JP7197062B1 - 亜鉛めっき鋼板および部材、ならびに、それらの製造方法 - Google Patents
亜鉛めっき鋼板および部材、ならびに、それらの製造方法 Download PDFInfo
- Publication number
- JP7197062B1 JP7197062B1 JP2022542315A JP2022542315A JP7197062B1 JP 7197062 B1 JP7197062 B1 JP 7197062B1 JP 2022542315 A JP2022542315 A JP 2022542315A JP 2022542315 A JP2022542315 A JP 2022542315A JP 7197062 B1 JP7197062 B1 JP 7197062B1
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- area ratio
- galvanized
- galvanized steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims abstract description 119
- 239000008397 galvanized steel Substances 0.000 title claims abstract description 119
- 238000004519 manufacturing process Methods 0.000 title claims description 34
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 235
- 239000010959 steel Substances 0.000 claims abstract description 235
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 108
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 104
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 87
- 230000000717 retained effect Effects 0.000 claims abstract description 82
- 101000617738 Homo sapiens Survival motor neuron protein Proteins 0.000 claims abstract description 35
- 102100021947 Survival motor neuron protein Human genes 0.000 claims abstract description 35
- 239000000203 mixture Substances 0.000 claims abstract description 33
- 239000000126 substance Substances 0.000 claims abstract description 23
- 208000022074 proximal spinal muscular atrophy Diseases 0.000 claims abstract description 21
- 208000032225 Proximal spinal muscular atrophy type 1 Diseases 0.000 claims abstract description 14
- 208000026481 Werdnig-Hoffmann disease Diseases 0.000 claims abstract description 14
- 239000006104 solid solution Substances 0.000 claims abstract description 14
- 208000032471 type 1 spinal muscular atrophy Diseases 0.000 claims abstract description 14
- 238000009826 distribution Methods 0.000 claims abstract description 13
- 238000007747 plating Methods 0.000 claims description 120
- 238000001816 cooling Methods 0.000 claims description 72
- 238000000034 method Methods 0.000 claims description 69
- 229910052751 metal Inorganic materials 0.000 claims description 66
- 239000002184 metal Substances 0.000 claims description 65
- 238000000137 annealing Methods 0.000 claims description 59
- 239000011701 zinc Substances 0.000 claims description 47
- 239000010960 cold rolled steel Substances 0.000 claims description 46
- 238000003303 reheating Methods 0.000 claims description 38
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 35
- 229910052739 hydrogen Inorganic materials 0.000 claims description 35
- 239000001257 hydrogen Substances 0.000 claims description 35
- 230000008569 process Effects 0.000 claims description 33
- 238000005246 galvanizing Methods 0.000 claims description 28
- 229910052725 zinc Inorganic materials 0.000 claims description 28
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 23
- 238000005098 hot rolling Methods 0.000 claims description 21
- 239000012535 impurity Substances 0.000 claims description 20
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 238000005097 cold rolling Methods 0.000 claims description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 238000005304 joining Methods 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000000470 constituent Substances 0.000 claims description 3
- 238000005244 galvannealing Methods 0.000 claims description 2
- 238000005482 strain hardening Methods 0.000 abstract description 26
- 239000010410 layer Substances 0.000 description 122
- 239000002585 base Substances 0.000 description 69
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 62
- 238000005096 rolling process Methods 0.000 description 52
- 230000007423 decrease Effects 0.000 description 48
- 238000012360 testing method Methods 0.000 description 44
- 230000000694 effects Effects 0.000 description 28
- 239000002244 precipitate Substances 0.000 description 24
- 238000005259 measurement Methods 0.000 description 19
- 239000000523 sample Substances 0.000 description 18
- 150000001247 metal acetylides Chemical class 0.000 description 16
- 238000009864 tensile test Methods 0.000 description 16
- 238000005336 cracking Methods 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 230000000977 initiatory effect Effects 0.000 description 13
- 229910052742 iron Inorganic materials 0.000 description 13
- 238000003466 welding Methods 0.000 description 13
- 229910001562 pearlite Inorganic materials 0.000 description 11
- 229910052761 rare earth metal Inorganic materials 0.000 description 11
- 238000005275 alloying Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000000465 moulding Methods 0.000 description 10
- 238000005554 pickling Methods 0.000 description 10
- 230000009467 reduction Effects 0.000 description 10
- 229910052745 lead Inorganic materials 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 229910001563 bainite Inorganic materials 0.000 description 7
- 229910052797 bismuth Inorganic materials 0.000 description 7
- 229910001567 cementite Inorganic materials 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229910052785 arsenic Inorganic materials 0.000 description 5
- 229910052792 caesium Inorganic materials 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 229910052735 hafnium Inorganic materials 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- 229910052712 strontium Inorganic materials 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 238000003723 Smelting Methods 0.000 description 4
- 229910001035 Soft ferrite Inorganic materials 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004453 electron probe microanalysis Methods 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 229910001339 C alloy Inorganic materials 0.000 description 1
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 229910001199 N alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910000979 O alloy Inorganic materials 0.000 description 1
- 229910001096 P alloy Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- -1 lower bainite Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000003763 resistance to breakage Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/22—Martempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
「化学組成が、質量%で、
C:0.10~0.24%、
Mn:3.50~12.00%、
Si:0.005~5.00%、
Al:0.005~5.00%、
P:0.15%以下、
S:0.030%以下、
N:0.020%以下、
O:0.010%以下、
Cr:0~5.00%、
Mo:0~5.00%、
Ni:0~5.00%、
Cu:0~5.00%、
Nb:0~0.50%、
Ti:0~0.50%、
W:0~0.50%、
B:0~0.010%、
Ca:0~0.05%、
Mg:0~0.05%、
Zr:0~0.05%、
REM:0~0.05%、
Sb:0~0.50%、
Sn:0~0.50%、
As:0~0.05%、
V:0~2.0%、
残部:Feおよび不純物であり、
板厚1/4位置における金属組織が、面積%で、
残留オーステナイト:10.0~55.0%、
高温焼戻しマルテンサイト:30.0~75.0%、
低温焼戻しマルテンサイト:15.0~60.0%、
であり、残部が
フレッシュマルテンサイト:0~10.0%、
パーライト:0~5.0%、
ベイナイト:0~5.0%、
であり、
引張強さが1180MPa以上である、
高強度鋼板。」
が開示されている。
「質量%で、
C:0.020%以上、0.080%以下、
Si:0.01%以上、0.10%以下、
Mn:0.80%以上、1.80%以下、
Al:0.10%超、0.40%未満、
を含有し、
P:0.0100%以下、
S:0.0150%以下、
N:0.0100%以下、
に制限し、更に、
Nb:0.005%以上、0.095%以下、Ti:0.005%以上、0.095%以下の双方を合計で0.030%以上、0.100%以下含有し、
残部が鉄及び不可避的不純物からなり、
金属組織がフェライトとベイナイトとその他の相とからなり、
前記その他の相が、パーライト、残留オーステナイト及びマルテンサイトを含み、
前記フェライトの面積率が80%~95%であり、
前記ベイナイトの面積率が5%~20%であり、
前記その他の相の分率の合計が3%未満であり、
前記フェライト中のセメンタイトの円相当直径が0.003μm以上、0.300μm以下であり、
前記フェライト中の前記セメンタイトの個数密度が0.02個/μm2以上、0.10個/μm2以下であり、
引張強度が590MPa以上であり、
前記引張強度に対する疲労強度としての疲労強度比が0.45以上である
ことを特徴とする鋼板。」
が開示されている。
「質量%で、
C:0.060~0.250%、
Si:0.50~1.80%、
Mn:1.00~2.80%、
P:0.100%以下、
S:0.0100%以下、
Al:0.010~0.100%、および
N:0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
フェライトを面積率で50~80%、マルテンサイトを面積率で8%以下かつ平均結晶粒径が2.5μm以下、残留オーステナイトを面積率で6~15%、焼戻しマルテンサイトを面積率で3~40%で含むとともに、マルテンサイトの面積率fMと、マルテンサイトと焼戻しマルテンサイトの合計面積率fM+TMの比fM/fM+TMの値が50%以下であり、板幅方向の中央である幅中央部、板幅方向両端から板幅方向中央に50mmの両端部、前記幅中央部と前記両端部の間の中央部の計5箇所でのマルテンサイトの結晶粒径の標準偏差が0.7μm以下である鋼組織を有する高強度冷延鋼板。」
が開示されている。
また、本発明は、上記の亜鉛めっき鋼板を素材とする部材、ならびに、その製造方法を提供することを目的とする。
590MPa≦TS<980MPa
590MPa≦TS<780MPaの場合、30.0%≦T-El
780MPa≦TSの場合、19.0%≦T-El
590MPa≦TS<780MPaの場合、45%≦λ
780MPa≦TSの場合、40%≦λ
590MPa≦TS<780MPaの場合、10.0%≦L-El
780MPa≦TSの場合、7.0%≦L-El
590MPa≦TS<780MPaの場合、0.200≦n値
780MPa≦TSの場合、0.100≦n値
590MPa≦TS<780MPaの場合、500MPa≧YS
780MPa≦TSの場合、700MPa≧YS
その結果、亜鉛めっき鋼板の下地鋼板の成分組成を適正に調整し、かつ、亜鉛めっき鋼板の下地鋼板の鋼組織を、
フェライトの面積率:35.0%以上95.0%以下、
ベイニティックフェライトの面積率:1.0%以上40.0%以下、
焼戻しマルテンサイトの面積率:50.0%以下(0%を含む)、
残留オーステナイトの面積率:1.5%以上、
フレッシュマルテンサイトの面積率:20.0%以下(0%を含む)、
SBF+STM+2×SMA:10.0%以上65.0%未満、
SBF+STM:3.0%以上60.0%以下、
SMA1/SMA:0.40以下、および
IDR[%Cγ]:0.16%以上
とし、さらに、引張強さを590MPa以上980MPa未満とする、ことにより、高い強度と、優れた成形性とを両立した亜鉛めっき鋼板が得られることを知見した。
本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。
1.下地鋼板と、該下地鋼板の表面に亜鉛めっき層と、を有する亜鉛めっき鋼板であって、
該下地鋼板は、
質量%で、
C:0.040%以上0.400%以下、
Si:0.20%以上3.00%以下、
Mn:1.00%以上2.80%未満、
P:0.001%以上0.100%以下、
S:0.0200%以下、
Al:0.010%以上2.000%以下および
N:0.0100%以下
であり、炭素当量Ceqが0.540%未満であり、残部がFeおよび不可避的不純物である、成分組成を有し、
また、該下地鋼板は、
フェライトの面積率:35.0%以上95.0%以下、
ベイニティックフェライトの面積率:1.0%以上40.0%以下、
焼戻しマルテンサイトの面積率:50.0%以下(0%を含む)、
残留オーステナイトの面積率:1.5%以上、
フレッシュマルテンサイトの面積率:20.0%以下(0%を含む)、
SBF+STM+2×SMA:10.0%以上65.0%未満、
SBF+STM:3.0%以上60.0%以下、
SMA1/SMA:0.40以下、および
IDR[%Cγ]:0.16%以上
である、鋼組織を有し、
引張強さが590MPa以上980MPa未満である、亜鉛めっき鋼板。
ここで、
SBF:前記ベイニティックフェライトの面積率
STM:前記焼戻しマルテンサイトの面積率
SMA:前記残留オーステナイトおよび前記フレッシュマルテンサイトからなる硬質第二相の面積率
SMA1:前記硬質第二相を構成する島状領域のうち、面積を最大フェレ径で除した値が1.0μm以上である島状領域の合計の面積率
IDR[%Cγ]:前記残留オーステナイト中の固溶C濃度分布の90パーセンタイル値と10パーセンタイル値の差
である。
Ti:0.200%以下、
Nb:0.200%以下、
V:0.100%以下、
B:0.0100%以下、
Cu:1.000%以下、
Cr:1.000%以下、
Ni:1.000%以下、
Mo:0.500%以下、
Sb:0.200%以下、
Sn:0.200%以下、
Ta:0.100%以下、
W:0.500%以下、
Mg:0.0200%以下、
Zn:0.0200%以下、
Co:0.0200%以下、
Zr:0.0200%以下、
Ca:0.0200%以下、
Ce:0.0200%以下、
Se:0.0200%以下、
Te:0.0200%以下、
Ge:0.0200%以下、
As:0.0200%以下、
Sr:0.0200%以下、
Cs:0.0200%以下、
Hf:0.0200%以下、
Pb:0.0200%以下、
Bi:0.0200%以下および
REM:0.0200%以下
のうちから選ばれる少なくとも1種を含有する、前記1に記載の亜鉛めっき鋼板。
前記熱延鋼板を冷間圧延して冷延鋼板とする、冷延工程と、
前記冷延鋼板を、焼鈍温度:760℃以上900℃以下および焼鈍時間:20秒以上で焼鈍する、焼鈍工程と、
前記冷延鋼板を300℃以上550℃以下の第一冷却停止温度まで冷却する、第一冷却工程と、
前記冷延鋼板を300℃以上550℃以下の温度域で3秒以上600秒以下保持する、保持工程と、
前記冷延鋼板に亜鉛めっき処理を施して亜鉛めっき鋼板とする、めっき工程と、
前記亜鉛めっき鋼板を、-20℃以上300℃未満の第二冷却停止温度まで冷却する、第二冷却工程と、
前記亜鉛めっき鋼板を、300℃以上500℃以下の再加熱温度に再加熱し、前記亜鉛めっき鋼板を、300℃以上500℃以下の温度域で10秒以上2000秒以下保持する、再加熱工程と、
を有し、
前記第一冷却停止温度と、前記亜鉛めっき処理での亜鉛めっき浴の温度とが、次式(1)の関係を満足する、亜鉛めっき鋼板の製造方法。
-80℃≦T0-T1≦50℃ ・・・(1)
ここで、T0は第一冷却停止温度(℃)、T1は亜鉛めっき処理での亜鉛めっき浴の温度(℃)である。
[1]亜鉛めっき鋼板
まず、本発明の一実施形態に従う亜鉛めっき鋼板の下地鋼板の成分組成について説明する。なお、成分組成における単位はいずれも「質量%」であるが、以下、特に断らない限り、単に「%」で示す。
Cは、フレッシュマルテンサイト、焼戻しマルテンサイト、ベイニティックフェライトおよび残留オーステナイトを適正量生成させて、590MPa以上のTSと、高い延性および加工硬化能を確保するために有効な元素である。ここで、C含有量が0.040%未満では、フェライトの面積率が増加して、TSを590MPa以上とすることが困難になる。また、延性および加工硬化能の低下も招く。一方、C含有量が0.400%を超えると、残留オーステナイト中の炭素濃度が過度に増加する。そのため、鋼板に打抜き加工を施すと、残留オーステナイトから生成するフレッシュマルテンサイトの硬度が大幅に増加する。その結果、打抜き加工後の鋼板では、穴広げ時の亀裂進展が促進される(すなわち、穴広げ性の低下を招く)。
したがって、C含有量は、0.040%以上0.400%以下とする。C含有量は、好ましくは0.070%以上である。また、C含有量は、好ましくは0.300%以下である。
Siは、焼鈍中の炭化物生成を抑制し、残留オーステナイトの生成を促進する。すなわち、Siは、残留オーステナイトの面積率および残留オーステナイト中の炭素濃度に影響する元素である。ここで、Si含有量が0.20%未満では、残留オーステナイトの面積率およびIDR[%Cγ]が減少し、延性、局部延性および加工硬化能が低下する。一方、Si含有量が3.00%を超えると、フェライトの面積率が過度に増加し、TSを590MPa以上とすることが困難になる。また、残留オーステナイト中の炭素濃度が過度に増加する。そのため、鋼板に打抜き加工を施すと、残留オーステナイトから生成するフレッシュマルテンサイトの硬度が大幅に増加する。その結果、打抜き加工後の鋼板では、穴広げ時の亀裂進展が促進される(すなわち、穴広げ性の低下を招く)。
したがって、Si含有量は、0.20%以上3.00%以下とする。Si含有量は、好ましくは0.40%以上である。また、Si含有量が2.00%を超えると耐抵抗溶接割れ特性の低下が懸念されるので、Si含有量は、好ましくは2.00%以下である。
Mnは、ベイニティックフェライトや焼戻しマルテンサイトなどの面積率を調整する元素である。ここで、Mn含有量が1.00%未満では、フェライトの面積率が過度に増加して、TSを590MPa以上とすることが困難になる。一方、Mn含有量が2.80%以上となると、フェライトやベイニティックフェライトの面積率が減少する。その結果、所望の延性が得られない。
したがって、Mn含有量は、1.00%以上2.80%未満とする。Mn含有量は、好ましくは、1.10%以上である。また、Mn含有量は、好ましくは2.50%未満である。
Pは、固溶強化の作用を有し、鋼板の強度を上昇させる元素である。このような効果を得るため、P含有量を0.001%以上にする。一方、P含有量が0.100%を超えると、Pが旧オーステナイト粒界に偏析して粒界を脆化させる。そのため、鋼板に打抜き加工を施すと、ボイドの生成量が増加し、穴広げ性の低下を招く。
したがって、P含有量は、0.001%以上0.100%以下とする。P含有量は、好ましくは0.030%以下である。
Sは、鋼中で硫化物として存在する。特に、S含有量が0.0200%を超えると、鋼板の極限変形能が低下する。そのため、鋼板に打抜き加工を施すと、ボイドの生成量が増加し、穴広げ性の低下を招く。
したがって、S含有量は0.0200%以下とする。S含有量は、好ましくは0.0080%以下である。なお、S含有量の下限は特に規定しないが、生産技術上の制約から、S含有量は0.0001%以上とすることが好ましい。
Alは、炭化物生成を抑制するとともに、残留オーステナイトの生成を促進する。すなわち、Alは、残留オーステナイトの面積率および残留オーステナイト中の炭素濃度に影響を及ぼす元素である。このような効果を得るために、Al含有量を0.010%以上とする。一方、Al含有量が2.000%を超えると、フェライトの面積率が過度に増加して、TSを590MPa以上とすることが困難になる。
したがって、Alの含有量は、0.010%以上2.000%以下とする。Al含有量は、好ましくは、0.015%以上である。また、Al含有量は、好ましくは1.000%以下である。
Nは、鋼中で窒化物として存在する。特に、N含有量が0.0100%を超えると、鋼板の極限変形能が低下する。そのため、鋼板に打抜き加工を施すと、ボイドの生成量が増加し、穴広げ性の低下を招く。
したがって、N含有量は0.0100%以下とする。また、N含有量は、好ましくは0.0050%以下である。なお、N含有量の下限は特に規定しないが、生産技術上の制約から、N含有量は0.0005%以上が好ましい。
炭素当量CeqはTSに影響を与える。特に、炭素当量Ceqが0.540%以上になると、TSを980MPa未満とすることが困難となる。また、優れた延性、穴広げ性、局部延性および加工硬化能を同時に得ることが困難となる。したがって、炭素当量Ceqは0.540%未満とする。また、炭素当量Ceqは、好ましくは0.535%以下、より好ましくは0.534%以下、さらに好ましくは0.530%以下である。
ここで、炭素当量Ceqは、以下の式により定義される。
炭素当量Ceq=[C%]+([Si%]/24)+([Mn%]/6)+([Ni%]/40)+([Cr%]/5)+([Mo%]/4)+([V%]/14)
なお、上記した式中の[元素記号%]は、下地鋼板の成分組成における当該元素の含有量(質量%)を表す。また、下地鋼板の成分組成に含有されない元素は0として計算する。
Ti:0.200%以下、
Nb:0.200%以下、
V:0.100%以下、
B:0.0100%以下、
Cu:1.000%以下、
Cr:1.000%以下、
Ni:1.000%以下、
Mo:0.500%以下、
Sb:0.200%以下、
Sn:0.200%以下、
Ta:0.100%以下、
W:0.500%以下、
Mg:0.0200%以下、
Zn:0.0200%以下、
Co:0.0200%以下、
Zr:0.0200%以下、
Ca:0.0200%以下、
Ce:0.0200%以下、
Se:0.0200%以下、
Te:0.0200%以下、
Ge:0.0200%以下、
As:0.0200%以下、
Sr:0.0200%以下、
Cs:0.0200%以下、
Hf:0.0200%以下、
Pb:0.0200%以下、
Bi:0.0200%以下および
REM:0.0200%以下
のうちから選ばれる少なくとも1種を含有させることができる。なお、上記の任意添加元素を後述する好適な下限値未満で含む場合、当該元素は不可避的不純物として含まれるものとする。
Tiは、熱間圧延時や焼鈍時に、微細な炭化物、窒化物または炭窒化物を形成することによって、TSを上昇させる。このような効果を得るためには、Ti含有量を0.001%以上とすることが好ましい。Ti含有量は、より好ましくは0.005%以上である。一方、Ti含有量が0.200%を超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、鋼板中に拡散性水素が存在すると、粗大な析出物や介在物が穴広げ試験時に亀裂の起点となる、すなわち、穴広げ性の低下を招くおそれがある。したがって、Tiを含有させる場合、Ti含有量は0.200%以下が好ましい。Ti含有量は、より好ましくは0.060%以下である。
Nbは、Tiと同様、熱間圧延時や焼鈍時に、微細な炭化物、窒化物または炭窒化物を形成することによって、TSを上昇させる。このような効果を得るためには、Nb含有量を0.001%以上とすることが好ましい。Nb含有量は、より好ましくは0.005%以上である。一方、Nb含有量が0.200%を超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、鋼板中に拡散性水素が存在すると、粗大な析出物や介在物が穴広げ試験時に亀裂の起点となる、すなわち、穴広げ性の低下を招くおそれがある。したがって、Nbを含有させる場合、Nb含有量は0.200%以下が好ましい。Nb含有量は、より好ましくは0.060%以下である。
Vは、TiやNbと同様、熱間圧延時や焼鈍時に、微細な炭化物、窒化物または炭窒化物を形成することによって、TSを上昇させる。このような効果を得るためには、V含有量を0.001%以上とすることが好ましい。V含有量は、より好ましくは0.005%以上である。一方、V含有量が0.100%を超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、鋼板中に拡散性水素が存在すると、粗大な析出物や介在物が穴広げ試験時に亀裂の起点となる、すなわち、穴広げ性の低下を招くおそれがある。したがって、Vを含有させる場合、V含有量は0.100%以下が好ましい。V含有量は、より好ましくは0.060%以下である。
Bは、オーステナイト粒界に偏析することにより、焼入れ性を高める元素である。また、Bは、焼鈍後の冷却時に、フェライトの生成および粒成長を抑制する元素である。このような効果を得るためには、B含有量を0.0001%以上にすることが好ましい。B含有量は、より好ましくは0.0002%以上である。一方、B含有量が0.0100%を超えると、熱間圧延時に鋼板内部に割れが生じ、鋼板の極限変形能を低下させるおそれがある。また、鋼板の極限変形能の低下に伴い、鋼板に打抜き加工を施した際のボイドの生成量が増加し、穴広げ性の低下を招く。したがって、Bを含有させる場合、B含有量は0.0100%以下とすることが好ましい。B含有量は、より好ましくは0.0050%以下である。
Cuは、焼入れ性を高める元素である。特に、Cuは、硬質なフレッシュマルテンサイトなどの面積率をより好適な範囲に調整し、これにより、TSをより好適な範囲に調整するために有効な元素である。このような効果を得るためには、Cu含有量を0.005%以上にすることが好ましい。Cu含有量は、より好ましくは0.020%以上である。一方、Cu含有量が1.000%を超えると、フレッシュマルテンサイトの面積率が過度に増加し、TSが過剰に高くなる。また、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、鋼板中に拡散性水素が存在すると、粗大な析出物や介在物が引張試験時に亀裂の起点となる、すなわち、穴広げ性の低下を招くおそれがある。したがって、Cuを含有させる場合、Cu含有量は1.000%以下とすることが好ましい。Cuの含有量は、より好ましくは0.200%以下である。
Crは、焼入れ性を高める元素である、また、Crは、残留オーステナイトやフレッシュマルテンサイトを生成させるために有効な元素である。このような効果を得るためには、Cr含有量は0.0005%以上にすることが好ましい。特に、TSをより好適な範囲とする観点から、Cr含有量は0.010%以上がより好ましい。一方、Cr含有量が1.000%を超えると、硬質なフレッシュマルテンサイトの面積率が過度に増加し、穴広げ性の低下を招くおそれがある。したがって、Crを含有させる場合、Cr含有量は1.000%以下にすることが好ましい。また、Cr含有量は、より好ましくは0.250%以下、さらに好ましくは0.100%以下である。
Niは、焼入れ性を高める元素である。また、Niは、残留オーステナイトやフレッシュマルテンサイトの面積率をより好適な範囲に調整し、これにより、TSをより好適な範囲に調整するために有効な元素である。このような効果を得るためには、Ni含有量を0.005%以上にすることが好ましい。Ni含有量は、より好ましくは、0.020%以上である。一方、Niの含有量が1.000%を超えると、フレッシュマルテンサイトの面積率が過度に増加し、延性や成形時の寸法精度が低下するおそれがある。また、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、鋼板中に拡散性水素が存在すると、粗大な析出物や介在物が穴広げ試験時に亀裂の起点となる、すなわち、穴広げ性の低下を招くおそれがある。したがって、Niを含有させる場合、Ni含有量は1.000%以下とすることが好ましい。Ni含有量は、より好ましくは0.800%以下である。
Moは、焼入れ性を高める元素である。また、Moは、硬質なフレッシュマルテンサイトなどを生成させるために有効な元素である。このような効果を得るためには、Mo含有量を0.010%以上にすることが好ましい。Mo含有量は、より好ましくは、0.030%以上である。一方、Mo含有量が0.500%を超えると、フレッシュマルテンサイトの面積率が過度に増加し、穴広げ性の低下を招くおそれがある。したがって、Moを含有させる場合、Mo含有量は0.500%以下にすることが好ましい。Mo含有量は、より好ましくは0.450%以下、さらに好ましくは0.400%以下である。
Sbは、焼鈍中の鋼板表面近傍でのCの拡散を抑制し、鋼板表面近傍における軟質層の形成を制御するために有効な元素である。このような効果を得るためには、Sb含有量を0.002%以上とすることが好ましい。Sb含有量は、より好ましくは0.005%以上である。一方、Sb含有量が0.200%を超えると、鋼板表面近傍に軟質層が形成されず、穴広げ性の低下を招くおそれがある。したがって、Sbを含有させる場合、Sb含有量は0.200%以下にすることが好ましい。Sb含有量は、より好ましくは0.020%以下である。
Snは、Sbと同様、焼鈍中の鋼板表面近傍でのCの拡散を抑制し、鋼板表面近傍における軟質層の形成を制御するために有効な元素である。このような効果を得るためには、Sn含有量を0.002%以上とすることが好ましい。Sn含有量は、より好ましくは0.005%以上である。一方、Sn含有量が0.200%を超えると、鋼板表面近傍に軟質層が形成されず、穴広げ性の低下を招くおそれがある。したがって、Snを含有させる場合、Sn含有量は0.200%以下にすることが好ましい。Sn含有量は、より好ましくは0.020%以下である。
Taは、Ti、NbおよびVと同様に、熱間圧延時や焼鈍時に、微細な炭化物、窒化物または炭窒化物を形成することによって、TSを上昇させる。加えて、Taは、Nb炭化物やNb炭窒化物に一部固溶し、(Nb,Ta)(C,N)のような複合析出物を生成する。これにより、析出物の粗大化を抑制し、析出強化を安定化させる。これにより、TSを向上させる。このような効果を得るためには、Ta含有量を0.001%以上とすることが好ましい。一方、Ta含有量が0.100%を超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、鋼板中に拡散性水素が存在すると、粗大な析出物や介在物が穴広げ試験時に亀裂の起点となる、すなわち、穴広げ性の低下を招くおそれがある。したがって、Taを含有させる場合、Ta含有量は0.100%以下が好ましい。
Wは、焼入れ性を高め、TSをより好適な範囲に調整するために有効な元素である。このような効果を得るためには、W含有量を0.001%以上とすることが好ましい。W含有量は、より好ましくは0.030%以上である。一方、W含有量が0.500%を超えると、硬質なフレッシュマルテンサイトの面積率が過度に増加して、穴広げ性の低下を招くおそれがある。したがって、Wを含有させる場合、W含有量は0.500%以下にすることが好ましい。W含有量は、より好ましくは0.450%以下、さらに好ましくは0.400%以下である。
Mgは、硫化物や酸化物などの介在物の形状を球状化して、鋼板の極限変形能、さらには穴広げ性を向上させるために有効な元素である。このような効果を得るためには、Mg含有量を0.0001%以上とすることが好ましい。一方、Mg含有量が0.0200%を超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、鋼板中に拡散性水素が存在すると、粗大な析出物や介在物が穴広げ試験時に亀裂の起点となる、すなわち、穴広げ性の低下を招くおそれがある。したがって、Mgを含有させる場合、Mg含有量は0.0200%以下とすることが好ましい。
Znは、介在物の形状を球状化して、鋼板の極限変形能、さらには穴広げ性を向上させるために有効な元素である。このような効果を得るためには、Zn含有量は、0.0010%以上にすることが好ましい。一方、Zn含有量が0.0200%を超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、鋼板中に拡散性水素が存在すると、粗大な析出物や介在物が穴広げ試験時に亀裂の起点となる、すなわち、穴広げ性の低下を招くおそれがある。したがって、Znを含有させる場合、Zn含有量は0.0200%以下とすることが好ましい。
Coは、Znと同様、介在物の形状を球状化して、鋼板の極限変形能、さらには穴広げ性を向上させるために有効な元素である。このような効果を得るためには、Co含有量は、0.0010%以上にすることが好ましい。一方、Co含有量が0.0200%を超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、鋼板中に拡散性水素が存在すると、粗大な析出物や介在物が穴広げ試験時に亀裂の起点となる、すなわち、穴広げ性の低下を招くおそれがある。したがって、Coを含有させる場合、Co含有量は0.0200%以下とすることが好ましい。
Zrは、ZnおよびCoと同様、介在物の形状を球状化して、鋼板の極限変形能、さらには穴広げ性を向上させるために有効な元素である。このような効果を得るためには、Zr含有量は、0.0010%以上にすることが好ましい。一方、Zr含有量が0.0200%を超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、鋼板中に拡散性水素が存在すると、粗大な析出物や介在物が穴広げ試験時に亀裂の起点となる、すなわち、穴広げ性の低下を招くおそれがある。したがって、Zrを含有させる場合、Zr含有量は0.0200%以下とすることが好ましい。
Caは、鋼中で介在物として存在する。ここで、Ca含有量が0.0200%を超えると、粗大な介在物が多量に生成する場合がある。このような場合に、鋼板中に拡散性水素が存在すると、粗大な介在物が穴広げ試験時に亀裂の起点となる、すなわち、穴広げ性の低下を招くおそれがある。したがって、Caを含有させる場合、Ca含有量は0.0200%以下にすることが好ましい。Ca含有量は、好ましくは0.0020%以下である。なお、Ca含有量の下限は特に限定されるものではないが、Ca含有量は0.0005%以上が好ましい。また、生産技術上の制約から、Ca含有量は0.0010%以上がより好ましい。
Ce、Se、Te、Ge、As、Sr、Cs、Hf、Pb、BiおよびREMはいずれも、鋼板の局部延性、さらには穴広げ性を向上させるために有効な元素である。このような効果を得るためには、Ce、Se、Te、Ge、As、Sr、Cs、Hf、Pb、BiおよびREMの含有量はそれぞれ0.0001%以上にすることが好ましい。一方、Ce、Se、Te、Ge、As、Sr、Cs、Hf、Pb、BiおよびREMの含有量がそれぞれ0.0200%を超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、鋼板中に拡散性水素が存在すると、粗大な析出物や介在物が穴広げ試験時に亀裂の起点となる、すなわち、穴広げ性の低下を招くおそれがある。したがって、Ce、Se、Te、Ge、As、Sr、Cs、Hf、Pb、BiおよびREMのうちの少なくとも1種を含有させる場合、その含有量はそれぞれ0.0200%以下とすることが好ましい。
すなわち、本発明の一実施形態に従う亜鉛めっき鋼板の下地鋼板は、
質量%で、
C:0.040%以上0.400%以下、
Si:0.20%以上3.00%以下、
Mn:1.00%以上2.80%未満、
P:0.001%以上0.100%以下、
S:0.0200%以下、
Al:0.010%以上2.000%以下および
N:0.0100%以下
であり、炭素当量Ceqが0.540%未満であり、
任意に、
Ti:0.200%以下、
Nb:0.200%以下、
V:0.100%以下、
B:0.0100%以下、
Cu:1.000%以下、
Cr:1.000%以下、
Ni:1.000%以下、
Mo:0.500%以下、
Sb:0.200%以下、
Sn:0.200%以下、
Ta:0.100%以下、
W:0.500%以下、
Mg:0.0200%以下、
Zn:0.0200%以下、
Co:0.0200%以下、
Zr:0.0200%以下、
Ca:0.0200%以下、
Ce:0.0200%以下、
Se:0.0200%以下、
Te:0.0200%以下、
Ge:0.0200%以下、
As:0.0200%以下、
Sr:0.0200%以下、
Cs:0.0200%以下、
Hf:0.0200%以下、
Pb:0.0200%以下、
Bi:0.0200%以下および
REM:0.0200%以下
のうちから選ばれる少なくとも1種を含有し、残部がFeおよび不可避的不純物である、成分組成を有する。
本発明の一実施形態に従う亜鉛めっき鋼板の下地鋼板の鋼組織は、
フェライトの面積率:35.0%以上95.0%以下、
ベイニティックフェライトの面積率:1.0%以上40.0%以下、
焼戻しマルテンサイトの面積率:50.0%以下(0%を含む)、
残留オーステナイトの面積率:1.5%以上、
フレッシュマルテンサイトの面積率:20.0%以下(0%を含む)、
SBF+STM+2×SMA:10.0%以上65.0%未満、
SBF+STM:3.0%以上60.0%以下、
SMA1/SMA:0.40以下、および
IDR[%Cγ]:0.16%以上
である、鋼組織である。
ここで、
SBF:前記ベイニティックフェライトの面積率
STM:前記焼戻しマルテンサイトの面積率
SMA:前記残留オーステナイトおよび前記フレッシュマルテンサイトからなる硬質第二相の面積率
SMA1:前記硬質第二相を構成する島状領域のうち、面積を最大フェレ径で除した値が1.0μm以上である島状領域の合計の面積率
IDR[%Cγ]:前記残留オーステナイト中の固溶C濃度分布の90パーセンタイル値と10パーセンタイル値の差
である。
以下、それぞれの限定理由について説明する。
軟質なフェライトは、延性および加工硬化能を向上させる相である。高い延性と加工硬化能を確保する観点から、フェライトの面積率は35.0%以上とする。フェライトの面積率は、好ましくは40.0%以上、より好ましくは45.0%以上である。また、590MPa以上のTSを確保する観点から、フェライトの面積率は95.0%以下とする。フェライトの面積率は、好ましくは85.0%以下、より好ましくは80.0%以下である。
ベイニティックフェライトは、フェライトが生成し、未変態オーステナイトへCやMnなどが濃化した後に生成する相である。また、ベイニティックフェライトは、軟質なフェライトと硬質なフレッシュマルテンサイトなどとの中間の硬度を持ち、良好な延性および穴広げ性を確保するために重要な相でもある。加えて、ベイニティックフェライトは、ベイニティックフェライトから未変態オーステナイトへのさらなるCの拡散を活用して、適正量の残留オーステナイトの確保、および高いIDR[%Cγ]を得るためにも有用な相である。そのため、ベイニティックフェライトの面積率は1.0%以上とする。また、ベイニティックフェライトの面積率は、好ましくは2.0%以上、より好ましくは5.0%以上である。一方、ベイニティックフェライトの面積率が過度に増加すると、却って延性および穴広げ性が低下する。そのため、ベイニティックフェライトの面積率は40.0%以下とする。また、ベイニティックフェライトの面積率は、好ましくは35.0%以下である。
焼戻しマルテンサイトは、軟質なフェライトと硬質なフレッシュマルテンサイトなどとの中間の硬度を持ち、良好な穴広げ性を確保するための相である。ただし、良好な延性を確保する観点から、焼戻しマルテンサイトの面積率は50.0%以下とする。また、焼戻しマルテンサイトの面積率は、好ましくは45.0%以下である。なお、焼戻しマルテンサイトの面積率の下限については特に限定されず、0%であってもよい。焼戻しマルテンサイトの面積率は、780MPa≦TS<980MPaの場合、好ましくは5.0%以上、より好ましくは10.0%以上である。また、焼戻しマルテンサイトの面積率は、590MPa≦TS<780MPaの場合、好ましくは0.1%以上、より好ましくは0.2%以上である。
良好な延性を得る観点から、残留オーステナイトの面積率は1.5%以上とする。残留オーステナイトの面積率は、好ましくは2.0%以上、より好ましくは2.5%以上、さらに好ましくは3.0%以上である。なお、残留オーステナイトの面積率の上限については特に限定されないが、残留オーステナイトの面積率は20.0%以下が好ましい。
良好な穴広げ性を確保する観点から、フレッシュマルテンサイトの面積率は20.0%以下とする。なお、フレッシュマルテンサイトの面積率の下限については特に限定されず、0%であってもよい。また、590MPa以上のTSを確保する観点から、フレッシュマルテンサイトの面積率は2.0%以上が好ましい。
なお、フレッシュマルテンサイトとは、焼入れままの(焼戻しを受けていない)マルテンサイトである。
なお、残部組織としては、特に限定されず、例えば、下部ベイナイトやパーライト、セメンタイトなどの炭化物が挙げられる。なお、残部組織の種類は、例えば、SEM(Scanning Electron Microscope;走査電子顕微鏡)による観察で確認することができる。
すなわち、下地鋼板の圧延方向に平行な板厚断面が観察面となるように、下地鋼板から試料を切り出す。ついで、ダイヤモンドペーストを用いて試料の観察面を鏡面研磨する。ついで、試料の観察面にコロイダルシリカを用いて仕上げ研磨を施したのち、3vol.%ナイタールでエッチングして組織を現出させる。
そして、SEM(Scanning Electron Microscope;走査電子顕微鏡)により、加速電圧:15kV、倍率:5000倍の条件で、試料の観察面の25.6μm×17.6μmの視野を5視野観察する。
得られた組織画像(例えば、図1(A)参照)から、以下のようにして、フェライト、ベイニティックフェライト、焼戻しマルテンサイトおよび硬質第二相(残留オーステナイト+フレッシュマルテンサイト)を同定する。
フェライト:黒色を呈した領域であり、形態は塊状である。また、鉄系炭化物をほとんど内包しない。ただし、鉄系炭化物を内包する場合は、フェライトの面積に鉄系炭化物の面積も含むものとする。また、後述するベイニティックフェライトおよび焼戻しマルテンサイトについても同様である。
ベイニティックフェライト:黒色から濃い灰色を呈した領域であり、形態は塊状や不定形などである。また、鉄系炭化物を内包しないか、比較的少数内包する。
焼戻しマルテンサイト:灰色を呈した領域であり、形態は不定形である。また、鉄系炭化物を比較的多数内包する。
硬質第二相(残留オーステナイト+フレッシュマルテンサイト):白色から薄い灰色を呈する領域であり、形態は不定形である。また、鉄系炭化物を内包しない。なお、サイズが比較的大きい場合には、他組織との界面から離れるにつれて次第に色が濃くなり、内部は濃い灰色を呈する場合がある。
残部組織:上述した下部ベイナイトやパーライト、セメンタイトなどの炭化物が挙げられ、これらの形態等は公知のとおりである。
すなわち、下地鋼板を板厚方向(深さ方向)に板厚の1/4位置まで機械研削した後、シュウ酸による化学研磨を行い、観察面とする。ついで、観察面を、X線回折法により観察する。入射X線にはCoKα線を使用し、bcc鉄の(200)、(211)および(220)各面の回折強度に対するfcc鉄(オーステナイト)の(200)、(220)および(311)各面の回折強度の比を求め、各面の回折強度の比から、残留オーステナイトの体積率を算出する。そして、残留オーステナイトが三次元的に均質であるとみなして、残留オーステナイトの体積率を、残留オーステナイトの面積率とする。
[フレッシュマルテンサイトの面積率(%)]=[硬質第二相の面積率(%)]-[残留オーステナイトの面積率(%)]
[残部組織の面積率(%)]=100-[フェライトの面積率(%)]-[ベイニティックフェライトの面積率(%)]-[焼戻しマルテンサイトの面積率(%)]-[硬質第二相の面積率(%)]
TSを980MPa未満とし、優れた延性、穴広げ性、局部延性および加工硬化能を確保する観点から、SBF+STM+2×SMAは65.0%未満とする。SBF+STM+2×SMAは、好ましくは63.0%未満である。一方、590MPa以上のTSを確保する観点から、SBF+STM+2×SMAは10.0%以上とする。SBF+STM+2×SMAは、好ましくは15.0%以上である。
ここで、
SBF:ベイニティックフェライトの面積率
STM:焼戻しマルテンサイトの面積率
SMA:残留オーステナイトおよびフレッシュマルテンサイトからなる硬質第二相の面積率
である。
ベイニティックフェライトおよび焼戻しマルテンサイトは、軟質なフェライトと硬質なフレッシュマルテンサイトなどとの中間の硬度を持ち、良好な延性、穴広げ性および局部延性を確保するために重要な相である。良好な延性、穴広げ性および局部延性を確保する観点から、SBF+STMは3.0%以上とする。また、ベイニティックフェライトおよび焼戻しマルテンサイトが過度に増加すると、却って延性が低下する。そのため、SBF+STMは60.0%以下とする。
残留オーステナイトおよびフレッシュマルテンサイトからなる硬質第二相(以下、MAともいう。)は、複数の島状領域から構成される。このような島状領域のうち、面積を最大フェレ径で除した値が1.0μm以上である島状領域(以下、MA1ともいう。)は、穴広げ性や局部延性を低下させる。また、MA1は、固溶C濃度が低い。すなわち、MA1中に含まれる残留オーステナイトは、その安定性が低い。そのため、MA1は、良好な延性の確保に寄与しない。よって、硬質第二相の面積率に対するMA1の面積率の比であるSMA1/SMAは、0.40以下とする。SMA1/SMAは、好ましくは0.35以下、より好ましくは0.30以下である。なお、SMA1/SMAの下限は特に限定されず、0であってもよい。
なお、個々の島状領域は、硬質第二相以外の相により、他の硬質第二相の島状領域と分離される(個々の島状領域は、その全周が硬質第二相以外の相と接する)。また、個々の島状領域の具体的な形状については特に限定されず、例えば円形、楕円形、多角形、アメーバ形(複数の不規則方向に延伸した形状)などのいずれであってもよい。
すなわち、前述の要領により、組織画像(例えば、図1(A)参照)において、フェライト、ベイニティックフェライト、焼戻しマルテンサイトおよび硬質第二相(残留オーステナイト+フレッシュマルテンサイト)を同定する。ついで、Adobe Systems社のAdobe Photoshopを用いて各相を色分け(4値化画像化)した後、硬質第二相の島状領域を抽出する。ついで、オープンソースのImageJを用いて、抽出した各島状領域の面積および最大フェレ径を求め、各島状領域の面積を最大フェレ径で除する。そして、各島状領域の面積を最大フェレ径で除した値から、各島状領域をMA1とそれ以外のものに分類し、MA1に分類された島状領域の合計の面積を算出する。なお、図1(C)は、抽出した硬質第二相の各島状領域をMA1とそれ以外のものに分類して色分けしたものの一例である。ついで、MA1に分類された島状領域の合計の面積を観察領域の面積(25.6μm×17.6μm)で除し、100を乗じた値(面積率)を5視野分算出する。そして、MA1の5視野分の値(面積率)の平均値を、SMA1とする。
なお、最大フェレ径とは、島状領域の対向する輪郭線に接した平行する直線間の最大距離である。また、図1(A)~(C)はそれぞれ、試料の観察領域(25.6μm×17.6μm)の1視野から、上記の説明のためにその一部を抽出したものである。
鋼板の成形性は、残留オーステナイトの安定性、特に、残留オーステナイト中の固溶C濃度に大きく影響される。すなわち、固溶C濃度が高い残留オーステナイトは、鋼板に加工などによる変形が生じる際に、硬質なマルテンサイトに変態する。これにより、歪みを分散させて、局部延性を向上させる。一方、良好な加工硬化能を得る観点から、残留オーステナイトの固溶C濃度の分布の分散が大きいことが好ましい。発明者らが種々検討を重ねた結果、これらを総合的に評価する指標として、IDR[%Cγ]を用いることが有効であることを突き止めた。IDR[%Cγ]とは、残留オーステナイト中の固溶C濃度分布の90パーセンタイル値と10パーセンタイル値の差、換言すれば、残留オーステナイト中の固溶C濃度分布の十分位範囲(IDR:Interdecile range)である。ここで、IDR[%Cγ]が0.16%以上であると、良好な局部延性に加え、良好な加工硬化能も得られる。そのため、IDR[%Cγ]は0.16%以上とする。IDR[%Cγ]は、好ましくは0.18%以上、より好ましくは0.20%以上である。なお、IDR[%Cγ]の上限については特に限定されるものではない。ただし、残留オーステナイトが過度に安定になると、鋼板に加工などによる変形が生じる際に、割れが発生するまで残留オーステナイトがマルテンサイト変態することなく残ってしまう場合がある。そのため、IDR[%Cγ]は、好ましくは0.50%以下、より好ましくは0.40%以下である。
すなわち、前述の組織画像と同視野(25.6μm×17.6μm)において、電解放出型電子線プローブマイクロアナライザー(以下、FE-EPMAともいう。)を用いて、下地鋼板のC濃度の二次元分布を5視野測定する。なお、FE-EPMAによる測定は、仕上げ研磨後でエッチング前に行う。また、FE-EPMAによる測定をより広い視野で行い、後の手順で組織画像と同視野の領域(25.6μm×17.6μm)を抽出してもよい。C濃度の二次元分布の定量精度は0.020%以下、分解能は0.10μm以下とする。ステップサイズは0.05μmとし、5視野全てで同じステップサイズにより視野全域にわたって均等な格子状にC濃度の点分析を行う。ついで、C濃度の測定点1点ずつのデータを5視野分統合する。そして、統合したデータから、C濃度が(100-Sγ)パーセンタイル値以上となるデータを抽出し、抽出したデータを、残留オーステナイトの固溶C濃度の測定点データとして残留オーステナイト中の固溶C濃度分布を得る。ここで、Sγは前述の測定方法にて測定した残留オーステナイトの面積率(%)である。ただし、同視野の組織画像から、残留オーステナイトおよびフレッシュマルテンサイト以外に、炭化物やパーライトなどのC濃度が高い組織が存在すると判断される場合には、C濃度の測定点1点ずつのデータを5視野分統合する前に、当該C濃度が高い組織が占める領域での測定点データを負の値(例えば、-1)に置換する。これによって、当該C濃度が高い組織での測定点データを、残留オーステナイトの固溶C濃度の測定点データから除外する。なお、フェライト、ベイニティックフェライト、焼戻しマルテンサイトおよびフレッシュマルテンサイトは、残留オーステナイトと比較してC濃度が低い。そのため、C濃度の測定点の全データからC濃度が(100-Sγ)パーセンタイル値以上となるデータのみを抽出することによって、上記の相(フェライト、ベイニティックフェライト、焼戻しマルテンサイトおよびフレッシュマルテンサイト)での測定点データが、実質的に残留オーステナイトの固溶C濃度の測定点データから除外される。
ついで、残留オーステナイトの固溶C濃度の測定点データ(残留オーステナイト中の固溶C濃度分布)の90パーセンタイル値および10パーセンタイル値を求め、これらの差を取ることにより、IDR[%Cγ]を求める。
なお、ここでいうパーセンタイル値とは、JIS Z 8101におけるパーセンタイルのことである。
より優れた穴広げ性を得る観点から、下地鋼板の拡散性水素量は0.50質量ppm以下とすることが好ましい。また、下地鋼板の拡散性水素量は、より好ましくは0.35質量ppm以下である。なお、下地鋼板の拡散性水素量の下限は特に規定されず、0質量ppmであってもよい。また、生産技術上の制約から、下地鋼板の拡散性水素量は0.01質量ppm以上がより好ましい。
すなわち、亜鉛めっき鋼板から長さが30mm、幅が5mmの試験片を採取し、亜鉛めっき層をアルカリ除去する。ついで、昇温脱離分析法により、試験片から放出される水素量を測定する。具体的には、試験片を、室温から300℃までを昇温速度200℃/hで連続加熱した後、室温まで冷却する。この際、当該連続加熱における室温から210℃までの温度域で、試験片から放出される水素量(積算水素量)を測定する。そして、測定した水素量を、試験片(亜鉛めっき層除去後で、連続加熱前の試験片)の質量で除し、質量ppm単位に換算した値を、下地鋼板の拡散性水素量とする。
ただし、測定時のコンタミネーション対策の必要性は、使用する機種やコンディションによるため、必ずしも上記構成は必須ではない。すなわち、測定条件は十分な精度が得られていることが確認できていればよく、測定条件は本発明の効果に本質的に関わるものではない。
本発明の一実施形態に従う亜鉛めっき鋼板の引張強さは、590MPa以上とする。ただし、鋼板を過度に高強度化すると、優れた成形性の確保が困難となる。そのため、本発明の一実施形態に従う亜鉛めっき鋼板の引張強さは980MPa未満とする。
なお、ここでいう亜鉛めっき層は、Znを主成分(Zn含有量が50%以上)とするめっき層を指し、例えば、溶融亜鉛めっき層や合金化溶融亜鉛めっき層が挙げられる。
ここで、溶融亜鉛めっき層は、例えば、Znと、20質量%以下のFe、0.001質量%以上1.0質量%以下のAlにより構成することが好適である。また、溶融亜鉛めっき層には、任意に、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、BiおよびREMからなる群から選ばれる1種または2種以上の元素を合計で0質量%以上3.5質量%以下含有させてもよい。また、溶融亜鉛めっき層のFe含有量は、より好ましくは7質量%未満である。なお、上記の元素以外の残部は、不可避的不純物である。
また、合金化溶融亜鉛めっき層は、例えば、20質量%以下のFe、0.001質量%以上1.0質量%以下のAlにより構成することが好適である。また、合金化溶融亜鉛めっき層には、任意に、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、BiおよびREMからなる群から選ばれる1種または2種以上の元素を合計で0質量%以上3.5質量%以下含有させてもよい。合金化溶融亜鉛めっき層のFe含有量は、より好ましくは7質量%以上、さらに好ましくは8質量%以上である。また、合金化溶融亜鉛めっき層のFe含有量は、より好ましくは15質量%以下、さらに好ましくは12質量%以下である。なお、上記の元素以外の残部は、不可避的不純物である。
すなわち、10質量%塩酸水溶液1Lに対し、Feに対する腐食抑制剤(朝日化学工業(株)製「イビット700BK」(登録商標))を0.6g添加した処理液を調整する。ついで、該処理液に、供試材となる亜鉛めっき鋼板を浸漬し、亜鉛めっき層を溶解させる。そして、溶解前後での供試材の質量減少量を測定し、その値を、下地鋼板の表面積(めっきで被覆されていた部分の表面積)で除することにより、めっき付着量(g/m2)を算出する。
つぎに、本発明の一実施形態に従う部材について、説明する。
本発明の一実施形態に従う部材は、上記の亜鉛めっき鋼板を用いてなる(素材とする)部材である。例えば、素材である亜鉛めっき鋼板に、成形加工または接合加工の少なくとも一方を施して部材とする。
ここで、上記の亜鉛めっき鋼板は、TS:590MPa以上980MPa未満であり、かつ、優れた成形性を有する。そのため、本発明の一実施形態に従う部材は、自動車分野で使用される複雑形状部材に適用して特に好適である。
つぎに、本発明の一実施形態に従う亜鉛めっき鋼板の製造方法について、説明する。
前記した成分組成を有する鋼スラブに熱間圧延を施して熱延鋼板とする、熱延工程と、
前記熱延鋼板を冷間圧延して冷延鋼板とする、冷延工程と、
前記冷延鋼板を、焼鈍温度:760℃以上900℃以下および焼鈍時間:20秒以上で焼鈍する、焼鈍工程と、
前記冷延鋼板を300℃以上550℃以下の第一冷却停止温度まで冷却する、第一冷却工程と、
前記冷延鋼板を300℃以上550℃以下の温度域で3秒以上600秒以下保持する、保持工程と、
前記冷延鋼板に亜鉛めっき処理を施して亜鉛めっき鋼板とする、めっき工程と、
前記亜鉛めっき鋼板を、-20℃以上300℃未満の第二冷却停止温度まで冷却する、第二冷却工程と、
前記亜鉛めっき鋼板を、300℃以上500℃以下の再加熱温度に再加熱し、前記亜鉛めっき鋼板を、300℃以上500℃以下の温度域で10秒以上2000秒以下保持する、再加熱工程と、
を有し、
前記第一冷却停止温度と、前記亜鉛めっき処理での亜鉛めっき浴の温度とが、次式(1)の関係を満足する、というものである。
-80℃≦T0-T1≦50℃ ・・・(1)
ここで、T0は第一冷却停止温度(℃)、T1は亜鉛めっき処理での亜鉛めっき浴の温度(℃)である。
なお、上記の各温度は、特に説明がない限り、鋼スラブおよび鋼板の表面温度を意味する。
ついで、鋼スラブに熱間圧延を施して熱延鋼板とする。
熱間圧延は、省エネルギープロセスを適用して行ってもよい。省エネルギープロセスとしては、直送圧延(鋼スラブを室温まで冷却せずに、温片のままで加熱炉に装入し、熱間圧延する方法)または直接圧延(鋼スラブにわずかの保熱を行った後に直ちに圧延する方法)などが挙げられる。
熱間圧延条件については特に限定されず、例えば、以下の条件で行うことができる。
すなわち、鋼スラブを、一旦室温まで冷却し、その後、再加熱してから圧延する。スラブ加熱温度(再加熱温度)は、炭化物の溶解や圧延荷重の低減といった観点から、1100℃以上とすることが好ましい。また、スケールロスの増大を防止するため、スラブ加熱温度は1300℃以下とすることが好ましい。なお、スラブ加熱温度は、鋼スラブ表面の温度を基準とする。
ついで、鋼スラブに、常法に従い粗圧延を施し、粗圧延板(以下、シートバーともいう)とする。ついで、シートバーに仕上げ圧延を施して、熱延鋼板とする。なお、スラブ加熱温度を低めにした場合は、仕上げ圧延時のトラブルを防止する観点から、仕上げ圧延前にバーヒーターなどを用いてシートバーを加熱することが好ましい。仕上げ圧延温度は、圧延負荷を低減するため、Ar3変態点以上とすることが好ましい。また、オーステナイトの未再結晶状態での圧下率が高くなると、圧延方向に伸長した異常な組織が発達し、焼鈍板の加工性を低下させるおそれがあることからも、仕上げ圧延温度はAr3変態点以上とすることが好ましい。なお、Ar3変態点は次式により求める。
Ar3(℃)=868-396×[C%]+25×[Si%]-68[Mn%]
なお、上記の式中の[元素記号%]は、下地鋼板の成分組成における当該元素の含有量(質量%)を表す。
粗圧延および仕上げ圧延を含む熱間圧延工程では、一般的に鋼スラブは粗圧延でシートバーとなり、仕上げ圧延によって熱延鋼板となる。ただし、ミル能力等によってはそのような区分けにこだわらず、所定のサイズになれば問題ない。
仕上げ圧延温度は、800℃以上950℃以上の範囲とすることが好ましい。仕上げ圧延温度を800℃以上にすることにより、熱延鋼板段階の鋼組織、ひいては、最終製品の鋼組織も均一になり易い。なお、鋼組織が不均一になると、曲げ性が低下する傾向がある。一方、仕上げ圧延温度が950℃を超えると、酸化物(スケール)生成量が多くなる。その結果、地鉄と酸化物の界面が荒れて、酸洗および冷間圧延後の鋼板の表面品質が劣化するおそれがある。また、結晶粒が粗大になることで、鋼板の強度や曲げ性を低下させる原因となるおそれもある。
仕上げ圧延後、熱延鋼板を巻き取る。巻取温度は、450℃以上750℃以下とすることが好ましい。
熱延工程後の熱延鋼板を、任意に、酸洗する。酸洗によって、鋼板表面の酸化物を除去することができ、良好な化成処理性やめっき品質が確保される。なお、酸洗は、1回のみ行ってもよく、複数回に分けて行ってもよい。酸洗条件については特に限定されず、常法に従えばよい。
ついで、熱延鋼板に冷間圧延を施して冷延鋼板とする。冷間圧延は、例えば、タンデム式の多スタンド圧延やリバース圧延等の、2パス以上のパス数を要する多パス圧延により行う。
冷間圧延の圧下率は特に限定されないが、20%以上80%以下とすることが好ましい。冷間圧延の圧下率が20%未満では、焼鈍工程において鋼組織の粗大化や不均一化が生じやすくなり、最終製品において強度や加工性が低下するおそれがある。一方、冷間圧延の圧下率が80%を超えると、鋼板の形状不良が生じやすくなり、亜鉛めっきの付着量が不均一になるおそれがある。
また、任意に、冷間圧延後に得られた冷延鋼板に酸洗を施してもよい。
また、本発明の一実施形態に従う亜鉛めっき鋼板の製造方法では、任意に、冷延工程後で、かつ、後述する焼鈍工程の前に、上記のようにして得られた冷延鋼板の少なくとも一方の表面に金属めっき層を形成する金属めっき処理を施してもよい。ここで、後述する焼鈍工程を経る前の状態で、少なくとも一方の表面に金属めっき層を有する冷延鋼板を、以下、金属めっき鋼板という場合がある。金属めっき処理方法は特に限定されないが、製造性の観点から電気めっきが好ましい。金属めっき浴としては硫酸浴、塩酸浴または両者の混合溶液などを使用できる。金属めっき層の付着量は、電気めっきの場合、通電時間等によって調整することができる。なお、金属めっき鋼板とは、上述したように、後述する焼鈍工程を経る前の状態で、冷延鋼板の少なくとも一方の表面に金属めっき層を有する鋼板を意味し、金属めっき処理前の冷延鋼板について予め焼鈍された態様を除外するものではない。
ついで、上記のようにして得られた冷延鋼板(金属めっき鋼板の場合も含む)を、焼鈍温度:760℃以上900℃以下および焼鈍時間:20秒以上で焼鈍する。なお、焼鈍回数は2回以上でもよいが、エネルギー効率の観点から1回が好ましい。
焼鈍温度が760℃未満の場合、フェライトとオーステナイトの二相域での加熱中におけるオーステナイトの生成割合が不十分になり、SBF+STMが減少する。そのため、穴広げ性が低下する。また、SBF+STM+2×SMAが減少する。そのため、TSを590MPa以上とすることが困難になるおそれがある。さらに、フェライトの再結晶が生じにくくなる。そのため、穴広げ率および局部延性が低下するおそれもある。一方、焼鈍温度が900℃を超えると、オーステナイトの粒成長が過度に生じ、後工程で生成する組織が粗大化する。これにより、SMA1/SMAが増加し、穴広げ性および局部延性が低下する。また、フェライトの面積率が減少し、SBF+STM+2×SMAが増加する。そのため、TSが過度に増加し、延性、穴広げ性、局部延性、および加工硬化能が低下するおそれがある。したがって、焼鈍温度は760℃以上900℃以下とする。焼鈍温度は、好ましくは780℃以上、より好ましく790℃超である。また、焼鈍温度は、好ましくは880℃以下である。なお、焼鈍温度は、焼鈍工程での最高到達温度である。
焼鈍時間が20秒未満になると、フェライトとオーステナイトの二相域での加熱中におけるオーステナイトの生成割合が不十分になり、SBF+STMが減少する。そのため、穴広げ性が低下する。また、SBF+STM+2×SMAが減少する。そのため、TSを590MPa以上とすることが困難になるおそれがある。さらに、フェライトの再結晶が生じにくくなる。そのため、穴広げ率および局部延性が低下するおそれもある。したがって、焼鈍時間は20秒以上とする。なお、焼鈍時間の上限は特に限定されないが、900秒以下とすることが好ましい。なお、焼鈍時間とは、(焼鈍温度-40℃)以上焼鈍温度以下の温度域での保持時間である。すなわち、焼鈍時間には、焼鈍温度での保持時間に加え、焼鈍温度に到達する前後の加熱および冷却における(焼鈍温度-40℃)以上焼鈍温度以下の温度域での滞留時間も含まれる。
また、本発明の一実施形態に従う亜鉛めっき鋼板の製造方法では、焼鈍工程における焼鈍雰囲気の露点を-30℃超とすることが好ましい。露点を-30℃超とすることにより、脱炭反応が促進され、冷延鋼板(下地鋼板)の表層のC濃度を低減して、脱炭層を形成することが可能となる。露点は、好ましくは-20℃以上、より好ましくは-5℃以上である。露点を-5℃以上とすることにより、溶接部における耐抵抗溶接割れ特性を一層高めることが可能となる。露点の上限は特に限定されないが、冷延鋼板または金属めっき層表面の酸化を好適に防ぎ、亜鉛めっき層を設ける際のめっき密着性を良好にする観点から、露点は30℃以下とすることが好ましい。
ついで、上記のようにして焼鈍を施した冷延鋼板を、300℃以上550℃以下の第一冷却停止温度まで冷却する。
第一冷却停止温度が300℃未満になると、焼戻しマルテンサイトの面積率が過度に増加し、適正量のベイニティックフェライトおよび残留オーステナイトの面積率が得られなくなる。また、後工程である亜鉛めっき処理において、未変態オーステナイトがパーライトや炭化物に分解する場合がある。そのため、残留オーステナイトの面積率およびIDR[%Cγ]が低下し、延性および加工硬化能が低下する。一方、第一冷却停止温度が550℃を超えると、ベイニティックフェライトの面積率が減少する。そのため、残留オーステナイトの面積率およびIDR[%Cγ]が低下し、やはり延性、局部延性および加工硬化能が低下する。また、SMA1/SMAが増加するおそれがある。そのため、穴広げ性や局部延性が低下するおそれがある。したがって、第一冷却停止温度は300℃以上550℃以下とする。第一冷却停止温度は、好ましくは350℃以上である。また、第一冷却停止温度は、好ましくは510℃以下である。
ついで、冷延鋼板を300℃以上550℃以下の温度域(以下、保持温度域ともいう)で3秒以上600秒以下保持する。
保持工程では、ベイニティックフェライトが生成するとともに、生成したベイニティックフェライトから該ベイニティックフェライトに隣接する未変態のオーステナイトへのCの拡散が生じる。その結果、所定量の残留オーステナイトの面積率が確保され、IDR[%Cγ]が増加する。
ここで、保持温度域での保持時間が3秒未満になると、ベイニティックフェライトの面積率およびIDR[%Cγ]が低下するおそれがある。これにより、延性、局部延性および加工硬化能が低下するおそれがある。一方、保持温度域での保持時間が600秒を超えると、ベイニティックフェライトの面積率が過度に増加し、却って延性および穴広げ性が低下する。また、ベイニティックフェライトから未変態オーステナイトへのCの拡散が過度に生じ、SMA1/SMAが増加し、穴広げ性および局部延性が低下するおそれがある。さらに、未変態オーステナイト内部でのCの拡散が過度に生じ、後工程である亜鉛めっき処理において、未変態オーステナイトがパーライトや炭化物に分解する場合がある。そのため、残留オーステナイトの面積率およびIDR[%Cγ]が低下し、延性および局部延性が低下する。したがって、保持温度域での保持時間は、3秒以上600秒以下とする。保持温度域での保持時間は、好ましくは5秒以上、より好ましくは10秒以上である。また、保持温度域での保持時間は、好ましくは200秒未満、より好ましくは80秒未満である。なお、保持温度域での保持時間には、第一冷却工程において第一冷却停止温度に到達するまでの冷延鋼板の当該温度域での滞留時間、および、後述するめっき工程における亜鉛めっき処理開始時点までの冷延鋼板の当該温度域での滞留時間(例えば、冷延鋼板を亜鉛めっき浴に浸漬させるまでの当該温度域での滞留時間)が含まれる。ただし、保持温度域での保持時間には、当該めっき工程において亜鉛めっき処理を施した後の亜鉛めっき鋼板の当該温度域での滞留時間は含まない。
ついで、冷延鋼板に亜鉛めっき処理を施して亜鉛めっき鋼板とする。亜鉛めっき処理としては、例えば、溶融亜鉛めっき処理や合金化亜鉛めっき処理が挙げられる。そして、このめっき工程では、上述した第一冷却工程における第一冷却停止温度と、亜鉛めっき処理での亜鉛めっき浴の温度(以下、めっき浴温ともいう)とについて、次式(1)の関係を満足させることが必要である。
-80℃≦T0-T1≦50℃ ・・・(1)
ここで、T0は第一冷却停止温度(℃)、T1は亜鉛めっき処理での亜鉛めっき浴の温度(℃)である。
例えば、溶融亜鉛めっき処理の場合、冷延鋼板を、亜鉛めっき浴中に浸漬させた後、ガスワイピング等によって、めっき付着量を調整することが好ましい。めっき浴温としては、440℃以上500℃以下である。また、亜鉛めっき浴としては、上記した亜鉛めっき層の組成となれば特に限定されるものではないが、例えば、Al含有量が0.10質量%以上0.23質量%以下であり、残部がZnおよび不可避的不純物からなる組成のめっき浴を用いることが好ましい。
また、合金化亜鉛めっき処理の場合、上記の要領で溶融亜鉛めっき処理を施した後、亜鉛めっき鋼板を450℃以上600℃以下の合金化温度に加熱して合金化処理を施すことが好ましい。合金化温度が450℃未満では、Zn-Fe合金化速度が遅くなり、合金化が困難となる場合がある。一方、合金化温度が600℃を超えると、未変態オーステナイトがパーライトへ変態し、TSおよび延性が低下する場合がある。なお、合金化温度は、より好ましくは470℃以上である。また、合金化温度は、より好ましくは570℃以下である。
ついで、亜鉛めっき鋼板を、-20℃以上300℃未満の第二冷却停止温度まで冷却する。
第二冷却工程は、後工程である再加熱工程で生成する焼戻しマルテンサイトの面積率および残留オーステナイトの面積率、ならびに、IDR[%Cγ]を所定の範囲に制御とするために必要な工程である。第二冷却工程を行ったうえで、再加熱工程を行うことにより、再加熱工程で未変態オーステナイトへのCの濃化が生じる。なお、最終的に焼戻しマルテンサイトを得る場合は、第二冷却工程でマルテンサイトを生成させることが好ましい。ここで、第二冷却停止温度が-20℃未満では、当該第二冷却工程において鋼中に存在する未変態オーステナイトが、ほぼ全量マルテンサイトに変態する。これにより、残留オーステナイトの面積率が減少する。その結果、延性および加工硬化能が低下するおそれがある。一方、第二冷却停止温度が300℃以上では、IDR[%Cγ]が低下し、延性、局部延性および加工硬化能が低下する。また、焼戻しマルテンサイトの面積率が減少し、フレッシュマルテンサイトの面積率およびSBF+STM+2×SMAが増加する。そのため、TSが増加し、延性、穴広げ性、局部延性、および加工硬化能が低下するおそれがある。さらに、このフレッシュマルテンサイトの面積率の増加に伴い、鋼板中の拡散性水素量が増加し、穴広げ性が低下する。また、SMA1/SMAが増加することによっても、穴広げ性が低下する。したがって、第二冷却停止温度は-20℃以上300℃未満とする。第二冷却停止温度は、好ましくは0℃以上である。また、第二冷却停止温度は、好ましくは280℃以下である。
ついで、亜鉛めっき鋼板を、300℃以上500℃以下の再加熱温度に再加熱し、前記亜鉛めっき鋼板を、300℃以上500℃以下の温度域(以下、再加熱温度域ともいう)で10秒以上2000秒以下保持する。
これにより、第二冷却工程終了時点で鋼中に存在するマルテンサイトを焼戻す。また、マルテンサイト中に過飽和に固溶したCを未変態オーステナイトへと拡散させることにより、室温で安定なオーステナイト、すなわち、残留オーステナイトを生成させる。
再加熱温度が300℃未満になると、第二冷却工程終了時点で鋼中に存在するマルテンサイトから未変態オーステナイトへのCの拡散が十分には進行せず、所定量の残留オーステナイトの面積率が得られない。これにより、延性が低下する。また、IDR[%Cγ]が低下する。これにより、局部延性および加工硬化能が低下するおそれがある。一方、再加熱温度が500℃を超えると、第二冷却工程終了時点で鋼中に存在する未変態オーステナイトが、炭化物(パーライト)として分解する。そのため、残留オーステナイトの面積率およびIDR[%Cγ]が低下し、延性、局部延性および加工硬化能が低下する。また、下地鋼板に含まれる水素の外部放出が不十分となり、下地鋼板の拡散性水素量が増加する。これにより、穴広げ性が低下する。したがって、再加熱温度は300℃以上500℃以下とする。再加熱温度は、好ましくは320℃以上である。また、再加熱温度は、好ましくは450℃以下である。なお、再加熱温度は、再加熱工程での最高到達温度である。
再加熱温度域での保持時間が10秒未満になると、第二冷却工程終了時点で鋼中に存在するマルテンサイトから未変態オーステナイトへのCの拡散が十分には進行せず、所定量の残留オーステナイトの面積率およびIDR[%Cγ]が得られない。これにより、延性および局部延性が低下する。また、フレッシュマルテンサイトが過度に増加する。加えて、下地鋼板に含まれる水素の外部放出が不十分となり、下地鋼板の拡散性水素量が増加する。これにより、穴広げ性が低下するおそれもある。一方、再加熱温度域での保持時間が2000秒を超えると、第二冷却工程終了時点で鋼中に存在する未変態オーステナイトが、炭化物(パーライト)として分解してしまうため、残留オーステナイトの面積率およびIDR[%Cγ]が低下し、延性および加工硬化能が低下する。したがって、再加熱温度域での保持時間は10秒以上2000秒以下とする。再加熱温度域での保持時間は、好ましくは15秒以上である。また、再加熱温度域での保持時間は、好ましくは1200秒以下である。なお、再加熱温度域での保持時間には、再加熱温度での保持時間に加え、再加熱温度に到達する前後の加熱および冷却における当該温度域での滞留時間も含まれる。
つぎに、本発明の一実施形態に従う部材の製造方法について、説明する。
本発明の一実施形態に従う部材の製造方法は、上記の亜鉛めっき鋼板(例えば、上記の亜鉛めっき鋼板の製造方法により製造された亜鉛めっき鋼板)に、成形加工または接合加工の少なくとも一方を施して部材とする、工程を有する。
ここで、成形加工方法は、特に限定されず、例えば、プレス加工等の一般的な加工方法を用いることができる。また、接合加工方法も、特に限定されず、例えば、スポット溶接、レーザー溶接、アーク溶接等の一般的な溶接や、リベット接合、かしめ接合等を用いることができる。なお、成形条件および接合条件については特に限定されず、常法に従えばよい。
表1に示す成分組成(残部はFe及び不可避的不純物)を有する鋼素材を転炉にて溶製し、連続鋳造法にて鋼スラブとした。得られた鋼スラブを1250℃に加熱し、加熱後、鋼スラブに粗圧延と仕上げ圧延からなる熱間圧延を施し、熱延鋼板とした。ついで、得られた熱延鋼板に、酸洗および冷間圧延(圧下率:50%)を施し、表3に示す板厚の冷延鋼板とした。ついで、得られた冷延鋼板に、表2に示す条件で、焼鈍工程、第一冷却工程、保持工程、めっき工程、第二冷却工程および再加熱工程を行い、亜鉛めっき鋼板を得た。なお、焼鈍工程での露点は、-35℃~-30℃とした。
めっき浴温は、GIおよびGAいずれを製造する場合も、470℃とした。
めっき付着量は、GIを製造する場合は、片面あたり45~72g/m2とし、GAを製造する場合は、片面あたり45g/m2とした。
なお、最終的に得られた亜鉛めっき鋼板の亜鉛めっき層の組成は、GIでは、Fe:0.1~1.0質量%、Al:0.2~1.0質量%を含有し、残部がZnおよび不可避的不純物であった。また、GAでは、Fe:7~15質量%、Al:0.1~1.0質量%を含有し、残部がZnおよび不可避的不純物であった。
また、亜鉛めっき層はいずれも、下地鋼板の両面に形成した。
・TS
〇(合格):590MPa≦TS<980MPa
×(不合格):TS<590MPa、または、980MPa≦TS
・T-El
〇(合格):
590MPa≦TS<780MPaの場合、30.0%≦T-El
780MPa≦TSの場合、19.0%≦T-El
×(不合格):
590MPa≦TS<780MPaの場合、30.0%>T-El
780MPa≦TSの場合、19.0%>T-El
・λ
〇(合格):
590MPa≦TS<780MPaの場合、45%≦λ
780MPa≦TSの場合、40%≦λ
×(不合格):
590MPa≦TS<780MPaの場合、45%>λ
780MPa≦TSの場合、40%>λ
・L-El
〇(合格):
590MPa≦TS<780MPaの場合、10.0%≦L-El
780MPa≦TSの場合、7.0%≦L-El
×(不合格):
590MPa≦TS<780MPaの場合、10.0%>L-El
780MPa≦TSの場合、7.0%>L-El
・n値
〇(合格):
590MPa≦TS<780MPaの場合、0.200≦n値
780MPa≦TSの場合、0.100≦n値
×(不合格):
590MPa≦TS<780MPaの場合、0.200>n値
780MPa≦TSの場合、0.100>n値
・YS
〇(合格):
590MPa≦TS<780MPaの場合、500MPa≧YS
780MPa≦TSの場合、700MPa≧YS
×(不合格):
590MPa≦TS<780MPaの場合、500MPa<YS
780MPa≦TSの場合、700MPa<YS
引張試験は、JIS Z 2241に準拠して行った。すなわち、得られた亜鉛めっき鋼板から、長手方向が下地鋼板の圧延方向に対して直角となるようにJIS5号試験片を採取した。採取した試験片を用いて、クロスヘッド速度が10mm/minの条件で引張試験を行い、TS、T-El、L-El、n値およびYSを測定した。ここで、n値は、均一伸び(U-El)の0.4倍および0.8倍の時の伸びと強度から算出した。結果を表4に併記する。
穴広げ試験は、JIS Z 2256に準拠して行った。すなわち、得られた亜鉛めっき鋼板から、100mm×100mmの試験片を剪断加工により採取した。該試験片に、クリアランスを12.5%として直径10mmの穴を打ち抜いた。ついで、内径:75mmのダイスを用いて穴の周囲にしわ押さえ力:9ton(88.26kN)を加え、そのた状態で頂角:60°の円錐ポンチを穴に押し込み、亀裂発生限界(亀裂発生時)における試験片の穴の直径を測定した。そして、次式により、限界穴広げ率:λ(%)を求めた。なお、λは、伸びフランジ性を評価する指標となるものである。結果を表4に併記する。
λ(%)={(Df-D0)/D0}×100
ここで、
Df:亀裂発生時の試験片の穴の直径(mm)
D0:初期の試験片の穴の直径(mm)
である。
一方、比較例では、引張強さ(TS)、破断伸び(T-El)、限界穴広げ率(λ)、局部伸び(L-El)、加工硬化指数(n値)および降伏応力(YS)の少なくとも1つが十分ではなかった。
また、本発明例の鋼板を用いて、成形加工を施して得た部材または接合加工を施して得た部材は、引張強さ(TS)、破断伸び(T-El)、限界穴広げ率(λ)、局部伸び(L-El)、加工硬化指数(n値)および降伏応力(YS)ともに、本発明で特徴とする優れた特性を有することがわかった。
表1に示す成分組成(残部はFe及び不可避的不純物)を有する鋼素材を転炉にて溶製し、連続鋳造法にて鋼スラブとした。得られた鋼スラブを1250℃に加熱し、加熱後、鋼スラブに粗圧延と仕上げ圧延からなる熱間圧延を施し、熱延鋼板とした。ついで、得られた熱延鋼板に、酸洗および冷間圧延(圧下率:50%)を施し、板厚1.6mmの冷延鋼板とした。
[電解条件]
浴温:50℃
pH:2.0
電流密度:45A/dm2
めっき浴:Fe2+イオンを1.5mol/L含む硫酸浴
陽極:酸化イリジウム電極
なお、金属めっき層の付着量は通電時間によって制御した。
得られた亜鉛めっき鋼板から圧延直角方向(TD)を長手、圧延方向を短手として、長手方向150mm×短手方向50mmに切り出した試験片2を、試験用合金化溶融亜鉛めっき鋼板1(板厚:1.6mm、TS:980MPa級)と重ねて板組とした。なお、試験用合金化溶融亜鉛めっき鋼板1は、合金化溶融亜鉛めっき層の片面あたりの付着量が50g/m2であり、試験片2と同サイズに切り出したものである。板組は、試験片2の評価対象面(亜鉛めっき層および金属めっき層を一方の側のみに有する場合には、その側の亜鉛めっき層)と、試験用合金化溶融亜鉛めっき鋼板1の亜鉛めっき層とが向かい合うように組み立てた。当該板組を、厚さ2.0mmのスペーサー3を介して、固定台4に固定した。スペーサー3は、長手方向50mm×短手方向45mm×厚さ2.0mmの一対の鋼板であり、図2(A)に示すように、一対の鋼板各々の長手方向端面が、板組短手方向両端面とそろうように配置した。よって、一対の鋼板間の距離は60mmとなる。固定台8は、中央部に穴が開いた一枚の板である。
A+:ホールドタイム0.12秒、0.18秒および0.24秒のいずれの場合にも、0.1mm以上の長さのき裂が認められなかった。
A:ホールドタイム0.12秒で0.1mm以上の長さのき裂が認められたが、ホールドタイム0.18秒および0.24秒では0.1mm以上の長さのき裂が認められなかった。
B:ホールドタイム0.12秒および0.18秒で0.1mm以上の長さのき裂が認められたが、ホールドタイム0.24秒では0.1mm以上の長さのき裂が認められなかった。
C:ホールドタイム0.12秒、0.18秒および0.24秒のいずれの場合にも、0.1mm以上の長さのき裂が認められた。
加えて、No.3~7の発明例、なかでもNo.5および6の発明例では、溶接部における耐抵抗溶接割れ特性が非常に優れていた。
また、本発明例の鋼板を用いて、成形加工を施して得た部材または接合加工を施して得た部材は、引張強さ(TS)、破断伸び(T-El)、限界穴広げ率(λ)、局部伸び(L-El)、加工硬化指数(n値)および降伏応力(YS)、溶接部における耐抵抗溶接割れ特性ともに、本発明で特徴とする優れた特性を有することがわかった。
2 試験片
3 スペーサー
4 固定台
5 電極
6 ナゲット
7 き裂
Claims (14)
- 下地鋼板と、該下地鋼板の表面に亜鉛めっき層と、を有する亜鉛めっき鋼板であって、
該下地鋼板は、
質量%で、
C:0.040%以上0.400%以下、
Si:0.20%以上3.00%以下、
Mn:1.00%以上2.80%未満、
P:0.001%以上0.100%以下、
S:0.0200%以下、
Al:0.010%以上2.000%以下および
N:0.0100%以下
であり、炭素当量Ceqが0.540%未満であり、残部がFeおよび不可避的不純物である、成分組成を有し、
また、該下地鋼板は、
フェライトの面積率:35.0%以上95.0%以下、
ベイニティックフェライトの面積率:1.0%以上40.0%以下、
焼戻しマルテンサイトの面積率:50.0%以下(0%を含む)、
残留オーステナイトの面積率:1.5%以上20.0%以下、
フレッシュマルテンサイトの面積率:1.1%以上20.0%以下、
SBF+STM+2×SMA:10.0%以上65.0%未満、
SBF+STM:3.0%以上60.0%以下、
SMA1/SMA:0.40以下、および
IDR[%Cγ]:0.16%以上
である、鋼組織を有し、
引張強さが590MPa以上980MPa未満である、亜鉛めっき鋼板。
ここで、
SBF:前記ベイニティックフェライトの面積率
STM:前記焼戻しマルテンサイトの面積率
SMA:前記残留オーステナイトおよび前記フレッシュマルテンサイトからなる硬質第二相の面積率
SMA1:前記硬質第二相を構成する島状領域のうち、面積を最大フェレ径で除した値が1.0μm以上である島状領域の合計の面積率
IDR[%Cγ]:前記残留オーステナイト中の固溶C濃度分布の90パーセンタイル値と10パーセンタイル値の差
である。 - 前記下地鋼板の成分組成が、さらに、質量%で、
Ti:0.200%以下、
Nb:0.200%以下、
V:0.100%以下、
B:0.0100%以下、
Cu:1.000%以下、
Cr:1.000%以下、
Ni:1.000%以下、
Mo:0.500%以下、
Sb:0.200%以下、
Sn:0.200%以下、
Ta:0.100%以下、
W:0.500%以下、
Mg:0.0200%以下、
Zn:0.0200%以下、
Co:0.0200%以下、
Zr:0.0200%以下、
Ca:0.0200%以下、
Ce:0.0200%以下、
Se:0.0200%以下、
Te:0.0200%以下、
Ge:0.0200%以下、
As:0.0200%以下、
Sr:0.0200%以下、
Cs:0.0200%以下、
Hf:0.0200%以下、
Pb:0.0200%以下、
Bi:0.0200%以下および
REM:0.0200%以下
のうちから選ばれる少なくとも1種を含有する、請求項1に記載の亜鉛めっき鋼板。 - 前記下地鋼板の拡散性水素量が0.50質量ppm以下である、請求項1または2に記載の亜鉛めっき鋼板。
- 脱炭層を有する、請求項1~3のいずれか一項に記載の亜鉛めっき鋼板。
- 前記下地鋼板と前記亜鉛めっき層の間の少なくとも一方において金属めっき層を有する、請求項1~4のいずれか一項に記載の亜鉛めっき鋼板。
- 前記金属めっき層がFe系めっき層である、請求項5に記載の亜鉛めっき鋼板。
- 前記亜鉛めっき層が、溶融亜鉛めっき層または合金化溶融亜鉛めっき層である、請求項1~6のいずれか一項に記載の亜鉛めっき鋼板。
- 請求項1~7のいずれか一項に記載の亜鉛めっき鋼板を用いてなる、部材。
- 下地鋼板と、該下地鋼板の表面に亜鉛めっき層と、を有する亜鉛めっき鋼板を製造するための方法であって、
該下地鋼板は、
フェライトの面積率:35.0%以上95.0%以下、
ベイニティックフェライトの面積率:1.0%以上40.0%以下、
焼戻しマルテンサイトの面積率:50.0%以下(0%を含む)、
残留オーステナイトの面積率:1.5%以上20.0%以下、
フレッシュマルテンサイトの面積率:1.1%以上20.0%以下、
S BF +S TM +2×S MA :10.0%以上65.0%未満、
S BF +S TM :3.0%以上60.0%以下、
S MA1 /S MA :0.40以下、および
IDR[%Cγ]:0.16%以上
である、鋼組織を有し、
引張強さが590MPa以上980MPa未満であり、
前記方法は、
請求項1または2に記載の成分組成を有する鋼スラブに熱間圧延を施して熱延鋼板とする、熱延工程と、
前記熱延鋼板を冷間圧延して冷延鋼板とする、冷延工程と、
前記冷延鋼板を、焼鈍温度:760℃以上900℃以下および焼鈍時間:20秒以上で焼鈍する、焼鈍工程と、
前記冷延鋼板を300℃以上550℃以下の第一冷却停止温度まで冷却する、第一冷却工程と、
前記冷延鋼板を300℃以上550℃以下の温度域で3秒以上600秒以下保持する、保持工程と、
前記冷延鋼板に亜鉛めっき処理を施して亜鉛めっき鋼板とする、めっき工程と、
前記亜鉛めっき鋼板を、-20℃以上300℃未満の第二冷却停止温度まで冷却する、第二冷却工程と、
前記亜鉛めっき鋼板を、300℃以上500℃以下の再加熱温度に再加熱し、前記亜鉛めっき鋼板を、300℃以上500℃以下の温度域で10秒以上2000秒以下保持する、再加熱工程と、
を有し、
前記第一冷却停止温度と、前記亜鉛めっき処理での亜鉛めっき浴の温度とが、次式(1)の関係を満足する、亜鉛めっき鋼板の製造方法。
-80℃≦T0-T1≦50℃ ・・・(1)
ここで、T0は第一冷却停止温度(℃)、T1は亜鉛めっき処理での亜鉛めっき浴の温度(℃)である。
また、
S BF :前記ベイニティックフェライトの面積率
S TM :前記焼戻しマルテンサイトの面積率
S MA :前記残留オーステナイトおよび前記フレッシュマルテンサイトからなる硬質第二相の面積率
S MA1 :前記硬質第二相を構成する島状領域のうち、面積を最大フェレ径で除した値が1.0μm以上である島状領域の合計の面積率
IDR[%Cγ]:前記残留オーステナイト中の固溶C濃度分布の90パーセンタイル値と10パーセンタイル値の差
である。 - 前記焼鈍工程の露点が-30℃超である、請求項9に記載の亜鉛めっき鋼板の製造方法。
- 前記冷延工程後で、かつ、前記焼鈍工程の前に、前記冷延鋼板の少なくとも一方の表面に金属めっき層を形成する金属めっき処理を施す、金属めっき処理工程をさらに有する、請求項9または10に記載の亜鉛めっき鋼板の製造方法。
- 前記金属めっき層がFe系めっき層である、請求項11に記載の亜鉛めっき鋼板の製造方法。
- 前記亜鉛めっき処理が、溶融亜鉛めっき処理または合金化溶融亜鉛めっき処理である、請求項9~12のいずれか一項に記載の亜鉛めっき鋼板の製造方法。
- 請求項1~7のいずれか一項に記載の亜鉛めっき鋼板に、成形加工または接合加工の少なくとも一方を施して部材とする、工程を有する、部材の製造方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021123701 | 2021-07-28 | ||
JP2021123701 | 2021-07-28 | ||
PCT/JP2022/012856 WO2023007833A1 (ja) | 2021-07-28 | 2022-03-18 | 亜鉛めっき鋼板および部材、ならびに、それらの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7197062B1 true JP7197062B1 (ja) | 2022-12-27 |
JPWO2023007833A1 JPWO2023007833A1 (ja) | 2023-02-02 |
Family
ID=84687864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022542315A Active JP7197062B1 (ja) | 2021-07-28 | 2022-03-18 | 亜鉛めっき鋼板および部材、ならびに、それらの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240318287A1 (ja) |
EP (1) | EP4368737A1 (ja) |
JP (1) | JP7197062B1 (ja) |
KR (1) | KR20240019814A (ja) |
CN (1) | CN117716059A (ja) |
MX (1) | MX2024001275A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024157552A1 (ja) * | 2023-01-26 | 2024-08-02 | Jfeスチール株式会社 | 亜鉛めっき鋼板および部材、ならびに、それらの製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004285385A (ja) * | 2003-03-20 | 2004-10-14 | Nisshin Steel Co Ltd | 加工性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法 |
WO2016113788A1 (ja) * | 2015-01-15 | 2016-07-21 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
WO2016171237A1 (ja) * | 2015-04-22 | 2016-10-27 | 新日鐵住金株式会社 | めっき鋼板 |
WO2017164346A1 (ja) * | 2016-03-25 | 2017-09-28 | 新日鐵住金株式会社 | 高強度鋼板および高強度亜鉛めっき鋼板 |
WO2020158065A1 (ja) * | 2019-01-30 | 2020-08-06 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2632261B2 (ja) | 1991-08-20 | 1997-07-23 | 大日本スクリーン製造株式会社 | 基板表面の酸化膜の除去方法 |
JPH0597938A (ja) | 1991-10-07 | 1993-04-20 | Asahi Chem Ind Co Ltd | ゴム変性ビニル芳香族系樹脂組成物及びその製造方法 |
-
2022
- 2022-03-18 US US18/579,575 patent/US20240318287A1/en active Pending
- 2022-03-18 MX MX2024001275A patent/MX2024001275A/es unknown
- 2022-03-18 CN CN202280051970.7A patent/CN117716059A/zh active Pending
- 2022-03-18 EP EP22848917.5A patent/EP4368737A1/en active Pending
- 2022-03-18 KR KR1020247000803A patent/KR20240019814A/ko unknown
- 2022-03-18 JP JP2022542315A patent/JP7197062B1/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004285385A (ja) * | 2003-03-20 | 2004-10-14 | Nisshin Steel Co Ltd | 加工性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法 |
WO2016113788A1 (ja) * | 2015-01-15 | 2016-07-21 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
WO2016171237A1 (ja) * | 2015-04-22 | 2016-10-27 | 新日鐵住金株式会社 | めっき鋼板 |
WO2017164346A1 (ja) * | 2016-03-25 | 2017-09-28 | 新日鐵住金株式会社 | 高強度鋼板および高強度亜鉛めっき鋼板 |
WO2020158065A1 (ja) * | 2019-01-30 | 2020-08-06 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024157552A1 (ja) * | 2023-01-26 | 2024-08-02 | Jfeスチール株式会社 | 亜鉛めっき鋼板および部材、ならびに、それらの製造方法 |
JP7541652B1 (ja) | 2023-01-26 | 2024-08-29 | Jfeスチール株式会社 | 亜鉛めっき鋼板および部材、ならびに、それらの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20240318287A1 (en) | 2024-09-26 |
MX2024001275A (es) | 2024-02-15 |
JPWO2023007833A1 (ja) | 2023-02-02 |
CN117716059A (zh) | 2024-03-15 |
KR20240019814A (ko) | 2024-02-14 |
EP4368737A1 (en) | 2024-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7001204B1 (ja) | 鋼板及び部材 | |
US20220251676A1 (en) | High-strength steel sheet and method for manufacturing same | |
EP3216892B1 (en) | Hot-dip galvanized steel sheet | |
WO2023007833A1 (ja) | 亜鉛めっき鋼板および部材、ならびに、それらの製造方法 | |
WO2021200579A1 (ja) | 鋼板、部材及びそれらの製造方法 | |
JP6787535B1 (ja) | 高強度鋼板およびその製造方法 | |
KR20190073469A (ko) | 고강도 강판 및 그 제조 방법 | |
CN115715332A (zh) | 镀锌钢板、构件和它们的制造方法 | |
JP7197062B1 (ja) | 亜鉛めっき鋼板および部材、ならびに、それらの製造方法 | |
JP7197063B1 (ja) | 亜鉛めっき鋼板および部材、ならびに、それらの製造方法 | |
CN115768915A (zh) | 镀锌钢板、构件和它们的制造方法 | |
JP7294549B1 (ja) | 高強度鋼板およびその製造方法 | |
JP7473860B1 (ja) | 高強度鋼板、その製造方法、部材及び自動車部品 | |
WO2023188539A1 (ja) | 鋼板、部材およびそれらの製造方法 | |
JP7311068B1 (ja) | 亜鉛めっき鋼板および部材、ならびに、それらの製造方法 | |
JP7151948B1 (ja) | 高強度亜鉛めっき鋼板および部材ならびにそれらの製造方法 | |
WO2024122037A1 (ja) | 高強度鋼板、高強度鋼板を用いてなる部材、部材からなる自動車の骨格構造部品用又は自動車の補強部品、ならびに高強度鋼板及び部材の製造方法 | |
WO2024116396A1 (ja) | 溶融亜鉛めっき鋼板、溶融亜鉛めっき鋼板を用いてなる部材、部材からなる自動車の骨格構造部品用又は自動車の補強部品、ならびに溶融亜鉛めっき鋼板及び部材の製造方法 | |
WO2022264585A1 (ja) | 高強度亜鉛めっき鋼板および部材ならびにそれらの製造方法 | |
WO2024209641A1 (ja) | 溶融亜鉛めっき鋼板、溶融亜鉛めっき鋼板を用いてなる部材、部材からなる自動車の骨格構造部品又は自動車の補強部品、ならびに溶融亜鉛めっき鋼板及び部材の製造方法 | |
WO2023188643A1 (ja) | 亜鉛めっき鋼板、部材およびそれらの製造方法 | |
WO2024224583A1 (ja) | 亜鉛めっき鋼板、部材及びそれらの製造方法 | |
WO2023145146A1 (ja) | 亜鉛めっき鋼板および部材、ならびに、それらの製造方法 | |
WO2023218729A1 (ja) | 鋼板、部材およびそれらの製造方法 | |
EP4283007A1 (en) | Steel sheet, member, method for producing said steel sheet, and method for producing said member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220708 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20220708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221128 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7197062 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |