JP7182960B2 - 多孔質膜を用いた醤油の製造方法 - Google Patents
多孔質膜を用いた醤油の製造方法 Download PDFInfo
- Publication number
- JP7182960B2 JP7182960B2 JP2018164585A JP2018164585A JP7182960B2 JP 7182960 B2 JP7182960 B2 JP 7182960B2 JP 2018164585 A JP2018164585 A JP 2018164585A JP 2018164585 A JP2018164585 A JP 2018164585A JP 7182960 B2 JP7182960 B2 JP 7182960B2
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- porous membrane
- soy sauce
- resin
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Soy Sauces And Products Related Thereto (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
このように、膜ろ過法による除濁操作は、前記した従来の加圧浮上法、砂ろ過法等にはない利点が多くあるために、従来法の代替又は補完手段として、海水淡水化前処理等への普及が進んでおり、また、多孔質膜として以下の特許文献1に記載されるような樹脂により構成される有機膜が多用されている。
かかる問題に鑑み、本発明が解決しようとする課題は、澱成分の凝集物を含有する火入れ醤油から該凝集物を除去するための多孔質膜を用いるろ過工程を含む醤油の製造方法において、ろ過前後の火入れ醤油の全窒素成分の変化が低く、澱成分の除去率が高く、多孔質膜の洗浄工程後の透水量回復性や洗浄液(薬液)耐性も高い方法を提供することである。
[1]以下の工程:
澱成分を含有する醤油を火入れして、該澱成分の凝集体を形成する火入れ工程;及び
3次元網目構造の樹脂から構成される多孔質膜に、該澱成分の凝集体を含有する火入れ醤油を通過させて、該澱成分の凝集体からろ液を分離するろ過工程;
を含む醤油の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm2以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、
該ろ過工程前の火入れ醤油の澱成分比率をX0、全窒素成分をN0、該ろ過工程後の火入れ醤油の澱成分比率をX1、全窒素成分をN1とするとき、X1/X0×100<5%、及びN1/N0×100≧97%の関係を満たす、
ことを特徴とする前記醤油の製造方法。
[2]以下の工程:
澱成分を含有する醤油を火入れして、該澱成分の凝集体を形成する火入れ工程;及び
3次元網目構造の樹脂から構成される多孔質膜に、該澱成分の凝集体を含有する火入れ醤油を通過させて、該澱成分の凝集体からろ液を分離するろ過工程;
を含む醤油の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、10μm2以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、
該ろ過工程前の火入れ醤油の澱成分比率をX0、全窒素成分をN0、該ろ過工程後の火入れ醤油の澱成分比率をX1、全窒素成分をN1とするとき、X1/X0×100<5%、及びN1/N0×100≧97%の関係を満たす、
ことを特徴とする前記醤油の製造方法。
[3]以下の工程:
澱成分を含有する醤油を火入れして、該澱成分の凝集体を形成する火入れ工程;及び
3次元網目構造の樹脂から構成される多孔質膜に、該澱成分の凝集体を含有する火入れ醤油を通過させて、該澱成分の凝集体からろ液を分離するろ過工程;
を含む醤油の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm2以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、10μm2以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、
該ろ過工程前の火入れ醤油の澱成分比率をX0、全窒素成分をN0、該ろ過工程後の火入れ醤油の澱成分比率をX1、全窒素成分をN1とするとき、X1/X0×100<5%、及びN1/N0×100≧97%の関係を満たす、
ことを特徴とする前記醤油の製造方法。
[4]前記多孔質膜は、該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm2超10μm2未満の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下である、前記[1]~[3]のいずれかに記載の方法。
[5]前記多孔質膜の表面開口率は25~60%である、前記[1]~[4]のいずれかに記載の方法。
[6]前記多孔質膜は中空糸膜である、前記[1]~[5]のいずれかに記載の方法。
[7]前記多孔質膜を構成する樹脂は熱可塑性樹脂である、前記[1]~[6]のいずれかに記載の方法。
[8]前記熱可塑性樹脂はフッ素樹脂である、前記[7]に記載の方法。
[9]前記フッ素樹脂は、フッ化ビニリデン樹脂(PVDF)、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン樹脂、エチレン-テトラフルオロエチレン共重合体(ETFE)、エチレン-モノクロロトリフルオロエチレン共重合体(ECTFE)、ヘキサフルオロプロピレン樹脂、及びこれら樹脂の混合物からなる群から選ばれる、前記[8]に記載の方法。
[10]前記熱可塑性樹脂はポリエチレン(PE)である、前記[7]に記載の方法。
[11]前記ろ過工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液が50℃~90℃の湯である、前記[1]~[10]のいずれかに記載の方法。
[12]前記ろ過工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液が0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム又は0.4重量%以上4重量%以下の水酸化ナトリウムを含有する水溶液である、前記[1]~[10]のいずれかに記載の方法。
[13]前記洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程後の前記多孔質膜の引張破断伸度E1との関係が、E1/E0×100≧80%である、前記[11]又は[12]に記載の方法。
[14]前記洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程をX回(ここで、Xは2~100の整数である。)繰り返した後の前記多孔質膜の引張破断伸度EXとの関係が、EX/E0×100≧70%である、前記[11]又は[12]に記載の方法。
[15]前記ろ過工程前の前記多孔質膜のフラックスL0と、前記洗浄工程後の前記多孔質膜のフラックスL1との関係が、L1/L0×100≧95%である、前記[11]又は[12]に記載の方法。
[16]前記ろ過工程前の前記多孔質膜のフラックスL0と、前記洗浄工程をX回(ここで、Xは2~100の整数である。)繰り返した後の前記多孔質膜のフラックスLXとの関係が、X/L0×100≧90%である、前記[11]又は[12]に記載の方法。
[17]前記洗浄工程は、前記洗浄液による洗浄を行う洗浄液工程と、その後、残存する洗浄液成分を除去するためのリンス水による濯ぎを行うリンス工程とを含む、前記[11]~[16]のいずれかに記載の方法。
[18]前記リンス工程で使用するリンス水の量は、前記多孔質膜の単位面積当たり100L/m2以下である、前記[17]に記載の方法。
[19]前記リンス工程後に前記ろ過工程を再開した後のろ液中の塩素濃度が0.1ppm以下であり、かつ、該ろ過液のpHが8.6以下である、前記[17]又は[18]に記載の方法。
本実施形態の醤油の製造方法は、以下の工程:
澱成分を含有する醤油を火入れして、該澱成分の凝集体を形成する火入れ工程;及び
3次元網目構造の樹脂から構成される多孔質膜に、該澱成分の凝集体を含有する火入れ醤油を通過させて、該澱成分の凝集体からろ液を分離するろ過工程;
を含む醤油の製造方法であって、該ろ過工程前の火入れ醤油の澱成分比率をX0、全窒素成分をN0、該ろ過工程後の火入れ醤油の澱成分比率をX1、全窒素成分をN1とするとき、X1/X0×100<5%、及びN1/N0×100≧97%の関係を満たす、
ことを特徴とする。
X1/X0×100<0.5%であることが好ましくは、より好ましくはX1/X0×100<0.3%である。
また、N1/N0×100≧98%であることが好ましく、より好ましくはN1/N0×100≧99.5%である。
多孔質膜の形状としては特に制限はなく、平膜、管状膜、中空糸膜であることができるが、ろ過装置の省スペース性の観点から、すなわち、膜モジュール単位体積当たりの膜面積を大きくすることができるため、中空糸膜が好ましい。
本明細書中、用語「多孔質膜の内部」とは、多数の細孔が形成されている膜厚(肉厚)部を指す。
より好ましくは、本実施形態の醤油の製造方法は、前記ろ過工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液が0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム又は0.4重量%以上4重量%以下の水酸化ナトリウムを含有する水溶液(以下、薬液ともいう。)であることができる。上記洗浄工程においては、熱水洗浄の後に、薬液洗浄をすることが好ましい。
洗浄工程は、前記洗浄液による洗浄を行う洗浄液工程と、その後、残存する洗浄液成分を除去するためのリンス水による濯ぎを行うリンス工程とを含むことができる。洗浄液が熱水の場合、熱水の温度は、好ましくは55℃以上85℃以下、より好ましくは60℃以上80℃以下であることができる。洗浄液が前記薬液の場合、薬液の温度は、好ましくは15℃以上35℃以下、より好ましくは20℃以上35℃以下であることができる。また、前記薬液中の水酸化ナトリウムの濃度は、0.7重量%以上4重量%以下がより好ましく、1重量%以上4重量%以下がさらに好ましい。前記薬液中の次亜塩素酸ナトリウムの濃度は、0.1重量%以上0.5重量%以下がより好ましく、0.2重量%以上0.5重量%以下がさらに好ましい。洗浄工程としては、例えば、ろ過工程における火入れ醤油の流れ方向とは逆方向に、すなわち、ろ液側から火入れ醤油側に洗浄液を通過させることによって多孔質膜のろ過面(火入れ醤油側表面)から付着物(不溶解成分)を引き離して、除去する逆圧水洗浄、エアによって多孔質膜を揺らして多孔質膜に付着した不溶解成分を振るい落とすエアスクラビングなどが挙げられる。前記リンス工程で使用するリンス水の量は、好ましくは、前記多孔質膜の単位面積当たり100L/m2以下、より好ましくは50L/m2以下であることができる。また、前記リンス工程後に前記ろ過工程を再開した後のろ液中の塩素濃度が0.1ppm以下であり、かつ、該ろ過液のpHが8.6以下であることが好ましい。
本実施形態の醤油の製造方法におけるろ過工程に用いる多孔質膜の構造、素材(材料)、及び製造方法を、以下、詳述する。
多孔質膜は、該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm2以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であるもの;同各領域において、10μm2以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であるもの;同各領域において、1μm2以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、10μm2以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であるもの;のいずれかである。好ましい多孔質膜は、同各領域において、1μm2以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、1μm2超10μm2未満の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、10μm2以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であるものである。
尚、前記各領域内では、中空糸多孔質膜の内側表面に直交する膜厚方向における膜断面と、該内側表面に平行する断面との間では、樹脂部の存在分布の差異、すなわち、孔の連通性の異方性は事実上無視することができる。
本明細書中、用語「樹脂部」とは、多孔質膜において多数の孔を形成する、樹脂から構成される3次元網目構造の樹状骨格部分である。図1に黒色で示す部分が樹脂部であり、白色の部分が孔である。
多孔質膜内部には、膜の内側から外側まで屈曲しながら連通している連通孔が形成されており、多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm2以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であれば、孔の連通性が高い(すなわち、膜内部の連通孔の存在割合が高い)ものとなり、被処理液のフラックス(透水量、透水性)、洗浄後の透水量保持率が高く、引張破断伸度で指標される薬液洗浄後の膜へのダメージも軽減される。しかしながら、樹脂部の総面積に対する1μm2以下の面積を有する樹脂部の面積の合計の割合が高すぎると、多孔質膜において多数の孔を形成する、樹脂から構成される3次元網目構造の樹状骨格部分が細すぎるものとなるため、1μm2以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であることを維持しつつ、1μm2超の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して2%以上30%以下で存在するものが好ましく、10μm2以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下で存在するものがより好ましく、1μm2超10μm2未満の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、10μm2以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して2%以上15%以下で存在するものがさらに好ましい。1μm2超の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して2%以上30%以下で存在すれば、樹脂から構成される3次元網目構造の樹状骨格部分が細すぎないため、多孔質膜の強度、引張破断伸度を適切に維持することができる。
多孔質膜を構成する樹脂は、好ましくは熱可塑性樹脂であり、フッ素樹脂がより好ましい。フッ素樹脂としては、フッ化ビニリデン樹脂(PVDF)、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン樹脂、エチレン-テトラフルオロエチレン共重合体(ETFE)、エチレン-モノクロロトリフルオロエチレン共重合体(ECTFE)、ヘキサフルオロプロピレン樹脂、及びこれら樹脂の混合物からなる群から選ばれるものが挙げられる。
熱可塑性樹脂として、ポリオレフィン、オレフィンとハロゲン化オレフィンとの共重合体、ハロゲン化ポリオレフィン、それらの混合物が挙げられる。熱可塑性樹脂として、例えば、ポリエチレン(PE)、ポリプロピレン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、エチレン-テトラフルオロエチレン共重合体、ポリフッ化ビニリデン(ヘキサフルオロプロピレンのドメインを含んでもよい)、これらの混合物が挙げられる。これらの樹脂は、は熱可塑性ゆえに取り扱い性に優れ、且つ強靱であるため、膜素材として優れる。これらの中でもフッ化ビニリデン樹脂、テトラフルオロエチレン樹脂、ヘキサフルオロプロピレン樹脂又はそれらの混合物、エチレン、テトラフルオロエチレン、クロロトリフルオロエチレンのホモポリマー又はコポリマー、あるいは、ホモポリマーとコポリマーの混合物は、機械的強度、化学的強度(耐薬品性)に優れ、且つ成形性が良好であるために好ましい。より具体的には、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合物、エチレン-テトラフルオロエチレン共重合物、エチレン-クロロトリフルオロエチレン共重合体等のフッ素樹脂が挙げられる。
また、第2の溶剤は、第1の溶剤と異なり、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、及びエポキシ化植物油からなる群から選択される少なくとも1種であることができる。炭素数6以上30以下の脂肪酸としては、カプリン酸、ラウリン酸、オレイン酸等が挙げられる。また、エポキシ化植物油としては、エポキシ大豆油、エポキシ化亜麻仁油等が挙げられる。
第1の溶剤は、熱可塑性樹脂と第1の溶剤との比率が20:80の第1の混合液において、第1の混合液の温度を第1の溶剤の沸点まで上げても、熱可塑性樹脂が第1の溶剤に均一に溶解しない非溶剤であることが好ましい。
第2の溶剤は、熱可塑性樹脂と第2の溶剤との比率が20:80の第2の混合液において、第2の混合液の温度が25℃より高く第2の溶剤の沸点以下のいずれかの温度で熱可塑性樹脂が第2の溶剤に均一に溶解する良溶剤であることが好ましい。
第2の溶剤は、熱可塑性樹脂と第2の溶剤との比率が20:80の第2の混合液において、第2の混合液の温度が25℃では熱可塑性樹脂が第2の溶剤に均一に溶解せず、第2の混合液の温度が100℃より高く第2の溶剤の沸点以下のいずれかの温度では熱可塑性樹脂が第2の溶剤に均一に溶解する貧溶剤であることがより好ましい。
この場合、第1の溶剤は、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、エポキシ化植物油からなる群から選択される少なくとも1種であって、ポリフッ化ビニリデンと第1の溶剤との比率が20:80の第1の混合液において、第1の混合液の温度を第1の溶剤の沸点まで上げても、ポリフッ化ビニリデンが第1の溶剤に均一に溶解しない非溶剤であることができる。非溶媒としては、アジピン酸ビス2-エチルヘキシル(DOA)が好ましい。
また、上記多孔質中空糸膜は、第1の溶剤とは異なる第2の溶剤を含んでもよい。この場合、第2の溶剤は、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、エポキシ化植物油からなる群から選択される少なくとも1種であって、ポリフッ化ビニリデンと第2の溶剤との比率が20:80の第2の混合液において、第2の混合液の温度が25℃より高く第2の溶剤の沸点以下のいずれかの温度でポリフッ化ビニリデンが第2の溶剤に均一に溶解する良い溶剤であることが好ましい。また、第2の溶剤は、第2の混合液の温度が25℃ではポリフッ化ビニリデンが第2の溶剤に均一に溶解せず、第2の混合液の温度が100℃より高く第2の溶剤の沸点以下のいずれかの温度ではポリフッ化ビニリデンが第2の溶剤に均一に溶解する貧溶剤であることがより好ましい。貧溶媒としては、アセチルクエン酸トリブチル(ATBC)が好ましい。
多孔質膜は、引張破断伸度の初期値は60%以上であることが好ましく、より好ましくは80%以上、さらに好ましくは100%以上、特に好ましくは120%以上である。引張破断伸度の測定方法については後述する。
以下、多孔質中空糸膜の製造方法について説明する。但し、本実施形態のろ過方法に用いる多孔質中空糸膜の製造方法は、以下の製造方法に限定されるものではない。
本実施形態の醤油の製造方法におけるろ過工程に用い多孔質中空糸膜の製造方法は、(a)溶融混練物を準備する工程と、(b)溶融混練物を多重構造の紡糸ノズルに供給し、紡糸ノズルから溶融混練物を押し出すことによって中空糸膜を得る工程と、(c)可塑剤を中空糸膜から抽出する工程とを含むものであることができる。溶融混練物が添加剤を含む場合には、工程(c)の後に、(d)添加剤を中空糸膜から抽出する工程をさらに含んでもよい。
溶融混練物は、熱可塑性樹脂と溶剤の二成分からなるものであってもよく、熱可塑性樹脂、添加剤、及び溶剤の三成分からなるものであってもよい。溶剤は、後述するように、少なくとも非溶剤を含む。
工程(c)で使用する抽出剤としては、塩化メチレンや各種アルコールなど熱可塑性樹脂は溶けないが可塑剤と親和性が高い液体を使用することが好ましい。
添加剤を含まない溶融混練物を使用する場合には、工程(c)を経て得られる中空糸膜を多孔質中空糸膜として使用してもよい。添加剤を含む溶融混練物を使用して多孔質中空糸膜を製造する場合には、工程(c)後に、中空糸膜から(d)添加剤を抽出除去して多孔性中空糸膜を得る工程をさらに経ることが好ましい。工程(d)における抽出剤には、湯、又は酸、アルカリなど使用した添加剤を溶解できるが熱可塑性樹脂は溶解しない液体を使用することが好ましい。
多孔質中空糸膜内部の無機微粉について、蛍光X線等により存在する元素を同定することで、存在する無機微粉の素材(材料)を同定することができる。
添加剤として有機物を使用する場合、ポリビニルピロリドン、ポリエチレングリコールなどの親水性高分子を使用すると中空糸膜に親水性を付与することができる。また、グリセリン、エチレングリコールなど粘度の高い添加剤を使用すると溶融混練物の粘度をコントロールすることができる。
本実施形態の多孔質中空糸膜の製造方法では、熱可塑性樹脂の非溶剤を、良溶剤又は貧溶剤に混合させる。混合後の混合溶媒は、使用する熱可塑性樹脂の非溶剤である。このように膜の原材料として非溶剤を用いると、3次元網目構造を持つ多孔質中空糸膜が得られる。その作用機序は必ずしも明らかではないが、非溶剤を混合させて、より溶解性を低くした溶剤を用いた方がポリマーの結晶化が適度に阻害され、3次元網目構造になりやすいと考えられる。例えば、非溶剤、及び貧溶剤又は良溶剤は、フタル酸エステル、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、エポキシ化植物油等の各種エステル等からなる群から選ばれる。
熱可塑性樹脂を常温で溶解させることができる溶剤を良溶剤、常温では溶解できないが高温にして溶解させることができる溶剤をその熱可塑性樹脂の貧溶剤、高温にしても溶解させることができない溶剤を非溶剤と呼ぶが、良溶剤、貧溶剤、及び非溶剤は、以下のようにして判定することができる。
試験管に2g程度の熱可塑性樹脂と8g程度の溶剤を入れ、試験管用ブロックヒーターにて10℃刻み程度でその溶剤の沸点まで加温し、スパチュラなどで試験管内を混合し、熱可塑性樹脂が溶解するものが良溶剤又は貧溶剤、溶解しないものが非溶剤である。100℃以下の比較的低温で溶解するものが良溶剤、100℃以上沸点以下の高温にしないと溶解しないものを貧溶剤と判定する。
例えば、熱可塑性樹脂としてポリフッ化ビニリデン(PVDF)を用い、溶剤としてアセチルクエン酸トリブチル(ATBC)、セバシン酸ジブチル又はアジピン酸ジブチルを用いると、200℃程度でPVDFはこれらの溶剤に均一に混ざり合い溶解する。他方、溶剤としてアジピン酸ビス2-エチルヘキシル(DOA)、アジピン酸ジイソノニル、又はセバシン酸ビス2エチルヘキシルを用いると温度を250℃まで上げても、PVDFはこれらの溶剤には溶解しない。
また、熱可塑性樹脂としてエチレン-テトラフルオロエチレン共重合体(ETFE)を用い、溶剤としてアジピン酸ジエチルを用いると、200℃程度でETFEは均一に混ざり合い溶解する。他方、溶剤としてアジピン酸ビス2-エチルヘキシル(DIBA)を用いると溶解しない。
また、熱可塑性樹脂としてエチレン-モノクロロトリフルオロエチレン共重合体(ECTFE)を用い、溶剤としてクエン酸トリエチルを用いると200℃程度で均一に溶解し、トリフェニル亜リン酸(TPP)を用いると溶解しない。
多孔質中空糸膜を、長さ方向に直交する断面でカミソリを使って薄くスライスし、100倍拡大鏡にて、外径と内径を測定した。一つのサンプルについて、長さ方法に30mm間隔で60箇所の切断面で測定を行い、平均値を中空糸膜の外径と内径とした。
多孔質中空糸膜を、長さ方向に直交する断面で円環状に裁断し、10%リンタングステン酸+四酸化オスミウム染色を実施し、エポキシ樹脂に包埋した。次いで、トリミング後、試料断面にBIB加工を施して平滑断面を作製し、導電処理し、検鏡試料を作製した。作製した検鏡試料を、HITACHI製電子顕微鏡SU8000シリーズを使用し、加速電圧1kVで膜の断面の電子顕微鏡(SEM)画像を5,000~30,000倍で、膜厚(肉厚部)断面の内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(図2~5における丸1~丸4)内で所定の視野で撮影した。平均孔径に応じて倍率を変えて測定することができ、具体的には、平均孔径が0.1μm以上の場合には、5000倍、平均孔径が0.05μm以上0.1μm未満の場合には、10,000倍、平均孔径が0.05μm未満の場合には、30,000倍とした。尚、視野のサイズは、2560×1920ピクセルとした。
画像処理には、ImageJを用い、撮影したSEM画像に対してThreshold処理(Image-Adjust-Treshold:大津法(Otsuを選択))を施すことより、孔の部分と樹脂部とで二値化した。
表面開口率:二値化画像の樹脂部と孔部との割合を算出することにより表面開口率を測定した。
樹脂部の面積分布:ImageJの「Analyze Particle」コマンド(Analyz Particle:Size0.10-Infinity)を使用し、撮影したSEM画像に含まれる二値化された粒状の樹脂部の大きさをそれぞれ計測した。SEM画像に含まれる全樹脂部の総面積をΣSとし、1μm2以下の樹脂部の面積をΣS(<1μm2)とした場合に、ΣS(<1μm2)/ΣSを算出することによって、1μm2以下の面積を有する樹脂部の面積割合を算出した。同様に、所定範囲の面積を有する樹脂部の面積割合を算出した。
尚、二値化処理を施す際のノイズ除去については、0.1μm2未満の面積の樹脂部をノイズとして除去し、0.1μm2以上の面積の樹脂部を分析対象とした。また、ノイズ除去は、メディアンフィルタ処理(Process-Filters-Median:Radius:3.0pixels)を施すことによって行った。
また、SEM画像の端で切れている粒状の樹脂部についても計測対象とした。また、「Incude Holes」(穴をうめる)の処理は行わなかった。また、「雪だるま」型を「扁平」型などに形状を補正する処理は行わなかった。
平均細孔孔径:ImageJの「Plugins-Bone J-Thickness」コマンドを使用して測定した。尚、空間サイズは空隙に入る最大の円サイズとして定義した。
多孔質中空糸膜をエタノールに浸漬した後、純水浸漬を数回繰り返した後、約10cm長の湿潤中空糸膜の一端を封止し、他端の中空部内に注射針を挿入し、25℃の環境下にて注射針から0.1MPaの圧力で25℃の純水を注入し、膜の外側表面から透過してくる純水量を測定し、下記式:
初期純水フラックス[L/m2/h]=60×(透過水量[L])/{π×(膜外径[m])×(膜有効長[m])×(測定時間[min])}
により純水フラックスを決定し、透水性を評価した。
尚、「膜有効長」は、注射針が挿入されている部分を除いた、正味の膜長を指す。
次に(i)循環タンクに純水を投入し、膜間差圧=0.05MPaになるように循環ろ過を行って1分間透過水を採取し、初期透水量とした。
次いで、(ii)配管内の水を抜いた後、循環タンクに火入れ醤油原液を投入し、膜間差圧=0.15MPaになるように循環ろ過した。
次いで、(iii)配管の中の火入れ醤油残液を抜いた後、循環タンクに純水を投入し、膜間差圧=0.05MPaになるように循環ろ過し、水洗を行った。
次いで、(iv)配管の中の水を抜いた後、循環容器に調合した薬液を投入し、膜循環ろ過を行って30分薬液洗浄を行った。薬液には0.2重量%の次亜塩素酸ナトリウムと1重量%の苛性ソーダを混合させた水溶液を用いた。
次いで、(v)薬液洗浄後、配管の中の薬液を抜いた後、循環タンクに純水を投入し、膜間差圧=0.05MPaになるように循環ろ過を行い、出てきた透過水を10L/m2のタイミングで繰り返し採取、透過水の塩素濃度が0.1ppm以下、かつ、pHが8.6以下になった時点で水洗を終了し、そのリンスの水量を記録した。また、引き続き同じ膜間差圧で循環ろ過を行って1分間透過水を採取、透水量とし、初期透水量と比較した。
各パラメーターは、下記式で算出した:
膜間差圧={(入圧)+(出圧)}/2
膜内表面積[m2]=π×(中空糸膜内径[m])×(中空糸膜有効長[m])
膜面線速[m/s]=4×(循環水量[m3/s])/{π×(膜内径[m])2}。また、操作は全て25℃、膜面線速1.0m/秒で行った。
サンプルとして多孔質中空糸膜をそのまま用い、張破断伸度をJIS K7161に従って算出した。引張破断時の荷重と変位を以下の条件で測定した。
測定機器:インストロン型引張試験機(島津製作所製AGS-5D)
チャック間距離:5cm
引張り速度:20cm/分
醤油試料を純酸素気流中で燃焼させ、さらに還元して、試料中の全窒素量を窒素ガスとして定量した。全窒素分は試料容量に対する百分比として算出した。測定装置は住化分析センター社製SUMIGRAPH NC-220Fを用い、測定方法はMETHOD「L×M」、試料量は500μL、反応炉温度:870℃、還元炉温度:600℃に設定した。定量は、アスパラギン酸の校正曲線から算出した。
熱可塑性樹脂としてPVDF樹脂(クレハ社製、KF-W#1000)40質量%と、微粉シリカ(一次粒径:16nm)23質量%と、非溶剤としてアジピン酸ビス2-エチルヘキシル(DOA)32.9質量%と、貧溶剤としてアセチルクエン酸トリブチル(ATBC, 沸点343℃)4.1質量%とを用いて、溶融混練物を調製した。得られた溶融混連物の温度は240℃であった。得られた溶融混連物を2重管構造の紡糸ノズルを用い、中空糸状押出し物を120mmの空走距離を通した後、30℃の水中で固化させ、熱誘起相分離法により多孔質構造を発達させた。得られた中空糸状押出し物を、5m/分の速度で引き取り、かせに巻き取った。巻き取った中空糸状押出し物をイソプロピルアルコール中に浸漬させてDOAとATBCを抽出除去し、次いで、水中に30分間浸漬し、中空糸膜を水置換し、次いで、20質量%NaOH水溶液中に70℃にて1時間浸漬し、更に水洗を繰り返して微粉シリカを抽出除去して、多孔質中空糸膜を作製した。
得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、3次元網目構造を有していた。また、フラックス(透水性)が高く、連通性の高い膜であった。火入れ工程を実施した。火入れ工程後の醤油20mLをメスシリンダーにいれ、85℃に設定した恒温槽で90分間加熱した後、室温で5日間静置したところ、液面高さ138mmに対して、110mmの澱成分の沈殿が形成された。他方、火入れ工程後の醤油を前記多孔質膜でろ過したろ液20mLを同様に処理したところ、液面高さ138mmに対して、1mmの澱成分の沈殿が形成された。すなわち、該ろ過による澱成分の除去率は99%超であった。また、火入れ醤油のろ過前の全窒素成分は1.77重量%であり、他方、ろ過後の全窒素成分は1.78%であり、2%未満の変化であった。
熱可塑性樹脂としてETFE樹脂(旭硝子社製、TL-081)40質量%と、微粉シリカ(一次粒径:16nm)23質量%と、非溶剤としてアジピン酸ビス2-エチルヘキシル(DOA)32.9質量%と、貧溶剤としてアジピン酸ジイソブチル(DIBA)4.1質量%とを用いて、溶融混練物を調製した。得られた溶融混連物の温度は240℃であった。得られた溶融混連物を2重管構造の紡糸ノズルを用い、中空糸状押出し物を120mmの空走距離を通した後、30℃の水中で固化させ、熱誘起相分離法により多孔質構造を発達させた。得られた中空糸状押出し物を、5m/分の速度で引き取り、かせに巻き取った。巻き取った中空糸状押出し物をイソプロピルアルコール中に浸漬させてDOAとDIBAを抽出除去し、次いで、水中に30分間浸漬し、中空糸膜を水置換し、次いで、20質量%NaOH水溶液中に70℃にて1時間浸漬し、更に水洗を繰り返して微粉シリカを抽出除去して、多孔質中空糸膜を作製した。
得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、3次元網目構造を有していた。また、フラックス(透水性)が高く、連通性の高い膜であった。
火入れ工程を実施した。火入れ工程後の醤油20mLをメスシリンダーにいれ、85℃に設定した恒温槽で90分間加熱した後、室温で5日間静置したところ、液面高さ138mmに対して、110mmの澱成分の沈殿が形成された。他方、火入れ工程後の醤油を前記多孔質膜でろ過したろ液20mLを同様に処理したところ、液面高さ138mmに対して、1mmの澱成分の沈殿が形成された。すなわち、該ろ過による澱成分の除去率は99%超であった。また、火入れ醤油のろ過前の全窒素成分は1.77重量%であり、他方、ろ過後の全窒素成分は1.77%であり、2%未満の変化であった。
熱可塑性樹脂として熱可塑性樹脂としてECTFE樹脂(ソルベイスペシャルティポリマーズ社製、Halar901)40質量%と、微粉シリカ(一次粒径:16nm)23質量%と、非溶剤としてトリフェニル亜リン酸(TPP)32.9質量%と、貧溶剤としてアジピン酸ビス2-エチルヘキシル(DOA)4.1質量%とを用いて、溶融混練物を調製した。得られた溶融混連物の温度は240℃であった。得られた溶融混連物を2重管構造の紡糸ノズルを用い、中空糸状押出し物を120mmの空走距離を通した後、30℃の水中で固化させ、熱誘起相分離法により多孔質構造を発達させた。得られた中空糸状押出し物を、5m/分の速度で引き取り、かせに巻き取った。巻き取った中空糸状押出し物をイソプロピルアルコール中に浸漬させてTPPとDOAを抽出除去し、次いで、水中に30分間浸漬し、中空糸膜を水置換し、次いで、20質量%NaOH水溶液中に70℃にて1時間浸漬し、更に水洗を繰り返して微粉シリカを抽出除去して、多孔質中空糸膜を作製した。
得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、3次元網目構造を有していた。また、フラックス(透水性)が高く、連通性の高い膜であった。
火入れ工程を実施した。火入れ工程後の醤油20mLをメスシリンダーにいれ、85℃に設定した恒温槽で90分間加熱した後、室温で5日間静置したところ、液面高さ138mmに対して、110mmの澱成分の沈殿が形成された。他方、火入れ工程後の醤油を前記多孔質膜でろ過したろ液20mLを同様に処理したところ、液面高さ138mmに対して、1mmの澱成分の沈殿が形成された。すなわち、該ろ過による澱成分の除去率は99%超であった。また、火入れ醤油のろ過前の全窒素成分は1.77重量%であり、他方、ろ過後の全窒素成分は1.71%であり、約3%の変化であった。
溶剤をATBCのみとしたこと以外は、実施例1と同様にして製膜し、比較例1の中空糸膜を得た。得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、球晶構造を有していた。また、フラックスが低く、連通性の低い膜であった。
火入れ工程を実施した。火入れ工程後の醤油20mLをメスシリンダーにいれ、85℃に設定した恒温槽で90分間加熱した後、室温で5日間静置したところ、液面高さ138mmに対して、110mmの澱成分の沈殿が形成された。他方、火入れ工程後の醤油を前記多孔質膜でろ過したろ液20mLを同様に処理したところ、液面高さ138mmに対して、1mmの澱成分の沈殿が形成された。すなわち、該ろ過による澱成分の除去率は99%超であった。また、火入れ醤油のろ過前の全窒素成分は1.77重量%であり、他方、ろ過後の全窒素成分は1.2%であり、約32%の変化であった。
微粉シリカを0%とし、溶剤をγ-ブチロラクトンのみとしたこと以外は、実施例1と同様にして製膜し、比較例2の中空糸膜を得た。得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、球晶構造を有していた。また、フラックスは低く、連通性の低い膜であった。
火入れ工程を実施した。火入れ工程後の醤油20mLをメスシリンダーにいれ、85℃に設定した恒温槽で90分間加熱した後、室温で5日間静置したところ、液面高さ138mmに対して、110mmの澱成分の沈殿が形成された。他方、火入れ工程後の醤油を前記多孔質膜でろ過したろ液20mLを同様に処理したところ、液面高さ138mmに対して、1mmの澱成分の沈殿が形成された。すなわち、該ろ過による澱成分の除去率は99%超であった。また、火入れ醤油のろ過前の全窒素成分は1.77重量%であり、他方、ろ過後の全窒素成分は1.3%であり、約27%の変化であった。
溶剤をDOAのみとした以外は、実施3と同様にして製膜し、比較例3の中空糸膜を得た。得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、球晶構造を有していた。また、フラックスは低く、連通性の低い膜であった。
火入れ工程を実施した。火入れ工程後の醤油20mLをメスシリンダーにいれ、85℃に設定した恒温槽で90分間加熱した後、室温で5日間静置したところ、液面高さ138mmに対して、110mmの澱成分の沈殿が形成された。他方、火入れ工程後の醤油を前記多孔質膜でろ過したろ液20mLを同様に処理したところ、液面高さ138mmに対して、1mmの澱成分の沈殿が形成された。すなわち、該ろ過による澱成分の除去率は99%超であった。また、火入れ醤油のろ過前の全窒素成分は1.77重量%であり、他方、ろ過後の全窒素成分は1.25%であり、約29%変化であった。
火入れ後の醤油原液をスタンダードスーパーセル(セライト社製)の珪藻土と混合し、内外醸機社製フィルタープレスにより圧力=1.0MPaとなるようにろ過を実施した。火入れ工程後の醤油20mLをメスシリンダーにいれ、85℃に設定した恒温槽で90分間加熱した後、室温で5日間静置したところ、液面高さ138mmに対して、110mmの澱成分の沈殿が形成された。他方、火入れ工程後の醤油を前記珪藻土でろ過したろ液20mLを同様に処理したところ、液面高さ138mmに対して、5mmの澱成分の沈殿が形成された。すなわち、該珪藻土ろ過による澱成分の除去率は約95%であった。また、火入れ醤油のろ過前の全窒素成分は1.77重量%であり、他方、ろ過後の全窒素成分は1.74%であり、約2%変化であった。
Claims (8)
- 以下の工程:
澱成分を含有する醤油を火入れして、該澱成分の凝集体を形成する火入れ工程;及び
3次元網目構造の樹脂から構成される多孔質膜に、該澱成分の凝集体を含有する火入れ醤油を通過させて、該澱成分の凝集体からろ液を分離するろ過工程;
を含む醤油の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm2以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、10μm2以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、
該多孔質膜を構成する樹脂は、フッ化ビニリデン樹脂(PVDF)、エチレン-テトラフルオロエチレン共重合体(ETFE)、エチレン-モノクロロトリフルオロエチレン共重合体(ECTFE)、及びこれら樹脂の混合物からなる群から選ばれ、かつ、該3次元網目構造は、該樹脂と、微粉シリカ、溶媒、貧溶媒との組成物の溶融混錬物から形成されたものであり、かつ、
該ろ過工程前の火入れ醤油の澱成分比率をX0、全窒素成分をN0、該ろ過工程後の火入れ醤油の澱成分比率をX1、全窒素成分をN1とするとき、X1/X0×100<5%、及びN1/N0×100≧97%の関係を満たす、
ことを特徴とする前記醤油の製造方法。 - 前記多孔質膜は、該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm2超10μm2未満の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下である、請求項1に記載の方法。
- 前記多孔質膜の表面開口率は25~60%である、請求項1又は2に記載の方法。
- 前記多孔質膜は中空糸膜である、請求項1~3のいずれか1項に記載の方法。
- 前記ろ過工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液が50℃~90℃の湯である、請求項1~4のいずれか1項に記載の方法。
- 前記ろ過工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液が0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム又は0.4重量%以上4重量%以下の水酸化ナトリウムを含有する水溶液である、請求項1~5のいずれか1項に記載の方法。
- 前記洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程後の前記多孔質膜の引張破断伸度E1との関係が、E1/E0×100≧80%である、請求項5又は6に記載の方法。
- 前記洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程をX回(ここで、Xは2~100の整数である。)繰り返した後の前記多孔質膜の引張破断伸度EXとの関係が、EX/E0×100≧70%である、請求項5又は6に記載の方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017171974 | 2017-09-07 | ||
JP2017171974 | 2017-09-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019047781A JP2019047781A (ja) | 2019-03-28 |
JP7182960B2 true JP7182960B2 (ja) | 2022-12-05 |
Family
ID=65904655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018164585A Active JP7182960B2 (ja) | 2017-09-07 | 2018-09-03 | 多孔質膜を用いた醤油の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7182960B2 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002070115A1 (fr) | 2001-03-06 | 2002-09-12 | Asahi Kasei Kabushiki Kaisha | Procede de fabrication d'une pellicule de fil creux |
JP2012040461A (ja) | 2010-08-13 | 2012-03-01 | Asahi Kasei Chemicals Corp | 多孔性中空糸膜の製造方法、多孔性中空糸膜、多孔性中空糸膜を用いたモジュール、多孔性中空糸膜を用いたろ過装置及び多孔性中空糸膜を用いた水処理方法 |
JP2013075294A (ja) | 2006-04-19 | 2013-04-25 | Asahi Kasei Chemicals Corp | 高耐久性pvdf多孔質膜及びその製造方法、並びに、これを用いた洗浄方法及び濾過方法 |
JP2015073916A (ja) | 2013-10-04 | 2015-04-20 | 旭化成ケミカルズ株式会社 | 多孔性中空糸膜及びその製造方法 |
JP2019047779A (ja) | 2017-09-07 | 2019-03-28 | 旭化成株式会社 | 多孔質膜を用いた醤油の製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5645173A (en) * | 1979-09-19 | 1981-04-24 | Kuraray Co Ltd | Treating method of deposited soy sauce sediment |
JPS6012015B2 (ja) * | 1980-07-21 | 1985-03-29 | 株式会社クラレ | 醤油おりの濾過方法 |
JP2744820B2 (ja) * | 1989-10-26 | 1998-04-28 | 日東電工株式会社 | 火入れ醤油の処理工程における膜の洗浄方法 |
JP3030470B2 (ja) * | 1991-03-01 | 2000-04-10 | 日東電工株式会社 | 火入れ醤油の濾過用多孔質平板状膜の洗浄方法 |
JPH10234332A (ja) * | 1996-12-26 | 1998-09-08 | Kikkoman Corp | 淡色醤油の製造方法及び醤油色沢の調整方法 |
JP5504560B2 (ja) * | 2007-10-19 | 2014-05-28 | 東洋紡株式会社 | 液体処理用の中空糸膜 |
JP5576866B2 (ja) * | 2009-07-14 | 2014-08-20 | 株式会社クレハ | フッ化ビニリデン系樹脂多孔膜の製造方法 |
JP6020592B2 (ja) * | 2013-09-18 | 2016-11-02 | 三菱レイヨン株式会社 | 多孔質中空糸膜及びその製造方法 |
-
2018
- 2018-09-03 JP JP2018164585A patent/JP7182960B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002070115A1 (fr) | 2001-03-06 | 2002-09-12 | Asahi Kasei Kabushiki Kaisha | Procede de fabrication d'une pellicule de fil creux |
JP2013075294A (ja) | 2006-04-19 | 2013-04-25 | Asahi Kasei Chemicals Corp | 高耐久性pvdf多孔質膜及びその製造方法、並びに、これを用いた洗浄方法及び濾過方法 |
JP2012040461A (ja) | 2010-08-13 | 2012-03-01 | Asahi Kasei Chemicals Corp | 多孔性中空糸膜の製造方法、多孔性中空糸膜、多孔性中空糸膜を用いたモジュール、多孔性中空糸膜を用いたろ過装置及び多孔性中空糸膜を用いた水処理方法 |
JP2015073916A (ja) | 2013-10-04 | 2015-04-20 | 旭化成ケミカルズ株式会社 | 多孔性中空糸膜及びその製造方法 |
JP2019047779A (ja) | 2017-09-07 | 2019-03-28 | 旭化成株式会社 | 多孔質膜を用いた醤油の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2019047781A (ja) | 2019-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190022601A1 (en) | Porous hollow fiber membrane, method for producing the same, and filtration method | |
CN111050889B (zh) | 多孔性中空纤维膜、多孔性中空纤维膜的制造方法及过滤方法 | |
JP6839766B2 (ja) | 多孔質膜を用いたろ過方法 | |
JP7082681B2 (ja) | 多孔質膜を用いたろ過方法 | |
JP7204382B2 (ja) | 多孔質膜を用いた醤油の製造方法 | |
JP7165000B2 (ja) | 多孔質膜を用いたお茶飲料の製造方法 | |
JP7169129B2 (ja) | 多孔質膜を用いた糖化液の製造方法 | |
JP7182960B2 (ja) | 多孔質膜を用いた醤油の製造方法 | |
JP7105654B2 (ja) | 多孔質膜を用いた培養ブロスのろ過方法 | |
JP6839765B2 (ja) | 多孔質膜を用いたろ過方法 | |
JP7252790B2 (ja) | 果実酒のろ過・清澄化方法 | |
JP7185448B2 (ja) | 多孔性中空糸膜及びその製造方法、並びにろ過方法 | |
JP2018144006A (ja) | 多孔性中空糸膜及びその製造方法 | |
JP6832440B2 (ja) | 多孔質膜を用いた醸造酒の製造方法 | |
JP2019042735A (ja) | 分離層を含む多孔性中空糸膜の製造方法、多孔性中空糸膜、およびろ過方法 | |
JP2018144005A (ja) | 多孔性中空糸膜及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210616 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220930 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7182960 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |