[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7195787B2 - 車載電子制御装置 - Google Patents

車載電子制御装置 Download PDF

Info

Publication number
JP7195787B2
JP7195787B2 JP2018125507A JP2018125507A JP7195787B2 JP 7195787 B2 JP7195787 B2 JP 7195787B2 JP 2018125507 A JP2018125507 A JP 2018125507A JP 2018125507 A JP2018125507 A JP 2018125507A JP 7195787 B2 JP7195787 B2 JP 7195787B2
Authority
JP
Japan
Prior art keywords
control unit
dimensional object
image
vehicle
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018125507A
Other languages
English (en)
Other versions
JP2020004293A (ja
Inventor
哲也 山田
鉄平 広津
朋仁 蛯名
一 芹沢
彰二 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2018125507A priority Critical patent/JP7195787B2/ja
Priority to US17/254,527 priority patent/US11908199B2/en
Priority to DE112019002388.8T priority patent/DE112019002388T5/de
Priority to CN201980031706.5A priority patent/CN112272841B/zh
Priority to PCT/JP2019/021907 priority patent/WO2020003903A1/ja
Publication of JP2020004293A publication Critical patent/JP2020004293A/ja
Application granted granted Critical
Publication of JP7195787B2 publication Critical patent/JP7195787B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3602Input other than that of destination using image analysis, e.g. detection of road signs, lanes, buildings, real preceding vehicles using a camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/295Means for transforming co-ordinates or for evaluating data, e.g. using computers
    • G01S7/2955Means for determining the position of the radar coordinate system for evaluating the position data of the target in another coordinate system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/417Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section involving the use of neural networks
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、車載電子制御装置に関する。
自動車等の車両にはカメラが設置され、カメラで撮像された画像データに基づいて自動運転支援などを行う車載電子制御装置が普及している。
このような車載電子制御装置では、カメラで撮像された画像データをJPEG などの画像フォーマットに変更する前の、すなわちローデータのままの画像データとして制御部へ取り込んでいる。これにより、制御部は、複数センサによる認識処理を統合して、認識精度の向上やリアルタイム性能の向上を図っている。他方で、ローデータを制御部へ入力する場合は、カメラと制御部の間でローデータを転送するため、例えば、4Kカメラで30fpsの非圧縮ローデータの場合、数百MB/secの伝送帯域が必要となる。そのため、高価なケーブル、高価な通信トランシーバLSIや通信コントローラLSIをカメラと制御部のインターフェースとして用いることとなる。さらに、カメラは、8Kなどより高解像度化に向けた開発が進んでいる。
特許文献1には、低解像度の全体画像を送信した後に部分画像を送信することで伝送容量を小さくする装置が記載されている。
特開2006-33793号公報
特許文献1では、走行する車両から撮像された画像データは考慮されておらず、画像データの伝送帯域を削減することができない。
本発明の第1の態様による車載電子制御装置は、車両に搭載されるものであって、立体物を検知するセンサと、前記車両が走行した場合に、前記センサで前記立体物が検知された検知時刻から所定時間を経過した撮像時刻における前記立体物の位置を求める制御部と、前記撮像時刻に前記立体物を撮像した画像データを前記制御部へ出力する撮像装置とを備え、前記センサは、レーダであり、前記検知時刻と、前記検知時刻における前記レーダに対する前記立体物の位置を表す第1の座標とを、前記制御部へ出力し、前記制御部は、前記レーダから入力された前記検知時刻と前記第1の座標に基づいて、前記撮像時刻における前記立体物の位置を求めて、前記撮像時刻と、前記撮像時刻における前記撮像装置に対する前記立体物の位置を表す第2の座標とを、前記撮像装置へ出力し、前記撮像装置は、前記制御部から入力された前記撮像時刻と前記第2の座標を用いて、前記立体物を撮像する
本発明の第2の態様による車載電子制御装置は、車両に搭載されるものであって、立体物を検知するセンサと、前記センサによる前記立体物の検知結果と前記車両の移動量とを比較して、前記立体物が移動体であるか否かを判定する制御部と、前記立体物を撮像した画像データを前記制御部へ出力する撮像装置と、を備え、前記撮像装置は、前記制御部による前記立体物が移動体であるか否かの判定結果に応じて、前記画像データを前記制御部へ出力する送信間隔を設定する。
本発明の第3の態様による車載電子制御装置は、車両に搭載されるものであって、立体物を撮像するとともに前記立体物に対する第1の認識処理を行う撮像装置と前記撮像装置で撮像された前記立体物の画像データに基づいて前記立体物に対する第2の認識処理を行う制御部とを備え前記撮像装置は、前記第1の認識処理により、前記車両の走行に伴って複数の前記立体物を認識し、認識した複数の前記立体物の各々に対して固有の識別番号を設定することで、各立体物の認識結果を前記識別番号により管理し、前記制御部は、撮像時刻と、複数の前記立体物のうちいずれかの立体物に対して設定された前記識別番号とを、前記撮像装置に通知し、前記撮像装置は、前記制御部より前記撮像時刻および前記識別番号が通知された場合に、前記撮像時刻における複数の前記立体物の撮像画像から当該識別番号に対応する前記立体物の高解像度の部分画像を生成し、生成した前記部分画像に基づく画像データを前記制御部へ出力し、前記制御部は、前記撮像装置から入力された前記画像データに基づいて、前記第2の認識処理を行う
