[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7100778B1 - Power supply unit for electrostatic chuck and electrostatic chuck - Google Patents

Power supply unit for electrostatic chuck and electrostatic chuck Download PDF

Info

Publication number
JP7100778B1
JP7100778B1 JP2022068461A JP2022068461A JP7100778B1 JP 7100778 B1 JP7100778 B1 JP 7100778B1 JP 2022068461 A JP2022068461 A JP 2022068461A JP 2022068461 A JP2022068461 A JP 2022068461A JP 7100778 B1 JP7100778 B1 JP 7100778B1
Authority
JP
Japan
Prior art keywords
substrate
particles
main component
electrostatic chuck
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022068461A
Other languages
Japanese (ja)
Other versions
JP2023158548A (en
Inventor
研作 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2022068461A priority Critical patent/JP7100778B1/en
Application granted granted Critical
Publication of JP7100778B1 publication Critical patent/JP7100778B1/en
Priority to TW112103223A priority patent/TWI843424B/en
Priority to KR1020230021320A priority patent/KR102691941B1/en
Priority to CN202310330865.3A priority patent/CN116913844A/en
Publication of JP2023158548A publication Critical patent/JP2023158548A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details
    • G03F7/70708Chucks, e.g. chucking or un-chucking operations or structural details being electrostatic; Electrostatically deformable vacuum chucks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】基板との熱膨張率差を低減するとともに、給電機能を確保することができる静電チャック用給電部及び静電チャックを提供する。【解決手段】試料を載置する載置板1と、この載置板と一体化される基板2と、これら載置板と基板との間に設けられた内部電極3とを備える静電チャックにおいて、内部電極3に給電するために基板2を貫通するように設けられる静電チャック用給電部4である。この給電部4は、基板2の主成分と同じ主成分を有する基板主成分粒子と、導電性粒子とを含む複合焼結体であり、基板主成分粒子を55体積%以上90体積%以下、導電性粒子を10体積%以上45体積%以下含有し、組織は、基板主成分粒子と、基板主成分粒子の粒界に存在するマトリックス部とを含み、マトリックス部に導電性粒子が存在し、かつ、基板主成分粒子の平均粒子径をR1、導電性粒子の平均粒子径をR2としたときに、R1/R2が1.6以上である。【選択図】図1A power supply unit for an electrostatic chuck and an electrostatic chuck capable of reducing a difference in coefficient of thermal expansion with a substrate and ensuring a power supply function are provided. An electrostatic chuck comprising a mounting plate 1 for mounting a sample, a substrate 2 integrated with the mounting plate, and an internal electrode 3 provided between the mounting plate and the substrate. 3, the electrostatic chuck power supply portion 4 is provided so as to penetrate the substrate 2 in order to supply power to the internal electrode 3 . The power supply portion 4 is a composite sintered body containing substrate main component particles having the same main component as that of the substrate 2 and conductive particles. Containing 10% by volume or more and 45% by volume or less of conductive particles, the structure includes substrate main component particles and a matrix part existing at the grain boundary of the substrate main component particles, the matrix part contains the conductive particles, In addition, R1/R2 is 1.6 or more, where R1 is the average particle size of the substrate main component particles and R2 is the average particle size of the conductive particles. [Selection drawing] Fig. 1

Description

本発明は、静電チャック用給電部及び静電チャックに関する。 The present invention relates to a feeding unit for an electrostatic chuck and an electrostatic chuck.

例えば半導体製造装置において、回路形成を目的としてシリコンウェーハ上に露光・成膜し、シリコンウェーハをエッチングするためには、対象とするウェーハの平坦度を保ち、かつウェーハに温度分布がつかないように、ウェーハを保持する必要がある。このようなウェーハの保持手段としては機械方式、真空吸着方式、静電吸着方式が提案されている。これらの保持手段のうち、静電吸着方式は静電チャックによりウェーハを保持する方式であり、真空雰囲気下で使用することができるため多用されている。 For example, in a semiconductor manufacturing equipment, in order to expose and deposit on a silicon wafer for the purpose of circuit formation and to etch the silicon wafer, the flatness of the target wafer is maintained and the temperature distribution is not applied to the wafer. , Need to hold the wafer. As such a wafer holding means, a mechanical method, a vacuum suction method, and an electrostatic suction method have been proposed. Among these holding means, the electrostatic adsorption method is a method of holding a wafer by an electrostatic chuck, and is often used because it can be used in a vacuum atmosphere.

静電チャックの構成としては、ウェーハ等の試料を載置する載置板と、この載置板と一体化される基板と、これら載置板と基板との間に設けられた内部電極と、この内部電極に給電するために基板を貫通するように設けられた給電部とを備えた構成が知られている。また、給電部の材質としては、アルミナ-タングステン複合導電性焼結体を用いた技術が知られている(例えば、特許文献1参照)。 The configuration of the electrostatic chuck includes a mounting plate on which a sample such as a wafer is placed, a substrate integrated with the mounting plate, and an internal electrode provided between the mounting plate and the substrate. It is known that the internal electrode is provided with a feeding portion provided so as to penetrate the substrate in order to supply power to the internal electrode. Further, as a material of the feeding portion, a technique using an alumina-tungsten composite conductive sintered body is known (see, for example, Patent Document 1).

特許第3746935号公報Japanese Patent No. 3746935

上記特許文献1において、給電部の周囲の基板はアルミナ基焼結体で構成されている。そのため、給電部(アルミナ-タングステン複合導電性焼結体)と基板(アルミナ基焼結体)との熱膨張率の差が大きいと、給電部あるいは基板に熱膨張差による亀裂が生じてしまう。また、給電部は内部電極へ給電する機能を有する必要がある。このように静電チャック用給電部においては、基板との熱膨張率差を低減するとともに、給電機能を確保する必要がある。 In Patent Document 1, the substrate around the feeding portion is made of an alumina-based sintered body. Therefore, if the difference in the coefficient of thermal expansion between the feeding portion (alumina-tungsten composite conductive sintered body) and the substrate (alumina-based sintered body) is large, the feeding portion or the substrate will be cracked due to the difference in thermal expansion. Further, the feeding unit needs to have a function of feeding power to the internal electrode. As described above, in the power feeding unit for the electrostatic chuck, it is necessary to reduce the difference in the coefficient of thermal expansion from the substrate and to secure the power feeding function.

本発明が解決しようとする課題は、基板との熱膨張率差を低減するとともに、給電機能を確保することができる静電チャック用給電部及び静電チャックを提供することにある。 An object to be solved by the present invention is to provide a power feeding unit for an electrostatic chuck and an electrostatic chuck capable of reducing the difference in thermal expansion coefficient from the substrate and ensuring the power feeding function.

上記課題を解決するために本発明者らは、静電チャック用給電部において給電機能を確保するために必要な導電性粒子の使用量を低減するために、パーコレーション理論の応用を検討することとした。すなわち、絶縁体と導電体からなる複合構造を持つ材料の導電性は、その体積分率との関連において一般にパーコレーション理論を用いて説明でき、パーコレーション理論によると、アルミナ基焼結体のような多結晶体母相に導電性粒子を分散した複合材料において、導電性付与に必要な導電性粒子の臨界体積分率Vcは、次式(1)で表すことができる。
Vc=[1+(φ/4Xc)×(Rm/Rp)]-1 (1)
ここで、Rm:絶縁性粒子の粒子径
Rp:導電性粒子の粒子径
φ,Xc:係数
In order to solve the above problems, the present inventors will study the application of percolation theory in order to reduce the amount of conductive particles required to secure the feeding function in the feeding part for the electrostatic chuck. did. That is, the conductivity of a material having a composite structure consisting of an insulator and a conductor can be generally explained by using the percoration theory in relation to the volume fraction thereof, and according to the percoration theory, there are many such as an alumina-based sintered body. In a composite material in which conductive particles are dispersed in a crystal matrix, the critical volume fraction Vc of the conductive particles required for imparting conductivity can be expressed by the following equation (1).
Vc = [1+ (φ / 4Xc) × (Rm / Rp)] -1 (1)
Here, Rm: particle size of the insulating particles
Rp: Particle size of conductive particles
φ, Xc: Coefficient

この式(1)より、導電性付与に必要な導電性粒子の臨界体積分率Vcは、絶縁性粒子と導電性粒子の粒子径比(Rm/Rp)が大きいほど小さくなることが示唆される。言い換えれば、絶縁性粒子の粒子径を導電性粒子の粒子径に対して十分に大きくすることで導電性付与に必要な導電性粒子の臨界体積分率Vc、すなわち導電性粒子の使用量を低減できることが示唆される。
そこで、本発明者らは上記課題を解決するために、静電チャック用給電部という特有の事情を考慮しつつ、静電チャック用給電部を構成する絶縁性粒子と導電性粒子の粒子径比、絶縁性粒子及び導電性粒子の体積分率等について詳細に検討し、本発明を完成させるに至った。
From this equation (1), it is suggested that the critical volume fraction Vc of the conductive particles required for imparting conductivity decreases as the particle diameter ratio (Rm / Rp) of the insulating particles and the conductive particles increases. .. In other words, by making the particle size of the insulating particles sufficiently larger than the particle size of the conductive particles, the critical volume fraction Vc of the conductive particles required for imparting conductivity, that is, the amount of the conductive particles used is reduced. It is suggested that it can be done.
Therefore, in order to solve the above-mentioned problems, the present inventors consider the peculiar situation of the feeding part for the electrostatic chuck, and consider the particle size ratio of the insulating particles and the conductive particles constituting the feeding part for the electrostatic chuck. , The body integration rate of the insulating particles and the conductive particles was examined in detail, and the present invention was completed.

すなわち、本発明の一観点によれば、次の静電チャック用給電部が提供される。
試料を載置する載置板と、この載置板と一体化される基板と、これら載置板と基板との間に設けられた内部電極とを備える静電チャックにおいて、前記内部電極に給電するために前記基板を貫通するように設けられる静電チャック用給電部であって、
前記基板の主成分と同じ主成分を有する基板主成分粒子と、導電性粒子とを含む複合焼結体であり、基板主成分粒子と導電性粒子の合計体積を100体積%としたときに、基板主成分粒子を55体積%以上90体積%以下、導電性粒子を10体積%以上45体積%以下含有し、
組織は、基板主成分粒子と、基板主成分粒子の粒界に存在するマトリックス部とを含み、マトリックス部に導電性粒子が存在し、かつ、基板主成分粒子の平均粒子径をR1、導電性粒子の平均粒子径をR2としたときに、R1/R2が1.6以上である、静電チャック用給電部。
That is, according to one aspect of the present invention, the following electrostatic chuck feeding unit is provided.
Power is supplied to the internal electrode in an electrostatic chuck including a mounting plate on which a sample is placed, a substrate integrated with the mounting plate, and an internal electrode provided between the mounting plate and the substrate. It is a feeding part for an electrostatic chuck provided so as to penetrate the substrate for the purpose of
It is a composite sintered body containing the substrate main component particles having the same main component as the main component of the substrate and the conductive particles, and when the total volume of the substrate main component particles and the conductive particles is 100% by volume, It contains 55% by volume or more and 90% by volume or less of the main component particles of the substrate, and 10% by volume or more and 45% by volume or less of the conductive particles.
The structure includes the substrate main component particles and the matrix portion existing at the grain boundary of the substrate main component particles, the conductive particles are present in the matrix portion, and the average particle diameter of the substrate main component particles is R1, which is conductive. A feeding unit for an electrostatic chuck in which R1 / R2 is 1.6 or more when the average particle diameter of the particles is R2.

また、本発明の他の観点によれば、試料を載置する載置板と、この載置板と一体化される基板と、これら載置板と基板との間に設けられた内部電極と、この内部電極に給電するために前記基板を貫通するように設けられた給電部とを備える静電チャックであって、給電部が、上記本発明の静電チャック用給電部である、静電チャックが提供される。 Further, according to another aspect of the present invention, a mounting plate on which a sample is placed, a substrate integrated with the mounting plate, and an internal electrode provided between the mounting plate and the substrate. An electrostatic chuck including a feeding unit provided so as to penetrate the substrate for supplying power to the internal electrode, wherein the feeding unit is the electrostatic chuck feeding unit of the present invention. Chuck is provided.

本発明によれば、基板との熱膨張率差を低減するとともに、給電機能を確保することができる静電チャック用給電部及び静電チャックを提供することができる。 According to the present invention, it is possible to provide an electrostatic chuck feeding unit and an electrostatic chuck that can reduce the difference in thermal expansion coefficient from the substrate and secure the feeding function.

本発明の一実施形態である静電チャック用給電部を含む静電チャックの一例を示す断面図。FIG. 3 is a cross-sectional view showing an example of an electrostatic chuck including a feeding unit for an electrostatic chuck according to an embodiment of the present invention. 本発明の静電チャック用給電部を含む静電チャックの製造方法の一例を概念的に示す図。The figure which conceptually shows an example of the manufacturing method of the electrostatic chuck including the feeding part for electrostatic chuck of this invention. 本発明の一実施形態である静電チャック用給電部の切断面の走査型電子顕微鏡観察結果の一例(2値化後の画像)。An example of a scanning electron microscope observation result (image after binarization) of a cut surface of a feeding portion for an electrostatic chuck according to an embodiment of the present invention.

図1に、一実施形態である静電チャック用給電部を含む静電チャックの一例を断面で示している。
同図に示す静電チャックは、ウェーハ等の試料を載置する載置板1と、この載置板と一体化される基板2と、これら載置板1と基板2との間に設けられた内部電極3と、この内部電極3に給電するために基板2を貫通するように設けられた給電部4とを備え、給電部4が本発明の一実施形態である静電チャック用給電部である。
FIG. 1 shows an example of an electrostatic chuck including a feeding unit for an electrostatic chuck according to an embodiment in a cross section.
The electrostatic chuck shown in the figure is provided between a mounting plate 1 on which a sample such as a wafer is mounted, a substrate 2 integrated with the mounting plate 1, and the mounting plate 1 and the substrate 2. The internal electrode 3 is provided with a power feeding unit 4 provided so as to penetrate the substrate 2 for supplying power to the internal electrode 3, and the power feeding unit 4 is an electrostatic chuck feeding unit according to an embodiment of the present invention. Is.

載置板1は誘電体であり、本実施形態では誘電体であるアルミナ焼結体よりなる。ただし、載置板1の材質(主成分)はアルミナ(Al)には限定されず、窒化アルミニウム(AlN)や窒化珪素(SiN)などであってもよい。
基板2は絶縁体であり、本実施形態では絶縁体であるアルミナ焼結体よりなる。ただし、基板2の材質(主成分)はアルミナ(Al)には限定されず、窒化アルミニウム(AlN)や窒化珪素(SiN)などであってもよい。
なお、載置板1と基板2の材質(主成分)は同一であることが好ましい。
The mounting plate 1 is a dielectric, and in this embodiment, it is made of an alumina sintered body which is a dielectric. However, the material (main component) of the mounting plate 1 is not limited to alumina (Al 2 O 3 ), and may be aluminum nitride (AlN), silicon nitride (SiN), or the like.
The substrate 2 is an insulator, and in this embodiment, it is made of an alumina sintered body which is an insulator. However, the material (main component) of the substrate 2 is not limited to alumina (Al 2 O 3 ), and may be aluminum nitride (AlN), silicon nitride (SiN), or the like.
It is preferable that the material (main component) of the mounting plate 1 and the substrate 2 is the same.

内部電極3は、載置板1と基板2との間に、これら載置板1と基板2とで挟まれるように設けられている。その材質は後述する給電部4の材質と同じとすることができる。 The internal electrode 3 is provided between the mounting plate 1 and the substrate 2 so as to be sandwiched between the mounting plate 1 and the substrate 2. The material can be the same as the material of the feeding unit 4 described later.

次に、本発明の一実施形態である給電部4について説明する。
給電部4は、基板2の主成分と同じ主成分を有する基板主成分粒子と、導電性粒子とを含む複合焼結体である。なお、本実施形態では基板2の主成分はアルミナ(Al)であるから、基板主成分粒子はアルミナ粒子である。また、導電性粒子については特に限定されず、静電チャック用給電部に一般的に用いられるものとすることができる。例えば、タングステン粒子、珪化タングステン粒子、モリブデン粒子、ホウ化ジルコニウム粒子、炭化ジルコニウム粒子、窒化ジルコニウム粒子、ホウ化タンタル粒子、炭化タンタル粒子、窒化タンタル粒子、珪化タンタル粒子、ホウ化チタン粒子、炭化チタン粒子及び窒化チタン粒子から選択される1種又は2種以上とすることができる。
Next, the power feeding unit 4 which is an embodiment of the present invention will be described.
The feeding unit 4 is a composite sintered body containing the substrate main component particles having the same main component as the main component of the substrate 2 and the conductive particles. In this embodiment, the main component of the substrate 2 is alumina (Al 2 O 3 ), so the main component particles of the substrate are alumina particles. Further, the conductive particles are not particularly limited, and can be generally used for the feeding unit for the electrostatic chuck. For example, tungsten particles, silicified tungsten particles, molybdenum particles, boarized zirconium particles, zirconium carbide particles, zirconium nitride particles, tantalum borate particles, tantalum carbide particles, tantalum nitride particles, tantalum silicified particles, titanium booxide particles, titanium carbide particles. And one or more selected from titanium nitride particles.

給電部4の組織は、基板主成分粒子と、基板主成分粒子の粒界に存在するマトリックス部とを含み、マトリックス部に導電性粒子が存在する組織であり、より具体的には、基板主成分粒子の平均粒子径をR1、導電性粒子の平均粒子径をR2としたときに、R1/R2が1.6以上である組織である。すなわち、給電部4の組織設計においては、基板2との熱膨張率差を低減するとともに給電機能を確保することができるとの課題を解決するために、上述のパーコレーション理論に基づき、絶縁性粒子である基板主成分粒子の平均粒子径を導電性粒子の平均粒子径に対して十分に大きくすることとした。そして具体的には、本発明者らが導電性付与に必要な導電性粒子の臨界体積分率(導電性粒子の使用量)を低減するためにR1/R2に着目し、かつ静電チャック用給電部という特有の事情(用途、機能等)を考慮しつつ試験及び考察を重ねた結果、R1/R2を1.6以上とすればよいことがわかった。
すなわち、R1/R2を1.6以上とすることで、基板主成分粒子と導電性粒子の合計体積を100体積%としたときに、導電性粒子の体積分率を10体積%以上45体積%以下に抑えることができることがわかった。言い換えると、本発明の静電チャック用給電部は、基板主成分粒子と導電性粒子の合計体積を100体積%としたときに、基板主成分粒子を55体積%以上90体積%以下、導電性粒子を10体積%以上45体積%以下含有する。基板主成分粒子の体積分率が55体積%未満、導電性粒子の体積分率が45体積%超であると、基板との熱膨張率差が大きくなり亀裂が発生してしまう。一方、基板主成分粒子の体積分率が90体積%超、導電性粒子の体積分率が10体積%未満であると、給電機能を確保することができなくなる。
なお、R1/R2を1.6以上とすることで、導電性粒子の体積分率を10体積%以上45体積%以下に抑えることができることは、上述のパーコレーション理論(上記式(1))から直接的かつ一義的に導き出せるものではない。上述のパーコレーション理論(上記式(1))は、R1/R2を大きくすれば導電性粒子の体積分率を低くすることができることを示唆するものの、具体的にR1/R2を1.6以上とすればよいことは、上述の通り本発明者らが静電チャック用給電部という特有の事情を考慮しつつ試験及び考察を重ねた結果、導き出されたものである。言い換えれば、R1/R2と導電性粒子の体積分率との関係は、必ずしも上述のパーコレーション理論(上記式(1))から直接的かつ一義的に決定されるものではなく、静電チャック用給電部における特有の事情、例えば導電性粒子の分散性等を考慮しつつ決定されるものである。
The structure of the feeding portion 4 includes the substrate main component particles and the matrix portion existing at the grain boundary of the substrate main component particles, and is a structure in which the conductive particles are present in the matrix portion. More specifically, the substrate main When the average particle size of the component particles is R1 and the average particle size of the conductive particles is R2, the structure has R1 / R2 of 1.6 or more. That is, in the structural design of the feeding unit 4, the insulating particles are based on the above-mentioned percoration theory in order to solve the problem that the difference in the coefficient of thermal expansion from the substrate 2 can be reduced and the feeding function can be secured. It was decided to make the average particle size of the main component particles of the substrate sufficiently larger than the average particle size of the conductive particles. Specifically, the present inventors focused on R1 / R2 in order to reduce the critical volume fraction (amount of conductive particles used) of the conductive particles required for imparting conductivity, and for an electrostatic chuck. As a result of repeated tests and discussions while considering the unique circumstances (use, function, etc.) of the power feeding unit, it was found that R1 / R2 should be 1.6 or more.
That is, by setting R1 / R2 to 1.6 or more, the volume fraction of the conductive particles is 10% by volume or more and 45% by volume when the total volume of the substrate main component particles and the conductive particles is 100% by volume. It turned out that it can be suppressed to the following. In other words, the feeding unit for the electrostatic chuck of the present invention has the substrate main component particles of 55% by volume or more and 90% by volume or less, and is conductive when the total volume of the substrate main component particles and the conductive particles is 100% by volume. Contains 10% by volume or more and 45% by volume or less of particles. If the volume fraction of the main component particles of the substrate is less than 55% by volume and the volume fraction of the conductive particles is more than 45% by volume, the difference in the coefficient of thermal expansion from the substrate becomes large and cracks occur. On the other hand, if the volume fraction of the main component particles of the substrate exceeds 90% by volume and the volume fraction of the conductive particles is less than 10% by volume, the power feeding function cannot be ensured.
It should be noted that by setting R1 / R2 to 1.6 or more, the volume fraction of the conductive particles can be suppressed to 10% by volume or more and 45% by volume or less from the above-mentioned percolation theory (the above equation (1)). It cannot be derived directly and unambiguously. Although the above-mentioned percolation theory (the above equation (1)) suggests that the volume fraction of the conductive particles can be lowered by increasing R1 / R2, specifically, R1 / R2 is set to 1.6 or more. What should be done is derived as a result of repeated tests and discussions by the present inventors while considering the peculiar situation of the feeding unit for the electrostatic chuck as described above. In other words, the relationship between R1 / R2 and the volume fraction of the conductive particles is not necessarily directly and unambiguously determined from the above-mentioned percolation theory (the above equation (1)), and the power supply for the electrostatic chuck is supplied. It is determined in consideration of the peculiar circumstances in the part, for example, the dispersibility of the conductive particles.

基板主成分粒子及び導電性粒子の体積分率は、基板との熱膨張率差をより低減する観点から、基板主成分粒子が75体積%以上90体積%以下、導電性粒子が10体積%以上25体積%以下であることが好ましく、基板主成分粒子が80体積%以上90体積%以下、導電性粒子が10体積%以上20体積%以下であることがより好ましい。
なお、基板主成分粒子及び導電性粒子の体積分率を上記好ましい範囲とするには、R1/R2を15以上とすることが好ましく、また、基板主成分粒子及び導電性粒子の体積分率を上記より好ましい範囲とするには、R1/R2を25以上とすることが好ましい。
From the viewpoint of further reducing the difference in thermal expansion rate from the substrate, the body integral ratio of the substrate main component particles and the conductive particles is 75% by volume or more and 90% by volume or less for the substrate main component particles and 10% by volume or more for the conductive particles. It is preferably 25% by volume or less, more preferably 80% by volume or more and 90% by volume or less of the substrate main component particles, and more preferably 10% by volume or more and 20% by volume or less of the conductive particles.
In order to keep the volume fractions of the substrate main component particles and the conductive particles in the above preferable range, it is preferable that R1 / R2 is 15 or more, and the volume fractions of the substrate main component particles and the conductive particles are set. In order to make the range more preferable than the above, it is preferable that R1 / R2 is 25 or more.

上述の通り、導電性付与に必要な導電性粒子の臨界体積分率(導電性粒子の使用量)を低減する観点からはR1/R2を大きくすることが有効であり、そのためには基板主成分粒子の平均粒子径を大きくすることが有効である。そのため、本発明においてR1/R2、及び基板主成分粒子の平均粒子径の上限値は特に限定されず、給電部4の寸法(径)等に応じて適宜決定すればよい。なお、実際の給電部においては、基板主成分粒子の平均粒子径が大きすぎると、基板主成分粒子周りのマトリックス部に存在する導電性粒子のネットワークが切断されるおそれもあることから、基板主成分粒子の平均粒子径は例えば200μm以下とすることもでき、またR1/R2は400以下とすることもできる。 As described above, it is effective to increase R1 / R2 from the viewpoint of reducing the critical volume fraction (amount of conductive particles used) of the conductive particles required for imparting conductivity, and for that purpose, the main component of the substrate. It is effective to increase the average particle size of the particles. Therefore, in the present invention, the upper limit values of the average particle diameters of R1 / R2 and the main component particles of the substrate are not particularly limited, and may be appropriately determined according to the dimensions (diameter) of the feeding unit 4. In the actual feeding section, if the average particle size of the main component particles of the substrate is too large, the network of conductive particles existing in the matrix section around the main component particles of the substrate may be cut off. The average particle size of the component particles can be, for example, 200 μm or less, and R1 / R2 can be 400 or less.

ここで、本発明の静電チャック用給電部(給電部4)の組織は上述の通り、基板主成分粒子と、基板主成分粒子の粒界に存在するマトリックス部とを含むところ、基板主成分粒子及びマトリックス部以外の組織相としては、例えば、基板主成分粒子と導電性粒子とを含む複合焼結体の焼結助剤成分に由来するガラス相等を含み得る。ただし、このガラス相等のような基板主成分粒子及びマトリックス部以外の組織相の含有量は、技術常識上、ごく少量であり、場合によっては成分分析等によっては確認できないこともある。したがって、本発明の静電チャック用給電部(給電部4)の組織は典型的には、実質的に、基板主成分粒子と、基板主成分粒子の粒界に存在するマトリックス部とからなる。 Here, as described above, the structure of the electrostatic chuck feeding unit (feeding unit 4) of the present invention includes the substrate main component particles and the matrix portion existing at the grain boundaries of the substrate main component particles, where the substrate main component is included. The structural phase other than the particles and the matrix portion may include, for example, a glass phase derived from the sintering aid component of the composite sintered body containing the substrate main component particles and the conductive particles. However, the content of the main component particles of the substrate such as the glass phase and the structural phase other than the matrix portion is very small in terms of common general technical knowledge, and may not be confirmed by component analysis or the like in some cases. Therefore, the structure of the electrostatic chuck feeding unit (feeding unit 4) of the present invention is typically substantially composed of the substrate main component particles and the matrix portion existing at the grain boundaries of the substrate main component particles.

また、本発明の静電チャック用給電部(給電部4)において基板主成分粒子の平均粒子径は、次の方法により求めるものとする。
すなわち、給電部4をその中心軸に沿って切断し、その切断面を鏡面研磨した後、走査型電子顕微鏡を用いて適宜のスケール(例えば100倍スケール)で観察する。具体的には、適宜の範囲(例えば300μm×300μmの範囲)を5箇所観察し、それぞれの範囲内にある基板主成分粒子の最大粒子径を測定する。そして、測定した各範囲の最大粒子径の平均値を算出し、その平均値を基板主成分粒子の平均粒子径とする。
また、静電チャック用給電部(給電部4)において導電性粒子の平均粒子径は、次の方法により求めるものとする。
すなわち、給電部4をその中心軸に沿って切断し、その切断面を鏡面研磨した後、走査型電子顕微鏡を用いて適宜のスケール(例えば3500倍スケール)で観察する。具体的には、適宜の範囲(例えば10μm×10μmの範囲)を5箇所観察し、それぞれの範囲内にある導電性粒子の最大粒子径を測定する。そして、測定した各範囲の最大粒子径の平均値を算出し、その平均値を導電性粒子の平均粒子径とする
Further, in the electrostatic chuck feeding unit (feeding unit 4) of the present invention, the average particle size of the main component particles of the substrate is determined by the following method.
That is, the feeding unit 4 is cut along its central axis, the cut surface is mirror-polished, and then observed on an appropriate scale (for example, 100 times scale) using a scanning electron microscope. Specifically, an appropriate range (for example, a range of 300 μm × 300 μm) is observed at five points, and the maximum particle size of the substrate main component particles within each range is measured. Then, the average value of the maximum particle diameters in each measured range is calculated, and the average value is used as the average particle diameter of the substrate main component particles.
Further, the average particle diameter of the conductive particles in the electrostatic chuck feeding unit (feeding unit 4) is determined by the following method.
That is, the feeding unit 4 is cut along its central axis, the cut surface is mirror-polished, and then observed on an appropriate scale (for example, 3500 times scale) using a scanning electron microscope. Specifically, an appropriate range (for example, a range of 10 μm × 10 μm) is observed at five points, and the maximum particle size of the conductive particles within each range is measured. Then, the average value of the maximum particle diameters in each measured range is calculated, and the average value is used as the average particle diameter of the conductive particles.

また、本発明の静電チャック用給電部(給電部4)において基板主成分粒子及び導電性粒子の体積分率は、次の方法により求めるものとする。
すなわち、給電部4をその中心軸に沿って切断し、その切断面を鏡面研磨した後、走査型電子顕微鏡を用いて適宜のスケール(例えば100倍スケール)で観察する。具体的には、適宜の範囲(例えば300μm×300μmの範囲)を5箇所観察し、それぞれの範囲内にある基板主成分粒子及び導電性粒子の面積分率を測定し、その平均値を体積分率とする。なお、それぞれの範囲内にある基板主成分粒子及び導電性粒子の面積分率の測定は、給電部4の組織が実質的に基板主成分粒子と導電性粒子のみからなる場合、各範囲の画像を2値化(黒:基板主成分粒子、白:導電性粒子)して画像解析することにより行うことができる。また、給電部4の組織が基板主成分粒子と導電性粒子以外を含む場合であっても、適宜の画像解析により基板主成分粒子及び導電性粒子の面積分率を測定することができる。
Further, in the electrostatic chuck feeding unit (feeding unit 4) of the present invention, the volume fraction of the substrate main component particles and the conductive particles is determined by the following method.
That is, the feeding unit 4 is cut along its central axis, the cut surface is mirror-polished, and then observed on an appropriate scale (for example, 100 times scale) using a scanning electron microscope. Specifically, observe 5 places in an appropriate range (for example, a range of 300 μm × 300 μm), measure the area fraction of the substrate main component particles and the conductive particles in each range, and volume fraction the average value. The rate. In addition, the measurement of the area fraction of the substrate main component particles and the conductive particles in each range is an image of each range when the structure of the feeding unit 4 is substantially composed of the substrate main component particles and the conductive particles. Can be obtained by binarizing (black: substrate main component particles, white: conductive particles) and performing image analysis. Further, even when the structure of the feeding unit 4 contains other than the substrate main component particles and the conductive particles, the surface integral of the substrate main component particles and the conductive particles can be measured by appropriate image analysis.

次に、本発明の静電チャック用給電部(給電部4)を含む静電チャックの製造方法について説明する。図2に、その製造方法の一例を概念的に示している。以下、図2を参照しつつその製造方法の一例を説明する。
まず、絶縁体である基板2に、予め給電部4を組み込み保持するための固定孔2aを形成する。なお、固定孔の形成位置及び数は、内部電極3の態様と形状により決定される。
続いて、給電部4を、基板2の固定孔2aに密着固定し得る大きさ、形状となるように作製し、基板2の固定孔2aに嵌め込む。なお、給電部4の作製は、原料粉末である基板主成分粒子と導電性粒子を混合、成形、焼成するといった一般的な方法で行うことができる。
続いて、給電部4が組み込まれた基板2の表面の所定領域に、給電部4に接触するように、内部電極形成用塗布剤を塗布し、乾燥して内部電極3を形成する。このような塗布液の塗布方法としては、均一な厚さに塗布する必要があることから、スクリーン印刷法等を用いることが好ましい。
続いて、内部電極3を形成した基板2上に、内部電極3を挟むように載置板1を重ねた後、これらを加圧下にて熱処理して一体化する。このときの熱処理の条件として、熱処理雰囲気は真空、アルゴン、ヘリウム、窒素などの不活性雰囲気が好ましく、熱処理温度は1200~1700℃が好ましい。また、加圧力は2~40MPaが好ましい。
Next, a method of manufacturing an electrostatic chuck including the electrostatic chuck feeding unit (feeding unit 4) of the present invention will be described. FIG. 2 conceptually shows an example of the manufacturing method. Hereinafter, an example of the manufacturing method will be described with reference to FIG.
First, a fixing hole 2a for incorporating and holding the feeding portion 4 is formed in advance on the substrate 2 which is an insulator. The position and number of fixing holes are determined by the mode and shape of the internal electrode 3.
Subsequently, the feeding portion 4 is manufactured so as to have a size and shape that can be closely fixed to the fixing hole 2a of the substrate 2, and is fitted into the fixing hole 2a of the substrate 2. The feeding unit 4 can be manufactured by a general method such as mixing, molding, and firing the substrate main component particles and the conductive particles, which are raw material powders.
Subsequently, an internal electrode forming coating agent is applied to a predetermined area on the surface of the substrate 2 in which the feeding portion 4 is incorporated so as to be in contact with the feeding portion 4, and dried to form the internal electrode 3. As a method for applying such a coating liquid, it is preferable to use a screen printing method or the like because it is necessary to apply the coating liquid to a uniform thickness.
Subsequently, the mounting plate 1 is placed on the substrate 2 on which the internal electrode 3 is formed so as to sandwich the internal electrode 3, and then these are heat-treated under pressure to be integrated. As the conditions for the heat treatment at this time, the heat treatment atmosphere is preferably an inert atmosphere such as vacuum, argon, helium, or nitrogen, and the heat treatment temperature is preferably 1200 to 1700 ° C. The pressing force is preferably 2 to 40 MPa.

表1に示す各例の体積分率となるように各粒子を配合して配合物を得、各例の配合物をそれぞれ混合、成形、焼成して、各例の静電チャック用給電部を得た。そして、各例の静電チャック用給電部を含む静電チャックを図2に示した工程により製造した。なお、積置板1としては誘電体であるアルミナ焼結体を用いた。また、基板2としては絶縁体であるアルミナ焼結体を用いた。すなわち、基板2の材質(主成分)はアルミナ(Al)である。そのため、基板主成分粒子としてはアルミナ粒子を用いた。
そして各例の静電チャック用給電部について、基板主成分粒子であるアルミナ粒子の平均粒子径及び導電性粒子の平均粒子径と、アルミナ粒子及び導電性粒子の体積分率を評価した。また、各例の静電チャック用給電部を含む静電チャックについて、給電機能及び亀裂の有無を評価した。各評価の評価方法は以下の通りである。
Each particle is blended so as to have the volume fraction of each example shown in Table 1 to obtain a compound, and the compound of each example is mixed, molded, and fired to obtain a power feeding unit for an electrostatic chuck of each example. Obtained. Then, an electrostatic chuck including a feeding unit for the electrostatic chuck of each example was manufactured by the process shown in FIG. As the stacking plate 1, an alumina sintered body, which is a dielectric material, was used. Further, as the substrate 2, an alumina sintered body which is an insulator was used. That is, the material (main component) of the substrate 2 is alumina (Al 2 O 3 ). Therefore, alumina particles were used as the main component particles of the substrate.
Then, for the feeding part for the electrostatic chuck of each example, the average particle diameter of the alumina particles which are the main component particles of the substrate, the average particle diameter of the conductive particles, and the volume fraction of the alumina particles and the conductive particles were evaluated. In addition, the feeding function and the presence or absence of cracks were evaluated for the electrostatic chuck including the feeding portion for the electrostatic chuck in each example. The evaluation method for each evaluation is as follows.

<アルミナ粒子及び導電性粒子の体積分率>
静電チャック用給電部をその中心軸に沿って切断し、その切断面を鏡面研磨した後、走査型電子顕微鏡を用いて100倍スケールで観察した。具体的には、300μm×300μmの範囲を5箇所観察し、それぞれの範囲の画像を2値化(黒:基板主成分粒子、白:導電性粒子)した。その2値化した各画像を画像解析することにより、アルミナ粒子及び導電性粒子の面積分率を測定し、その平均値を体積分率とした。なお、一例として図3に、表1中実施例3の静電チャック用給電部の切断面の走査型電子顕微鏡観察結果を2値化した画像を示している。
<Volume fraction of alumina particles and conductive particles>
The feeding portion for the electrostatic chuck was cut along its central axis, the cut surface was mirror-polished, and then observed on a 100-fold scale using a scanning electron microscope. Specifically, five places in the range of 300 μm × 300 μm were observed, and the images in each range were binarized (black: substrate main component particles, white: conductive particles). The area fractions of the alumina particles and the conductive particles were measured by image analysis of each of the binarized images, and the average value was taken as the volume fraction. As an example, FIG. 3 shows a binarized image of the scanning electron microscope observation result of the cut surface of the feeding portion for the electrostatic chuck of Example 3 in Table 1.

<給電機能>
図2に示している二つ給電部4,4の一方の給電部4の端部と他方の給電部4の端部とにデジタルマルチメータを接続して導通の有無を確認することにより給電機能を評価した。
<亀裂の有無>
JISZ2343-1の規定に準じた蛍光浸透探傷試験により目視で観察し、亀裂の有無を評価した。
<Power supply function>
Power supply function by connecting a digital multimeter to the end of one of the two power supply units 4 and 4 shown in FIG. 2 and the end of the other power supply unit 4 and checking the presence or absence of continuity. Was evaluated.
<Presence / absence of cracks>
The presence or absence of cracks was evaluated by visual observation by a fluorescent penetrant inspection according to the provisions of JISZ2343-1.

Figure 0007100778000002
Figure 0007100778000002

表1に示す実施例1~8はいずれも本発明の範囲内にあり、静電チャック用給電部と基板との熱膨張率差が低減された結果、静電チャックにおいて亀裂は観察されず、給電機能も確保された。
一方、比較例1は、R1/R2が本発明の下限値を下回る例であり、給電機能を確保するために導電性粒子の体積分率を大きくする必要があった。そのため、静電チャック用給電部と基板との熱膨張率差が大きくなり、静電チャックにおいて亀裂が発生した。
また、比較例2は、R1/R2は本発明の範囲内にあるものの導電性粒子の体積分率が本発明の下限値を下回る例であり、導通がなくなり給電機能を確保することができなかった。
All of Examples 1 to 8 shown in Table 1 are within the scope of the present invention, and as a result of reducing the difference in the coefficient of thermal expansion between the electrostatic chuck feeding unit and the substrate, no cracks are observed in the electrostatic chuck. The power supply function was also secured.
On the other hand, Comparative Example 1 is an example in which R1 / R2 is below the lower limit of the present invention, and it is necessary to increase the volume fraction of the conductive particles in order to secure the feeding function. Therefore, the difference in the coefficient of thermal expansion between the power feeding unit for the electrostatic chuck and the substrate becomes large, and cracks occur in the electrostatic chuck.
Further, Comparative Example 2 is an example in which R1 / R2 is within the range of the present invention, but the volume fraction of the conductive particles is lower than the lower limit of the present invention, and the conduction is lost and the power feeding function cannot be secured. rice field.

1 載置板
2 基板
2a 固定孔
3 内部電極
4 給電部
1 Mounting plate 2 Board 2a Fixing hole 3 Internal electrode 4 Feeding part

Claims (4)

試料を載置する載置板と、この載置板と一体化される基板と、これら載置板と基板との間に設けられた内部電極とを備える静電チャックにおいて、前記内部電極に給電するために前記基板を貫通するように設けられる静電チャック用給電部であって、
前記基板の主成分と同じ主成分を有する基板主成分粒子と、導電性粒子とを含む複合焼結体であり、基板主成分粒子と導電性粒子の合計体積を100体積%としたときに、基板主成分粒子を55体積%以上90体積%以下、導電性粒子を10体積%以上45体積%以下含有し、
組織は、基板主成分粒子と、基板主成分粒子の粒界に存在するマトリックス部とを含み、マトリックス部に導電性粒子が存在し、かつ、基板主成分粒子の平均粒子径をR1、導電性粒子の平均粒子径をR2としたときに、R1/R2が1.6以上である、静電チャック用給電部。
Power is supplied to the internal electrode in an electrostatic chuck including a mounting plate on which a sample is placed, a substrate integrated with the mounting plate, and an internal electrode provided between the mounting plate and the substrate. It is a feeding part for an electrostatic chuck provided so as to penetrate the substrate for the purpose of
It is a composite sintered body containing the substrate main component particles having the same main component as the main component of the substrate and the conductive particles, and when the total volume of the substrate main component particles and the conductive particles is 100% by volume, It contains 55% by volume or more and 90% by volume or less of the main component particles of the substrate, and 10% by volume or more and 45% by volume or less of the conductive particles.
The structure includes the substrate main component particles and the matrix portion existing at the grain boundary of the substrate main component particles, the conductive particles are present in the matrix portion, and the average particle diameter of the substrate main component particles is R1, which is conductive. A feeding unit for an electrostatic chuck in which R1 / R2 is 1.6 or more when the average particle diameter of the particles is R2.
基板主成分粒子と導電性粒子の合計体積を100体積%としたときに、基板主成分粒子を75体積%以上90体積%以下、導電性粒子を10体積%以上25体積%以下含有する、請求項1に記載の静電チャック用給電部。 When the total volume of the substrate main component particles and the conductive particles is 100% by volume, the substrate main component particles are contained in an amount of 75% by volume or more and 90% by volume or less, and the conductive particles are contained in an amount of 10% by volume or more and 25% by volume or less. Item 1. The feeding unit for an electrostatic chuck according to Item 1. 基板主成分粒子と導電性粒子の合計体積を100体積%としたときに、基板主成分粒子を80体積%以上90体積%以下、導電性粒子を10体積%以上20体積%以下含有する、請求項1に記載の静電チャック用給電部。 When the total volume of the substrate main component particles and the conductive particles is 100% by volume, the substrate main component particles are contained in an amount of 80% by volume or more and 90% by volume or less, and the conductive particles are contained in an amount of 10% by volume or more and 20% by volume or less. Item 1. The feeding unit for an electrostatic chuck according to Item 1. 試料を載置する載置板と、この載置板と一体化される基板と、これら載置板と基板との間に設けられた内部電極と、この内部電極に給電するために前記基板を貫通するように設けられた給電部とを備える静電チャックであって、
前記給電部が、請求項1から3のいずれか一項に記載の静電チャック用給電部である、静電チャック。
A mounting plate on which a sample is placed, a substrate integrated with the mounting plate, an internal electrode provided between the mounting plate and the substrate, and the substrate for supplying power to the internal electrode. It is an electrostatic chuck provided with a feeding portion provided so as to penetrate, and is an electrostatic chuck.
The electrostatic chuck, wherein the feeding unit is the electrostatic chuck feeding unit according to any one of claims 1 to 3.
JP2022068461A 2022-04-18 2022-04-18 Power supply unit for electrostatic chuck and electrostatic chuck Active JP7100778B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022068461A JP7100778B1 (en) 2022-04-18 2022-04-18 Power supply unit for electrostatic chuck and electrostatic chuck
TW112103223A TWI843424B (en) 2022-04-18 2023-01-31 Power supply unit for electrostatic suction cup and electrostatic suction cup
KR1020230021320A KR102691941B1 (en) 2022-04-18 2023-02-17 Power feeding part for electrostatic chuck, and electrostatic chuck
CN202310330865.3A CN116913844A (en) 2022-04-18 2023-03-30 Power supply unit for electrostatic chuck and electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022068461A JP7100778B1 (en) 2022-04-18 2022-04-18 Power supply unit for electrostatic chuck and electrostatic chuck

Publications (2)

Publication Number Publication Date
JP7100778B1 true JP7100778B1 (en) 2022-07-13
JP2023158548A JP2023158548A (en) 2023-10-30

Family

ID=82399199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022068461A Active JP7100778B1 (en) 2022-04-18 2022-04-18 Power supply unit for electrostatic chuck and electrostatic chuck

Country Status (4)

Country Link
JP (1) JP7100778B1 (en)
KR (1) KR102691941B1 (en)
CN (1) CN116913844A (en)
TW (1) TWI843424B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055608A (en) 2002-07-16 2004-02-19 Sumitomo Osaka Cement Co Ltd Susceptor with built-in electrode
JP2015019027A (en) 2013-07-12 2015-01-29 住友大阪セメント株式会社 Electrostatic chuck device
JP2017183467A (en) 2016-03-30 2017-10-05 住友大阪セメント株式会社 Electrostatic chuck device, and manufacturing method of electrostatic chuck device
WO2018155374A1 (en) 2017-02-23 2018-08-30 住友大阪セメント株式会社 Composite sintered body, electrostatic chuck member, and electrostatic chuck device
WO2018181130A1 (en) 2017-03-30 2018-10-04 住友大阪セメント株式会社 Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for producing composite sintered body
WO2019182104A1 (en) 2018-03-23 2019-09-26 住友大阪セメント株式会社 Electrostatic chuck device and production method for electrostatic chuck device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6697819B2 (en) * 2016-04-21 2020-05-27 三菱重工業株式会社 Composite material forming apparatus and composite material forming method
KR20200136922A (en) * 2018-03-30 2020-12-08 스미토모 오사카 세멘토 가부시키가이샤 Ceramics base and susceptor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055608A (en) 2002-07-16 2004-02-19 Sumitomo Osaka Cement Co Ltd Susceptor with built-in electrode
JP2015019027A (en) 2013-07-12 2015-01-29 住友大阪セメント株式会社 Electrostatic chuck device
JP2017183467A (en) 2016-03-30 2017-10-05 住友大阪セメント株式会社 Electrostatic chuck device, and manufacturing method of electrostatic chuck device
WO2018155374A1 (en) 2017-02-23 2018-08-30 住友大阪セメント株式会社 Composite sintered body, electrostatic chuck member, and electrostatic chuck device
WO2018181130A1 (en) 2017-03-30 2018-10-04 住友大阪セメント株式会社 Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for producing composite sintered body
WO2019182104A1 (en) 2018-03-23 2019-09-26 住友大阪セメント株式会社 Electrostatic chuck device and production method for electrostatic chuck device

Also Published As

Publication number Publication date
CN116913844A (en) 2023-10-20
KR102691941B1 (en) 2024-08-06
JP2023158548A (en) 2023-10-30
TWI843424B (en) 2024-05-21
TW202345170A (en) 2023-11-16
KR20230148735A (en) 2023-10-25

Similar Documents

Publication Publication Date Title
TW442888B (en) Electrostatic holding apparatus and method of producing the same
US5604018A (en) Ceramic oxide circuit board
US10322934B2 (en) Silicon nitride substrate and silicon nitride circuit board using the same
KR20050067085A (en) Electrostatic chucks and process for producing the same, and alumina sintered member and process for producing the same
US10863587B2 (en) Ceramic structure, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP2013241322A (en) Alumina sintered body, member including the same, and semiconductor manufacturing apparatus
JP2005159334A (en) Aluminum nitride bonded material and method of manufacturing the same
KR20190003872A (en) Aluminum nitride sintered compact and members for semiconductor manufacturing apparatus including the same
US20200404747A1 (en) Holding device and method of manufacturing holding device
US20200075383A1 (en) Ceramics substrate and electrostatic chuck
JP2020043336A (en) Ceramic substrate, electrostatic chuck, method of manufacturing the same
WO2019188148A1 (en) Composite sintered body, semiconductor manufacturing device member, and method for manufacturing composite sintered body
JP7100778B1 (en) Power supply unit for electrostatic chuck and electrostatic chuck
JP5368052B2 (en) Multilayer ceramic substrate and manufacturing method thereof
CN114180942B (en) Composite sintered body, semiconductor manufacturing apparatus member, and method for manufacturing composite sintered body
JP2002110772A (en) Electrode built-in ceramic and its manufacturing method
TW201541572A (en) Ceramic wiring board and semiconductor device
TWI837343B (en) High density corrosion resistant layer arrangement for electrostatic chucks
JP4241571B2 (en) Manufacturing method of bipolar electrostatic chuck
JP2002170870A (en) Ceramic substrate and electrostatic chuck for semiconductor fabrication/inspection equipment
JP5857476B2 (en) Aluminum nitride sintered body and wafer holder for semiconductor manufacturing apparatus or inspection apparatus using the same
JPH08213760A (en) Board with built-in capacitor
JP2004214690A (en) Ceramic substrate for semiconductor manufacturing and inspection device
WO2023189513A1 (en) Wiring board
JP4918663B2 (en) Circuit board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220418

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220701

R150 Certificate of patent or registration of utility model

Ref document number: 7100778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150