[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7185390B2 - Cleaning methods, washing machines, dishwashers, and toilet bowls - Google Patents

Cleaning methods, washing machines, dishwashers, and toilet bowls Download PDF

Info

Publication number
JP7185390B2
JP7185390B2 JP2017079899A JP2017079899A JP7185390B2 JP 7185390 B2 JP7185390 B2 JP 7185390B2 JP 2017079899 A JP2017079899 A JP 2017079899A JP 2017079899 A JP2017079899 A JP 2017079899A JP 7185390 B2 JP7185390 B2 JP 7185390B2
Authority
JP
Japan
Prior art keywords
microbubbles
water
microbubble
cleaning
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017079899A
Other languages
Japanese (ja)
Other versions
JP2018175443A (en
Inventor
具典 内山
宏格 笹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Lifestyle Products and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lifestyle Products and Services Corp filed Critical Toshiba Lifestyle Products and Services Corp
Priority to JP2017079899A priority Critical patent/JP7185390B2/en
Priority to PCT/JP2018/000832 priority patent/WO2018189973A1/en
Priority to CN201880004925.XA priority patent/CN110073050A/en
Priority to TW107102481A priority patent/TWI678444B/en
Publication of JP2018175443A publication Critical patent/JP2018175443A/en
Priority to JP2021196218A priority patent/JP7309826B2/en
Application granted granted Critical
Publication of JP7185390B2 publication Critical patent/JP7185390B2/en
Priority to JP2023109244A priority patent/JP2023115382A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/08Liquid supply or discharge arrangements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D11/00Other component parts of water-closets, e.g. noise-reducing means in the flushing system, flushing pipes mounted in the bowl, seals for the bowl outlet, devices preventing overflow of the bowl contents; devices forming a water seal in the bowl after flushing, devices eliminating obstructions in the bowl outlet or preventing backflow of water and excrements from the waterpipe
    • E03D11/02Water-closet bowls ; Bowls with a double odour seal optionally with provisions for a good siphonic action; siphons as part of the bowl

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Sanitary Device For Flush Toilet (AREA)
  • Washing And Drying Of Tableware (AREA)
  • Detergent Compositions (AREA)

Description

本発明の実施形態は、洗浄方法、洗濯機、食器洗浄機、及び便器に関する。 Embodiments of the present invention relate to cleaning methods, washing machines, dishwashers, and toilet bowls.

近年、マイクロバブルやナノバブルと称される粒子径が数十nm~数μmサイズの微細気泡が注目されてきており、多数の微細気泡を含んだ微細気泡水を用いて洗浄対象を洗浄する技術が提案されている。ここで、例えば油汚れ等を洗浄する際には、洗剤等の界面活性剤を用いることが一般的である。しかしながら、従来構成では、微細気泡と界面活性剤との相互作用については十分な検証がされておらず、微細気泡と界面活性剤との相互作用による効果を十分に引き出せていなかった。 In recent years, microbubbles with a particle size of several tens of nanometers to several micrometers, called microbubbles or nanobubbles, have attracted attention, and techniques for washing objects using microbubble water containing a large number of microbubbles have been developed. Proposed. Here, for example, when cleaning oil stains or the like, it is common to use a surfactant such as a detergent. However, in the conventional structure, the interaction between the microbubbles and the surfactant has not been sufficiently verified, and the effect of the interaction between the microbubbles and the surfactant has not been sufficiently obtained.

特開2006-43103号公報Japanese Patent Application Laid-Open No. 2006-43103

そこで、微細気泡と界面活性剤との相互作用による効果を引き出して洗浄効率を向上させることができる洗浄方法、この洗浄方法を用いた洗濯機、食器洗浄機、及び便器を提供する。 Therefore, the present invention provides a cleaning method capable of enhancing the cleaning efficiency by drawing out the effect of the interaction between microbubbles and a surfactant, and a washing machine, a dishwasher, and a toilet using this cleaning method.

本実施形態による洗浄方法は、粒子径500nm以下の微細気泡が1mlあたり1×10^5個以上含まれている微細気泡水と、界面活性剤と、を混合させた洗浄液によって洗濯物、食器、又は便器を洗浄する洗浄方法であり、前記微細気泡水は、粒子径500nm以下の微細気泡の数に占める粒子径100nm±30nmの範囲内の微細気泡の数の割合が50%以上となっている、又は、粒子径500nm以下の微細気泡の直径ごとの個数分布のうち、最大ピークを含む少なくとも2つのピークが粒子径100nm±30nmの範囲内に収まっている。 In the washing method according to the present embodiment, laundry, tableware, Alternatively, in the cleaning method for cleaning a toilet bowl , the microbubble water accounts for 50% or more of the microbubbles with a particle diameter of 100 nm±30 nm in the number of microbubbles with a particle diameter of 500 nm or less. Alternatively, at least two peaks including the maximum peak fall within the range of 100 nm±30 nm in particle size in the number distribution for each diameter of microbubbles with a particle size of 500 nm or less.

また、本実施形態による洗濯機、食器洗浄機、及び便器は、粒子径500nm以下の微細気泡が1mlあたり1×10^5個以上含まれている微細気泡水と、界面活性剤と、を混合させた洗浄液によって洗濯物、食器、又は便器を洗浄する洗浄方法を用いたものであり、前記微細気泡水は、粒子径500nm以下の微細気泡の数に占める粒子径100nm±30nmの範囲内の微細気泡の数の割合が50%以上となっている、又は、粒子径500nm以下の微細気泡の直径ごとの個数分布のうち、最大ピークを含む少なくとも2つのピークが粒子径100nm±30nmの範囲内に収まっている。 In addition, the washing machine, the dishwasher, and the toilet according to the present embodiment mix microbubble water containing 1×10^5 or more microbubbles per 1 ml with a particle size of 500 nm or less, and a surfactant. The microbubble water is a washing method in which laundry, tableware, or a toilet bowl is washed with a washing liquid, and the microbubble water is microbubbles with a particle size within the range of 100 nm ± 30 nm, which accounts for the number of micro bubbles with a particle size of 500 nm or less. The ratio of the number of bubbles is 50% or more, or at least two peaks including the maximum peak in the number distribution for each diameter of fine bubbles with a particle size of 500 nm or less are within the range of 100 nm ± 30 nm in particle size. It's settled.

一実施形態による洗浄方法で用いる微細気泡水に含まれる微細気泡の粒子径ごとの個数分布をグラフとして示す図FIG. 2 is a graph showing the number distribution for each particle size of microbubbles contained in microbubble water used in the cleaning method according to one embodiment; 一実施形態による洗浄方法で用いる微細気泡水に含まれる微細気泡の粒子径と個数との関係を表として示す図FIG. 4 is a table showing the relationship between the particle size and the number of microbubbles contained in the microbubble water used in the cleaning method according to the embodiment; 一実施形態による洗浄方法について洗浄性能の評価結果を表として示す図FIG. 4 is a table showing evaluation results of cleaning performance of a cleaning method according to an embodiment; 一実施形態による洗浄方法について洗浄性能の評価結果をグラフとして示す図FIG. 2 is a graph showing evaluation results of cleaning performance of a cleaning method according to an embodiment; 一実施形態による洗浄方法で用いられる微細気泡発生器の一例を概略的に示す断面図Sectional view schematically showing an example of a microbubble generator used in the cleaning method according to one embodiment 一実施形態による洗浄方法で用いられる微細気泡発生器について、図5のX6-X6線に沿って示す断面図FIG. 5 is a cross-sectional view of the microbubble generator used in the cleaning method according to one embodiment, taken along line X6-X6 in FIG. 一実施形態による洗浄方法で用いる微細気泡水の粒子径ごとの個数分布を計測するの計測システムの構成を概略的に示す図A diagram schematically showing the configuration of a measurement system for measuring the number distribution for each particle size of microbubble water used in the cleaning method according to one embodiment. 一実施形態による洗浄方法で用いる微細気泡水について、計測システムで計測した結果をグラフとして示す図FIG. 2 is a graph showing the results of microbubble water measured by a measurement system for use in a cleaning method according to an embodiment; 一実施形態による洗浄方法における微細気泡と界面活性剤との相互作用を概念的に示す図(その1)FIG. 1 is a diagram conceptually showing the interaction between microbubbles and a surfactant in the cleaning method according to one embodiment (part 1); 一実施形態による洗浄方法における微細気泡と界面活性剤との相互作用を概念的に示す図(その2)FIG. 2 is a diagram conceptually showing the interaction between microbubbles and a surfactant in the cleaning method according to one embodiment (part 2); 一実施形態による洗浄方法における微細気泡と界面活性剤との相互作用を概念的に示す図(その3)FIG. 3 is a diagram conceptually showing the interaction between microbubbles and a surfactant in the cleaning method according to one embodiment (Part 3). 一実施形態による洗浄方法における微細気泡と界面活性剤との相互作用を概念的に示す図(その4)FIG. 4 is a diagram conceptually showing the interaction between microbubbles and a surfactant in the cleaning method according to one embodiment (Part 4). 一実施形態による洗浄方法における微細気泡と界面活性剤との相互作用を概念的に示す図(その5)FIG. 5 is a diagram conceptually showing the interaction between microbubbles and a surfactant in the cleaning method according to one embodiment (No. 5). 一実施形態による洗濯機の概略構成を示す図A diagram showing a schematic configuration of a washing machine according to one embodiment

以下、一実施形態について図面を参照しながら説明する。
図1及び図2に示すように、本実施形態は、粒子径500nm以下の微細気泡が1mlあたり1×10^5個以上含まれている微細気泡水、より好ましくは粒子径250nm以下の微細気泡が1mlあたり1×10^5個以上含まれている微細気泡水と、界面活性剤と、を混合させた洗浄液つまり界面活性剤溶液によって洗浄対象を洗浄する洗浄方法である。本実施形態において、界面活性剤は、石鹸等の天然由来の界面活性剤や、合成洗剤等に含まれた合成界面活性剤等を用いることができる。石鹸や合成洗剤は、固形や液体、紛体のいずれの形状であっても良い。
An embodiment will be described below with reference to the drawings.
As shown in FIGS. 1 and 2, the present embodiment is microbubble water containing 1×10̂5 or more microbubbles with a particle diameter of 500 nm or less per 1 ml, more preferably microbubbles with a particle diameter of 250 nm or less. is a cleaning method for cleaning an object to be cleaned with a cleaning solution, ie, a surfactant solution, in which microbubble water containing 1×10̂5 or more per 1 ml of microbubbles and a surfactant are mixed. In this embodiment, the surfactant may be a naturally derived surfactant such as soap, or a synthetic surfactant contained in a synthetic detergent or the like. Soaps and synthetic detergents may be in solid, liquid or powder form.

微細気泡水は、直径がナノオーダーの微細気泡を多量に含む水又は溶液のことをいう。すなわち、本実施形態の洗浄方法に用いる微細気泡水は、粒子径がナノオーダーの微細気泡を、水道水に比べて多量に含んでいる。微細気泡は、例えば水等の液体が流れる流路の断面積を局所的に縮小することでその流路を通る液体を急激に減圧させ、これにより液体中の溶存空気を析出させることで発生させることができる。また、微細気泡は、例えば流路を通る水等の液体に対して外部の空気を高速で混入することで発生させることもできる。 Microbubble water refers to water or a solution containing a large amount of microbubbles having nano-order diameters. That is, the microbubble water used in the cleaning method of the present embodiment contains a large amount of microbubbles having nano-order particle sizes compared to tap water. Microbubbles are generated by locally reducing the cross-sectional area of a channel through which a liquid such as water flows, thereby rapidly depressurizing the liquid passing through the channel, thereby precipitating dissolved air in the liquid. be able to. Microbubbles can also be generated by, for example, mixing external air at high speed into a liquid such as water passing through a channel.

本実施形態の洗浄方法に用いられる微細気泡水は、図1に示すように、粒子径500nm以下の微細気泡の直径ごとつまり粒子径ごとの個数分布の最大ピークP1が粒子径100nm±70nmの範囲内、より好ましくは粒子径100nm±50nmの範囲内、更に好ましくは粒子径100nm±30nmの範囲内に収まるように設定されている。この場合、微細気泡の粒子径ごとの個数分布の最大ピークP1は、粒子径80nm付近に現れている。 As shown in FIG. 1, the microbubble water used in the cleaning method of the present embodiment has a maximum peak P1 of the number distribution for each diameter of microbubbles having a particle diameter of 500 nm or less, that is, for each particle diameter, within a particle diameter range of 100 nm±70 nm. More preferably, the particle diameter is within the range of 100 nm±50 nm, more preferably within the range of 100 nm±30 nm. In this case, the maximum peak P1 of the number distribution for each particle size of microbubbles appears near the particle size of 80 nm.

また、2番目のピークP2は、粒子径140nm付近に現れており、3番目のピークP3は粒子径110nm付近に現れている。また、4番目のピークP4は粒子径50nm程度付近に現れており、5番目のピークP5は粒子径220nm付近に現れている。本実施形態では、粒子径500nm以下の微細気泡の直径ごとの個数分布のうち、最大ピークP1を含む少なくとも2つのピーク、この場合、最大ピークP1と3番目のピークP3とが、粒子径100nm±30nmの範囲内に収まっている。 Also, the second peak P2 appears around a particle diameter of 140 nm, and the third peak P3 appears around a particle diameter of 110 nm. The fourth peak P4 appears around a particle diameter of about 50 nm, and the fifth peak P5 appears around a particle diameter of 220 nm. In the present embodiment, at least two peaks including the maximum peak P1 in the number distribution for each diameter of microbubbles with a particle diameter of 500 nm or less, in this case, the maximum peak P1 and the third peak P3, have a particle diameter of 100 nm ± It is within the range of 30 nm.

本実施形態の洗浄方法に用いられる微細気泡水は、粒子径500nm以下の微細気泡の数に占める粒子径100nm±30nmの範囲内の微細気泡の数の割合が50%以上となるように設定されている。本実施形態の場合、図2に示すように、微細気泡水は、粒子径500nm以下の微細気泡を1mlあたり1.0×10^6個以上、この場合、1.25×10^6個程度含んでいる。このうち、粒子径100nm±30nmの範囲内にある微細気泡は、8.25×10^5個程度である。したがって、微細気泡水は、粒子径500nm以下の微細気泡の数に占める粒子径100nm±30nmの範囲内の微細気泡の数の割合が約66%となっている。 The microbubble water used in the cleaning method of the present embodiment is set so that the ratio of the number of microbubbles with a particle diameter of 100 nm±30 nm to the number of microbubbles with a particle diameter of 500 nm or less is 50% or more. ing. In the case of this embodiment, as shown in FIG. 2, the microbubble water contains 1.0×10^6 or more microbubbles per 1 ml with a particle diameter of 500 nm or less, in this case, about 1.25×10^6. contains. Among them, about 8.25×10̂5 microbubbles have a particle diameter within the range of 100 nm±30 nm. Therefore, in the microbubble water, the ratio of the number of microbubbles with a particle diameter of 100 nm±30 nm to the number of microbubbles with a particle diameter of 500 nm or less is approximately 66%.

本願発明者は、上記の微細気泡水を用いて、洗浄液中の微細気泡の数と、皮脂汚れに対する洗浄性能の向上率との相関性について、以下の手順により検証した。なお、本検証における微細気泡は、粒子径500nm以下のものを意味するものとする。 The inventors of the present application used the microbubble water described above to verify the correlation between the number of microbubbles in the cleaning liquid and the rate of improvement in cleaning performance against sebum stains according to the following procedure. In addition, microbubbles in this verification mean those having a particle diameter of 500 nm or less.

(人工皮脂汚れの汚染成分の調製)
クロロホルムを溶媒としてオレイン酸及びトリオレインを溶かし、32.5%のオレイン酸及び17.5%のトリオレインを含む50%溶液を汚染成分とした。
(Preparation of contaminant components of artificial sebum stains)
Oleic acid and triolein were dissolved in chloroform as a solvent, and a 50% solution containing 32.5% oleic acid and 17.5% triolein was used as the contaminant.

(試料の人工汚染及び調製)
上記汚染成分の溶液40mlを、150mm×200mmの綿布に均一になるように染み込ませ、室内にて24時間の自然乾燥を行った後、50mm角の布片に裁断して汚染布を得た。また、汚染成分の溶液を染み込ませていない綿布を、原布とした。
(Artificial contamination and preparation of samples)
A 150 mm×200 mm piece of cotton cloth was evenly impregnated with 40 ml of the staining component solution, air-dried in a room for 24 hours, and then cut into 50 mm square pieces to obtain the stained cloth. In addition, a cotton cloth that had not been impregnated with the solution of the contaminating component was used as the raw cloth.

(テスト方法)
汚染布の1つを、洗浄を行わない基準片とした。また、6つの汚染布を、それぞれ1.30×10^6個/mlの微細気泡を含む洗浄液、6.5×10^5個/mlの微細気泡を含む洗浄液、3.25×10^5個/mlの微細気泡を含む洗浄液、2.6×10^5個/mlの微細気泡を含む洗浄液、1.60×10^5個/mlの微細気泡を含む洗浄液、及び微細気泡を混入していない洗浄液の6種類の洗浄液によって洗浄し、その後、室内にて24時間の自然乾燥を行った。これにより、それぞれ評価片1~5、及び比較片を得た。
(test method)
One of the stained fabrics served as a reference piece without washing. Further, the six contaminated cloths were each treated with a cleaning solution containing 1.30×10̂6 microbubbles/ml, a cleaning solution containing 6.5×10̂5/ml microbubbles, and a cleaning solution containing 3.25×10̂5 microbubbles/ml. cleaning solution containing microbubbles/ml, cleaning solution containing microbubbles of 2.6×10^5/ml, cleaning solution containing microbubbles of 1.60×10^5/ml, and mixing microbubbles It was washed with six kinds of washing liquids that were not used, and then naturally dried in a room for 24 hours. As a result, evaluation pieces 1 to 5 and a comparative piece were obtained.

なお、各洗浄液には、同一量の洗剤が溶解されている。すなわち、比較片を洗浄するための洗浄液は、水道水に市販の洗剤を規定量溶かしたものである。また、評価片1~5を洗浄するための洗浄液は、それぞれ上記所定の微細気泡を混入させた水道水に市販の洗剤を規定量溶かしたものである。洗剤の溶解量は、例えばその洗剤の取扱説明書に記載されている規定量である。また、比較片及び各評価片1~5の洗浄は、市販の洗濯機を用いて同一の運転内容にて行われた。 The same amount of detergent is dissolved in each cleaning liquid. That is, the washing liquid for washing the comparative piece was prepared by dissolving a specified amount of commercially available detergent in tap water. The washing liquid for washing evaluation pieces 1 to 5 was obtained by dissolving a specified amount of commercially available detergent in tap water mixed with the above-mentioned prescribed microbubbles. The dissolved amount of the detergent is, for example, the specified amount described in the instruction manual of the detergent. In addition, the comparison piece and each evaluation piece 1 to 5 were washed using a commercially available washing machine under the same operating conditions.

次に、混合比がエタノール:水=13:7のエタノール水溶液の溶媒に、油溶性色素としてオイルバイオレッドを溶解させて、濃度0.664mg/mlの染色液を得た。そして、各評価片1~5及び比較片を、染色液に15分間浸して染色した後、エタノール水溶液、水の順ですすぎ、余分な染色液をすすぎ落とし、その後、比較片及び各評価片1~5及び比較片を、室内にて24時間の自然乾燥を行った。 Next, Oil Violet was dissolved as an oil-soluble dye in an ethanol aqueous solution solvent with a mixing ratio of ethanol:water=13:7 to obtain a staining solution with a concentration of 0.664 mg/ml. Then, each of the evaluation pieces 1 to 5 and the comparative piece is immersed in the staining solution for 15 minutes and dyed, then rinsed with an ethanol aqueous solution and water in that order to rinse off the excess staining solution, then the comparative piece and each evaluation piece 1. ˜5 and comparative pieces were air-dried indoors for 24 hours.

次に、色差計を用いて、各評価片1~5及び比較片の洗浄前色差として、原布と基準片との色差を計測した。また、各評価片1~5及び比較片の洗浄後色差として、原布と各評価片1~5及び比較片との色差を計測した。そして、次式(1)に基づいて評価片1~5及び比較片の洗浄度を算出し、比較片の洗浄度に対する各評価片1~5の洗浄度の比較を行った。
洗浄度=1-(洗浄後色差)/(洗浄前色差)・・・(1)
Next, using a color difference meter, the color difference between the raw cloth and the reference piece was measured as the color difference before washing of each evaluation piece 1 to 5 and the comparative piece. Further, the color difference between the original fabric and each of the evaluation pieces 1 to 5 and the comparison piece was measured as the color difference after washing of each evaluation piece 1 to 5 and the comparison piece. Then, the cleaning degrees of the evaluation pieces 1 to 5 and the comparative pieces were calculated based on the following formula (1), and the cleaning degrees of the evaluation pieces 1 to 5 were compared with the washing degree of the comparative pieces.
Degree of washing = 1 - (color difference after washing)/(color difference before washing) (1)

試験の結果を図3に示している。なお、図3中の「混合割合」は、1mlあたり1.30×10^6個の微細気泡を含む微細気泡水を100%の微細気泡水とし、その100%の微細気泡水に水道水を混ぜて洗浄液を精製した場合において、洗浄液全体に占める微細気泡水の比率を示したものである。図3中の「微細気泡濃度」は、各洗浄液の1mlあたりに含まれる微細気泡の数を示している。そして、図3中の「対数値」は、各洗浄液の微細気泡濃度を、10を底とする常用対数で表したものである。 The results of the tests are shown in FIG. In addition, the “mixing ratio” in FIG. It shows the ratio of microbubble water to the entire cleaning liquid when the cleaning liquid is purified by mixing. "Microbubble concentration" in FIG. 3 indicates the number of microbubbles contained in 1 ml of each cleaning liquid. The "logarithmic value" in FIG. 3 represents the microbubble concentration of each cleaning liquid using a common logarithm with 10 as the base.

図3に示す試験結果によると、1.30×10^6個/mlの微細気泡を含む洗浄液で洗浄を行った評価片1においては、微細気泡を含まない洗浄液で洗浄を行った比較片に対し、19.2%の洗浄性能の向上が見られた。また、6.5×10^5個/mlの微細気泡を含む洗浄液で洗浄を行った評価片2においては、微細気泡を含まない洗浄液で洗浄を行った比較片に対し、13.7%の洗浄性能の向上が見られた。また、3.25×10^5個/mlの微細気泡を含む洗浄液で洗浄を行った評価片3においては、微細気泡を含まない洗浄液で洗浄を行った比較片に対し、13.0%の洗浄性能の向上が見られた。 According to the test results shown in FIG. 3, the evaluation piece 1 washed with a washing liquid containing 1.30×10^6 microbubbles/ml was compared to the comparative piece washed with a washing liquid containing no microbubbles. On the other hand, an improvement in cleaning performance of 19.2% was observed. In addition, in the evaluation piece 2 that was washed with the washing liquid containing 6.5 × 10^5 microbubbles/ml, 13.7% of the comparative piece washed with the washing liquid that did not contain microbubbles. An improvement in cleaning performance was observed. In addition, in the evaluation piece 3 washed with the washing liquid containing 3.25 × 10^5 microbubbles/ml, 13.0% of the comparative piece washed with the washing liquid containing no microbubbles An improvement in cleaning performance was observed.

また、2.6×10^5個/mlの微細気泡を含む洗浄液で洗浄を行った評価片4においては、微細気泡を含まない洗浄液で洗浄を行った比較片に対し、12.6%の洗浄性能の向上が見られた。そして、1.60×10^5個/mlの微細気泡を含む洗浄液で洗浄を行った評価片5においては、微細気泡を含まない洗浄液で洗浄を行った比較片に対し、10.7%の洗浄性能の向上が見られた。 In addition, in the evaluation piece 4 washed with the washing liquid containing 2.6 × 10^5 microbubbles/ml, 12.6% of the comparison piece washed with the washing liquid containing no microbubbles An improvement in cleaning performance was observed. Then, in the evaluation piece 5 washed with the washing liquid containing 1.60 × 10^5 microbubbles/ml, 10.7% of the comparative piece washed with the washing liquid containing no microbubbles An improvement in cleaning performance was observed.

図4は、図3の各評価片1~5について、横軸を洗浄液中の微細気泡数の対数とし、縦軸を洗浄性能向上率として表したものである。そして、図4において横軸つまり洗浄液中の微細気泡の濃度をX軸とし、縦軸つまり洗浄性能の向上率をY軸とした場合において、最小二乗法により算出した近似曲線は、次式(2)で表すことができる。また、この場合の相関係数R^2は、0.908であった。
Y=(5.02×10^(-4))X^(3.25)・・・(2)
In FIG. 4, the logarithm of the number of microbubbles in the cleaning liquid is plotted on the horizontal axis, and the rate of improvement in cleaning performance is plotted on the vertical axis, for each evaluation piece 1 to 5 in FIG. In FIG. 4, the horizontal axis, that is, the concentration of microbubbles in the cleaning liquid, is the X axis, and the vertical axis, that is, the cleaning performance improvement rate is the Y axis. ). Also, the correlation coefficient R^2 in this case was 0.908.
Y=(5.02×10̂(−4))X̂(3.25) (2)

図4、式(2)、及びその相関係数R^2によれば、洗浄液中の微細気泡量の増大に伴って、洗浄性能がほぼ線形的つまりほぼ一次直線的に向上しているのがわかる。すなわち、本試験により、洗浄液中の微細気泡の数と洗浄性能との間には、高い相関性があることがわかった。そして、式(2)によると、洗浄液中の微細気泡の数が1.0×10^5個/mlつまりX=5のときに、微細気泡を含まない通常の洗浄液で洗浄を行った場合に比べて洗浄性能が約9.4%向上することが導き出される。また、式(2)によると、洗浄液中の微細気泡の数が1.26×10^5個/mlつまりX=5.1のときに、微細気泡を含まない通常の洗浄液で洗浄を行った場合に比べて洗浄性能が約10%向上することが導き出される。この結果、洗浄液中に少なくとも1.0×10^5個/mlの微細気泡を含ませることで、微細気泡を含まない通常の洗浄液で洗浄を行った場合に比べて、約10%の洗浄性能を向上させることができることがわかった。 According to FIG. 4, formula (2), and its correlation coefficient R̂2, as the amount of microbubbles in the cleaning liquid increases, the cleaning performance improves almost linearly, that is, almost linearly. Recognize. That is, it was found from this test that there is a high correlation between the number of microbubbles in the cleaning liquid and the cleaning performance. Then, according to the formula (2), when the number of microbubbles in the cleaning liquid is 1.0×10̂5/ml, that is, X=5, when cleaning is performed with a normal cleaning liquid that does not contain microbubbles, It is derived that the cleaning performance is improved by about 9.4% compared to the above. Further, according to the formula (2), when the number of microbubbles in the cleaning liquid was 1.26×10̂5/ml, that is, X=5.1, cleaning was performed with a normal cleaning liquid containing no microbubbles. It is derived that the cleaning performance is improved by about 10% compared to the case. As a result, by including at least 1.0×10^5 microbubbles/ml in the cleaning liquid, the cleaning performance is improved by about 10% compared to cleaning with a normal cleaning liquid that does not contain microbubbles. was found to be improved.

ここで、上記試験では、図5及び図6に示す微細気泡発生器10を用いて、微細気泡水を生成した。微細気泡発生器10は、例えば合成樹脂製であって、全体として円筒形状に形成されている。微細気泡発生器10は、絞り部11、ストレート部12、及び突出部13を有している。絞り部11とストレート部12とは、連続した1本の流路を形成している。この場合、絞り部11側が入力側となり、ストレート部12側が出力側となる。 Here, in the above test, microbubble water was generated using the microbubble generator 10 shown in FIGS. The microbubble generator 10 is made of synthetic resin, for example, and formed in a cylindrical shape as a whole. The microbubble generator 10 has a constricted portion 11 , a straight portion 12 and a projecting portion 13 . The narrowed portion 11 and the straight portion 12 form one continuous flow path. In this case, the narrowed portion 11 side is the input side, and the straight portion 12 side is the output side.

絞り部11は、微細気泡発生器10の入力側から出力側へ向かって内径が縮小する形状、すなわち流路の断面積つまり内径が連続的に徐々に減少するようないわゆる円錐形のテーパ管状に形成されている。ストレート部12は、流路の断面積つまり内径が変化しない円筒形いわゆるストレート管状に形成されている。 The narrowed portion 11 has a shape in which the inner diameter decreases from the input side to the output side of the fine bubble generator 10, that is, a so-called conical tapered tubular shape in which the cross-sectional area of the flow path, that is, the inner diameter, gradually decreases continuously. formed. The straight portion 12 is formed in a cylindrical, so-called straight tubular shape in which the cross-sectional area of the flow path, that is, the inner diameter does not change.

突出部13は、ストレート部12の長手方向の途中部分に設けられている。突出部13は、ストレート部12において水の通過可能な断面積を局所的に縮小することでストレート部12を通過する液体中に微細気泡を発生させるためのものである。本実施形態の場合、ストレート部12には、複数本この場合4本の突出部13が設けられている。各突出部13は、先端が尖った棒状の部材で構成され、ストレート部12の内周面からこのストレート部12の断面における中心方向へ向かって突出している。各突出部13は、ストレート部12の断面の周方向に向かって相互に等間隔に離間した状態で配置されている。 The projecting portion 13 is provided in the middle of the straight portion 12 in the longitudinal direction. The projecting portion 13 is for locally reducing the cross-sectional area through which water can pass in the straight portion 12 to generate fine bubbles in the liquid passing through the straight portion 12 . In the case of this embodiment, the straight portion 12 is provided with a plurality of, in this case, four projecting portions 13 . Each protruding portion 13 is formed of a rod-shaped member with a sharp tip, and protrudes from the inner peripheral surface of the straight portion 12 toward the center of the cross section of the straight portion 12 . The protruding portions 13 are arranged in a state of being spaced apart from each other at equal intervals in the circumferential direction of the cross section of the straight portion 12 .

微細気泡発生器10に対して絞り部11側から水が流入すると、絞り部11からストレート部12にかけて流路断面積が絞られることによって、流体力学のいわゆるベンチュリ効果により流速が高められる。そして、その高速流が突出部13に衝突することで圧力が急激に低下される。これにより、水中に溶存している空気を微細な気泡として多量に析出させることができる。 When water flows into the micro-bubble generator 10 from the narrowed portion 11 side, the cross-sectional area of the flow path is narrowed from the narrowed portion 11 to the straight portion 12, thereby increasing the flow velocity due to the so-called venturi effect of hydrodynamics. Then, the high-speed flow collides with the projecting portion 13, causing a rapid drop in pressure. As a result, a large amount of air dissolved in water can be precipitated as fine bubbles.

微細気泡発生器10の性能の評価は、微細気泡発生器10に対して水を1回通過させて微細気泡水を生成した際に、その微細気泡水の単位量例えば1mlあたりに含まれている微細気泡の数とその微細気泡の粒子径ごとの個数分布を計測することによって行われる。なお、本実施形態では、微細気泡発生器10に対して水を1回のみ通過させて微細気泡水を生成することを、ワンパスと称する。 The evaluation of the performance of the micro-bubble generator 10 is included per unit amount of micro-bubble water, for example, 1 ml, when water is passed through the micro-bubble generator 10 once to generate micro-bubble water. This is done by measuring the number of microbubbles and the number distribution for each particle size of the microbubbles. In this embodiment, passing water through the micro-bubble generator 10 only once to generate micro-bubble water is referred to as one-pass.

微細気泡発生器10の性能の評価は、図7に示すような計測システム20を用いて行う。計測システム20は、微細気泡発生器10と、水槽21と、循環ポンプ22と、水槽21と循環ポンプ22との間を繋ぐ配管23、24とを備えている。微細気泡発生器10は、循環ポンプ22の吐出側に接続された配管23の途中部分つまり循環ポンプ22から水槽21へ至る配管23の途中部分に設けられている。 Evaluation of the performance of the microbubble generator 10 is performed using a measurement system 20 as shown in FIG. The measurement system 20 includes a microbubble generator 10 , a water tank 21 , a circulation pump 22 , and pipes 23 and 24 connecting the water tank 21 and the circulation pump 22 . The fine bubble generator 10 is provided in the middle of the pipe 23 connected to the discharge side of the circulation pump 22 , that is, in the middle of the pipe 23 from the circulation pump 22 to the water tank 21 .

水槽21内には所定量例えば10Lの超純水Wが貯留されている。循環ポンプ22は、超純水Wを水槽21と循環ポンプ22との間で循環させる。その際、微細気泡発生器10には、循環ポンプ22の作用により0.1MPaの圧力で超純水Wが印加される。これにより、微細気泡発生器10を通過した超純水W内に、微細気泡が析出して微細気泡水となる。そして、循環ポンプ22を所定時間駆動させ、超純水Wを循環させて微細気泡発生器10を複数回通過させることで、水槽21内の超純水Wに含まれる微細気泡の数を増大させた。 A predetermined amount of ultrapure water W, for example, 10 L, is stored in the water tank 21 . The circulation pump 22 circulates the ultrapure water W between the water tank 21 and the circulation pump 22 . At that time, ultrapure water W is applied to the microbubble generator 10 at a pressure of 0.1 MPa by the action of the circulation pump 22 . As a result, microbubbles are deposited in the ultrapure water W that has passed through the microbubble generator 10 to form microbubble water. Then, the circulation pump 22 is driven for a predetermined time to circulate the ultrapure water W to pass through the microbubble generator 10 a plurality of times, thereby increasing the number of microbubbles contained in the ultrapure water W in the water tank 21. rice field.

本願発明者は、循環ポンプ22の駆動を開始してから所定の時間例えば約10分毎に水槽21内の超純水Wをサンプルとして採取した。そして、本願発明者は、採取した各サンプルについて、ナノ粒子解析装置(NANOSIGHT LM10、株式会社島津製作所製)を用いてナノ粒子トラッキング法(粒子軌跡トレース法とも称する)により解析しい、これにより1mlあたりの微細気泡の数を計測した。 The inventor of the present application took samples of the ultrapure water W in the water tank 21 every predetermined time, for example, about 10 minutes after the circulation pump 22 was started to be driven. Then, the inventors of the present application analyzed each collected sample by a nanoparticle tracking method (also referred to as a particle trajectory tracing method) using a nanoparticle analyzer (NANOSIGHT LM10, manufactured by Shimadzu Corporation). The number of microbubbles was counted.

また、本願発明者は、超純水Wの循環流量と水槽21内の初期の貯留量とから超純水Wの1回の循環に要する時間を算出した。本実施形態の場合、1回の循環に要する時間は約1分である。そして、本願発明者は、1回の循環に要する時間と、サンプルの採取時間とから、各サンプルの採取時までに超純水Wが微細気泡発生器10を通過していた回数を算出した。以下の説明では、このようにして算出された回数、つまり循環ポンプ22を動作させてから各サンプルの採取時までに超純水Wが微細気泡発生器10を通過したと思われる回数を、通過回数と称する。 Further, the inventor of the present application calculated the time required for one circulation of the ultrapure water W from the circulation flow rate of the ultrapure water W and the initial storage amount in the water tank 21 . In the case of this embodiment, the time required for one circulation is about 1 minute. Then, the inventor of the present application calculated the number of times the ultrapure water W passed through the microbubble generator 10 until each sample was collected from the time required for one circulation and the sample collection time. In the following description, the number of times calculated in this way, that is, the number of times the ultrapure water W is thought to have passed through the microbubble generator 10 from the operation of the circulation pump 22 to the time of collection of each sample, is used. called the number of times.

図8は、各サンプルについて、通過回数を横軸とし微細気泡の発生量を縦軸としてプロットしたものである。図8の結果によれば、通過回数つまり超純水Wの循環回数が増えるほど、超純水Wに含まれる微細気泡の量も線形的に増えることがわかった。つまり、超純水Wが微細気泡発生器10を通過する回数が増えるほど、超純水W中の微細気泡が濃縮されることがわかった。すなわち、図8の結果によれば、微細気泡発生器10の通過回数つまり超純水Wの循環回数と、超純水Wに含まれる微細気泡の量とは、一次直線的な相関関係を有することがわかった。 FIG. 8 plots the number of passages for each sample on the horizontal axis and the amount of microbubbles generated on the vertical axis. According to the results of FIG. 8, it was found that the amount of microbubbles contained in the ultrapure water W increases linearly as the number of passages, that is, the number of circulations of the ultrapure water W increases. In other words, it was found that the more the ultrapure water W passes through the microbubble generator 10, the more the microbubbles in the ultrapure water W are concentrated. That is, according to the results of FIG. 8, the number of passes through the microbubble generator 10, that is, the number of circulations of the ultrapure water W, and the amount of microbubbles contained in the ultrapure water W have a first-order linear correlation. I understood it.

これによれば、水等の液体を微細気泡発生器10に対して1回通過させた場合に発生する微細気泡の数を、微細気泡発生器10のワンパスでの性能とすると、そのワンパスでの性能は、次のようにして求められる。すなわち、循環開始後の任意の時点において水槽21内の超純水Wをサンプル採取し、そのサンプル含まれる微細気泡の数を計測する。そして、その計測した微細気泡の数を、サンプル採取時点までの通過回数つまり循環回数で除算することで、微細気泡発生器10のワンパスでの性能が算出される。このようにして算出された性能つまり微細気泡の数は、一旦濃度を濃くしたうえで通過回数によって平均化されるため、測定装置の分解能や使用する水に含まれる微細気泡以外の微細粒子の影響を極力排除することができ、精度の良い評価結果を得ることができる。 According to this, if the number of microbubbles generated when a liquid such as water is passed through the microbubble generator 10 once is defined as the one-pass performance of the microbubble generator 10, then the one-pass performance of the microbubble generator 10 is Performance is determined as follows. That is, the ultrapure water W in the water tank 21 is sampled at an arbitrary point after the start of circulation, and the number of microbubbles contained in the sample is counted. By dividing the number of microbubbles thus measured by the number of passages, that is, the number of circulations up to the sampling time, the one-pass performance of the microbubble generator 10 is calculated. The performance calculated in this way, that is, the number of microbubbles, is averaged by the number of passages after increasing the concentration once, so the resolution of the measuring device and the influence of fine particles other than microbubbles contained in the water used can be eliminated as much as possible, and highly accurate evaluation results can be obtained.

本実施形態において、図8に示す結果を見ると、10.6回分の循環によって、粒子径500nm以下の微細気泡が1mlあたり約1.48×10^7個生成されている。また、20.2回分の循環によって、粒子径500nm以下の微細気泡が1mlあたり約2.85×10^7個生成されている。そして、29.8回分の循環によって、粒子径500nm以下の微細気泡が1mlあたり約3.95×10^7個生成されている。これらの結果から、1回の通過によって、粒子径500nm以下の微細気泡が1mlあたり1.3~1.4×10^6個生成されていたことがわかる。したがって、本実施形態の洗浄方法に用いた微細気泡発生器10は、粒子径500nm以下の微細気泡を1mlあたり1.3~1.4×10^6個程度含む微細気泡水を、印加動水圧0.1MPaにおいてワンパスで生成できることがわかった。 According to the results shown in FIG. 8, in this embodiment, about 1.48×10̂7 microbubbles with a particle diameter of 500 nm or less are generated per 1 ml by 10.6 cycles of circulation. Approximately 2.85×10̂7 fine bubbles with a particle size of 500 nm or less are generated per 1 ml by 20.2 times of circulation. Approximately 3.95×10̂7 fine bubbles with a particle size of 500 nm or less are generated per 1 ml by 29.8 times of circulation. From these results, it can be seen that 1.3 to 1.4×10̂6 microbubbles with a particle size of 500 nm or less were generated per 1 ml by one pass. Therefore, the microbubble generator 10 used in the cleaning method of the present embodiment generates microbubble water containing about 1.3 to 1.4×10̂6 microbubbles per 1 ml with a particle diameter of 500 nm or less. It was found that it can be generated in one pass at 0.1 MPa.

また、上記の洗浄性能の試験においては、微細気泡発生器10に水道水を1回のみ通過させた微細気泡水つまりワンパスで発生させた微細気泡水を、100%の微細気泡水とした。この100%の微細気泡水には、粒子径500nm以下の微細気泡が1mlあたり1.3×10^6個程度含まれている。そして、この100%の微細気泡水を水道水で薄めずに原液で用いることで、評価片1に用いる1.30×10^6個/mlの微細気泡を含む洗浄液を得た。また、100%の微細気泡水を水道水で50%に薄めることで、評価片2に用いる6.50×10^5個/mlの微細気泡を含む洗浄液を得た。 In the cleaning performance test described above, microbubble water obtained by passing tap water through the microbubble generator 10 only once, that is, microbubble water generated in one pass, was defined as 100% microbubble water. This 100% microbubble water contains about 1.3×10̂6 microbubbles per 1 ml with a particle size of 500 nm or less. Then, this 100% microbubble water was used as a stock solution without being diluted with tap water to obtain a washing liquid containing 1.30×10̂6 microbubbles/ml used for evaluation piece 1. Also, by diluting 100% microbubble water with tap water to 50%, a washing liquid containing 6.50×10̂5 microbubbles/ml used for evaluation piece 2 was obtained.

また、100%の微細気泡水を水道水で25%に薄めることで、評価片3に用いる3.25×10^5個/mlの微細気泡を含む洗浄液を得た。また、100%の微細気泡水を水道水で20%に薄めることで、評価片4に用いる2.60×10^5個/mlの微細気泡を含む洗浄液を得た。そして、100%の微細気泡水を水道水で12.5%に薄めることで、評価片5に用いる1.60×10^5個/mlの微細気泡を含む洗浄液を得た。 Also, by diluting 100% microbubble water with tap water to 25%, a washing liquid containing 3.25×10̂5 microbubbles/ml used for evaluation piece 3 was obtained. Further, by diluting 100% microbubble water with tap water to 20%, a washing liquid containing 2.60×10̂5 microbubbles/ml used for evaluation piece 4 was obtained. Then, by diluting 100% microbubble water with tap water to 12.5%, a washing liquid containing 1.60×10̂5 microbubbles/ml used for evaluation piece 5 was obtained.

したがって、評価片1~5に用いる洗浄液は、いずれも微細気泡の粒子径ごとの個数分布のピーク及び割合は同一である。すなわち、評価片1~5に用いる洗浄液は、上述したように、いずれも粒子径500nm以下の微細気泡の粒子径ごとの個数分布の最大ピークが粒子径100nm±30nmの範囲内に収まっている。また、評価片1~5に用いる洗浄液は、上述したように、いずれも粒子径500nm以下の微細気泡の数に占める粒子径100nm±30nmの範囲内の微細気泡の数の割合が50%以上となっている。 Therefore, the cleaning liquids used for evaluation pieces 1 to 5 all have the same number distribution peak and ratio for each particle diameter of microbubbles. That is, in the cleaning liquids used for evaluation pieces 1 to 5, as described above, the maximum peak of the number distribution for each particle size of microbubbles having a particle size of 500 nm or less is within the range of 100 nm±30 nm in particle size. In addition, as described above, the cleaning liquid used for evaluation pieces 1 to 5 had a ratio of 50% or more of the number of microbubbles with a particle diameter of 100 nm ± 30 nm to the number of microbubbles with a particle diameter of 500 nm or less. It's becoming

ここで、一般に微細気泡は、その気泡の粒子径によって次のように分類されている。例えば、粒子径が数μmから50μm程度つまりマイクロオーダーの気泡は、マイクロバブル又はファインバブルと称されている。これに対し、粒子径が数百nm~数十nm以下つまりナノオーダーの気泡は、ナノバブル又はウルトラファインバブルと称されている。 Here, microbubbles are generally classified as follows according to the particle size of the bubbles. For example, bubbles having a particle diameter of several μm to 50 μm, that is, micro-order bubbles are called microbubbles or fine bubbles. On the other hand, bubbles with a particle size of several hundred nm to several tens of nm or less, that is, nano-order bubbles are called nanobubbles or ultrafine bubbles.

気泡の粒子径が数百nm~数十nm以下になると、光の波長よりも小さくなるため視認することができなくなり、液体は透明になる。そして、ナノオーダーの微細気泡は、マイクロオーダー以上の気泡に比べて、総界面面積が大きいこと、浮上速度が遅いこと、内部圧力が大きいこと等の特性を有している。例えば、粒子径がマイクロオーダーの気泡は、その浮力によって液体中を急速に上昇し、液体表面で破裂して消滅するため、液体中の滞在時間が比較的短い。一方、粒子径がナノオーダーの微細気泡は、浮力が小さいため液体中での滞在時間が長い。 When the particle size of the bubbles is several hundred nm to several tens of nm or less, they become smaller than the wavelength of light and cannot be visually recognized, and the liquid becomes transparent. Nano-order microbubbles have characteristics such as a larger total interfacial area, a slower floating speed, and a higher internal pressure than micro-order or larger bubbles. For example, bubbles with micro-order particle diameters rise rapidly in the liquid due to their buoyancy, burst on the surface of the liquid and disappear, so that the residence time in the liquid is relatively short. On the other hand, microbubbles with a nano-order particle size have a low buoyancy and thus stay in the liquid for a long time.

上記試験では、界面活性剤を溶かした洗浄液中に微細気泡を含ませることで、微細気泡を含まない通常の洗浄液で洗浄を行った場合に比べて洗浄性能を向上させることができることがわかったが、これは、次のような原理であると想定される。すなわち、図9に示すように、通常、界面活性剤32は、ある濃度以上になると、界面活性剤32の疎水基同士が集まり、ミセル化して界面活性剤32の凝集体33を形成する。この凝集体33の粒子径は、数10nmとされている。一方、例えば粒子径500nm以下の微細気泡31は、その表面が負の電化に帯電して疎水性となっているため、界面活性剤32の疎水基を引き付ける。 In the above test, it was found that by including microbubbles in the cleaning liquid in which the surfactant was dissolved, the cleaning performance could be improved compared to cleaning with a normal cleaning liquid that does not contain microbubbles. , which is assumed to be the following principle. That is, as shown in FIG. 9, when the concentration of the surfactant 32 exceeds a certain level, the hydrophobic groups of the surfactant 32 usually gather together to form micelles to form aggregates 33 of the surfactant 32 . The particle diameter of this aggregate 33 is several tens of nm. On the other hand, the microbubbles 31 having a particle diameter of 500 nm or less, for example, have surfaces that are negatively charged and hydrophobic, and thus attract the hydrophobic groups of the surfactant 32 .

そのため、ミセル化した界面活性剤32の凝集体33を含む洗剤を、粒子径500nm以下の微細気泡31を含む微細気泡水に混ぜると、微細気泡31の表面の疎水性作用によって凝集体33のエネルギー的安定状態が崩れ、図10に示すように凝集体33が崩れて界面活性剤32の各分子が分散する。そして、分散した界面活性剤32の各分子は、界面活性剤32の疎水基と微細気泡31の疎水性を有する表面との相互作用により、微細気泡31の表面に吸着する。これにより、洗浄液に含まれる界面活性剤32は、微細気泡31に吸着されて複合体34を形成する。 Therefore, when a detergent containing aggregates 33 of micellized surfactant 32 is mixed with microbubble water containing microbubbles 31 with a particle diameter of 500 nm or less, the hydrophobic action of the surface of microbubbles 31 causes the energy of aggregates 33 to increase. As shown in FIG. 10, the aggregate 33 collapses and each molecule of the surfactant 32 disperses. Then, each molecule of the dispersed surfactant 32 is adsorbed to the surface of the microbubbles 31 due to the interaction between the hydrophobic group of the surfactant 32 and the hydrophobic surface of the microbubbles 31 . As a result, the surfactant 32 contained in the cleaning liquid is adsorbed by the microbubbles 31 to form a complex 34 .

そして、図11に示すように、界面活性剤32と微細気泡31との複合体34は、微細気泡31の浮力等によって洗浄液中の広範囲にわたって拡散される。このため、界面活性剤32の各分子が、例えば繊維35に付着した皮脂汚れ成分36等に接触する確率が大幅に向上する。そして、図12に示すように、界面活性剤32と微細気泡31との複合体34が汚れ成分36に近づくと、汚れ成分36の表面の疎水作用によって界面活性剤32と微細気泡31とのエネルギー的安定性が崩れて、微細気泡31の変形や破裂が生じる。すると、界面活性剤32の各分子が分離して汚れ成分36に吸着するとともに、微細気泡31の破裂による衝撃等によって汚れ成分36が繊維35から浮き上がって剥がれ易くなる。 Then, as shown in FIG. 11, the complex 34 of the surfactant 32 and the microbubbles 31 is diffused over a wide range in the cleaning liquid by the buoyancy of the microbubbles 31 and the like. Therefore, the probability that each molecule of the surfactant 32 comes into contact with, for example, the sebum staining component 36 adhered to the fiber 35 is greatly improved. Then, as shown in FIG. 12, when the complex 34 of the surfactant 32 and the microbubbles 31 approaches the dirt component 36, the hydrophobic action of the surface of the dirt component 36 causes the energy of the surfactant 32 and the microbubbles 31 to increase. The physical stability of the microbubbles 31 is lost, and deformation and bursting of the microbubbles 31 occur. Then, each molecule of the surfactant 32 is separated and adsorbed to the dirt component 36, and the dirt component 36 is lifted from the fiber 35 by the impact caused by the bursting of the microbubbles 31 and easily peeled off.

この際、微細気泡31の破裂の衝撃によって生じた汚れ成分36と繊維35との隙間に、界面活性剤32が入り込み、汚れ成分36の乳化を促進させる。そして、界面活性剤32は、汚れ成分36を取り込んで乳化させることで汚れ成分36を繊維35から引き剥がし、これにより洗浄能力を発揮する。このようにして、微細気泡31は、界面活性剤32の洗浄能力を引き出しているとされる。 At this time, the surfactant 32 enters the gap between the dirt components 36 and the fibers 35 caused by the impact of the bursting of the microbubbles 31 , thereby promoting the emulsification of the dirt components 36 . The surfactant 32 takes in and emulsifies the dirt component 36, thereby peeling the dirt component 36 from the fibers 35, thereby exerting the cleaning ability. In this way, the microbubbles 31 are said to bring out the cleaning ability of the surfactant 32 .

本実施形態の洗浄方法は、例えば図14に示すように、洗濯機40に適用することができる。洗濯機40は、外箱41、トップカバー42、水槽43、回転槽44、パルセータ45、モータ46、注水装置50、及び微細気泡発生器10を備えている。洗濯機40は、回転槽44の回転軸が鉛直方向を向いたいわゆる縦軸型の洗濯機である。なお、洗濯機は、縦軸型に限られず、回転槽の回転軸が水平又は後方へ向かって下降傾斜した横軸型いわゆるドラム式洗濯機であっても良い。 The cleaning method of this embodiment can be applied to a washing machine 40 as shown in FIG. 14, for example. The washing machine 40 includes an outer case 41 , a top cover 42 , a water tank 43 , a rotating tub 44 , a pulsator 45 , a motor 46 , a water injection device 50 and a fine bubble generator 10 . The washing machine 40 is a so-called vertical axis type washing machine in which the rotating shaft of the rotating tub 44 is oriented vertically. The washing machine is not limited to the vertical axis type, but may be a horizontal axis type so-called drum type washing machine in which the rotation axis of the rotating tub is horizontal or inclined downward toward the rear.

注水装置50は、外箱41の上部にあってトップカバー42の内部に設けられている。注水装置50は、第1給水弁51、第2給水弁52、第3給水弁53、接続口54、注水ケース60、及び微細気泡発生器10を有している。すなわち、洗濯機40において、微細気泡発生器10は、注水装置50の構成要素として注水装置50に組み込まれている。 The water injection device 50 is provided above the outer casing 41 and inside the top cover 42 . The water injection device 50 has a first water supply valve 51 , a second water supply valve 52 , a third water supply valve 53 , a connection port 54 , a water injection case 60 and a fine bubble generator 10 . That is, in washing machine 40 , microbubble generator 10 is incorporated in water injection device 50 as a component of water injection device 50 .

接続口54は、図示しないホースを介して水道の蛇口等の給水源に接続される。接続口54の下流側は複数本に分岐して、各給水弁51、52、53を介して注水ケース60に接続されている。本実施形態の場合、接続口54の下流側は3つに分岐し、各給水弁51、52、53を介して注水ケース60に接続されている。 The connection port 54 is connected to a water supply source such as a water faucet via a hose (not shown). The downstream side of the connection port 54 branches into a plurality of branches and is connected to the water injection case 60 via each water supply valve 51 , 52 , 53 . In the case of this embodiment, the downstream side of the connection port 54 is branched into three and connected to the water injection case 60 via respective water supply valves 51 , 52 , 53 .

注水ケース60は、接続口54から供給された水を受けて、その受けた水を、注水口61から水槽43及び回転槽44内へ注水する。注水ケース60は、引き出し式の洗剤ケース62及び柔軟剤ケース63を有している。洗剤ケース62には、洗剤が投入され、柔軟剤ケース63には、柔軟剤が投入される。 The water injection case 60 receives water supplied from the connection port 54 and injects the received water from the water injection port 61 into the water tub 43 and the rotary tub 44 . The water injection case 60 has a drawer type detergent case 62 and a softener case 63 . Detergent is put into the detergent case 62 and softener is put into the softener case 63 .

この構成において、第1給水弁51が開かれると、図示しない蛇口から接続口54に供給された水道水は、微細気泡発生器10を通過して微細気泡を含む微細気泡水となって、注水ケース60内の洗剤ケース62に供給される。そして、微細気泡発生器10を通過して洗剤ケース62内に供給された微細気泡水は、注水ケース60の底部に流れ落ち、その後、注水口61から水槽43及び回転槽44内へ注水される。このとき、洗剤ケース62内に洗剤が収容されていれば、その洗剤は、洗剤ケース62内に供給された微細気泡水に溶かされて、注水口61から水槽43及び回転槽44内へ流し落とされる。 In this configuration, when the first water supply valve 51 is opened, tap water supplied from a faucet (not shown) to the connection port 54 passes through the microbubble generator 10 to become microbubble water containing microbubbles. It is supplied to the detergent case 62 inside the case 60 . The microbubble water supplied into the detergent case 62 through the microbubble generator 10 flows down to the bottom of the water injection case 60, and then is injected from the water injection port 61 into the water tub 43 and the rotary tub 44. At this time, if detergent is stored in the detergent case 62, the detergent is dissolved in the microbubble water supplied in the detergent case 62, and flows down from the water inlet 61 into the water tub 43 and the rotary tub 44. be

同様に、第2給水弁52が開かれると、図示しない蛇口から接続口54に供給された水道水は、注水ケース60内の洗剤ケース62に供給される。そして、洗剤ケース62内に供給された水道水は、注水ケース60の底部に流れ落ち、その後、注水口61から水槽43及び回転槽44内へ注水される。このとき、洗剤ケース62内に洗剤が収容されていれば、その洗剤は、洗剤ケース62内に供給された水道水に溶かされて、注水口61から水槽43及び回転槽44内へ流し落とされる。 Similarly, when the second water supply valve 52 is opened, tap water supplied from a faucet (not shown) to the connection port 54 is supplied to the detergent case 62 inside the water injection case 60 . The tap water supplied into the detergent case 62 flows down to the bottom of the water injection case 60 and then is injected from the water injection port 61 into the water tub 43 and the rotary tub 44 . At this time, if the detergent is stored in the detergent case 62, the detergent is dissolved in the tap water supplied in the detergent case 62 and flowed down from the water inlet 61 into the water tank 43 and the rotary tank 44. .

本実施形態では、第1給水弁51を開くことで微細気泡発生器10を通過して供給される微細気泡水と、第2給水弁52を開くことで微細気泡発生器10を通過せずに供給される水道水とは、注水ケース60内又は水槽43内で混合されて洗濯液となる。この場合、洗濯機40は、第1給水弁51と第2給水弁52との開閉時間やタイミングを調整することで、洗濯液における微細気泡水と水道水との混合割合を調整することができる。これにより、洗濯液に含まれる微細気泡の濃度を任意に調整することができる。 In this embodiment, by opening the first water supply valve 51, microbubble water is supplied through the microbubble generator 10, and by opening the second water supply valve 52, microbubble water is supplied without passing through the microbubble generator 10. The supplied tap water is mixed in the water injection case 60 or the water tank 43 to become the washing liquid. In this case, the washing machine 40 can adjust the mixing ratio of microbubble water and tap water in the washing liquid by adjusting the opening/closing time and timing of the first water supply valve 51 and the second water supply valve 52. . This makes it possible to arbitrarily adjust the concentration of microbubbles contained in the washing liquid.

また、第3給水弁53が開かれると、図示しない蛇口から接続口54に供給された水道水は、注水ケース60内の柔軟剤ケース63に供給される。そして、柔軟剤ケース63内に供給された水道水は、注水ケース60の底部に流れ落ち、その後、注水口61から水槽43及び回転槽44内へ注水される。このとき、柔軟剤ケース63内に柔軟剤が収容されていれば、その柔軟剤は、柔軟剤ケース63内に供給された水道水に溶かされて、注水口61から水槽43及び回転槽44内へ流し落とされる。なお、第3給水弁53の経路に、微細気泡発生器10を更に設けても良い。 Further, when the third water supply valve 53 is opened, tap water supplied from a faucet (not shown) to the connection port 54 is supplied to the softener case 63 inside the water injection case 60 . The tap water supplied into the softener case 63 flows down to the bottom of the water injection case 60 and then is injected from the water injection port 61 into the water tub 43 and the rotary tub 44 . At this time, if softener is stored in the softener case 63 , the softener is dissolved in the tap water supplied to the softener case 63 , and is discharged from the water inlet 61 into the water tank 43 and the rotary tank 44 . washed away. In addition, the fine bubble generator 10 may be further provided on the path of the third water supply valve 53 .

そして、洗濯機40は、水槽43及び回転槽44内に洗濯液を貯留した状態で、モータ46を駆動させてパルセータ45を回転させて回転槽44内の洗濯物を攪拌することで、洗濯動作を行う。この場合、微細気泡発生器10には、循環水ではなく水道水が印加されている。つまり、本実施形態において、洗濯液に用いる微細気泡水は、水道水を微細気泡発生器10に1回通過させることで発生させたもの、つまりワンパスで発生させたものである。なお、微細気泡発生器10は、洗濯機40内で洗濯液を循環させる循環経路の途中に設けてられても良い。これによれば、洗濯液を微細気泡発生器10に複数回通過させることで、洗濯液中の微細気泡の濃度を更に高めることができる。 The washing machine 40 agitates the laundry in the rotary tub 44 by driving the motor 46 to rotate the pulsator 45 while the washing liquid is stored in the tub 43 and the rotary tub 44. I do. In this case, not circulating water but tap water is applied to the microbubble generator 10 . That is, in the present embodiment, the microbubble water used in the washing liquid is generated by passing tap water through the microbubble generator 10 once, that is, generated in one pass. In addition, the fine bubble generator 10 may be provided in the middle of the circulation path for circulating the washing liquid in the washing machine 40 . According to this, the concentration of microbubbles in the washing liquid can be further increased by allowing the washing liquid to pass through the microbubble generator 10 a plurality of times.

以上説明した実施形態による洗浄方法及び洗濯機40によれば、粒子径500nm以下の微細気泡が1mlあたり1×10^5個以上含まれている微細気泡水と、洗剤等の界面活性剤と、を混合させた洗浄液によって洗浄対象を洗浄する。 According to the washing method and the washing machine 40 according to the embodiment described above, microbubble water containing 1×10̂5 or more microbubbles with a particle size of 500 nm or less per 1 ml, a surfactant such as a detergent, The object to be washed is washed with a washing liquid mixed with

これによれば、微細気泡の数及び粒子径を界面活性剤による洗浄に適したものにすることができる。これにより、微細気泡と界面活性剤との相互作用による効果を十分に引き出すことができ、その結果、微細気泡を含んでいない洗浄液で洗浄する場合に比べて、洗浄効率を向上させることができる。 According to this, the number and particle size of fine bubbles can be made suitable for cleaning with a surfactant. As a result, the effect of the interaction between the microbubbles and the surfactant can be sufficiently brought out, and as a result, the cleaning efficiency can be improved compared to cleaning with a cleaning liquid that does not contain microbubbles.

微細気泡は、表面に負の電荷を帯びている。そして、微細気泡の粒子径つまり粒子径が小さくなるほど、微細気泡の表面の負電荷は大きくなるとされている。そのため、微細気泡は、粒子径が小さくなるほど界面活性剤を吸着し易くなり、その結果、界面活性剤との集合体を形成し易くなる。しかしながら、微細気泡の粒子径が小さくなると、微細気泡の表面積が小さくなるため、1つの微細気泡が吸着できる界面活性剤の量が少なくなる。 Microbubbles have a negative surface charge. It is said that the smaller the particle size of the microbubbles, that is, the smaller the particle size, the greater the negative charge on the surface of the microbubbles. Therefore, the smaller the particle diameter, the easier it is for the microbubbles to adsorb the surfactant, and as a result, the more easily they form aggregates with the surfactant. However, when the particle size of the microbubbles becomes smaller, the surface area of the microbubbles becomes smaller, so the amount of surfactant that can be adsorbed by one microbubble decreases.

これに対し、本実施形態の洗浄方法及び洗濯機40に用いる微細気泡水は、粒子径500nm以下の微細気泡の粒子径ごとの個数分布の最大ピークが粒子径100nm±30nmの範囲内にある。これによれば、微細気泡の電気的特性による界面活性剤の吸着能力と、微細気泡のサイズによる界面活性剤の吸着量とを、適切な状態にすることができる。その結果、微細気泡と界面活性剤との相互作用による効果を更に効果的に引き出すことができる。 On the other hand, in the microbubble water used in the washing method and the washing machine 40 of the present embodiment, the maximum peak of the number distribution for each particle diameter of microbubbles with a particle diameter of 500 nm or less is within the particle diameter range of 100 nm±30 nm. According to this, the adsorption capacity of the surfactant based on the electrical properties of the microbubbles and the adsorption amount of the surfactant based on the size of the microbubbles can be brought into an appropriate state. As a result, the effect of the interaction between the microbubbles and the surfactant can be brought out more effectively.

また、本実施形態の洗浄方法及び洗濯機40に用いる微細気泡水は、粒子径500nm以下の微細気泡の数に占める粒子径100nm±30nmの範囲内の微細気泡の数の割合が50%以上となっている。これによっても、微細気泡の電気的特性による界面活性剤の吸着能力と、微細気泡のサイズによる界面活性剤の吸着量とを、更に適切な状態にすることができる。その結果、微細気泡と界面活性剤との相互作用による効果を更に効果的に引き出すことができる。 In the fine bubble water used in the washing method and the washing machine 40 of the present embodiment, the ratio of the number of fine bubbles having a particle diameter of 100 nm±30 nm to the number of fine bubbles having a particle diameter of 500 nm or less is 50% or more. It's becoming This also makes it possible to further optimize the adsorption capacity of the surfactant based on the electrical properties of the microbubbles and the adsorption amount of the surfactant based on the size of the microbubbles. As a result, the effect of the interaction between the microbubbles and the surfactant can be brought out more effectively.

また、実施形態による洗浄方法及び洗濯機40に用いられる微細気泡水は、水道水を微細気泡発生器10に1回通過させることで発生させたものである。これによれば、微細気泡発生器10に水道水を複数回通過させて微細気泡水を生成するものに比べて、微細気泡水の供給時間を短くすることができる。その結果、洗浄時間を短縮することができる。 The microbubble water used in the washing method and the washing machine 40 according to the embodiment is generated by passing tap water through the microbubble generator 10 once. According to this, the supply time of fine bubble water can be shortened as compared with the case where tap water is passed through the fine bubble generator 10 a plurality of times to generate fine bubble water. As a result, cleaning time can be shortened.

なお、上記実施形態の洗浄方法は、洗濯機40に限られず、例えば食器洗浄機や便器にも適用することができる。
上記実施形態の洗浄方法を食器洗浄機に適用する場合、食器洗浄機は、例えば上述した微細気泡発生器10を通して生成された微細気泡水を用いて、洗浄対象である食器を洗浄する。この場合、微細気泡発生器10は、水道から食器洗浄機内に水道水を供給するための給水経路や、食器洗浄機内に給水された水を循環させる循環経路の途中に設ければ良い。これにより、食器洗浄機内に、微細気泡発生器10を通って微細気泡を含んだ微細気泡水が供給される。そして、食器洗浄機内において、微細気泡水と食器用洗剤とが混合することで、上述したように、微細気泡と界面活性剤との相互作用による効果を効果的に引き出すことができる。
In addition, the washing method of the above-described embodiment is not limited to the washing machine 40, and can be applied to, for example, a dishwasher and a toilet bowl.
When the washing method of the above embodiment is applied to a dishwasher, the dishwasher uses microbubble water generated through the microbubble generator 10 described above, for example, to wash the dishes to be washed. In this case, the microbubble generator 10 may be provided in the water supply path for supplying tap water from the tap into the dishwasher or in the middle of the circulation path for circulating the water supplied to the dishwasher. As a result, microbubble water containing microbubbles is supplied into the dishwasher through the microbubble generator 10 . By mixing the microbubble water and the dishwashing detergent in the dishwasher, the effect of the interaction between the microbubbles and the surfactant can be effectively brought out as described above.

また、上記実施形態の洗浄方法を便器に適用する場合、便器は、例えば上述した微細気泡発生器10を通して生成された微細気泡水を用いて、洗浄対象である便器内を洗浄する。この場合、微細気泡発生器10は、水道から便器内に水道水を供給するための給水経路の途中に設ければ良い。これにより、便器内に、微細気泡発生器10を通って微細気泡を含んだ微細気泡水が供給される。そして、便器内において、例えばユーザが便器内を掃除する際に便器内に投入した洗剤と、便器内に供給された微細気泡水とが混合することで、上述したように、微細気泡と界面活性剤との相互作用による効果を効果的に引き出すことができる。この場合、便器は、便器内に微細気泡水と共に洗剤を自動で供給する機構を備えていても良い。 Further, when the cleaning method of the above embodiment is applied to a toilet bowl, the inside of the toilet bowl to be cleaned is cleaned using microbubble water generated through the microbubble generator 10 described above, for example. In this case, the microbubble generator 10 may be provided in the middle of the water supply path for supplying tap water from the water supply to the toilet bowl. As a result, microbubble water containing microbubbles is supplied into the toilet through the microbubble generator 10 . Then, in the toilet bowl, for example, when the user cleans the inside of the toilet bowl, the detergent put into the toilet bowl and the microbubble water supplied into the toilet bowl are mixed, and as described above, the microbubbles and the surfactant It is possible to effectively draw out the effect of interaction with the agent. In this case, the toilet bowl may be provided with a mechanism for automatically supplying the detergent together with the microbubble water into the toilet bowl.

以上、本発明の一実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although one embodiment of the present invention has been described above, this embodiment is presented as an example and is not intended to limit the scope of the invention. This novel embodiment can be embodied in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and its equivalents.

図面中、31は微細気泡、32は界面活性剤、40は洗濯機、を示す。 In the drawing, 31 denotes fine air bubbles, 32 denotes a surfactant, and 40 denotes a washing machine.

Claims (7)

粒子径500nm以下の微細気泡が1mlあたり1×10^5個以上含まれている微細気泡水と、界面活性剤と、を混合させた洗浄液によって洗濯物、食器、又は便器を洗浄する洗浄方法であって、
前記微細気泡水は、粒子径500nm以下の微細気泡の数に占める粒子径100nm±30nmの範囲内の微細気泡の数の割合が50%以上となっている、
洗浄方法。
A washing method for washing laundry, tableware, or a toilet bowl with a washing liquid obtained by mixing microbubble water containing 1×10^5 or more microbubbles with a particle diameter of 500 nm or less per 1 ml and a surfactant. There is
In the microbubble water, the ratio of the number of microbubbles with a particle diameter of 100 nm ± 30 nm to the number of microbubbles with a particle diameter of 500 nm or less is 50% or more.
cleaning method.
前記微細気泡水は、粒子径500nm以下の微細気泡の直径ごとの個数分布の最大ピークが粒子径100nm±30nmの範囲内にある、
請求項1に記載の洗浄方法。
In the microbubble water, the maximum peak of the number distribution for each diameter of microbubbles with a particle diameter of 500 nm or less is within the range of 100 nm ± 30 nm in particle diameter.
The cleaning method according to claim 1.
記微細気泡水は、粒子径500nm以下の微細気泡の直径ごとの個数分布のうち、最大ピークを含む少なくとも2つのピークが粒子径100nm±30nmの範囲内に収まっている、
請求項1又は2に記載の洗浄方法。
In the microbubble water, at least two peaks including the maximum peak in the number distribution for each diameter of microbubbles with a particle diameter of 500 nm or less are within the range of 100 nm ± 30 nm in particle diameter.
The cleaning method according to claim 1 or 2 .
前記微細気泡水は、水道水を微細気泡発生器に1回通過させることで発生させたものである、
請求項1から3のいずれか一項に記載の洗浄方法。
The fine bubble water is generated by passing tap water through a fine bubble generator once.
The cleaning method according to any one of claims 1 to 3.
請求項1から4のいずれか一項に記載の洗浄方法を用いた洗濯機。 A washing machine using the washing method according to any one of claims 1 to 4. 請求項1から4のいずれか一項に記載の洗浄方法を用いた食器洗浄機。 A dishwasher using the cleaning method according to any one of claims 1 to 4. 請求項1から4のいずれか一項に記載の洗浄方法を用いた便器。 A toilet using the cleaning method according to any one of claims 1 to 4.
JP2017079899A 2017-04-13 2017-04-13 Cleaning methods, washing machines, dishwashers, and toilet bowls Active JP7185390B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017079899A JP7185390B2 (en) 2017-04-13 2017-04-13 Cleaning methods, washing machines, dishwashers, and toilet bowls
PCT/JP2018/000832 WO2018189973A1 (en) 2017-04-13 2018-01-15 Cleaning method, washing machine, dish washer, and toilet
CN201880004925.XA CN110073050A (en) 2017-04-13 2018-01-15 Clean method, washing machine, tableware cleaner and closet
TW107102481A TWI678444B (en) 2017-04-13 2018-01-24 Washing method, washing machine, dishwasher and toilet
JP2021196218A JP7309826B2 (en) 2017-04-13 2021-12-02 Cleaning methods, washing machines, dishwashers, and toilet bowls
JP2023109244A JP2023115382A (en) 2017-04-13 2023-07-03 cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017079899A JP7185390B2 (en) 2017-04-13 2017-04-13 Cleaning methods, washing machines, dishwashers, and toilet bowls

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021196218A Division JP7309826B2 (en) 2017-04-13 2021-12-02 Cleaning methods, washing machines, dishwashers, and toilet bowls

Publications (2)

Publication Number Publication Date
JP2018175443A JP2018175443A (en) 2018-11-15
JP7185390B2 true JP7185390B2 (en) 2022-12-07

Family

ID=63793189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017079899A Active JP7185390B2 (en) 2017-04-13 2017-04-13 Cleaning methods, washing machines, dishwashers, and toilet bowls

Country Status (4)

Country Link
JP (1) JP7185390B2 (en)
CN (1) CN110073050A (en)
TW (1) TWI678444B (en)
WO (1) WO2018189973A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094088A (en) * 2018-12-10 2020-06-18 国立研究開発法人産業技術総合研究所 Cleaning solution, manufacturing method of cleaning solution, and cleaning method
WO2021023159A1 (en) * 2019-08-02 2021-02-11 佛山市顺德区美的洗涤电器制造有限公司 Bubble generation apparatus and washing device
CN112899990A (en) 2019-12-04 2021-06-04 青岛海尔洗衣机有限公司 Water inlet method of washing equipment and washing equipment using water inlet method
TWI831094B (en) * 2021-12-03 2024-02-01 英屬開曼群島商納諾股份有限公司 Clothing washing system, apparatus for generating nanometer bubble ionic water, and method of washing clothes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121962A (en) 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology Method and apparatus for using nanometer-bubble
JP2009226208A (en) 2008-02-29 2009-10-08 Chugoku Electric Power Co Inc:The Washing device
JP2013140096A (en) 2012-01-05 2013-07-18 Sunstar Engineering Inc Method for decontaminating radioactive material contaminated object
JP2015186781A (en) 2014-03-26 2015-10-29 トスレック株式会社 Nano-bubble manufacturing apparatus
WO2015182647A1 (en) 2014-05-28 2015-12-03 武田薬品工業株式会社 Antibacterial water
WO2016037073A2 (en) 2014-09-05 2016-03-10 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2094314U (en) * 1990-05-23 1992-01-29 梁志峰 Micro bubble ultrasonic washing machine
JP3702787B2 (en) * 1997-08-15 2005-10-05 東陶機器株式会社 Washing water discharge device
EP1939366B8 (en) * 2005-07-26 2016-12-14 Panasonic Intellectual Property Management Co., Ltd. Flush toilet equipment
JP4760654B2 (en) * 2006-10-11 2011-08-31 パナソニック電工株式会社 Detergent dispenser
JP2011088979A (en) * 2009-10-21 2011-05-06 Panasonic Electric Works Co Ltd Cleaning liquid, cleaning method, and cleaning liquid production device
JP2011115359A (en) * 2009-12-03 2011-06-16 Panasonic Corp Drum type washing machine
JP6388380B2 (en) * 2014-06-24 2018-09-12 東芝ライフスタイル株式会社 Washing machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121962A (en) 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology Method and apparatus for using nanometer-bubble
JP2009226208A (en) 2008-02-29 2009-10-08 Chugoku Electric Power Co Inc:The Washing device
JP2013140096A (en) 2012-01-05 2013-07-18 Sunstar Engineering Inc Method for decontaminating radioactive material contaminated object
JP2015186781A (en) 2014-03-26 2015-10-29 トスレック株式会社 Nano-bubble manufacturing apparatus
WO2015182647A1 (en) 2014-05-28 2015-12-03 武田薬品工業株式会社 Antibacterial water
WO2016037073A2 (en) 2014-09-05 2016-03-10 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles

Also Published As

Publication number Publication date
WO2018189973A1 (en) 2018-10-18
CN110073050A (en) 2019-07-30
TW201837264A (en) 2018-10-16
JP2018175443A (en) 2018-11-15
TWI678444B (en) 2019-12-01

Similar Documents

Publication Publication Date Title
JP7185390B2 (en) Cleaning methods, washing machines, dishwashers, and toilet bowls
US10988887B2 (en) Washing machine
CN110494606B (en) Washing machine
JP2017525861A (en) Fabric treatment composition comprising aminosiloxane polymer nanoemulsion
JP2008043651A (en) Washing machine
JP6706135B2 (en) Washing machine
JP7309826B2 (en) Cleaning methods, washing machines, dishwashers, and toilet bowls
JP7025267B2 (en) washing machine
JP7197970B2 (en) Water supply device
CN108720775B (en) Tableware cleaning machine
JP7407657B2 (en) Cleaning equipment and washing machines
JP2021013681A (en) Washing machine
WO2018186164A1 (en) Washing machine
JP6948144B2 (en) Flush toilet device, wash water tank device, and local wash device
CA2582983C (en) Turbulent flow washing apparatus and method
JP2006110091A (en) Washing machine
JP2023037273A (en) washing machine
JP7248388B2 (en) Fine bubble generator and home appliance
JP2021137385A (en) Washing machine
JP7377134B2 (en) washing machine
JP7397943B2 (en) clothing processing equipment
CN105696262B (en) Jet mixer
EP4322813A1 (en) A cleaning assembly and a method of cleaning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211202

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211210

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211214

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211217

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211221

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220517

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220712

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220915

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20221004

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20221101

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221125

R150 Certificate of patent or registration of utility model

Ref document number: 7185390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150