本発明によれば、走行する車両から撮像された画像データの伝送において、伝送帯域を削減することができ、高価なケーブルや高価な通信部品を必要とせず、システムコストを削減できる。
第1の実施形態における車載電子制御装置を搭載した車両の構成を示すブロック図である。 走行する車両から標識を認識する例を示す図である。 レーダおよびカメラとのデータの流れを示す図である。 第1の実施形態における認識処理のフローチャートである。 第1の実施形態における標識認識の相対座標算出と単眼カメラ向け座標変換の例を示す図である。 第1の実施形態の標識認識の相対座標算出と単眼カメラ向け座標変換処理を示すフローチャートである。 第1の実施形態の単眼カメラ向けの画像幅の指定の例を示す図である。 第1の実施形態のカメラ画像の距離と画素幅のテーブルの例を示す図である。 第1の実施形態の単眼カメラによる画像切出しを説明する図である。 第1の実施形態の単眼カメラによる画像切出しの処理を示すフローチャートである。 ステレオカメラの原理を説明する図である。 第1の実施形態の標識認識の相対座標算出とステレオカメラ向け座標変換の例を示す図である。 第1の実施形態のステレオカメラ向けの画像幅の指定の例を示す図である。 第1の実施形態のステレオカメラによる画像切出しを説明する図である。 第1の実施形態のステレオカメラによる画像切出しの処理を示すフローチャートである。 第2の実施形態における車載電子制御装置を搭載した車両の構成を示すブロック図である。 第2の実施形態における相対座標算出と座標変換の例を示す図である。 第2の実施形態における座標変換の処理を示すフローチャートである。 第3の実施形態におけるカメラにより認識された例を示す図である。 第3の実施形態における車載電子制御装置を搭載した車両の構成を示すブロック図である。 第3の実施形態における認識管理テーブルの例を示す図である。 第3の実施形態におけるカメラによる切出し画像生成の処理を示すフローチャートである。
[第1の実施形態]
以下、第1の実施形態について図面を参照して説明する。
第1の実施形態では、カメラ3と制御部2の間のローデータの伝送帯域をどのように削減するかという課題に対し、カメラ3以外のセンサの情報、例えばレーダ4を用いて、必要なデータを特定して、伝送帯域を削減する車載電子制御装置について説明する。
図1は、第1の実施形態における車載電子制御装置1を搭載した車両の構成を示すブロック図である。車載電子制御装置1は、制御部2、カメラ3、レーダ4を備える。カメラ3は、高解像度の撮像装置であり、ステレオカメラでも単眼カメラのいずれでもよい。レーダ4は、フロントレーダ、サイドレーダのどちらか一方、または両方のいずれでもよい。また、レーダは例として挙げているカメラ3以外のセンサであればよく、ミリ波レーダに限定されず、ライダーとしても構わない。
制御部2は、センサインターフェース部11、統合認識部12、解析部13、経路計画部14から構成される。制御部2には、車速、舵角、ヨーレートなどの車両情報が入力される。
センサインターフェース部11は、カメラ3やレーダ4との入出力を行う。カメラ3からはローデータを出力し、切出した部分画像が制御部2のグローバル座標系のどこに相当するかをカメラ座標変換部32にて計算する。例えば、部分画像でステレオカメラから距離と角度を出力すると、カメラ座標の角度の方向と距離からグローバル座標系での場所を算出できる。単眼カメラで距離情報がない場合は、カメラ3から方向を出力するが、距離は出力しないので、グローバル座標系上で一意に場所の特定はできない。レーダ4は検知後のオブジェクトデータを出力し、レーダ座標変換部33にてオブジェクトデータをレーダ4の座標系から制御部2のグローバル座標系に変換する。カメラ時刻座標計算部31は、後述するように車両座標系をカメラ3の座標系に変換する。
統合認識部12は、認識部41にて認識処理を行う。認識部41は、全体画像を認識する全体認識部42と部分画像を認識する部分認識部43から構成される。機械学習を用いた認識を行う。部分認識部43は、高解像度の部分画像を用いて、文字認識などを行うもので、DNN(Deep Neural Network)を用いて構成してもよい。全体認識部42は、全体画像の認識処理を行うが、カメラ3の全体画像の認識結果とレーダ4の認識結果の座標系をどちらもグローバル座標系に共通化することで、レーダ4のオブジェクト情報を用いて、カメラ3の認識精度を高めることが行われる。
解析部13は、地図情報とレーダ4の認識結果や、認識部41の認識結果の座標情報をマッピングするローカルダイナミックマップ(LDM)44と、カメラ3で高解像度データとして切出すデータの選択の車両座標系の座標と時刻を計算する立体物計算部45から構成される。
経路計画部14は経路計算部46にてLDM44を元に安全領域計算と経路計算を行い、算出されたこれらの情報は自動運転支援に用いられる。
図2は、走行する車両10から標識を認識する例を示す図である。標識は、速度規制や解除を示す本標識55、57と本標識55、57の条件を表す補助標識54、56から構成される。補助標識54、56は文字や矢印などの記号を含んでおり、文字認識を正確に行わないと判断できない。例えば、補助標識54と56において、普通車がどちらに属するかを判定するには、“大貨等・三輪けん引を除く”を正確に認識できなければならない。このため、遠距離での正確な文字認識が、高解像度の4Kカメラや8Kカメラが必要となる理由の一つとなっている。
補助標識54、56の文字認識の判定には高解像度の画像が必要だが、山やガードレールなど背景部分は高解像度が必要なわけではない。そこで、詳細認識向けの高解像度の限定領域の画像と、画面全体の情報として解像度を下げた低解像度の全体画像か、フレームレートを下げた高解像度の全体画像のいずれかにする。これにより、常に通常フレームレートで、高解像度の全体画像のデータ伝送量に比べて、データ伝送量を削減することができる。
図2に示すように、走行している車両10に搭載されているレーダ4が時刻Tにおいて、距離d1[m]、角度θ1の方向で何らかの遠方立体物を検知したとする。車両10は、自車速Y[km/h]で進むので、カメラ3は、時刻T+ΔTで、角度φ1、または距離d2[m]の位置で遠方立体物を捉えられると予測される。その為、カメラ3に事前にT+ΔTの時刻に、角度φ1、または距離d2[m]の画像を切り出すよう制御部2からカメラ3に要求を出しておくと、カメラ3はT+ΔTの時刻になったときに、全体画像と該当の部分画像のみを切出した高解像度画像とを制御部2に転送する。ここで図2では角度φ1と記載しているが、カメラ3と図面上の座標系が異なる場合は、カメラ3の座標系に合わせた角度でカメラ3に通知する必要がある。制御部2内では、例えば、DNN(Deep Neural Network)を含む認識部41があり、そこに高解像度の部分画像を入力し、文字認識を行う。
このように制御部2に入力されるレーダ4などの他センサの情報を用いて、カメラ3の画像の切出し位置を指定するので、例えば、カメラ3よりも検知距離の長いレーダ4で、カメラ3では検知できない距離、時点の情報を利用し、制御部2からカメラ3に通知しておくことで、カメラ3で有効な画像が取得できる時点で直ちに高解像度の部分画像の切り出しを行うことができる。
図3は、レーダ4およびカメラ3とのデータの流れを示す図である。この図を基に、図2で示した標識認識の処理について説明する。
まず、レーダ4にて、遠方の立体物をレーダ4の座標系で(時刻T、角度θ1、距離d1)61で検知し、出力する。この検知結果が制御部2に入力され、レーダ座標変換部33にて、グローバル座標系(座標系1とも呼ぶ)に変換され、(時刻T、座標系1(x1、y1、z1))62として出力され、解析部13の立体物計算部45に入力される。
カメラ3が十分な解像度で立体物を判別できる領域をカメラ3の有効領域と呼ぶとすると、立体物計算部45にて、カメラ3の有効領域に立体物が現れる時刻と位置を計算する。CAN経由で制御部2に入力される車速、舵角、ヨーレートなどの自車の挙動を示す車両情報60と、レーダ4の車両座標系の情報の時刻T、座標系1(x1、y1、z1)62を用いて、カメラ3のフレームレートの間隔に合わせて複数の時刻と座標系1の座標が計算される。ここでは、(時刻T+ΔT、識別子ID=1、座標系1(x2、y2、z2))63を複数点のうちの最初の点の座標とする。
カメラ時刻座標計算部31にて、車両座標系からカメラ3の座標系(時刻T+ΔT、角度φ1、距離d2)64に変換する。角度は極座標系の角度を示し、距離はカメラ3からの距離を示す。ステレオカメラなどの距離を取り扱えるカメラ3向けには、距離情報も併せて出力する。時間情報に関しては、時刻で通知してもよいし、フレーム番号で通知してもよい。
カメラ3がステレオカメラのような視差を用いて距離を取り扱えるカメラ3とすると、時間、角度、距離から画像変換切出部21で、高解像度の画像の切出し65と、小容量の全体画像を作成する。小容量の全体画像とは、画像をダウンコンバートして低解像度の全体画像でもよいし、特定のフレームを間引きし、低フレームレートの高解像度の全体画像のデータのいずれでもよい。
カメラ3から出力されたローデータの画像は、カメラ座標変換部32にて、車両座標系に変換される。切出画像65は、車両座標系に変換され、(時刻T+ΔT、座標系1(x2、y2、z2))66として扱われる。そして、切出し画像部は認識部41の部分認識部43にて認識処理が行われ、本標識または補助標識の認識並びに識別が行われる。
図4は、第1の実施形態における認識処理のフローチャートである。
図4において、処理S1、S3~S6、S9~S10は、制御部2の処理であり、処理S2はレーダ4の処理であり、処理S7~S8はカメラ3の処理である。
処理S1では、一定時間が経過したか判別し、一定時間が経過すると、処理S2、処理S8へ進む。処理S2では、レーダ4から時刻Tにて、レーダ4から遠方の標識候補を含む一つまたは複数の立体物の検知座標が制御部2に出力される。また、処理S8では、カメラ3からローデータの小容量全体画像の画像データと高解像度切出画像の画像データが制御部2に出力される。
処理S2で、レーダ4からの検知座標が出力されると、処理S3では、制御部2内のレーダ座標変換部33にて、レーダ4での検知座標からグローバル座標系の座標に座標変換される。その後、処理S4へ進む。
処理S4では、レーダ4の方がカメラ3より遠距離の検知が出来るので、カメラ3で立体物を有効画像として扱える時刻、例えば、該当立体物の画像の幅が特定のピクセル数となるのは、レーダ4での検知時刻(T)より時間が進んでからとなる。立体物計算部45では、車速、舵角、ヨーレートから車両挙動を計算し、処理S3でグローバル座標系に座標変換したレーダ4での立体物の検知座標に基づいて、予めシステムで定めたカメラ3が有効画像として扱える領域に、該当立体物が入る時刻(T+ΔT)とそのときの座標(x2、y2、z2)をグローバル座標系上で計算する。
次に処理S5では、カメラ時刻座標計算部31で、処理S4で計算した時刻(T+ΔT)における立体物の座標(x2、y2、z2)をグローバル座標系からカメラ座標系に座標変換を行う。例えば、カメラ3が極座標であれば、極座標への変換を行う。ステレオカメラのように距離を取り扱える場合は、カメラ3からの距離も計算する。
次の処理S6では、カメラ3で取り扱える情報にも依存するが、制御部2からカメラ3に対し、処理S4で計算した時刻(T+ΔT)の時刻情報と、処理S5でグローバル座標系からカメラ座標系に座標変換した時刻(T+ΔT)における立体物の座標情報(角度、距離)とを出力する。時刻は絶対時刻で定めてもよいし、フレーム番号でもよい。
カメラ3では、処理S7において、カメラ3の画像変換切出部21により、制御部2から受け取った、時刻情報と座標情報を用いて、立体物を撮像して、座標近傍部分の高解像度画像の切出しを行う。さらに、全体画像の低解像度化や、フレームレートを下げ、データ容量を削減した全体画像を生成する。
次に、処理S8では、時刻情報を付加した小容量全体画像と、時刻情報と座標情報を付加した高解像度切出画像とをカメラ3から制御部2に出力する。なお、カメラ3は必ずしも撮像領域の全ての画像を全体画像として出力しなくてもよい。立体物の近傍部分を切出した高解像度の切出画像よりも少なくとも広い範囲を撮像した画像であれば、全体画像として出力することが可能である。
制御部2では、処理S9で、カメラ座標変換部32により、受け取った切出画像に関し、グローバル座標系に座標変換する。
そして、次の処理S10で、制御部2の認識部41は、全体認識部42で全体画像の認識、部分認識部43では切出し画像の認識を行う。部分認識部43では、例えば、補助標識の文字認識など、立体物の矩形認識やレーンとは異なる種類の認識を行ってもよい。
(単眼カメラの場合の座標変換)
第1の実施形態において、レーダ4のレーダ座標系、制御部2のグローバル座標系、カメラ3のカメラ座標系の座標変換について、単眼カメラの場合を例に、図5~図10を参照して説明する。
図5は、レーダ4による標識の検知情報を用いて、時刻(T+ΔT)で標識とカメラ3の相対座標を算出し、単眼カメラのカメラ座標系へ変換する例を示している。
まず、レーダ4のレーダ座標系で、自車両から時刻T、距離(d1)、角度(θ1)で標識を検知したと仮定する。レーダ座標変換部33にて、レーダ座標系からグローバル座標系に変換される。制御部2は、自車両の時刻Tのグローバル座標は把握しているので、変換された相対座標(x1、y1、z1)を用いて標識の座標(x、y、z)をプロットすることができる。自車両は、車両情報の例えば、車速Vや加速度αを用いて、時刻T+ΔTの座標を計算することができる。標識の座標(x、y、z)と時刻T+ΔTの自車両の座標から相対座標(x2、y2、z2)を算出する。このとき、時刻T+ΔTでは、自車両と標識の相対座標での距離よりカメラ3が検知できる領域にあるとする。
そして、グローバル座標系の相対座標(x2、y2、z2)をカメラ座標系に変換すると、時刻T+ΔTで角度φ1の方向で表される。
図6は、図5で示した単眼カメラのカメラ座標系について、その座標変換処理を示すフローチャートである。図4で示したフローチャートの立体物計算部45による処理S4を詳細に示したものである。
処理S3では、図4において前述したように、制御部2内のレーダ座標変換部33にて、レーダ4での検知座標(時刻T、距離d1、角度θ1)からグローバル座標系の座標(時刻T、対自車両相対座標(x1、y1、z1))に座標変換される。
図6に示す次の処理S4-1では、時刻Tにおいて、自車両の位置に対自車両相対座標(x1、y1、z1)を加算して、標識座標(x、y、z)を計算する。
そして、処理S4-2では、自車両の車両情報(車速、加速度、操舵角等)から、ある時刻における自車両の位置を予測する。標識座標(x、y、z)は固定であるので、カメラ3の検知距離を例えば、100mとすると、標識の座標から半径100mの地点に入る予想時刻を算出することができる。この時刻をT+ΔTとする。時刻をカメラ3のフレーム周期に正規化することもできる。
次の処理S4-3では、時刻T+ΔTが定められると、自車両の位置は車両情報から予測できるので、自車両の予測座標と、固定の標識座標の差分をとり、時刻T+ΔTでの相対座標(x2、y2、z2)を算出する。
処理S5では、時刻T+ΔTでの対車両相対座標(x2、y2、z2)が求められているので、カメラ座標系への座標変換を行なうことにより、時刻T+ΔT、角度φ1を算出する。
(単眼カメラの場合の切り出す画像の幅)
次に、第1の実施形態において、カメラ3で切り出す画像の幅w’をどのように定めるかについて説明する。
図7は、第1の実施形態の単眼カメラ向けの画像幅の指定の例を示す図である。図7に示すように、レーダ4が時刻Tに、距離d、角度θ1で検知した標識(立体物)の幅がwであると仮定する。カメラ3は時刻T+ΔTで標識(立体物)を検知する場合、レーダ4とカメラ3では、検知した時刻が異なるので、標識(立体物)への角度、距離だけでなく、幅w’も異なる。
立体物の幅が決まっている場合、カメラ画像の距離と幅(ピクセル数)の関係をテーブルとして表すことができる。図8は、カメラ画像の距離と画素幅のテーブルの例を示す図である。図8に示すように、ある固定の標識の幅を定めた場合、距離に応じた画像幅のピクセル数を示している。このテーブルより距離を基に参照し、適切な距離がテーブルになければ線形補間をして算出する。別の手段として、レーダ4の幅とレーダ距離、カメラ距離の関係から次式(1)に基づいて算出してもよい。
Wc=Wr × (Dr/Dc) × K … 式(1)
ここで、Wc:カメラ幅、Wr:レーダ幅、Dr:レーダ距離、Dc:カメラ距離、K:係数である。
カメラ時刻座標計算部31により、図8に示したテーブルを参照し、または式(1)でカメラの画像での幅w’を算出する。
(単眼カメラの場合の画像の切り出し)
第1の実施形態において、単眼カメラでどのように画像を切り出すかについて説明する。
図9は、単眼カメラによる画像切出しを説明する図である。制御部2から、切出画像の情報として、時刻T+ΔT、角度φ1、距離d2、幅w’、識別子ID=1の情報を受け取る。画像取得処理部20にて、全体画像を毎フレーム生成する。画像変換切出部21では、低解像度の全体画像、または一部のフレームのみ使用した間引きフレームによる全体画像に加え、切出し画像を生成する。単眼カメラは距離情報を有しないため、距離情報は使用しない。制御部2からの指示に従い、時刻T+ΔTの全体画像に対し、角度φ1、幅w’で切出し画像を生成する。
図10は、単眼カメラによる画像切出しの処理を示すフローチャートである。このフローチャートは図4の処理S7の詳細を示す。
制御部2は、処理S6で、図4で述べたと同様に、切出画像の情報として、時刻T+ΔT、識別子ID=1、角度φ1、距離d2、幅w’の情報を出力する。
次に、処理S7-1で、画像取得処理部20にて、毎フレーム全体画像を生成し、これを出力する。次の処理S7-2で、画像変換切出部21では、時刻T+ΔTの全体画像に対し、角度φ1、幅w’で切出し画像を生成する。そして、処理S7-3で、小容量の全体画像として、画像をダウンコンバートした全体画像を毎フレーム生成するか、もしくは、一部のフレームのみ使用した間引きフレームでの全体画像を生成する。次の処理S8で、処理S7-2で生成した高解像度の切出画像と、処理S7-3で生成した小容量全体画像をカメラ3から出力する。
(ステレオカメラの場合の座標変換)
第1の実施形態において、レーダ4のレーダ座標系、制御部2のグローバル座標系、カメラ3のカメラ座標系の座標変換について、ステレオカメラの場合を例に、図11~図18を参照して説明する。
図11はステレオカメラの原理を説明する図である。左右のカメラ3の撮像面の位置ずれ(視差)を基に、画面全体で距離分布画像を生成する。距離Dは式(2)で算出する。
D=B × f / Z … 式(2)
ここで、D:距離、B:カメラの基線長、f:カメラ焦点距離、Z:撮像面の位置ずれ、である。
図12は、標識のレーダ4の検知情報を用いて、時刻(T+ΔT)での標識とカメラ3の相対座標を算出し、ステレオカメラのカメラ座標系へ変換する例を示している。図5で示した単眼カメラとは、カメラ3で標識の距離を扱う点が異なる。
まず、レーダ4のレーダ座標系で、時刻T、距離(d1)、角度(θ1)で標識を検知したと仮定する。レーダ座標変換部33にて、レーダ座標系からグローバル座標系に変換される。制御部2は、自車両の時刻Tのグローバル座標は把握しているので、変換された相対座標(x1、y1、z1)を用いて標識の座標(x、y、z)をプロットすることができる。自車両は、車両情報の例えば、車速Vや加速度αを用いて、時刻T+ΔTの座標を計算することができる。標識の座標(x、y、z)と時刻T+ΔTの自車両の座標から相対座標(x2、y2、z2)を算出する。このとき、時刻T+ΔTでは、自車両と標識の相対座標での距離よりカメラ3が検知できる領域にあるとする。
そして、グローバル座標系の相対座標(x2、y2、z2)をカメラ座標系に変換すると、時刻T+ΔTで角度φ1の方向で表される。ステレオカメラは画素単位での距離を示す視差画像を有しており、画素単位で距離がわかる。そこで、画像の角度φ1の部分と視差画像を重ねることにより、距離(d2)の部分画像を導出することができる。
(ステレオカメラの場合の切り出す画像の幅)
第1の実施形態のシステムにおいて、ステレオカメラで切り出す画像の幅w’をどのように定めるかについて説明する。
図13は、第1の実施形態のステレオカメラ向けの画像幅の指定の例を示す図である。 図13に示すように、レーダ4が時刻Tに、距離d、角度θ1で検知した標識(立体物)の幅がwであると仮定する。カメラ3は時刻T+ΔTで標識(立体物)を検知する場合、レーダ4とカメラ3では、検知した時刻が異なるので、標識(立体物)への角度、距離だけでなく、幅w’も異なる。
立体物の幅が決まっている場合、図8に示したようにカメラ画像の距離と幅(ピクセル数)の関係をテーブルとして表すか、式(1)のように、レーダ4の幅とレーダ距離、カメラ距離の関係から算出してもよい。カメラ時刻座標計算部31により、図8に示したテーブルを参照し、または式(1)でカメラの画像での幅w’を算出する。
(ステレオカメラの場合の画像の切り出し)
第1の実施形態において、ステレオカメラで距離を考慮して、どのように画像を切り出すかについて説明する。
図14は、第1の実施形態のステレオカメラによる画像切出しを説明する図である。制御部2から、切出画像の情報として、時刻T+ΔT、角度φ1、距離d2、幅w’、識別子ID=1の情報を受け取る。画像取得処理部20にて、全体画像を毎フレーム生成する。視差画像を視差画像生成部200にて毎フレーム生成する。
画像変換切出部21では、低解像度の全体画像、または一部のフレームのみ使用した間引きフレームでの全体画像に加え、切出し画像を生成する。時刻T+ΔTの全体画像と視差画像を使用する。距離探索部210にて、角度φ1の領域のうち、距離d2となる部分を探索し、一致した点を中心に幅w’の領域とする。距離探索部で、距離d2、幅w’の領域を全体画像から切り出すことで、切出し画像を生成する。
図15は、ステレオカメラによる画像切出しの処理を示すフローチャートである。このフローチャートは図4の処理S7の詳細を示す。
制御部2は、処理S6で、図4で述べたと同様に、切出画像の情報として、時刻T+ΔT、識別子ID=1、角度φ1、距離d2、幅w’の情報を出力する。
次に、処理S7-10で、画像取得処理部20にて、全体画像と、視差画像生成部200にて視差画像を毎フレーム生成し、出力する。次の処理S7-11で、画像変換切出部21では、距離探索部210にて、時刻T+ΔTの視差画像に対し、角度φ1で距離d2となる範囲を探索し、領域を見つける。そして、処理S7-12で、この領域に対し、幅をw’として、全体画像から切出し画像を生成する。次の処理S7-13で、小容量の全体画像として、画像をダウンコンバートした全体画像を毎フレーム生成するか、もしくは、一部のフレームのみ使用した間引きフレームでの全体画像を生成する。そして、処理S8で、処理S7-12で生成した高解像度の切出画像と、処理S7-13で生成した小容量全体画像をカメラ3から出力する。
以上のように、単眼カメラの場合は、特定の時刻T+ΔTに、角度φ1と幅w’の切出し画像、ステレオカメラの場合は、更に距離d2も含めた切出し画像を生成する。
第1の実施形態によれば、走行する車両から撮像された画像データの伝送において、伝送帯域を削減することができ、高価なケーブルや高価な通信部品を必要とせず、システムコストを削減できる。
[第2の実施形態]
第2の実施形態では、第1の実施形態に対し、レーダ4で検知した立体物が移動体か静止物かを判定し、移動体と静止物でカメラ3から切出す画像の大きさや送信間隔を変える例について説明する。
レーダ4の初期認識の立体物を一定の時間追跡し、自車の車速、舵角、ヨーレート等の車両情報と比較することにより、該当する立体物が自車の移動量に応じた座標移動であれば静止物、自車の移動量と異なる移動を行う場合は移動体と判定することができる。
移動体の場合、カメラ3での切出し画像では、該当する立体物の移動量を踏まえて切出し画像を生成する。画像サイズを大きくするなどマージンを含めてもよい。静止物は、自車の移動のみとなるため、画像サイズに対するマージンは少なくてよい。カメラ3から制御部2への切出し画像の送信間隔も移動体は送信間隔を短く、静止物の切出し画像の送信間隔は長くしてよい。例えば、移動体は毎フレーム切り出すが、静止物は数フレームに1回でよい。
図16は、第2の実施形態における車載電子制御装置1を搭載した車両の構成を示すブロック図である。第1の実施形態と同一箇所には同一の符号を付してその説明を省略する。
第1の実施形態と異なり、認識部41内に、移動体静止物判定部71を設ける。移動体静止物判定部71では、レーダ4の検知結果をトラッキングし、自車の移動情報との差分から移動体、静止物の判定を行い、移動体は自車に対する相対速度と方向を算出する。
立体物計算部45は、移動体、静止物それぞれで切出し画像の送信間隔を定め、移動体の場合は、移動の相対速度と方向から切り出す角度と距離を算出する。
カメラ時刻座標計算部31は、車両座標系からカメラ座標系に座標変換を行い、カメラ3に出力する。カメラ3には時刻、識別子、角度、距離、幅を指示情報76として送信する。
カメラ3は、小容量の全体画像と、制御部2からの指示情報76に従って、切り出した高解像度画像とを送信する。第1の実施形態と同じく、単眼カメラでは角度、ステレオカメラでは角度、距離情報を用いて切出画像を生成する。
図17は、第2の実施形態における相対座標算出と座標変換の例を示す図である。図17を参照して、立体物が移動体か静止物を判定し、自車両に対する相対座標を算出する動作について説明する。図17では、レーダ4の立体物の検知情報を用いて、移動体かどうかを判断し、時刻(T+ΔT)での立体物とカメラ3の相対座標を算出し、カメラ座標系へ変換する例を示している。
まず、レーダ4のレーダ座標系で、立体物情報をレーダ4のサンプリング周期で複数回取得しておく。例えば、時刻Tの前に、時刻T’、T”で立体物の相対座標を取得しておく。そして、時刻T’、T”、Tの情報を用いて、移動体かどうかを判定し、時刻T+ΔTの相対位置を予測する。
レーダ座標変換部33にて、レーダ4で検知した時刻T’、T”、Tの立体物の座標をレーダ座標系からグローバル座標系に変換する。制御部2は、各時刻の自車両のグローバル座標を把握しているので、相対座標、例えば、時刻Tの相対座標(x1、y1、z1)を用いて、自車両の座標と立体物の座標をグローバル座標系にプロットできる。同じように、時刻T’、T”の立体物の座標をグローバル座標系にプロットできる。時刻T’、T”または時刻T”、Tからベクトルv、あるいは単位時間当たりのベクトルを算出でき、これにより時刻T+ΔTの立体物のグローバル座標系の座標を求める。
車両情報(車速V、加速度α)を用いて自車両の時刻T+ΔTのグローバル座標系の座標を算出するので、時刻T+ΔTの立体物と自車両の座標から相対座標(x3、y3、z3)を算出できる。時刻T+ΔTの自車両に対する立体物の相対座標がわかれば、カメラ時刻座標計算部31でカメラ座標系へ座標変換を行うと、角度φ2が得られる。
図18は、第2の実施形態における座標変換の処理を示すフローチャートである。図17の立体物が移動体か静止物を判定し、自車両に対する相対座標を算出する動作を示す。第1の実施形態で示した図4のフローチャートにおいて、立体物計算部45での処理S4に移動体用の処理が追加されたものである。なお、その他の処理は、図4で示したフローチャートと同様の処理を行う。
図18の処理S3において、レーダ座標変換部33は、レーダ4で検知した立体物が、移動体か静止物であるかどうかを判定するために、レーダ4が検知した時々刻々の結果をグローバル座標系の座標算出を行なう。このため、繰り返し処理を行っている。例として、時刻T’、T”、Tの情報を使用する。制御部2内のレーダ座標変換部33にて、時刻T’、T”、Tのレーダ座標系の自車両から立体物への相対座標からグローバル座標系の相対座標に座標変換される。
自車両の位置に関して、各時刻T’、T”、Tのグローバル座標系の座標情報を有している。そこで、次の処理S4-10では、自車両から立体物への相対座標から自車両の座標の差分をとると、立体物のグローバル座標系の座標を算出する。時刻T’の座標(Xa、Ya、Za)、時刻T” の座標(Xb、Yb、Zb)、時刻Tの座標(Xc、Yc、Zc)を算出する。
次に、処理S4-11で、立体物計算部45にて、例として挙げた時刻3点T’、T”、Tの座標のうち、2点の座標を用いて、座標の差分と時間差分から単位時間当たりの移動ベクトルv→を求める。
移動ベクトルv→がゼロのときは静止物、ゼロでないときは移動体となる。処理S4-12で、移動体のときは毎フレーム、静止物のときは数フレームに1回のようにカメラ3への指示の送信間隔を長くするよう、送信間隔計算を行なう。
自車両の車両情報(車速、加速度、操舵角等)と、立体物の単位時間の移動ベクトルから、車両と立体物の座標が予測できる。処理S4-13で、カメラ3の検知距離を例えば、100mとすると、予測した立体物の座標から半径100mの地点に入る車両の予想時刻を算出する。この時刻をT+ΔTとする。時刻をカメラ3のフレーム周期に正規化することもできる。
次に、処理S4-14で、時刻T+ΔTを定めると、自車両の位置は車両情報から予測でき、自車両の予測座標と、単位時間の移動ベクトルv→から立体物の座標が予測できるので、それらの座標から差分をとり、自車両と立体物の相対座標(x3、y3、z3)を計算する。
そして、処理S5で、カメラ時刻座標計算部31にて、時刻T+ΔTの相対座標(x3、y3、z3)をカメラ座標系に座標変換し、角度φ2、距離d2を得る。
図18のフローチャートでは省略しているが、時刻T+ΔTの後、送信間隔に従って、立体物計算部45で自車両と立体物の相対座標を計算し、カメラ時刻座標計算部31にて、カメラ座標系の座標変換を行なう。
第2の実施形態によれば、走行する車両から撮像された画像データの伝送において、移動体と静止物でカメラ3から切出す画像の大きさや送信間隔を変えるので、制御部2との間の伝送帯域を削減することができ、高価なケーブルや高価な通信部品を必要とせず、システムコストを削減できる。
[第3の実施形態]
第1の実施形態、第2の実施形態では、カメラ3の切出画像に対し、カメラ3以外のレーダ4などのセンサの情報を用いて必要なデータを特定した。第3の実施形態では、カメラ3以外のセンサの情報を使用せず、カメラ3で切出画像を選択する。
図19は、カメラ3により認識された例を示す。カメラ3で認識した全ての立体物を制御部2に送信すると数が多いため、選択を行う。例えば、内容が識別できていないが標識らしき立体物81、レーンに進入してくる車両82や、新規に検知した歩行者87をカメラ3側で選別し、識別IDと時刻、極座標の角度φや、ステレオカメラ3では更に立体物の距離の情報を切出し画像に付加して、制御部2に送信する。制御部2から送信するようカメラ3に指示があった立体物に関して、例えば、標識らしき立体物81、レーンに進入してくる車両82は、継続してカメラ3から切出画像を送信する。このように、カメラ3で選択した画像、制御部2から要求のあった画像を切出して、カメラ3から制御部2に切出し画像を送信する。
図20は、第3の実施形態における車載電子制御装置1を搭載した車両の構成を示すブロック図である。第1の実施形態と同一箇所には同一の符号を付してその説明を省略する。
第1の実施形態、第2の実施形態と異なる点は、カメラ3自体も認識処理を行うので、カメラ認識部22と認識管理テーブル23を設けていることと、カメラ3と制御部2どちらも、カメラ3から出力する認識IDを基に管理をすることである。制御部2からカメラ3にIDを指定することにより、車両が走行して立体物が移動されていても、カメラ3はカメラ認識部22による立体物の追跡(トラッキング)により、正確な立体物の位置を把握して、指定されたIDに対応する立体物の画像データを送信することができる。
図21は認識管理テーブル23の例を示す図である。認識管理テーブル23は、フレーム番号231、認識ID232、角度233、距離234、画面座標235、画面サイズ236を保存する。そして、毎フレームで認識管理テーブル23内のデータを更新する。図21では、変化が分かるように、A→Bと記述したが、実際は、フレーム番号100のフレームは“A”のデータのみ、フレーム番号101のフレームは“B”のデータのみ記載される。認識ID=87は、フレーム番号101のフレームで初めて認識管理テーブル23に登録される場合を示す。また、車両が走行している場合は、毎フレームで認識管理テーブル23の情報の内容が変わる。
図22は、カメラ3による切出し画像生成の処理を示すフローチャートである。
処理S20では、制御部2から切出画像の要求として、時刻T、認識ID=81、82がカメラ3に通知される。次の処理S21で、カメラ3内の画像取得処理部20で、制御部2から要求があった全体画像と視差画像を毎フレーム生成し、カメラ認識部22へ出力する。そして、処理S22で、カメラ認識部22にて、トラッキングなど立体物の認識処理を行う。処理S23で、認識処理の結果に基づいて、認識管理テーブル23の内容を毎フレーム更新する。カメラ認識部22は立体物を認識処理して認識管理テーブル23を更新しているので、走行している車両から立体物81や車両82の位置を特定できる。
処理S24で、制御部2から時刻T、認識IDの指定があり、時刻が指定された時刻Tになると、処理S25へ進み、画像変換切出し部で、認識管理テーブル23の情報を元に、画面座標、画面サイズで立体物の切出し画像を生成する。
処理S26では、小容量の全体画像として、画像をダウンコンバートした全体画像を毎フレーム生成するか、もしくは、一部のフレームのみ使用した間引きフレームでの全体画像を生成する。以下、制御部2から時刻T、認識IDの指定がある毎に、処理S24以下の処理を繰り返す。そして、処理S27において、処理S25で生成された高解像度の切出画像と、処理S26で生成された小容量全体画像を認識IDを付加してカメラ3から出力する。制御部2は、高解像度の部分画像のうち、認識部41の部分認識部43の認識処理のために継続して必要かどうかを判断する。以下、処理S20で述べたように、制御部2は、継続して認識処理が必要と判断した場合に、切出画像の要求として、部分画像データの認識IDをカメラに通知する。
第3の実施形態によれば、走行する車両から撮像された画像データの伝送において、カメラ3で認識した全ての立体物を制御部2へ逐次送信する必要がなくなるので、制御部2との間の伝送帯域を削減することができ、高価なケーブルや高価な通信部品を必要とせず、システムコストを削減できる。
以上説明した実施形態によれば、次の作用効果が得られる。
(1)車載電子制御装置1は、立体物を検知するセンサ(レーダ4)と、車両が走行した場合に、センサで立体物が検知された時刻から経過した所定時刻における立体物の位置を求める制御部2と、上記位置における所定時刻に、立体物を撮像した画像データを制御部2へ出力する撮像装置(カメラ3)とを備えた。これにより、走行する車両から撮像された画像データの伝送において、伝送帯域を削減することができ、高価なケーブルや高価な通信部品を必要とせず、システムコストを削減できる。
(2)立体物を撮像する撮像装置(カメラ3)と撮像装置(カメラ3)で撮像された立体物の画像データに基づいて認識処理を行う制御部2とを備えた車載電子制御装置1において、撮像装置(カメラ3)は、車両の走行に伴って立体物を認識し、認識した立体物の画像データを対応する識別番号により管理し、制御部2より識別番号が通知された場合に、識別番号に対応する立体物の高解像度の部分画像を生成し、生成した画像データおよび識別番号を制御部2へ出力し、制御部2は、認識処理に必要な画像データの識別番号を撮像装置(カメラ3)に通知する。これにより、走行する車両から撮像された画像データの伝送において、伝送帯域を削減することができ、高価なケーブルや高価な通信部品を必要とせず、システムコストを削減できる。
本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態を組み合わせた構成としてもよい。
1・・・車載電子制御装置
2・・・制御部
3・・・カメラ
4・・・レーダ
10・・・車両
11・・・センサインターフェース部
12・・・統合認識部
13・・・解析部
14・・・経路計画部
20・・・画像取得処理部
21・・・画像変換切出部
23・・・認識管理テーブル
31・・・カメラ時刻座標計算部
32・・・カメラ座標変換部
33・・・レーダ座標変換部
41・・・認識部
42・・・全体認識部
43・・・部分認識部
44・・・ローカルダイナミックマップ(LDM)
45・・・立体物計算部
46・・・経路計算部
71・・・移動体静止物判定部

Claims (10)

  1. 車両に搭載される車載電子制御装置であって、
    立体物を検知するセンサと、
    前記車両が走行した場合に、前記センサで前記立体物が検知された検知時刻から所定時間を経過した撮像時刻における前記立体物の位置を求める制御部と、
    前記撮像時刻に前記立体物を撮像した画像データを前記制御部へ出力する撮像装置と、を備え、
    前記センサは、レーダであり、前記検知時刻と、前記検知時刻における前記レーダに対する前記立体物の位置を表す第1の座標とを、前記制御部へ出力し、
    前記制御部は、前記レーダから入力された前記検知時刻と前記第1の座標に基づいて、前記撮像時刻における前記立体物の位置を求めて、前記撮像時刻と、前記撮像時刻における前記撮像装置に対する前記立体物の位置を表す第2の座標とを、前記撮像装置へ出力し、
    前記撮像装置は、前記制御部から入力された前記撮像時刻と前記第2の座標を用いて、前記立体物を撮像する車載電子制御装置。
  2. 請求項1に記載の車載電子制御装置において、
    前記レーダは、所定の時間間隔で前記立体物の検知を複数回行い、
    前記制御部は、前記レーダによる複数回の前記立体物の検知結果と前記車両の移動量とを比較して、前記立体物が移動体であるか否かを判定し、
    前記撮像装置は、前記制御部による前記立体物が移動体であるか否かの判定結果に応じて、前記画像データを前記制御部へ出力する送信間隔を設定する車載電子制御装置。
  3. 車両に搭載される車載電子制御装置であって、
    立体物を検知するセンサと、
    前記センサによる前記立体物の検知結果と前記車両の移動量とを比較して、前記立体物が移動体であるか否かを判定する制御部と、
    前記立体物を撮像した画像データを前記制御部へ出力する撮像装置と、を備え、
    前記撮像装置は、前記制御部による前記立体物が移動体であるか否かの判定結果に応じて、前記画像データを前記制御部へ出力する送信間隔を設定する車載電子制御装置。
  4. 請求項2または3に記載の車載電子制御装置において、
    記撮像装置は、前記制御部により前記立体物が移動体であると判定された場合には、前記画像データを前記制御部へ出力する送信間隔を短くし、前記制御部により前記立体物が静止物であると判定された場合には、前記画像データを前記制御部へ出力する送信間隔を長くする車載電子制御装置。
  5. 請求項1から請求項3までのいずれか一項に記載の車載電子制御装置において、
    前記撮像装置が前記制御部へ出力する前記画像データはローデータである車載電子制御装置。
  6. 請求項1から請求項3までのいずれか一項に記載の車載電子制御装置において、
    前記撮像装置は、前記立体物を撮像した部分画像と、前記部分画像よりも広い範囲を撮像した前記部分画像よりも低解像度または低フレームレートの全体画像とを生成し、生成した前記部分画像および前記全体画像にそれぞれ基づく前記画像データを前記制御部へ出力する車載電子制御装置。
  7. 請求項1から請求項3までのいずれか一項に記載の車載電子制御装置において、
    前記制御部は、前記撮像装置より出力された前記画像データに基づいて前記立体物を認識する車載電子制御装置。
  8. 車両に搭載される車載電子制御装置であって、
    立体物を撮像するとともに前記立体物に対する第1の認識処理を行う撮像装置と
    前記撮像装置で撮像された前記立体物の画像データに基づいて前記立体物に対する第2の認識処理を行う制御部とを備え
    前記撮像装置は、前記第1の認識処理により、前記車両の走行に伴って複数の前記立体物を認識し、認識した複数の前記立体物の各々に対して固有の識別番号を設定することで、各立体物の認識結果を前記識別番号により管理し
    前記制御部は、撮像時刻と、複数の前記立体物のうちいずれかの立体物に対して設定された前記識別番号とを、前記撮像装置に通知し、
    前記撮像装置は、前記制御部より前記撮像時刻および前記識別番号が通知された場合に、前記撮像時刻における複数の前記立体物の撮像画像から当該識別番号に対応する前記立体物の高解像度の部分画像を生成し、生成した前記部分画像に基づく画像データを前記制御部へ出力し、
    前記制御部は、前記撮像装置から入力された前記画像データに基づいて、前記第2の認識処理を行う車載電子制御装置。
  9. 請求項8に記載の車載電子制御装置において、
    前記撮像装置が前記制御部へ出力する前記画像データはローデータである車載電子制御装置。
  10. 請求項8または請求項9に記載の車載電子制御装置において、
    前記撮像装置は、前記部分画像と、前記部分画像よりも広い範囲を撮像した前記部分画像よりも低解像度または低フレームレートの全体画像とを生成し、生成した前記部分画像および前記全体画像にそれぞれ基づく前記画像データを前記制御部へ出力する車載電子制御装置。
JP2018125507A 2018-06-29 2018-06-29 車載電子制御装置 Active JP7195787B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018125507A JP7195787B2 (ja) 2018-06-29 2018-06-29 車載電子制御装置
US17/254,527 US11908199B2 (en) 2018-06-29 2019-06-03 In-vehicle electronic control device
DE112019002388.8T DE112019002388T5 (de) 2018-06-29 2019-06-03 Fahrzeuginterne elektronische steuervorrichtung
CN201980031706.5A CN112272841B (zh) 2018-06-29 2019-06-03 车载电子控制装置
PCT/JP2019/021907 WO2020003903A1 (ja) 2018-06-29 2019-06-03 車載電子制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018125507A JP7195787B2 (ja) 2018-06-29 2018-06-29 車載電子制御装置

Publications (2)

Publication Number Publication Date
JP2020004293A JP2020004293A (ja) 2020-01-09
JP7195787B2 true JP7195787B2 (ja) 2022-12-26

Family

ID=68987048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018125507A Active JP7195787B2 (ja) 2018-06-29 2018-06-29 車載電子制御装置

Country Status (5)

Country Link
US (1) US11908199B2 (ja)
JP (1) JP7195787B2 (ja)
CN (1) CN112272841B (ja)
DE (1) DE112019002388T5 (ja)
WO (1) WO2020003903A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7354905B2 (ja) * 2020-04-01 2023-10-03 株式会社デンソー 走行支援要求装置
US20210362749A1 (en) * 2020-05-20 2021-11-25 Gm Cruise Holdings Llc Hardware accelerated network interface for an autonomous vehicle switched-network
WO2023242903A1 (ja) * 2022-06-13 2023-12-21 三菱電機株式会社 物体検出装置
JP2024089824A (ja) * 2022-12-22 2024-07-04 日立Astemo株式会社 走行支援装置、及び走行支援方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122805A (ja) 2002-09-30 2004-04-22 Sanyo Electric Co Ltd 車両用前方表示装置
JP2006033793A (ja) 2004-06-14 2006-02-02 Victor Co Of Japan Ltd 追尾映像再生装置
JP2015041820A (ja) 2013-08-20 2015-03-02 キヤノン株式会社 撮像装置及びその制御方法、撮像システム、プログラム
WO2016038949A1 (ja) 2014-09-09 2016-03-17 株式会社東海理化電機製作所 情報処理システム、プログラムおよび車載器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850696A (ja) * 1994-08-05 1996-02-20 Nippondenso Co Ltd 走行車両のナンバー認識装置
WO2006121088A1 (ja) * 2005-05-10 2006-11-16 Olympus Corporation 画像処理装置、画像処理方法および画像処理プログラム
JP5414714B2 (ja) * 2011-03-04 2014-02-12 日立オートモティブシステムズ株式会社 車戴カメラ及び車載カメラシステム
CN107333097A (zh) 2016-04-29 2017-11-07 宜昌星鑫电子股份有限公司 一种雷达视频监控装置
CN107680012A (zh) * 2016-08-01 2018-02-09 奥迪股份公司 车辆辅助驾驶系统及方法
US10528055B2 (en) * 2016-11-03 2020-01-07 Ford Global Technologies, Llc Road sign recognition
CN107316488B (zh) * 2017-08-23 2021-01-12 苏州豪米波技术有限公司 信号灯的识别方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122805A (ja) 2002-09-30 2004-04-22 Sanyo Electric Co Ltd 車両用前方表示装置
JP2006033793A (ja) 2004-06-14 2006-02-02 Victor Co Of Japan Ltd 追尾映像再生装置
JP2015041820A (ja) 2013-08-20 2015-03-02 キヤノン株式会社 撮像装置及びその制御方法、撮像システム、プログラム
WO2016038949A1 (ja) 2014-09-09 2016-03-17 株式会社東海理化電機製作所 情報処理システム、プログラムおよび車載器

Also Published As

Publication number Publication date
US11908199B2 (en) 2024-02-20
CN112272841B (zh) 2023-02-03
US20210248395A1 (en) 2021-08-12
JP2020004293A (ja) 2020-01-09
CN112272841A (zh) 2021-01-26
DE112019002388T5 (de) 2021-04-08
WO2020003903A1 (ja) 2020-01-02

Similar Documents

Publication Publication Date Title
JP7195787B2 (ja) 車載電子制御装置
US11315420B2 (en) Moving object and driving support system for moving object
US11935250B2 (en) Method, device and computer-readable storage medium with instructions for processing sensor data
JP5152244B2 (ja) 追従対象車特定装置
JP4553072B1 (ja) 画像統合装置および画像統合方法
JP6456405B2 (ja) 3次元情報算出装置、3次元情報算出方法、および自律移動装置
US11587442B2 (en) System, program, and method for detecting information on a person from a video of an on-vehicle camera
US11430199B2 (en) Feature recognition assisted super-resolution method
US20140002656A1 (en) Lane departure warning system and lane departure warning method
JP2019185528A (ja) 情報処理装置、プログラム、および情報処理方法
JP2012185540A (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
KR101735557B1 (ko) 실시간 목표 탐지에 의한 교통 정보 수집 시스템 및 방법
WO2017094300A1 (ja) 画像処理装置、物体認識装置、機器制御システム、画像処理方法およびプログラム
JP2020065141A (ja) 車両の俯瞰映像生成システム及びその方法
KR20130128162A (ko) 관심영역 분할을 통한 곡선차선 검출장치 및 그 방법
JP2009069907A (ja) 周辺車両情報生成装置、周辺車両情報生成システム、コンピュータプログラム及び周辺車両情報生成方法
JP2007164671A (ja) 障害物接近判断装置および障害物衝突警告システム
WO2020258222A1 (en) Method and system for identifying object
JPH07271978A (ja) 画像処理装置
JP5772321B2 (ja) 車両検出装置、車両検出方法及びプログラム
JP6593995B2 (ja) 空港監視装置
KR102523637B1 (ko) 교통 데이터 프로세서, 교통 관제 시스템 및 교통 데이터 처리 방법
KR20200101188A (ko) 주행 정보 제공 방법, 차량맵 제공 서버 및 방법
JP2017182200A (ja) 画像処理装置、画像処理方法、画像処理プログラム及び記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221214

R150 Certificate of patent or registration of utility model

Ref document number: 7195787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150