermal decomposition of the base material, the heating and drying conditions are generally 100 to 200°C.
第1添着工程におけるアルカリ金属ヨウ化物の添着量は、最終的に出来上がる放射性ヨウ素吸着材の重量の1ないし3重量%、より好ましくは1.5ないし3重量%に制御される。単位放射性ヨウ素吸着材あたりの重量比が1重量%を下回る場合、アルカリ金属ヨウ化物(ヨウ化カリウム等)の量は少なくなり吸着効果は低下する。そして、1.5重量%を上回るとより効果が高まる。上限について、重量比が3重量%を超過しても吸着効果の向上は頭打ちとなり、効果の点からは過剰と考えられる。そのため、使用量を抑制する趣旨から、上限は3重量%に規定される。 The amount of alkali metal iodide to be impregnated in the first impregnation step is controlled to 1 to 3% by weight, more preferably 1.5 to 3% by weight, of the weight of the final radioactive iodine adsorbent. If the weight ratio per unit radioactive iodine adsorbent is less than 1% by weight, the amount of alkali metal iodide (potassium iodide, etc.) decreases and the adsorption effect decreases. And when it exceeds 1.5% by weight, the effect is enhanced. Regarding the upper limit, even if the weight ratio exceeds 3% by weight, the improvement in the adsorption effect reaches a plateau, and it is considered excessive from the point of view of the effect. Therefore, the upper limit is defined as 3% by weight for the purpose of suppressing the amount used.
続いて、トリエチレンジアミンの水溶液が調製される。同トリエチレンジアミン水溶液と第1添着活性炭は混合、その後乾燥され、第2添着活性炭が得られる(「第2添着工程」)。トリエチレンジアミンは(f)式にて示される構造であり、1,4-ジアザビシクロ[2.2.2]オクタンとも称される。トリエチレンジアミンはその分子中に3級アミンを2箇所有する。しかも、窒素原子の周りの結合は後ろに縛られた構造である。このことから、孤立電子対は立体障害を受けにくく求核性に富む領域となる。それゆえ、被処理ガス中の放射性ヨウ素を含むヨウ化メチル(CH3 131I)等に対して求核反応は生じやすく、4級アンモニウム塩が生じると考えられる。当該反応は、例えば、式(ii)の機構として説明される。 Subsequently, an aqueous solution of triethylenediamine is prepared. The triethylenediamine aqueous solution and the first impregnated activated carbon are mixed and then dried to obtain the second impregnated activated carbon (“second impregnation step”). Triethylenediamine has a structure represented by formula (f) and is also called 1,4-diazabicyclo[2.2.2]octane. Triethylenediamine has two tertiary amines in its molecule. Moreover, the bond around the nitrogen atom is a back-tied structure. For this reason, the lone electron pair becomes a region that is less susceptible to steric hindrance and rich in nucleophilicity. Therefore, it is considered that a nucleophilic reaction tends to occur with methyl iodide (CH 3 131 I) or the like containing radioactive iodine in the gas to be treated, and a quaternary ammonium salt is generated. The reaction is described, for example, as the mechanism of formula (ii).
トリエチレンジアミンは水に溶解後、基材活性炭への吹き付け塗布、浸漬等により水溶液と十分に混合される。トリエチレンジアミンの水溶液も、最終的な添着量を考慮して濃度調整される。その後、水分の蒸発に十分な温度、時間をかけて乾燥される。ただし、トリエチレンジアミンは100℃を上回る高温下では熱分解し、添着量は減少する。そこで、熱分解を避けるべく、乾燥に際してはおおよそ80℃以下、好ましくは70℃以下の温度条件により乾燥される。従って、第1添着工程にて述べた高温に依存した乾燥はできない。それゆえ、乾燥の便宜からトリエチレンジアミンの水への溶解時、使用する水の量は低温乾燥を考慮して第1添着活性炭が湿る程度の量である。 After dissolving triethylenediamine in water, it is thoroughly mixed with the aqueous solution by spray coating or immersion onto the substrate activated carbon. The concentration of the triethylenediamine aqueous solution is also adjusted in consideration of the final loading amount. After that, it is dried at a temperature and for a time sufficient to evaporate the moisture. However, triethylenediamine is thermally decomposed at a high temperature exceeding 100° C., and the attached amount is reduced. Therefore, in order to avoid thermal decomposition, drying is performed at a temperature of approximately 80° C. or less, preferably 70° C. or less. Therefore, the high-temperature drying described in the first impregnation step cannot be performed. Therefore, for the convenience of drying, when triethylenediamine is dissolved in water, the amount of water used is such that the first impregnated activated carbon is moistened in consideration of low-temperature drying.
第2添着工程におけるトリエチレンジアミンの添着量は、最終的に出来上がる放射性ヨウ素吸着材の重量の0.5ないし2.5重量%に制御される。当該添着量の上限は後記の実施例の検証に基づく。添着量3重量%を超過しても、超過分に見合う性能向上効果は少ない。さらに減らした例においても吸着結果が良好になったためである。下限については、おおよそ0.5重量%の添着量を伴わなければ効果を乏しいと考えられる。そこで、より効果高める場合には、1.7重量%以上の添着量が望まれる。それゆえ、トリエチレンジアミンの添着量は、0.5ないし2.5重量%の範囲、さらには1.7ないし2.5重量%の範囲として規定される。第2添着工程までを終了して、「放射性ヨウ素吸着材」は完成する。 The amount of triethylenediamine impregnated in the second impregnation step is controlled to 0.5 to 2.5% by weight of the finally produced radioactive iodine adsorbent. The upper limit of the attachment amount is based on the verification of Examples described later. Even if the impregnation amount exceeds 3% by weight, the performance improvement effect corresponding to the excess amount is small. This is because the adsorption result was good even in the case of further reducing the amount. As for the lower limit, it is considered that the effect is poor unless the loading amount is approximately 0.5% by weight. Therefore, in order to further enhance the effect, it is desired that the amount of addition is 1.7% by weight or more. Therefore, the loading of triethylenediamine is defined as in the range of 0.5 to 2.5 wt%, more preferably in the range of 1.7 to 2.5 wt%. After finishing the second attachment step, the "radioactive iodine adsorbent" is completed.
このような極めて単純な性状であるとともに、従前の吸着材よりも添着成分を抑制した。そこで、放射性ヨウ素吸着材は、ガス用の濾材として、例えば、集塵機、空気浄化装置、空調機器の適宜の外気等の取り入れ口、収容部等(図示せず)に充填される。これらの機器は、原子力発電所、核燃料再処理施設、核燃料等の廃棄や貯蔵施設、さらには、これら施設外の避難施設等へも設置される。特に、活性炭への添着成分を抑制しても同等の効果が期待されるため、使用量の低減、使用期間の延長等の利点がある。 In addition to having such extremely simple properties, the amount of impregnated components was suppressed more than in conventional adsorbents. Therefore, the radioactive iodine adsorbent is filled as a filter medium for gas, for example, in dust collectors, air purifiers, air conditioners, and suitable intake ports for outside air, storage portions, and the like (not shown). These devices are installed in nuclear power plants, nuclear fuel reprocessing facilities, nuclear fuel disposal and storage facilities, and even evacuation facilities outside these facilities. In particular, even if the amount of impregnated components to activated carbon is suppressed, the same effect can be expected, so there are advantages such as a reduction in the amount used and an extension of the period of use.
[使用原料]
発明者は、放射性ヨウ素吸着材を作成するため、下記の原料を使用した。
・活性炭
株式会社ツルミコール製,ヤシ殻活性炭「HC-20」(粒径:1.18-2.36mm)を使用した(活性炭1)。
・アルカリ金属ヨウ化物
アルカリ金属ヨウ化物として、ヨウ化カリウム(和光純薬株式会社製)を使用した。
・トリエチレンジアミン
トリエチレンジアミンは、関東化学式会社製を使用した。
[raw materials used]
The inventor used the following raw materials to prepare a radioactive iodine adsorbent.
- Activated carbon Coconut shell activated carbon "HC-20" (particle size: 1.18-2.36 mm) manufactured by Tsurumi Coal Co., Ltd. was used (activated carbon 1).
- Alkali metal iodide Potassium iodide (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the alkali metal iodide.
· Triethylenediamine Triethylenediamine manufactured by Kanto Kagaku Shiki Co., Ltd. was used.
[放射性ヨウ素吸着材の作製(I)]
発明者は、トリエチレンジアミンの添着量を変えながら4種類の放射性ヨウ素吸着材を作製した(試作例1ないし4)。はじめに、水3Lに1Nの塩酸120mLを添加して塩酸希釈液を調製し、ここに活性炭1500gを投入した。ここで、約30分間、活性炭を煮沸した。煮沸後、活性炭を流水で洗浄した。流水による洗浄は、洗浄水のpHが6ないし8の範囲に収まるまで続けた。水洗後、115℃で16時間かけて乾燥し、基材活性炭を得た。
[Preparation of radioactive iodine adsorbent (I)]
The inventor produced four kinds of radioactive iodine adsorbents while changing the amount of triethylenediamine impregnated (Prototype Examples 1 to 4). First, 120 mL of 1N hydrochloric acid was added to 3 L of water to prepare a diluted hydrochloric acid solution, and 1500 g of activated carbon was added thereto. Here, the activated carbon was boiled for about 30 minutes. After boiling, the activated carbon was washed with running water. Washing with running water was continued until the pH of the wash water was in the range of 6-8. After washing with water, it was dried at 115° C. for 16 hours to obtain a substrate activated carbon.
ヨウ化カリウム8gを水300mLに溶解してヨウ化カリウム水溶液を調製した。前出の基材活性炭400gにヨウ化カリウム水溶液を添加し、双方が馴染むように十分に混合した。その後、115℃で16時間かけてヨウ化カリウム添着活性炭(第1添着活性炭)とした。 A potassium iodide aqueous solution was prepared by dissolving 8 g of potassium iodide in 300 mL of water. An aqueous solution of potassium iodide was added to 400 g of the aforementioned base material activated carbon, and the two were thoroughly mixed so that they were familiar. Thereafter, the potassium iodide impregnated activated carbon (first impregnated activated carbon) was obtained at 115° C. for 16 hours.
トリエチレンジアミン12g(試作例1)、同20g(試作例2)、同28g(試作例3)、同10.8g(試作例4)を、水67mLに溶解して各例のトリエチレンジアミン水溶液を調製した。前出のヨウ化カリウム添着活性炭にトリエチレンジアミン水溶液をスプレーにより噴霧し、双方が馴染むように十分に混合した。続けて、80℃以下、主に70℃前後の温度を維持しながら乾燥した。乾燥の前後にて概ね2%の重量変化が確認できるまで乾燥を続けた。こうして試作例1ないし4の放射性ヨウ素吸着材を作製した。 12 g of triethylenediamine (prototype 1), 20 g of triethylenediamine (prototype 2), 28 g of triethylenediamine (prototype 3), and 10.8 g of triethylenediamine (prototype 4) were dissolved in 67 mL of water to prepare a triethylenediamine aqueous solution of each example. did. An aqueous solution of triethylenediamine was sprayed onto the aforementioned potassium iodide-impregnated activated carbon, and the mixture was sufficiently mixed so that the two were familiar. Subsequently, it was dried while maintaining a temperature of 80°C or less, mainly around 70°C. Drying was continued until a weight change of approximately 2% was confirmed before and after drying. Thus, the radioactive iodine adsorbents of Prototype Examples 1 to 4 were produced.
[物性測定]
〈活性炭の細孔に関する物性値〉
基材活性炭と、両物質が添着した放射性ヨウ素吸着材の両方の物性を測定した。結果は表1に示すとおりである。測定項目のうち、充填密度(g/mL)、乾燥減量(%)、ベンゼン吸着力(%)、強熱残分(%)、粒度分布(%)、硬度(%)、及び発火点(℃)は、JIS K 1474(2014)に準拠して測定した。
[Physical property measurement]
<Physical property values regarding pores of activated carbon>
The physical properties of both the substrate activated carbon and the radioactive iodine adsorbent to which both substances were impregnated were measured. The results are shown in Table 1. Among the measurement items, packing density (g / mL), loss on drying (%), benzene adsorption capacity (%), residue on ignition (%), particle size distribution (%), hardness (%), and ignition point (°C ) was measured according to JIS K 1474 (2014).
比表面積(m2/g)は、マイクロトラック・ベル株式会社製,自動比表面積/細孔分布測定装置「BELSORP-miniII」を使用して77Kにおける窒素吸着等温線を測定し、BET法により求めた(BET比表面積)。また、後出の細孔容積も同装置により測定した。 The specific surface area (m 2 /g) is obtained by measuring the nitrogen adsorption isotherm at 77 K using an automatic specific surface area / pore size distribution measuring device "BELSORP-miniII" manufactured by Microtrack Bell Co., Ltd., and determined by the BET method. (BET specific surface area). In addition, the pore volume described later was also measured by the same device.
〈ヨウ化カリウムの添着量〉
各試作例の放射性ヨウ素吸着材について、実際に添着したヨウ化カリウムの量を測定した。放射性ヨウ素吸着材のヨウ化カリウム抽出に際し、10gの放射性ヨウ素吸着材に対してイオン交換水200mLを溶媒とし、ソックスレー抽出器を使用して24時間かけて抽出した。抽出液を採取し、これにイオン交換水を添加し希釈して全量250mLの抽出溶液を調製した。
<Amount of potassium iodide impregnated>
The amount of potassium iodide actually impregnated into the radioactive iodine adsorbent of each prototype was measured. When extracting potassium iodide from the radioactive iodine adsorbent, 200 mL of ion-exchanged water was used as a solvent for 10 g of the radioactive iodine adsorbent, and extraction was performed over 24 hours using a Soxhlet extractor. An extract solution was collected, and ion-exchanged water was added to dilute it to prepare an extract solution with a total volume of 250 mL.
100mLの分液漏斗に抽出溶液とイオン交換水を添加して全量を10mLとした。ここに2Nの硫酸5mL、30%過酸化水素水2mLを添加し5分間静置した。続いて、クロロホルム20mLを添加し1分間振とう後、下層に分離したクロロホルム層を分取した。再度分液漏斗にクロロホルム20mLを添加し1分間振とう後、下層に分離したクロロホルム層を分取した。回収したクロロホルム層に別途のクロロホルムを添加し全量50mLのサンプル液を調製した。 The extraction solution and ion-exchanged water were added to a 100 mL separatory funnel to bring the total volume to 10 mL. 5 mL of 2N sulfuric acid and 2 mL of 30% hydrogen peroxide water were added thereto, and the mixture was allowed to stand for 5 minutes. Subsequently, 20 mL of chloroform was added, and after shaking for 1 minute, the chloroform layer separated into the lower layer was collected. After adding 20 mL of chloroform to the separatory funnel again and shaking for 1 minute, the chloroform layer separated into the lower layer was collected. Separately, chloroform was added to the recovered chloroform layer to prepare a sample solution of 50 mL in total.
サンプル液を石英セル(光路長1cm)に移し、吸光光度計(株式会社日立ハイテクサイエンス製,U-2001,ダブルビーム分光光度計)を用い、波長510nmの吸光度を測定した。予め既知の濃度のヨウ化カリウムの溶液により検量線を作成し、濃度を求めた。そして、基材活性炭のヨウ化カリウム量(添着量)から単位重量活性炭当たりの添着量(重量%)を算出した。 The sample liquid was transferred to a quartz cell (optical path length 1 cm), and absorbance at a wavelength of 510 nm was measured using an absorptiometer (Hitachi High-Tech Science Co., Ltd., U-2001, double beam spectrophotometer). A calibration curve was prepared with a solution of potassium iodide having a known concentration in advance to determine the concentration. Then, the impregnated amount (% by weight) per unit weight of activated carbon was calculated from the amount of potassium iodide (impregnated amount) of the substrate activated carbon.
〈トリエチレンジアミンの添着量〉
各試作例の放射性ヨウ素吸着材について、実際に添着したトリエチレンジアミンの量を測定した。放射性ヨウ素吸着材のトリエチレンジアミン抽出に際し、10gの放射性ヨウ素吸着材に対してメタノール200mLを溶媒とし、ソックスレー抽出器を使用して24時間かけて抽出した。抽出液を採取し、これにメタノールを添加し希釈して全量250mLの抽出溶液を調製した。
<Amount of triethylenediamine impregnated>
The amount of triethylenediamine actually attached to the radioactive iodine adsorbent of each prototype was measured. When extracting triethylenediamine from the radioactive iodine adsorbent, 200 mL of methanol was used as a solvent with respect to 10 g of the radioactive iodine adsorbent, and extraction was performed over 24 hours using a Soxhlet extractor. The extract was collected, and methanol was added to dilute the extract to prepare an extract solution of 250 mL in total.
ガスクロマトグラフィー(株式会社日立ハイテクサイエンス製,G-3900)を用いて前掲のメタノールによる抽出溶液中のトリエチレンジアミン量を測定した。キャリアガスに窒素を使用し、カラム(ジーエルサイエンス株式会社製,Unisole 10T+KOH)、検出器(FID)を使用した。予め既知の濃度のトリエチレンジアミン溶液をガスクロマトグラフィーに充填して検量線を作成し、検出チャートにおけるピーク面積の比較から量を計測し、基材活性炭のトリエチレンジアミン量(添着量)から単位重量活性炭当たりの添着量(重量%)を算出した。 Using gas chromatography (G-3900, manufactured by Hitachi High-Tech Science Co., Ltd.), the amount of triethylenediamine in the aforementioned methanol extraction solution was measured. Nitrogen was used as a carrier gas, and a column (Unisole 10T+KOH manufactured by GL Sciences Inc.) and a detector (FID) were used. A calibration curve is created by filling a gas chromatograph with a triethylenediamine solution of a known concentration in advance, and the amount is measured by comparing the peak areas on the detection chart. The attachment amount (% by weight) per unit was calculated.
〈放射性ヨウ素の吸着量測定〉
放射性ヨウ素の吸着量の測定に際し、放射性ヨウ化メチルの吸着量により各試作例の放射性ヨウ素吸着材の性能を評価した。そこで、ヨウ素の放射性同位体を含む放射性ヨウ化メチルを用い、その除去効率の確性試験を行った(単位:%)。試験内容は、ASTM D3803-91に準拠した。
<Measurement of adsorption amount of radioactive iodine>
In measuring the adsorption amount of radioactive iodine, the performance of the radioactive iodine adsorbent of each prototype was evaluated based on the adsorption amount of radioactive methyl iodide. Therefore, using radioactive methyl iodide containing a radioactive isotope of iodine, a reliability test of its removal efficiency was conducted (unit: %). The contents of the test conformed to ASTM D3803-91.
各試作例の放射性ヨウ素吸着材に湿潤空気(圧力:約1気圧、温度:30.0℃、相対湿度:約95%)を16時間通気して水分を飽和させた。続いて、湿潤空気(圧力:約1気圧、温度:30.0℃、相対湿度:約95%)を120分間通気した。その後、ヨウ化メチル(質量濃度1.75mg/m3)を含む湿潤空気(圧力:約1気圧、温度:30.0℃、相対湿度:約95%)を60分間通気し、131Iのガンマ線の放射能強度を測定して、透過率を求め、放射性ヨウ素除去効率を求めた。 Moist air (pressure: about 1 atm, temperature: 30.0°C, relative humidity: about 95%) was passed through the radioactive iodine adsorbent of each prototype for 16 hours to saturate it with water. Subsequently, moist air (pressure: about 1 atm, temperature: 30.0° C., relative humidity: about 95%) was passed through for 120 minutes. Then, humid air (pressure: about 1 atm, temperature: 30.0°C, relative humidity: about 95%) containing methyl iodide (mass concentration: 1.75 mg/m 3 ) was passed for 60 minutes to emit 131 I gamma rays. The radioactivity intensity was measured, the transmittance was determined, and the radioactive iodine removal efficiency was determined.
[放射性ヨウ素吸着材の作製(I)の結果と考察]
試作例1,2,3によると、ヨウ化カリウム(アルカリ金属ヨウ化物)の添着量はほぼ同等であり、トリエチレンジアミンの添着量が順に増加している。しかしながら、最終的な放射性ヨウ素の除去効率を見ると、トリエチレンジアミンの添着量の差ほど数値の差異は小さい。このことから、トリエチレンジアミンの添着量に軽減の余地はある。特に、3.0重量%を下回る添着量であっても放射性ヨウ素の吸着に寄与していることを踏まえ、トリエチレンジアミンの好ましい添着量は0.5ないし2.5重量%の範囲として導くことができる。ヨウ化カリウムの添着量については、各試作例における実測値を踏まえ、概ね1ないし3重量%の範囲が妥当と勘案できる。
[Results and discussion of preparation (I) of radioactive iodine adsorbent]
According to Prototype Examples 1, 2, and 3, the impregnated amount of potassium iodide (alkali metal iodide) is almost the same, and the impregnated amount of triethylenediamine increases in order. However, looking at the final removal efficiency of radioactive iodine, the difference in numerical values is as small as the difference in the amount of triethylenediamine impregnated. For this reason, there is room for reducing the amount of triethylenediamine to be impregnated. In particular, considering that even an impregnated amount of less than 3.0% by weight contributes to the adsorption of radioactive iodine, the preferable impregnated amount of triethylenediamine can be derived as a range of 0.5 to 2.5% by weight. can. Regarding the impregnated amount of potassium iodide, it can be considered that a range of approximately 1 to 3% by weight is appropriate, based on the measured values in each trial production example.
試作例4は試作例1ないし3と異なる活性炭を基材とした例である。従って、基材となる活性炭の物性上の差異が影響していると考えられる。試作例1と4との比較によると、ヨウ化カリウムの添着量は同等かやや多い。しかもトリエチレンジアミンの添着量も増加している。しかしながら、放射性ヨウ素の除去効率は僅かながら低下した。この作用については、完全には解明されてはいないものの、おそらく活性炭表面の表面酸性基や親水性基等の存在量との関連性が濃厚と考える。 Prototype 4 is an example in which activated carbon, which is different from Prototypes 1 to 3, is used as a base material. Therefore, it is considered that the difference in the physical properties of the activated carbon used as the base material has an effect. A comparison of Prototype Examples 1 and 4 shows that the amount of potassium iodide impregnated is the same or slightly greater. Moreover, the amount of triethylenediamine impregnated is also increasing. However, the removal efficiency of radioactive iodine decreased slightly. Although this action has not been completely elucidated, it is probably closely related to the amount of surface acidic groups, hydrophilic groups, etc. present on the surface of activated carbon.
[放射性ヨウ素吸着材の作製(II)]
前述の「放射性ヨウ素吸着材の作製(I)」より、放射性ヨウ素吸着材を作製する際の基本物性と添着量を把握することができた。そこで、さらに詳細なヨウ化カリウム及びトリエチレンジアミンの添着量範囲を検証し、併せて、基材活性炭に好適な比表面積の範囲も検証した。トリエチレンジアミンの添着量を変更した例は試作例11ないし14、ヨウ化カリウムの添着量を変更した例は試作例15ないし17、比表面積を変更した例は試作例18ないし22を作製である。
[Preparation of radioactive iodine adsorbent (II)]
From the above-mentioned "Preparation of radioactive iodine adsorbent (I)", it was possible to grasp the basic physical properties and the impregnation amount when producing the radioactive iodine adsorbent. Therefore, the range of impregnated amounts of potassium iodide and triethylenediamine was examined in more detail, and the range of specific surface area suitable for the base material activated carbon was also examined. Prototypes 11 to 14 are produced by changing the amount of triethylenediamine impregnated, Prototypes 15 to 17 are produced by changing the amount of impregnated potassium iodide, and Prototypes 18 to 22 are produced by changing the specific surface area.
異なるBET比表面積の評価に際し、さらに以下の活性炭2ないし8を使用した。各活性炭のBET比表面積の測定は前述と同様とした。
活性炭2ないし8の作製に際し、共通のヤシ殻活性炭を用意し賦活の条件(時間)を変更しながら比表面積の異なる活性炭を得た。いずれの活性炭も粒径を1.18ないし2.36mmの範囲において粒度分布が同一となるように調整した。
(活性炭2):比表面積:1173m2/g
(活性炭3):比表面積:1223m2/g
(活性炭4):比表面積:1394m2/g
(活性炭5):比表面積:1519m2/g
(活性炭6):比表面積:1725m2/g
(活性炭7):比表面積:1552m2/g
(活性炭8):比表面積:1723m2/g
In evaluating the different BET specific surface areas, the following activated carbons 2 to 8 were also used. The BET specific surface area of each activated carbon was measured in the same manner as described above.
When producing activated carbons 2 to 8, a common coconut shell activated carbon was prepared, and activated carbons with different specific surface areas were obtained by changing the activation conditions (time). All of the activated carbons were adjusted to have the same particle size distribution within the range of 1.18 to 2.36 mm.
(Activated carbon 2): Specific surface area: 1173 m 2 /g
(Activated carbon 3): Specific surface area: 1223 m 2 /g
(Activated carbon 4): Specific surface area: 1394 m 2 /g
(Activated carbon 5): Specific surface area: 1519 m 2 /g
(Activated carbon 6): Specific surface area: 1725 m 2 /g
(Activated carbon 7): Specific surface area: 1552 m 2 /g
(Activated carbon 8): Specific surface area: 1723 m 2 /g
〈試作例11ないし14の作製〉
トリエチレンジアミンの添着量を変更した試作例11ないし14の作製に際し、水67mLに溶解するトリエチレンジアミンを4.0g(試作例11)、6.0g(試作例12)、8.8g(試作例13)、9.6g(試作例14)とし、順に増量してトリエチレンジアミン水溶液をそれぞれ調製した。試作例11ないし14におけるヨウ化カリウムの添着量は前述の試作例1ないし4の作製と共通とした。試作例11ないし14は基材活性炭に試作例1ないし4と同一の活性炭1を使用し、同様の調製を行った。
<Production of Prototype Examples 11 to 14>
When producing Prototype Examples 11 to 14 in which the amount of triethylenediamine impregnated was changed, 4.0 g (Prototype Example 11), 6.0 g (Prototype Example 12), and 8.8 g (Prototype Example 13) of triethylenediamine dissolved in 67 mL of water were used. ), and 9.6 g (prototype example 14), and the amounts were increased in order to prepare triethylenediamine aqueous solutions, respectively. The amount of potassium iodide impregnated in Prototype Examples 11 to 14 was the same as that in Prototype Examples 1 to 4 described above. In Prototype Examples 11 to 14, the same activated carbon 1 as in Prototype Examples 1 to 4 was used as the base activated carbon, and the same preparation was carried out.
〈試作例15ないし17の作製〉
ヨウ化カリウムの添着量を変更した試作例15ないし17の作製に際し、水300mLに溶解するヨウ化カリウムを12.0g(試作例15)、20.0g(試作例16)、28.0g(試作例17)とし、順に増量してヨウ化カリウム水溶液を調製した。トリエチレンジアミンの添着量は全て共通とし、水67mLにトリエチレンジアミンを10.8gの溶解として溶液を調製した。試作例15ないし17は基材活性炭に試作例1ないし4と同一の活性炭1を使用し、同様の調製を行った。
<Production of Prototype Examples 15 to 17>
When producing Prototype Examples 15 to 17 in which the impregnated amount of potassium iodide was changed, 12.0 g (Prototype Example 15), 20.0 g (Prototype Example 16), 28.0 g (Prototype Example 17), increasing the amount in order to prepare an aqueous solution of potassium iodide. The amount of triethylenediamine impregnated was the same for all, and a solution was prepared by dissolving 10.8 g of triethylenediamine in 67 mL of water. In Prototype Examples 15 to 17, the same activated carbon 1 as in Prototype Examples 1 to 4 was used as the base activated carbon, and the same preparation was carried out.
〈試作例18ないし22の作製〉
試作例18ないし22は、基材活性炭として比表面積の異なる活性炭を使用した。試作例18は「活性炭2」、試作例19は「活性炭3」、試作例20は「活性炭4」、試作例21は「活性炭5」、試作例22は「活性炭6」を使用した。試作例18ないし22の作製に際し、トリエチレンジアミンの添着量は全て共通とし、水67mLにトリエチレンジアミンを10.8gの溶解として溶液を調製した。試作例18ないし22におけるヨウ化カリウムの添着量は前述の試作例1ないし4の作製と共通とした。活性炭の調製は前述と同様とした。
<Production of Prototype Examples 18 to 22>
Prototype Examples 18 to 22 used activated carbon with different specific surface areas as the base activated carbon. Prototype Example 18 used “activated carbon 2”, Prototype Example 19 used “activated carbon 3”, Prototype Example 20 used “activated carbon 4”, Prototype Example 21 used “activated carbon 5”, and Prototype Example 22 used “activated carbon 6”. In producing Prototype Examples 18 to 22, the amount of triethylenediamine impregnated was the same for all, and a solution was prepared by dissolving 10.8 g of triethylenediamine in 67 mL of water. The amount of potassium iodide impregnated in Prototype Examples 18 to 22 was the same as that in Prototype Examples 1 to 4 described above. The preparation of activated carbon was the same as described above.
試作例11ないし22の作製方法とその分析方法は、前述の試作例1ないし4と共通とした。試作例11ないし22の結果は表2ないし表5である。ただし、当該作製(II)では、簡略化のために「放射性ヨウ素除去効率の測定」を省略して、ヨウ化メチルの破過時間を測定した。また、基材活性炭の性状把握のため、全細孔容積(cm3/g)と、細孔直径の区間毎(「2nm未満」、「2ないし4nm」、「4ないし10nm」、「10ないし50nm」、「50nm以上」)の細孔容積も測定した。 The manufacturing method and the analysis method of Prototype Examples 11 to 22 were the same as those of Prototype Examples 1 to 4 described above. The results of Prototype Examples 11-22 are shown in Tables 2-5. However, in the preparation (II), the "measurement of radioactive iodine removal efficiency" was omitted for the sake of simplification, and the breakthrough time of methyl iodide was measured. In addition, in order to grasp the properties of the substrate activated carbon, the total pore volume (cm 3 /g) and each pore diameter section (“less than 2 nm”, “2 to 4 nm”, “4 to 10 nm”, “10 to 50 nm”, “50 nm or more”) were also measured.
〈破過時間の測定〉
ヨウ化メチルを空気により希釈して20ppmの通気ガス濃度に調整し、各試作例を充填したカラム内に送通した。カラムは、内径を2.0cm、層高さを5.0cm、充填量を15.7mLとした。通気条件として、風量を3770mL/min、LVを0.20m/sec、SVを14408h-1、方向をダウンフローとし、温度を29.6ないし30.0℃、相対湿度を86.0ないし96.0%の条件下とした。そして、破過時点の濃度を2ppmとし、検知管により測定した。通気開始(20ppm)から破過時点の濃度(2ppm)を超えるまでの時間を破過時間とした。
<Measurement of breakthrough time>
Methyl iodide was diluted with air to adjust the vent gas concentration to 20 ppm and passed through the column packed with each prototype. The column had an inner diameter of 2.0 cm, a bed height of 5.0 cm, and a packing volume of 15.7 mL. As ventilation conditions, the air volume is 3770 mL/min, the LV is 0.20 m/sec, the SV is 14408 h −1 , the direction is down flow, the temperature is 29.6 to 30.0° C., and the relative humidity is 86.0 to 96.0° C. A condition of 0% was used. Then, the concentration at the time of breakthrough was set to 2 ppm and measured with a detector tube. The breakthrough time was defined as the time from the start of aeration (20 ppm) until the concentration exceeded the breakthrough point (2 ppm).
[放射性ヨウ素吸着材の作製(II)の結果と考察]
〈1.トリエチレンジアミンの添着量〉
試作例11ないし14より、トリエチレンジアミンの添着量に比例して破過時間は長くなり吸着剤としての性能は良好となる。ここで、放射性ヨウ素吸着材に求められる性能を考えると、破過時間240minを上回る範囲は非常に良好であり、既に十分な性能を発揮している。なお、破過時間240minとは、既存の吸着材の標準的な値であるため基準に採用した。そのため、トリエチレンジアミンの添着量については2.5重量%を上限と規定した。下限については性能発揮の点から0.5重量%、好ましくは1.2重量%、より好ましくは1.5重量%である。また、破過時間240minを超える添着量から下限を規定する場合は1.7重量%である。
[Results and discussion of preparation (II) of radioactive iodine adsorbent]
<1. Amount of triethylenediamine impregnated>
From Prototype Examples 11 to 14, the breakthrough time is increased in proportion to the amount of triethylenediamine impregnated, and the performance as an adsorbent is improved. Here, considering the performance required of the radioactive iodine adsorbent, the range exceeding the breakthrough time of 240 min is very good, and sufficient performance has already been demonstrated. The breakthrough time of 240 min was adopted as a standard because it is a standard value for existing adsorbents. Therefore, the upper limit of the amount of triethylenediamine impregnated is set at 2.5% by weight. The lower limit is 0.5% by weight, preferably 1.2% by weight, more preferably 1.5% by weight, from the viewpoint of exhibiting performance. Further, when the lower limit is specified from the amount of impregnation exceeding the breakthrough time of 240 minutes, it is 1.7% by weight.
〈2.ヨウ化カリウムの添着量〉
試作例15ないし17より、ヨウ化カリウムは添着量の増加と反比例に破過時間は減少した。試作例17のヨウ化カリウムの添着量6.1重量%では破過時間240minを下回った。おそらく、ヨウ化カリウムの物理的な障害により試作例の吸着材への吸着は阻害されたと考える。基材活性炭の添着成分であるヨウ化カリウムの役割はヨウ化メチル自体の吸着としてではなく、むしろ、ヨウ素原子の置換と考えられている(前出の式(i)参照)。そのため、ヨウ化カリウムの添着量とヨウ化メチル吸着の評価は分けて考えるべきである。そこで、吸着時の干渉抑制と置換促進の双方を両立する範囲として、破過時間240minを超えるヨウ化カリウムの添着量の上限は5重量%であり、さらには好ましい上限は3重量%である。
<2. Impregnation amount of potassium iodide>
From Prototype Examples 15 to 17, the breakthrough time decreased in inverse proportion to the increase in the amount of potassium iodide impregnated. In Prototype Example 17, when the amount of potassium iodide impregnated was 6.1% by weight, the breakthrough time was less than 240 minutes. Possibly, physical obstacles of potassium iodide inhibited the adsorption to the adsorbent of the prototype example. The role of potassium iodide, which is an impregnated component of the substrate activated carbon, is considered not as adsorption of methyl iodide itself, but rather as substitution of iodine atoms (see formula (i) above). Therefore, the amount of potassium iodide impregnated and the evaluation of methyl iodide adsorption should be considered separately. Therefore, the upper limit of the impregnated amount of potassium iodide exceeding the breakthrough time of 240 min is 5% by weight, and the preferable upper limit is 3% by weight, as a range for both suppressing interference during adsorption and promoting substitution.
〈3.基材活性炭のBET比表面積〉
試作例18ないし22におけるBET比表面積と破過時間との関係から、試作例22のBET比表面積が1700m2/gを超過すると破過時間240minまで低下した。また、試作例21までBET比表面積が増加すると他の試作例よりも漸減した。さらに、表4の区間毎の細孔容積に着目すると、BET比表面積が最大の試作例22ではメソ孔の範囲は減少し、ミクロ孔の範囲は増加した。この点から、ヨウ化メチル分子と細孔との大きさの相違が吸着効率に影響していると予想できる。そこで、細孔分布も加えてBET比表面積を勘案すると、上限は1900m2/g以下、さらには、1850m2/g以下、より好ましくは1750m2/g以下に規定される。比表面積の下限については、試作例18を踏まえて1100m2/g、好ましくは試作例19と20より1200ないし1300m2/g、より好ましくは試作例20と21より1400ないし1500m2/gと導き出すことができる。
<3. BET specific surface area of substrate activated carbon>
From the relationship between the BET specific surface area and the breakthrough time in Prototype Examples 18 to 22, when the BET specific surface area of Prototype Example 22 exceeded 1700 m 2 /g, the breakthrough time decreased to 240 minutes. In addition, when the BET specific surface area increased up to Prototype Example 21, it decreased more gradually than the other Prototype Examples. Furthermore, focusing on the pore volume for each section in Table 4, in Prototype Example 22 having the largest BET specific surface area, the range of mesopores decreased and the range of micropores increased. From this point, it can be expected that the difference in size between the methyl iodide molecule and the pores affects the adsorption efficiency. Therefore, considering the BET specific surface area in addition to the pore size distribution, the upper limit is defined as 1900 m 2 /g or less, more preferably 1850 m 2 /g or less, more preferably 1750 m 2 /g or less. The lower limit of the specific surface area is derived to be 1100 m 2 /g based on Prototype Example 18, preferably 1200 to 1300 m 2 /g from Prototype Examples 19 and 20, more preferably 1400 to 1500 m 2 /g from Prototype Examples 20 and 21. be able to.
[放射性ヨウ素吸着材の作製(III)]
放射性ヨウ素吸着材の作製(I及びII)の結果を考慮し、より最適な添着量と比表面積の範囲を割り出した。そこで、当該範囲を充足する仕様の放射性ヨウ素吸着材(試作例31ないし35)の放射性ヨウ素の吸着効果を検証した。
[Preparation of radioactive iodine adsorbent (III)]
Considering the results of the production of radioactive iodine adsorbents (I and II), a more optimal range of impregnation amount and specific surface area was determined. Therefore, the radioactive iodine adsorption effect of the radioactive iodine adsorbents (prototype examples 31 to 35) having specifications satisfying the above range was verified.
〈試作例31,32の作製〉
試作例31,32の作製に際し、水67mLに溶解するトリエチレンジアミンを4.0g(試作例31)、10.8g(試作例32)としてトリエチレンジアミン水溶液をそれぞれ調製した。試作例31,32におけるヨウ化カリウムの添着量は前述の試作例1ないし4の作製と共通とした。試作例31,32は基材活性炭に試作例1ないし4と同一の活性炭1を使用し、同様の調製を行った。
<Production of Prototype Examples 31 and 32>
In producing Prototype Examples 31 and 32, triethylenediamine aqueous solutions were prepared by adding 4.0 g (Prototype Example 31) and 10.8 g (Prototype Example 32) of triethylenediamine dissolved in 67 mL of water. The amounts of potassium iodide impregnated in Prototype Examples 31 and 32 were the same as those in Prototype Examples 1 to 4 described above. In Prototype Examples 31 and 32, the same activated carbon 1 as in Prototype Examples 1 to 4 was used as the base activated carbon, and the same preparation was carried out.
〈試作例33の作製〉
試作例33の作製に際し、水300mLに溶解するヨウ化カリウムを12.0g(試作例15)としてヨウ化カリウム水溶液を調製した。トリエチレンジアミンの添着量は、水67mLにトリエチレンジアミンを10.8gの溶解として溶液を調製した。試作例33は基材活性炭に試作例1ないし4と同一の活性炭1を使用し、同様の調製を行った。
<Production of Prototype Example 33>
In preparing Prototype Example 33, an aqueous potassium iodide solution was prepared with 12.0 g of potassium iodide dissolved in 300 mL of water (Prototype Example 15). As for the amount of triethylenediamine to be impregnated, a solution was prepared by dissolving 10.8 g of triethylenediamine in 67 mL of water. In Prototype Example 33, the same activated carbon 1 as in Prototype Examples 1 to 4 was used as the base activated carbon, and the same preparation was carried out.
〈試作例34,35の作製〉
試作例34,35の作製に際し、試作例34は「活性炭7」、試作例35は「活性炭8」を使用した。試作例34,35の作製に際し、トリエチレンジアミンの添着量は共通とし、水67mLにトリエチレンジアミンを10.8gの溶解として溶液を調製した。試作例34,35におけるヨウ化カリウムの添着量は前述の試作例1ないし4の作製と共通とした。活性炭の調製は前述と同様とした。
<Production of Prototype Examples 34 and 35>
In producing Prototype Examples 34 and 35, Prototype Example 34 used “activated carbon 7” and Prototype Example 35 used “activated carbon 8”. In producing Prototype Examples 34 and 35, the amount of triethylenediamine impregnated was the same, and a solution was prepared by dissolving 10.8 g of triethylenediamine in 67 mL of water. The amounts of potassium iodide impregnated in Prototype Examples 34 and 35 were the same as those in Prototype Examples 1 to 4 described above. The preparation of activated carbon was the same as described above.
試作例31ないし35の作製方法とその分析方法は、前述の試作例1ないし4と共通とした。試作例31ないし35の結果は表6及び7である。試作例31ないし35の放射性ヨウ素の吸着量測定は、前出の放射性ヨウ素吸着材の作製(I)にて説明のASTM D3803-91に準拠し、共通の条件下にて実施した。 The manufacturing method and the analysis method of Prototype Examples 31 to 35 were the same as those of Prototype Examples 1 to 4 described above. The results of Prototype Examples 31-35 are shown in Tables 6 and 7. The amount of radioactive iodine adsorbed in Prototype Examples 31 to 35 was measured under common conditions in accordance with ASTM D3803-91 described in the above-mentioned preparation of radioactive iodine adsorbent (I).
[放射性ヨウ素吸着材の作製(III)の結果と考察]
試作例31ないし35の放射性ヨウ素吸着材を使用した際の放射性ヨウ素の除去効率の結果から、実際の放射性ヨウ素の除去性能は、放射性ヨウ素吸着材の作製(I及びII)と概ね一致した。従って、既述の基材活性炭に添着するヨウ化カリウム(アルカリ金属ヨウ化物)及びトリエチレンジアミンの添着量は適切である。また、基材活性炭の比表面積の適性も確認できた。
[Results and discussion of preparation (III) of radioactive iodine adsorbent]
From the results of the removal efficiency of radioactive iodine when using the radioactive iodine adsorbents of Prototype Examples 31 to 35, the actual removal performance of radioactive iodine generally matched the production of the radioactive iodine adsorbents (I and II). Therefore, the amounts of potassium iodide (alkali metal iodide) and triethylenediamine impregnated on the base material activated carbon are appropriate. Also, the suitability of the specific surface area of the substrate activated carbon was confirmed.
本発明の製造方法により得られる放射性ヨウ素吸着材は、活性炭に担持させる添着物質の量を既存品よりも低減しながらも良好な吸着性能を発揮するとともに、より低廉に製造することができ、既存品との代替に有利に作用する。また、放射性ヨウ素吸着材の製造方法によると、添着物質の性能をより引き出しやすくしたため、添着物質量を減らしても効果を維持できる。
The radioactive iodine adsorbent obtained by the production method of the present invention exhibits good adsorption performance while reducing the amount of impregnated substance to be supported on the activated carbon compared to existing products, and can be produced at a lower cost. It acts favorably in substitution for goods. Moreover, according to the manufacturing method of the radioactive iodine adsorbent, the performance of the impregnated substance can be more easily brought out, so that the effect can be maintained even if the mass of the impregnated substance is reduced.
Claims (2)
活性炭を酸洗浄し乾燥して基材活性炭を得る洗浄工程と、
ヨウ化カリウムの水溶液と前記基材活性炭を混合し、乾燥して第1添着活性炭を得る第1添着工程と、
トリエチレンジアミンの水溶液と前記第1添着活性炭を混合し、乾燥して第2添着活性炭を得る第2添着工程とを備え、
前記第1添着工程における前記ヨウ化カリウムの添着量が前記放射性ヨウ素吸着材の重量の1.8~3重量%であり、
前記第2添着工程における前記トリエチレンジアミンの添着量が前記放射性ヨウ素吸着材の重量の1.9~2.5重量%である
ことを特徴とする放射性ヨウ素吸着材の製造方法。 A method for producing a radioactive iodine adsorbent that adsorbs radioactive iodine from a gas to be treated containing radioactive iodine,
a washing step of acid-washing the activated carbon and drying it to obtain a substrate activated carbon;
a first impregnation step of mixing an aqueous solution of potassium iodide and the base activated carbon and drying to obtain a first impregnated activated carbon;
a second impregnation step of mixing an aqueous solution of triethylenediamine and the first impregnated activated carbon and drying to obtain a second impregnated activated carbon;
The amount of potassium iodide impregnated in the first impregnation step is 1.8 to 3 wt% of the weight of the radioactive iodine adsorbent,
A method for producing a radioactive iodine adsorbent, wherein the amount of triethylenediamine impregnated in the second impregnation step is 1.9 to 2.5% by weight of the radioactive iodine adsorbent.
2. The method for producing a radioactive iodine adsorbent according to claim 1 , wherein the BET specific surface area of the substrate activated carbon is 1173-1723 m 2 /g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106120615A TWI742097B (en) | 2016-06-21 | 2017-06-20 | Radioactive iodine adsorption material and its manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016122737 | 2016-06-21 | ||
JP2016122737 | 2016-06-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017227633A JP2017227633A (en) | 2017-12-28 |
JP7111447B2 true JP7111447B2 (en) | 2022-08-02 |
Family
ID=60891519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017116869A Active JP7111447B2 (en) | 2016-06-21 | 2017-06-14 | Method for producing radioactive iodine adsorbent |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7111447B2 (en) |
TW (1) | TWI742097B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113457615B (en) * | 2021-07-01 | 2023-11-24 | 中国辐射防护研究院 | Radioactive iodine adsorbent and preparation method thereof |
CN115557943A (en) * | 2022-09-22 | 2023-01-03 | 中国辐射防护研究院 | Functionalized amine ionic liquid for adsorbing radioactive iodine and preparation method thereof |
CN116440297B (en) * | 2022-12-13 | 2023-10-13 | 北京普尔伟业生物科技有限公司 | Radioactive carbon microsphere and its preparation method and application |
CN117250119A (en) * | 2023-06-30 | 2023-12-19 | 苏州巨联环保有限公司 | Method for testing adsorption saturation degree of activated carbon |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000084406A (en) | 1998-09-17 | 2000-03-28 | Takeda Chem Ind Ltd | Adsorbent for lower aldehydes |
WO2006109595A1 (en) | 2005-04-06 | 2006-10-19 | Toyo Boseki Kabushiki Kaisha | Filter for removing radioactive substance and filter unit employing the same |
JP2012002606A (en) | 2010-06-15 | 2012-01-05 | Mitsubishi Heavy Ind Ltd | Radioactive iodine adsorbent and radioactive iodine removal device |
JP2013203614A (en) | 2012-03-29 | 2013-10-07 | Japan Enviro Chemicals Ltd | Activated carbon and method for producing the same |
JP2015045588A (en) | 2013-08-28 | 2015-03-12 | 三菱重工業株式会社 | Radioactive iodine removal device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4111833A (en) * | 1974-09-05 | 1978-09-05 | The United States Of America As Represented By The United States Department Of Energy | Activated carbon material |
JPS5896299A (en) * | 1981-12-03 | 1983-06-08 | 東洋紡績株式会社 | Radioactive iodine removing material |
-
2017
- 2017-06-14 JP JP2017116869A patent/JP7111447B2/en active Active
- 2017-06-20 TW TW106120615A patent/TWI742097B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000084406A (en) | 1998-09-17 | 2000-03-28 | Takeda Chem Ind Ltd | Adsorbent for lower aldehydes |
WO2006109595A1 (en) | 2005-04-06 | 2006-10-19 | Toyo Boseki Kabushiki Kaisha | Filter for removing radioactive substance and filter unit employing the same |
JP2012002606A (en) | 2010-06-15 | 2012-01-05 | Mitsubishi Heavy Ind Ltd | Radioactive iodine adsorbent and radioactive iodine removal device |
US20130068102A1 (en) | 2010-06-15 | 2013-03-21 | Mitsubishi Heavy Industries, Ltd. | Radioactive iodine adsorbent and radioactive iodine removal apparatus |
JP2013203614A (en) | 2012-03-29 | 2013-10-07 | Japan Enviro Chemicals Ltd | Activated carbon and method for producing the same |
JP2015045588A (en) | 2013-08-28 | 2015-03-12 | 三菱重工業株式会社 | Radioactive iodine removal device |
Also Published As
Publication number | Publication date |
---|---|
TWI742097B (en) | 2021-10-11 |
TW201815466A (en) | 2018-05-01 |
JP2017227633A (en) | 2017-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7111447B2 (en) | Method for producing radioactive iodine adsorbent | |
Nandanwar et al. | Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment–A review | |
Matyáš et al. | Functionalized silica aerogels: Advanced materials to capture and immobilize radioactive iodine | |
CN113070034B (en) | Iodine adsorption material and preparation method thereof | |
Jung et al. | Feasibility study of using Bi-mna metal–organic frameworks as adsorbents for radioiodine capture at high temperature | |
CN104936691B (en) | Zeolite composite materials and application thereof containing the iodine or bromine being limited in hole | |
CN109627437B (en) | Triazine-based calix [4] arene porous polymer, preparation method and application thereof | |
Wu et al. | Study on adsorption behavior of cesium using ammonium tungstophosphate (AWP)-calcium alginate microcapsules | |
Tang et al. | Novel hydrophobic hierarchical porous carbon from sewage sludge for the efficient capture of gaseous iodine | |
WO2017110485A1 (en) | Adsorbent for radioactive antimony, radioactive iodine, and radioactive ruthenium, and method of processing radioactive waste liquid using said adsorbent | |
WO2023183500A1 (en) | Methods for removal of oxy-anions of iodine from liquids using zirconium-based metal-organic frameworks and regeneration of same | |
Su et al. | Conveniently synthesis of porous crown-based resin with efficient 90Sr capture from highly acidic wastewater | |
KR101636976B1 (en) | A iodine absorbent material containing salts and a radioactive iodine removal system using the same | |
JP6441451B2 (en) | Adsorbent for the adsorption of noble gas, its use and noble gas adsorption method | |
KR20190131221A (en) | Adsorbents for removing radioactive iodine compounds | |
KR20210116302A (en) | Salt Capable Of Selectively Hydrated With Tritium Water, Adsorbent That Binds To The Hydrate And Method For Removing Tritium Water Using The Same | |
Yaqoob et al. | Removal of gaseous methyl iodide using hexamethylenetetramine and triethylenediamine impregnated activated carbon: A comparative study | |
Lin | Evaluation of the contribution of the isotopic exchange mechanism to the retention of radioactive iodine | |
JP6581945B2 (en) | Radioactive iodine adsorbent and radioactive iodine removal device | |
KR101590941B1 (en) | The method of adsorption and recovery of gas phase iodine generated in fission molybdenum production process | |
Kulyukhin et al. | Localization of CH 3 131 I from Water vapor–Air flow on granulated sorbents containing nanoparticles of Ag and Ni compounds | |
RU2346347C1 (en) | Silica gel-based sorbing agent for radioiodine recovery | |
RU2290993C1 (en) | Method of producing chemical absorber | |
JP2014041111A (en) | Radioactive cesium adsorbent | |
Kulyukhin et al. | Gas-phase UV photolysis of CH 3 131 I |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200526 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210601 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210721 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220322 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220712 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220721 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7111447 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |