JP7111143B2 - 画像処理装置、画像処理方法およびプログラム - Google Patents
画像処理装置、画像処理方法およびプログラム Download PDFInfo
- Publication number
- JP7111143B2 JP7111143B2 JP2020177513A JP2020177513A JP7111143B2 JP 7111143 B2 JP7111143 B2 JP 7111143B2 JP 2020177513 A JP2020177513 A JP 2020177513A JP 2020177513 A JP2020177513 A JP 2020177513A JP 7111143 B2 JP7111143 B2 JP 7111143B2
- Authority
- JP
- Japan
- Prior art keywords
- character string
- image
- feature amount
- document
- recorded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Character Input (AREA)
- Character Discrimination (AREA)
Description
そこで、作業者が、どの項目がどこに示されているかを把握できるよう補助できることが好ましい。その際、文字認識対象の文書のフォーマットが予めわかっていない場合でも、補助を行えることが好ましい。
図1に示す構成で、画像処理システム100は画像処理装置1、画像読取装置2、記録装置3およびデータベース4により構成される。
画像処理装置1は画像読取装置2と通信ケーブルにより接続されている。画像読取装置2は光学的に文書帳票などの画像データを取得して画像処理装置1へ出力する。画像処理装置1は文書帳票の画像データをOCR処理し文字認識する。画像処理装置1は文字認識結果を記録装置3に出力し、記録装置3がその文字認識結果をデータベースに記録する。なお、画像処理装置1が対象とする文書は、特定の種類のものに限定されない。OCR処理可能ないろいろな文書を、画像処理装置1の処理対象とすることができる。
作業者を、画像処理装置1のユーザ、または単にユーザとも称する。
図2に示す構成で、画像処理装置1は、画像処理装置本体10と、表示装置17と、入力デバイス18とを備える。
画像処理装置本体10は、CPU(Central Processing Unit)11、IF(Interface)12、通信モジュール13、ROM(Read Only Memory)14、RAM(Random Access Memory)15、HDD(Hard Disk Drive)16などの構成を備えたコンピュータである。通信モジュール13は画像読取装置2、記録装置3、データベース4との間で無線通信を行うものであっても、有線通信を行うものであってもよく、それら2つの機能を有していてもよい。
表示装置17は、例えば液晶パネルまたはLED(Light Emitting Diode)パネル等の表示画面を備える。
入力デバイス18は、例えばキーボードおよびマウス、あるいは、表示装置17の表示画面に設けられてタッチパネルを構成するタッチセンサ、あるいはこれらの組み合わせなど、ユーザ操作を受ける装置である。
図3は、第一実施形態に係る画像処理装置1の機能構成を示す概略ブロック図である。
通信部110は、図2の通信モジュールを用いて構成され、他の装置と通信を行う。特に、通信部110は、画像読取装置2、記録装置3、データベース4と通信を行う。
表示部120は、図2の表示装置17を用いて構成され、各種画像を表示する。特に、表示部120は出力部の例に該当し、第一の文書画像と、第一の文書画像に対応して表示されている第二の文書画像とで、同じ特定項目を示す対応関係情報を出力する。
但し、出力部が画像および関係情報を出力する方法は、これら画像および関係情報を表示する方法に限定されない。例えば、通信部110が出力部として機能し、画像および関係情報を他の装置に送信して表示させるようにしてもよい。
記憶部180は、図2のROM14、RAM15およびHDD16を用いて構成され、各種データを記憶する。
制御部190は、図2のCPU11が、記憶部180(図2のROM14、RAM15およびHDD16)からプログラムを読み出して実行することで構成される。制御部190は、画像処理装置1の各部を制御して各種処理を実行する。
取得部191は、文書帳票の画像データを取得する。
例えば、記録部193が第二の文書画像の書式について既知の場合、特徴量抽出部192が機械学習にて第一の文書画像(文書帳票の画像)における文字列の特徴量を抽出し、記録部193が、得られた文字列の特徴量に基づいて第一の文書画像における記録文字列を特定する。これにより、記録部193は、第一の文書画像、第二の文書画像のいずれについても記録文字列について既知であり、これら2つの文書画像間での記録文字列の対応関係を取得している。
この図が示すように文書帳票には、その文書を作成した企業のマーク、作成日、作成担当者、文書内容が、その文書帳票に特有のフォーマットで記述されている。文書内容は、例えば文書帳票が発注票であれば発注した商品名やその発注個数などの情報の組が1つまたは複数示される。作業者はある1つの文書帳票に基づいて、その文書帳票に記述されている文字列のうち記録すべき特定の文字列(記録文字列)を、記録装置3を用いてデータベース4へ記録する。具体的には作業者は文書帳票を見ながら記録装置3がデータベース4に記録すべき記録文字列を入力する。また作業者は文書帳票の画像データを画像読取装置2に読み込ませる。文書帳票は作業者の操作に基づいて画像読取装置2が読み取り画像処理装置1へ出力する。そして記録装置3は作業者の操作と画像処理装置1の制御とに基づいて、1つの文書帳票についての画像データと、その文書帳票に記述されている文字列のうち記録文字列を対応付けてデータベース4に記録する。図4の例においては、日付51、発注先52、商品名53、数量54、金額55が記録文字列である。文書帳票5には作業者によって記録されない非記録文字列等のその他の情報も印字されている。当該情報は例えば文書帳票を発行した発注者の名称501、発注者のエンブレム画像502、文書帳票のタイトル503、挨拶文504などである。
図5で示すようにデータベース4は文書帳票についての画像データと、その文書帳票に記述されている文字列のうち記録文字列を対応付けて記録テーブルに記憶する。
次に画像処理装置1の処理フローについて順を追って説明する。
まずデータベース4にはある文書帳票についての画像データと、その文書帳票に記述されている記録文字列との組み合わせが、同じ書式(Format)の文書帳票複数枚分記録されている。例えば図4で示す文書帳票5の書式の記録文字列情報(記録文字列を示す情報)が複数枚分記録されているとする。
これら画像データと記録文字列情報との組み合わせとして、例えば過去の業務で扱われた文書帳票の画像データおよび記録文字列情報を用いることができる。過去の業務から画像データおよび記録文字列情報を必要量確保できる場合、画像処理装置に第一特徴量を取得させるために画像データおよび記録文字列情報を別途用意する必要はない。
このような状態で作業者が画像処理装置1を起動し、当該画像処理装置1へ処理開始を指示する。
特徴量抽出部192が、1つの記録文字列の文字情報に対して、文書帳票における複数の文字列それぞれの文字情報が一致すると判定した場合、これら複数の文字列が、その記録情報の候補となる。作業者が、これら複数の文字列のうち何れか1つを選択することで、記録文字列が一意に特定される。
具体的には、特徴量抽出部192は、記録文字列毎に、複数の文書帳票におけるその記録文字列の文字列属性を解析して、1つの記録文字列に1つの特徴量を抽出する。
特徴量抽出部192が、同じ書式の文書帳票に共通かつ記録文字列毎の特徴量を抽出する方法は、特定の方法に限定されない。例えば、特徴量抽出部192が、複数の文書帳票から得られた複数の文字列属性について、先頭の文字の座標、末尾の文字の座標、文字の種類、文字の高さ、フォントの種類などの項目毎に最頻値(Mode)を求めるようにしてもよい。また、特徴量抽出部192が、先頭の文字の座標、末尾の文字の座標、文字の高さ、文字間の距離など数値で示される属性について項目毎に平均値(Average)または中央値(Median)を求めるようにしてもよい。また、特徴量抽出部192が、数値で表される項目について、その最大値および最小値を特徴量とするなど、範囲を有する特徴量、あるいは、複数の数値で表される特徴量を用いるようにしてもよい。また、特徴量抽出部192が、文字の種類、フォントの種類など数値以外の属性を数値化して特徴量を求めるようにしてもよい。また、特徴量抽出部192が、公知の機械学習アルゴリズムを用いて特徴量を抽出するようにしてもよい。
特徴量抽出部192が、文書帳票の1つの書式かつ1つの記録文字列について複数の数値を取得した場合、これら複数の数値をベクトル化して1つのベクトルの特徴量を抽出するようにしてもよい。
特徴量抽出部192は、記録文字列毎に得られた第一特徴量を、文書帳票の書式の識別子に紐づけてデータベース4に記録する(ステップS605)。
ステップS605の後、画像処理装置1は、図6の処理を終了する。
作業者は新たな文書帳票を画像読取装置2に読み取らせる操作を行う。これにより画像読取装置2は文書帳票の画像データを生成して画像処理装置1へ出力(送信)する。画像処理装置1の取得部191は、通信部110の受信データから画像データを取得する(ステップS701)。取得部191は画像データを特徴量抽出部192へ出力する。特徴量抽出部192は画像データをOCR処理して、文字列と、その文字列に含まれる文字の特徴(文字属性)と、その文字列の範囲の画像データ中の座標とを文字列毎に検出する(ステップS702)。特徴量抽出部192はそれら検出した情報を特徴量化した第三特徴量を、画像データ中の文字列毎に抽出する(ステップS703)。つまり第三特徴量は新たに読み込んだ画像データの文書帳票に含まれる文字列の特徴を示す情報である。その後、特徴量抽出部192はデータベース4から記録文字列毎の第一特徴量を読み出す(ステップS704)。特徴量抽出部192は記録部193へ第三特徴量と第一特徴量とを出力する。
次に、特徴量抽出部192は、表示部120を制御して、画像処理装置1による処理結果である記録文字列の表示と、文書帳票の画像とを並べて表示させる(ステップS706)。
図9は、表示部120が、記録文字列の表示と文書帳票の画像との対応関係を表示した表示画面の例を示す図である。
図9では、図8の表示画面にて、記録文字列の表示と文書帳票の画像との対応関係を表示した例を示している。文字列C1a、C1b、C2a、C2bがそれぞれ矩形F1a、F1b、F2a、F2bで囲って示されている。そして、文字列C1aとC2aとが対応することが、線Laにて示されている。文字列C1bとC2bとが対応することが、線Lbにて示されている。
このように、表示部120が、記録文字列の表示と文書帳票の画像との対応関係を表示することで、作業者が、文書帳票の書式または記録文字列の表示ウィンドウの書式のいずれかまたは両方に不慣れな場合でも、文字列の対応関係を容易かつ確実に把握できる。
そして、対応関係学習部としての特徴量抽出部192および記録部193は、処理結果の表示(図8、9の例では、記録文字列の表示ウィンドウW2)における記録文字列の座標を学習する(ステップS710)。例えば、特徴量抽出部192が、文書帳票の場合と同様に、処理結果の表示についても第一特徴量を抽出し、記録部193が、第一特徴量を用いて、記録文字列の位置を特定し、記憶する。
記録部193が、処理結果の表示の書式を既知の場合は、ステップS710の処理は不要である。
例えば、文書帳票の画像データ中から第三特徴量a3、第三特徴量b3、第三特徴量c3、第三特徴量d3が取得できたとする。そして第三特徴量a3が予めデータベースに記録されている第一特徴量a1と、第三特徴量b3が第一特徴量b1と、第三特徴量c3が第一特徴量c1と、第三特徴量d3が第一特徴量d1とそれぞれ特徴量が一致したとする。この場合、記録部193は、第三特徴量a3、第三特徴量b3、第三特徴量c3、第三特徴量d3それぞれに対応する文字列を、記録文字列として文書帳票の記録テーブルに記録する。ここでいう第三特徴量に対応する文字列は、その第三特徴量の抽出元の文字列である。作業者による記録文字列の修正があった場合、記録部193は、修正後の記録文字列を文書帳票の記録テーブルに記録する。
ステップS711の後、画像処理装置1は、図7の処理を終了する。
画像処理装置1が、図7の処理で第一特徴量を更新することで、サンプルデータ数が増加して第一特徴量の精度が向上し、画像処理装置1が記録文字列を抽出する精度が向上することが期待される。また、図7の処理で記録文字列が追加された場合、画像処理装置1が新たに追加された記録文字列についても画像データから抽出できるようになり、作業者が文字列を入力する手間を省けることが期待される。
第二実施形態では、画像処理装置1が、文書帳票の複数の書式に対応する場合について説明する。
図10は第二実施形態に係る画像処理装置の機能構成を示す概略ブロック図である。
図10に示すように第二実施形態に係る画像処理装置1は、図3で示した各機能部に加え、さらにグループ分類部194、グループ特定部195の機能を有する。
次に第二実施形態に係る画像処理装置1の処理フローについて順を追って説明する。
データベース4には書式が異なる複数の文書帳票についての画像データと、各文書帳票に記述されている記録文字列の組み合わせが、その文書帳票毎に多数記録されている。このような状態で作業者が画像処理装置1を起動し、当該画像処理装置1へ処理開始を指示する。
特徴量抽出部192が、1つの記録文字列の文字情報に対して、文書帳票における複数の文字列それぞれの文字情報が一致すると判定した場合、これら複数の文字列が、その記録情報の候補となる。作業者が、これら複数の文字列のうち何れか1つを選択することで、記録文字列が一意に特定される。
特徴量抽出部192は、得られた個別第一特徴量を、文書帳票の識別子および記録文字列の識別子に紐づけてデータベース4に記録する(ステップS906)。記録文字列の識別子として、例えばその記録文字列の位置を示す座標値を用いることができる。
具体的には、特徴量抽出部192は、ステップS904で何れの記録文字列にも対応付けられなかった文字列の各々について、その文字列の属性(文字列属性)を特徴量化する。第一特徴量の場合と同様、文書帳票を書式毎にグループ分けしていないステップS908の時点では、同じ書式の文書帳票に共通の特徴量を生成することはできない。そこで、特徴量抽出部192は、グループ毎の第二特徴量を抽出する準備として、文書帳票毎かつ非記録文字列毎の特徴量を抽出しておく。この文書帳票毎かつ非記録文字列毎の特徴量を個別第二特徴量と称する。
特徴量抽出部192が、文書帳票毎、かつ、複数の非記録文字列を纏めた個別第二特徴量を生成するようにしてもよい。例えば、特徴量抽出部192が、1つの文書帳票につき1つの個別第二特徴量を生成するようにしてもよい。
例えば特徴量抽出部192は、図4の文書帳票5の書式に含まれる非記録文字列である発注者の名称501、発注者のエンブレム画像、文書帳票のタイトル503、挨拶文504などを示す個別第二特徴量を、文書帳票5の識別子および非記録文字列の識別子に紐づけてデータベース4に記録する。
グループ分類部194は、全ての文書帳票のグループ分けが完了した場合(ステップS922:YES)、文書帳票の識別子とその文書帳票に付与されたグループ識別子とを対応付けてデータベース4のグループテーブル(記録テーブル)に記録する(ステップS923)。
一方、個別第二特徴量については、ステップS921でのグループ分けで使用できるように、特徴量抽出部192がステップS908で抽出しておく。但し、ステップ921で、グループ分類部194が、個別第二特徴量を用いず非記録文字列を用いて文書帳票のグループ分けを行うようにしてもよい。この場合、特徴量抽出部192がステップS924で、同一グループに属する複数の文書帳票の非記録文字列の文字列属性から(直接的に)グループ第二特徴量を抽出するようにしてもよい。この場合、特徴量抽出部192は、ステップS907~ステップS909では特に何も処理を行わない。
特徴量抽出部192は、グループそれぞれについて各グループ第一特徴量、各グループ第二特徴量を算出し、グループの識別子に対応付けてデータベース4に記録する(ステップS925)。
ステップS925の後、画像処理装置1は、図11の処理を終了する。
作業者は新たな文書帳票を画像読取装置2に読み取らせる操作を行う。これにより画像読取装置2は文書帳票の画像データを生成して画像処理装置1へ出力(送信)する。画像処理装置1の取得部191は、通信部110の受信データから画像データを取得する(ステップS1001)。取得部191は画像データを特徴量抽出部192へ出力する。特徴量抽出部192は画像データをOCR処理して、文字列と、その文字列に含まれる文字の特徴(文字属性)と、その文字列の範囲の画像データ中の座標とを文字列毎に検出する(ステップS1002)。特徴量抽出部192はそれら検出した情報を特徴量化した第三特徴量を、画像データ中の文字列毎に抽出する(ステップS1003)。第三特徴量は新たに読み込んだ画像データの文書帳票に含まれる文字列の特徴を示す情報である。
次に、特徴量抽出部192は、表示部120を制御して、画像処理装置1による処理結果である記録文字列の表示と、文書帳票の画像とを並べて表示させる(ステップS1007)。ステップS1007は、図7のステップS706と同様である。
作業者が記録文字列を確認し修正した後、確定操作を行うと、画像処理装置1は、修正後の記録文字列を取得する(ステップS1010)。ステップS1008で、記録部193が、記録文字列の表示と文書帳票の画像との対応関係を取得済でないと判定した場合(ステップS1008:NO)も、処理がステップS1010へ進む。
記録部193が、処理結果の表示の書式を既知の場合は、ステップS1011の処理は不要である。
例えば、文書帳票の画像データ中から第三特徴量a3、第三特徴量b3、第三特徴量c3、第三特徴量d3が取得できたとする。そして第三特徴量a3が予めデータベースに記録されている第一特徴量a1と、第三特徴量b3が第一特徴量b1と、第三特徴量c3が第一特徴量c1と、第三特徴量d3が第一特徴量d1とそれぞれ特徴量が一致したとする。この場合、記録部193は、第三特徴量a3、第三特徴量b3、第三特徴量c3、第三特徴量d3それぞれに対応する文字列を、記録文字列として文書帳票の記録テーブルに記録する。ここでいう第三特徴量に対応する文字列は、その第三特徴量の抽出元の文字列である。作業者による記録文字列の修正があった場合、記録部193は、修正後の記録文字列を文書帳票の記録テーブルに記録する。
ステップS1012の後、画像処理装置1は、図12の処理を終了する。
画像処理装置1が、図12の処理で第一特徴量を更新することで、サンプルデータ数が増加して第一特徴量の精度が向上し、画像処理装置1が記録文字列を抽出する精度が向上することが期待される。また、図12の処理で記録文字列が追加された場合、画像処理装置1が新たに追加された記録文字列についても画像データから抽出できるようになり、作業者が文字列を入力する手間を省けることが期待される。
なお、画像処理装置1の処理の他の例としては、作業者が予め文書帳票のグループを画像処理装置1に登録しておいてもよい。例えば作業者は、過去において文書帳票の画像データを登録する際、文書帳票の種類に合わせてグループ識別子を入力しておき文書帳票の画像データと紐づけてデータベース4に登録しておく。これにより、同一グループ内に画像処理装置1の処理誤り等により異種の帳票が混じることがなくなり、精度のよい第一特徴量を抽出することができる。なおこの場合、登録時は作業者が文書帳票のグループを入力するが、新たな帳票に対しては、ステップS1004と同じく、第二特徴量を用いてグループ特定する。
また、画像処理装置1の処理の他の例としては、画像処理装置1は第二特徴量を用いて文書帳票をグループ分けするだけでなく、第一特徴量を用いて、また第二特徴量と共に第一特徴量を用いて、文書帳票をグループ分けするようにしてもよい。第一特徴量は記録文字列の特徴量であるが、同じ種類の文書帳票であれば、記録文字列の座標やその文字属性は同じであると考えられ、第一特徴量を用いて帳票をグループ分けすることが可能となる。最初のグループ分けを第四実施形態で示すように作業者が行い、新たな文書帳票に対してはステップS1004の処理により第一特徴量を用いてグループ分けすることにより、OCR処理において精度よく記録文字列を読み取ることが可能となる。
この場合、取得部191が、複数の帳票画像データとその帳票画像データに含まれる文字列のうち記録対象となった記録文字列とを取得する。そしてグループ分類部194が第一特徴量に基づいて帳票画像データをグループ分けする。そして、特徴量抽出部192は、グループに含まれる帳票画像データに対応する第一特徴量を用いて記録文字列を抽出する。
第二実施形態においてはステップS1004において第二特徴量に基づいて新たな帳票のグループを特定している。しかしながら、別の処理態様として、画像処理装置1はグループを特定する処理を行わずに、作業者により設定された全グループに対して、1グループごとに順に特定して第一特徴量を読み出し、第三特徴量と一致する個数をカウントする。正しいグループの場合には最も多く第一特徴量と第三特徴量とが一致するはずなので、画像処理装置1は一致個数が最も多いときの特定グループの第三特徴量それぞれに含まれる文字列を記録する。これにより、グループを特定しなくても記録文字列を記録することができる。
この場合、取得部191が、複数の帳票画像データとその帳票画像データに含まれる文字列のうち記録対象となった記録文字列とを取得する。そして、特徴量抽出部192は、取得部191の取得した帳票画像データを認識処理した結果に基づいて、記録文字列の特徴を示す第一特徴量または記録文字列以外の認識情報を示す第二特徴量を抽出する。特徴量抽出部192は、予め設定された所定のグループに含まれる帳票画像データに対応する第一特徴量を用いて記録文字列を抽出する。
画像処理装置1によれば、文書画像における文字列の位置を学習により取得することができる。従って、画像処理装置1によれば、文字認識対象の文書のフォーマットが予めわかっていない場合でも、作業者が、どの項目がどこに示されているかを把握できるよう補助を行うことができる。
これにより、画像処理装置1は、第一の文書画像における特定項目の文字列と、第二の文書画像における特定項目の文字列との対応関係をユーザに提示することができる。ユーザは、対応関係の提示を参照することで、文字列の正誤を比較的容易に確認することができる。
これにより、画像処理装置1ではユーザの特別な処置を必要とせずに、第一の文書画像と第二の文書画像との、同じ特定項目の対応関係を自動的に学習できる。ユーザは、通常の処理を行えばよく、ユーザの負担が増えない。
第二の文書画像の文字列が確定された場合、確定された文字列は正確であると考えられる。対応関係学習部が、この正確な文字列を利用して機械学習を行うことで、第一の文書画像と第二の文書画像との、同じ特定項目の対応関係を比較的高精度に学習できると期待される。
図12は、実施形態に係る画像処理装置の構成の例を示す図である。図12に示す画像処理装置600は、文字列検出部601と、出力部602と、を備える。
かかる構成にて、文字列検出部601は、複数の文書画像を用いた学習の結果に基づいて予め記録され、文書画像の種別毎かつ特定項目毎にその項目の文字列の特徴を示す特徴量のうち、表示されている第一の文書画像についての特徴量に基づいて、第一の文書画像における特定項目の文字列を検出する。
出力部602は、第一の文書画像と当該第一の文書画像に対応して表示されている第二の文書画像とで、同じ特定項目を示す対応関係情報を出力する。
画像処理装置600によれば、文書画像における文字列の位置を学習により取得することができる。従って、画像処理装置600によれば、文字認識対象の文書のフォーマットが予めわかっていない場合でも、作業者が、どの項目がどこに示されているかを把握できるよう補助を行うことができる。
2 画像読取装置
3 記録装置
4 データベース
110 通信部
120 表示部
130 操作入力部
180 記憶部
190 制御部
191 取得部
192 特徴量抽出部
193 記録部
Claims (8)
- 文字列を含む複数の画像を用いた学習の結果に基づいて、認識対象の画像における特定項目の前記文字列を認識する文字列認識部と、
前記認識対象の画像と、前記文字列認識部による文字列認識結果とにおいて同じ前記特定項目を示す対応関係が把握可能な態様で、前記認識対象の画像と前記文字列認識結果とを出力する出力部と、
を備え、
前記文字列認識部は、前記認識対象の画像における前記特定項目の前記文字列の候補を特定し、
前記出力部は、前記特定された文字列の候補の範囲を把握可能な態様で出力する
画像処理装置。 - 前記出力部により出力された前記文字列認識結果に含まれる文字列の修正操作を受け付ける操作受付部
をさらに備え、
前記文字列認識部は、前記操作受付部により受け付けられた修正操作により修正された文字列を、認識した文字列として記録する
請求項1に記載の画像処理装置。 - 前記文字列認識部は、前記学習の結果に基づいて記録され、前記文字列を含む複数の画像が示す文書の種別毎および前記特定項目毎の文字列の特徴を示す特徴量のうち、前記認識対象の画像における文字列の特徴量に基づいて、前記特定項目の文字列を認識する
請求項1または2に記載の画像処理装置。 - 前記特徴量は、前記文字列に含まれる文字の属性および前記認識対象の画像における前記文字列の位置を示す情報に基づいて生成される
請求項3に記載の画像処理装置。 - 前記文字の属性は、数字、アルファベット、ひらがな、漢字、文字数、文字高さ、およびフォントの少なくともいずれか1つを示す
請求項4に記載の画像処理装置。 - 前記文字列認識部は、前記認識対象の画像における前記特定項目の前記文字列の候補を複数検出し、
前記出力部は、前記検出された文字列の候補それぞれの範囲を把握可能な態様で出力する
請求項1から5のいずれか一項に記載の画像処理装置。 - 文字列を含む複数の画像を用いた学習の結果に基づいて、認識対象の画像における特定項目の前記文字列を認識する工程と、
前記認識対象の画像と、文字列認識結果とにおいて同じ前記特定項目を示す対応関係が把握可能な態様で、前記認識対象の画像と前記文字列認識結果とを出力する工程と、
を含み、
前記文字列を認識する工程では、前記認識対象の画像における前記特定項目の前記文字列の候補を特定し、
前記出力する工程では、前記特定された文字列の候補の範囲を把握可能な態様で出力する
画像処理方法。 - コンピュータに、
文字列を含む複数の画像を用いた学習の結果に基づいて、認識対象の画像における特定項目の前記文字列を認識する工程と、
前記認識対象の画像と、文字列認識結果とにおいて同じ前記特定項目を示す対応関係が把握可能な態様で、前記認識対象の画像と前記文字列認識結果とを出力する工程と、
を実行させ、
前記文字列を認識する工程では、前記認識対象の画像における前記特定項目の前記文字列の候補を特定させ、
前記出力する工程では、前記特定された文字列の候補の範囲を把握可能な態様で出力させる
ためのプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020177513A JP7111143B2 (ja) | 2020-10-22 | 2020-10-22 | 画像処理装置、画像処理方法およびプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020177513A JP7111143B2 (ja) | 2020-10-22 | 2020-10-22 | 画像処理装置、画像処理方法およびプログラム |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018071143A Division JP6784273B2 (ja) | 2018-04-02 | 2018-04-02 | 画像処理装置、画像処理方法およびプログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021012741A JP2021012741A (ja) | 2021-02-04 |
JP7111143B2 true JP7111143B2 (ja) | 2022-08-02 |
Family
ID=74226157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020177513A Active JP7111143B2 (ja) | 2020-10-22 | 2020-10-22 | 画像処理装置、画像処理方法およびプログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7111143B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7241822B2 (ja) * | 2021-08-20 | 2023-03-17 | 株式会社マネーフォワード | 証憑構造分析システム、証憑構造分析方法及び証憑構造分析プログラム |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000113100A (ja) | 1995-07-31 | 2000-04-21 | Fujitsu Ltd | 媒体処理方法及び媒体処理装置 |
JP2015005100A (ja) | 2013-06-20 | 2015-01-08 | 株式会社日立システムズ | 情報処理装置、テンプレート生成方法、およびプログラム |
JP2016001399A (ja) | 2014-06-11 | 2016-01-07 | 日本電信電話株式会社 | 関連性判定装置、モデル学習装置、方法、及びプログラム |
JP2016048444A (ja) | 2014-08-27 | 2016-04-07 | 沖電気工業株式会社 | 帳票識別プログラム、帳票識別装置、帳票識別システム、および帳票識別方法 |
JP2017016549A (ja) | 2015-07-06 | 2017-01-19 | 株式会社日立システムズ | 文字認識装置、文字認識方法、及びプログラム |
JP2017054408A (ja) | 2015-09-11 | 2017-03-16 | オムロン株式会社 | 車種判別装置、車種判別方法、および車種判別プログラム |
JP2017151627A (ja) | 2016-02-23 | 2017-08-31 | 沖電気工業株式会社 | 帳票データ化システム、帳票データ化装置、帳票データ化方法および帳票データ化装置の制御プログラム |
JP2018005462A (ja) | 2016-06-30 | 2018-01-11 | 株式会社日立ソリューションズ | 認識装置及び認識方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05258099A (ja) * | 1992-03-16 | 1993-10-08 | Fujitsu Ltd | 文字認識処理装置 |
JP3422924B2 (ja) * | 1998-03-27 | 2003-07-07 | 富士通株式会社 | 文字認識装置、文字認識方法およびその方法をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体 |
-
2020
- 2020-10-22 JP JP2020177513A patent/JP7111143B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000113100A (ja) | 1995-07-31 | 2000-04-21 | Fujitsu Ltd | 媒体処理方法及び媒体処理装置 |
JP2015005100A (ja) | 2013-06-20 | 2015-01-08 | 株式会社日立システムズ | 情報処理装置、テンプレート生成方法、およびプログラム |
JP2016001399A (ja) | 2014-06-11 | 2016-01-07 | 日本電信電話株式会社 | 関連性判定装置、モデル学習装置、方法、及びプログラム |
JP2016048444A (ja) | 2014-08-27 | 2016-04-07 | 沖電気工業株式会社 | 帳票識別プログラム、帳票識別装置、帳票識別システム、および帳票識別方法 |
JP2017016549A (ja) | 2015-07-06 | 2017-01-19 | 株式会社日立システムズ | 文字認識装置、文字認識方法、及びプログラム |
JP2017054408A (ja) | 2015-09-11 | 2017-03-16 | オムロン株式会社 | 車種判別装置、車種判別方法、および車種判別プログラム |
JP2017151627A (ja) | 2016-02-23 | 2017-08-31 | 沖電気工業株式会社 | 帳票データ化システム、帳票データ化装置、帳票データ化方法および帳票データ化装置の制御プログラム |
JP2018005462A (ja) | 2016-06-30 | 2018-01-11 | 株式会社日立ソリューションズ | 認識装置及び認識方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2021012741A (ja) | 2021-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6874729B2 (ja) | 画像処理装置、画像処理方法およびプログラム | |
US8270721B2 (en) | Method and system for acquiring data from machine-readable documents | |
US6525716B1 (en) | Handwritten data input device having coordinate detection tablet | |
JP6859977B2 (ja) | 画像処理装置、画像処理システム、画像処理方法およびプログラム | |
WO2019194052A1 (ja) | 画像処理装置、画像処理方法、およびプログラムを記憶する記憶媒体 | |
WO2019194026A1 (ja) | 画像処理装置、画像処理方法、およびプログラムを記憶する記憶媒体 | |
CN110210470A (zh) | 商品信息图像识别系统 | |
JP2014137605A (ja) | レシート定義データ作成装置およびそのプログラム | |
JP2022125220A (ja) | 画像処理装置、画像処理方法、プログラム | |
JP7111143B2 (ja) | 画像処理装置、画像処理方法およびプログラム | |
US11315351B2 (en) | Information processing device, information processing method, and information processing program | |
JP6784274B2 (ja) | 画像処理装置、画像処理方法およびプログラム | |
JPH1173472A (ja) | フォーマット情報登録方法及びocrシステム | |
JP4356908B2 (ja) | 財務諸表自動入力装置 | |
JP7160432B2 (ja) | 画像処理装置、画像処理方法、プログラム | |
JP3732254B2 (ja) | フォーマット情報生成方法及びフォーマット情報生成装置 | |
JP2000003403A (ja) | 帳票入力支援方法 | |
JPH0689330A (ja) | 画像ファイリングシステム | |
JPH01100683A (ja) | 伝票とその伝票の読取り方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201022 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220704 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7111143 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |