[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7178791B2 - Steel plates for ferritic stainless steel pipes - Google Patents

Steel plates for ferritic stainless steel pipes Download PDF

Info

Publication number
JP7178791B2
JP7178791B2 JP2018067593A JP2018067593A JP7178791B2 JP 7178791 B2 JP7178791 B2 JP 7178791B2 JP 2018067593 A JP2018067593 A JP 2018067593A JP 2018067593 A JP2018067593 A JP 2018067593A JP 7178791 B2 JP7178791 B2 JP 7178791B2
Authority
JP
Japan
Prior art keywords
value
less
steel
average
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018067593A
Other languages
Japanese (ja)
Other versions
JP2019178362A (en
Inventor
寛輝 堀之内
直人 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2018067593A priority Critical patent/JP7178791B2/en
Publication of JP2019178362A publication Critical patent/JP2019178362A/en
Application granted granted Critical
Publication of JP7178791B2 publication Critical patent/JP7178791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、フェライト系ステンレス鋼管用鋼板に関する。 The present invention relates to a steel plate for ferritic stainless steel pipes.

フェライト系ステンレス鋼は熱膨張係数が小さい事から、加熱と冷却が繰り返される自動車排気系部品に使用されてきた。近年では車体の軽量化を目的として、部品の素材鋼の板厚の薄肉化が進んでいる。さらに車体自体のダウンサイジングにより、車体と共に部品の搭載スペースが小さくなり、鋼管も含めた排気系部品の加工形状が制限され、例えば鋼管では曲げ加工における曲げ半径Rが小さくなっている。しかし、曲げ加工においては、加工する鋼管の曲げ半径Rが小さくなればなるほど、そして鋼管が薄肉になるほど割れ等の不具合が発生しやすくなる。 Since ferritic stainless steel has a small thermal expansion coefficient, it has been used for automotive exhaust system parts that undergo repeated heating and cooling. In recent years, with the aim of reducing the weight of the car body, the thickness of the material steel of the parts has been reduced. Furthermore, due to the downsizing of the vehicle body itself, the mounting space for parts has become smaller along with the vehicle body, and the machining shape of exhaust system parts including steel pipes has been restricted. However, in bending, the smaller the bending radius R of the steel pipe to be processed and the thinner the steel pipe, the more likely defects such as cracks will occur.

割れを防ぐためには、曲げ加工機から適切な押し力(圧力)を鋼管に与えた状態で曲げ加工を行うことで、板厚の変動を抑えることが重要である。しかし、板厚tに対する鋼管外径Dの比(t/D)が小さくなると、皺による折れが生じやすくなる。そのため、皺が生じないようにするために曲げ加工機から鋼管に与える圧力に制約がかかることとなり、板厚の変動を十分に抑制することが厳しくなる。そのため、加工する鋼管のt/Dが小さくなる程、鋼管の曲げ加工性が良好である事が求められる。 In order to prevent cracks, it is important to suppress variations in plate thickness by performing bending while applying an appropriate pushing force (pressure) to the steel pipe from the bending machine. However, when the ratio (t/D) of the steel pipe outer diameter D to the plate thickness t becomes small, the steel pipe is likely to break due to wrinkles. Therefore, in order to prevent wrinkles from occurring, the pressure applied from the bending machine to the steel pipe is restricted, and it becomes difficult to sufficiently suppress variations in plate thickness. Therefore, the smaller the t/D of the steel pipe to be worked, the better the bendability of the steel pipe.

また、加工する鋼管の曲げ半径Rに対する外径Dの比(R/D)が小さくなると、曲げ加工による鋼管にかかる歪みの絶対値が大きくなる。すなわち、曲げの外径側で減肉率が増大し、割れが生じやすくなる。そのため、加工する鋼管のR/Dが小さくなる程、減肉率の増大を抑えることができる特性を持った鋼管であることが求められる。 In addition, when the ratio (R/D) of the outer diameter D to the bending radius R of the steel pipe to be worked decreases, the absolute value of the strain applied to the steel pipe due to bending increases. That is, the thickness reduction rate increases on the outer diameter side of bending, and cracks are likely to occur. Therefore, it is required that the steel pipe to be processed has characteristics capable of suppressing an increase in the wall thickness reduction rate as the R/D of the steel pipe to be processed becomes smaller.

自動車の排気系部品の一つであるエキゾーストマニホールドは燃費向上及び、性能向上を目的として、プレス部品から鋼管への切替えが進んでいる。エキゾーストマニホールドは鋼管を使用した排気管部品の中でも、特に曲げ加工が難しい形状をしており、さらに軽量化を目的として、太径、薄肉、小R曲げが必要となる。 Exhaust manifolds, which are one of the exhaust system parts of automobiles, are switching from pressed parts to steel pipes for the purpose of improving fuel efficiency and performance. Exhaust manifolds have a shape that is particularly difficult to bend, even among exhaust pipe parts that use steel pipes.

橋本裕二、塑性加工学会春季講演会論文集、P291-292(2004)Yuji Hashimoto, Proceedings of the Spring Meeting of the Japan Society for Technology of Plasticity, P291-292 (2004)

上述したように、近年では、自動車の軽量化や小型化等の目的のため、搭載される排気系部品の加工条件として、太径、薄肉、小R曲げといった厳しい条件が求められており、素材の鋼管用鋼板に対し、このような加工条件にも耐えうる特性が要求されている。具体的には、t/D≦0.04およびR/D≦1.2であるような太径、薄肉、小R曲げ加工でも、減肉率を抑制できる素材が望まれている。
しかし、t/D≦0.04またはR/D≦1.2のどちらかのみを満たした条件であっても、非特許文献1のように鋼管を90°まで曲げると割れが発生、もしくは割れなくても減肉率が40%を超える、割れ一歩手前の状態となることが分かっている。
自動車の排気管部品は熱疲労等により負荷がかかる部品であるため、少しの負荷で割れが発生する部品はもちろん搭載出来ない。そのような点を踏まえると、曲げ加工後の減肉率を30%以下に抑えられる鋼管用鋼板を使用することが好ましいが、t/D≦0.04、R/D≦1.2といった太径、薄肉、小R曲げでそれを達成できる鋼管用鋼板は未だ実現できていないのは実情である。
As mentioned above, in recent years, for the purpose of reducing the weight and size of automobiles, strict conditions such as large diameter, thin wall, and small R bending are required as processing conditions for exhaust system parts to be mounted. Steel sheets for steel pipes are required to have properties that can withstand such working conditions. Specifically, there is a demand for a material capable of suppressing the rate of thickness reduction even in large-diameter, thin-walled, small-R bending such that t/D≦0.04 and R/D≦1.2.
However, even if either t/D ≤ 0.04 or R/D ≤ 1.2 is satisfied, if the steel pipe is bent to 90° as in Non-Patent Document 1, cracking occurs or cracks occur. It is known that even without it, the thickness reduction rate exceeds 40%, which is just before cracking.
Automobile exhaust pipe parts are subjected to loads due to thermal fatigue, etc., so parts that crack even with a small load cannot be mounted. Considering these points, it is preferable to use a steel plate for steel pipes that can suppress the wall thickness reduction rate after bending to 30% or less. The actual situation is that a steel plate for steel pipes that can achieve this with diameter, thinness, and small radius bending has not yet been realized.

本発明はこうした現状を鑑みて案出されたものであって、太径、薄肉、小Rでの曲げ加工が行われる鋼管に適し、曲げ加工における減肉率を低減し、加工割れを防止可能なフェライト系ステンレス鋼管用鋼板を提供する事を目的とする。 The present invention has been devised in view of the current situation, and is suitable for steel pipes that are bent with a large diameter, thin wall, and small radius. An object of the present invention is to provide a steel plate for a ferritic stainless steel pipe.

上記の課題を解決するために、本発明者らはフェライト系ステンレス鋼管用鋼板の加工硬化指数(n値)、塑性歪み値(r値)の平均値(平均r値)、r値の異方性に着目し、様々な検討を重ねた結果、以下の新たな知見を得た。 In order to solve the above-mentioned problems, the present inventors have found the work hardening index (n value), the average value (average r value) of the plastic strain value (r value), and the anisotropy of the r value of the steel plate for ferritic stainless steel pipes. As a result of various examinations, we have obtained the following new knowledge.

平均r値が高い鋼板を使用した鋼管の場合、曲げ加工した際に減肉が起こり難くなる。そのため、平均r値が高い程、曲げ加工時の鋼管の減肉率は小さくなり加工割れを防止できる。特に圧延方向のr値(r)と圧延90度方向のr値(r90)は、鋼管の曲げ加工時の変形による周方向の流動を促進するため、減肉部に周方向から材料が流動する事により、減肉抑制に大きく寄与することが知られている。
しかし、本発明者らが様々な異方性の鋼板を使用した薄肉、太径の鋼管で小R曲げ加工を行った結果、圧延方向のr値(r)と圧延90度方向のr値(r90)が圧延45度方向の(r45)と比較して極端に大きい(面内異方性Δrが大きい)場合、逆に減肉率が大きくなることを見出した。すなわち、減肉抑制を高めるには、単に平均r値を高めるだけでは不十分で、面内異方性Δrも合わせて適切に制御することが有効であることが分かった。そしてさらに、t/D≦0.04、R/D≦1.2といった太径、薄肉、小Rでの鋼管曲げ加工を行った際に、割れの発生を安定して防止できる目安となる減肉率30%未満となる素材鋼板の異方性を調査したところ、下記(1)式で表されることを新しい知見として得た。
In the case of a steel pipe using a steel plate with a high average r-value, thinning is less likely to occur during bending. Therefore, the higher the average r-value, the smaller the thickness reduction rate of the steel pipe during bending, which can prevent work cracking. In particular, the r-value (r 0 ) in the rolling direction and the r-value (r 90 ) in the 90-degree direction of rolling promote the flow in the circumferential direction due to deformation during bending of the steel pipe. It is known that the fluidity greatly contributes to suppression of thinning.
However, as a result of the present inventors performing small R bending on thin and large-diameter steel pipes using various anisotropic steel plates, the r value (r 0 ) in the rolling direction and the r value in the 90-degree direction of rolling It was found that when (r 90 ) is extremely large (in-plane anisotropy Δr is large) compared to (r 45 ) in the 45° rolling direction, the thickness reduction rate increases. In other words, it has been found that simply increasing the average r value is not sufficient to enhance the suppression of thinning, and it is effective to appropriately control the in-plane anisotropy Δr as well. In addition, when bending a steel pipe with a large diameter, thin wall, and small R such that t/D ≤ 0.04 and R/D ≤ 1.2, it is a reduction that can stably prevent the occurrence of cracks. As a result of investigating the anisotropy of material steel sheets with a wall thickness of less than 30%, we obtained new knowledge that the anisotropy is represented by the following formula (1).

平均r値-1.1-1.1×(Δr-0.3)≧0 ・・・(1) Average r value -1.1 - 1.1 x (Δr - 0.3) 4 ≥ 0 (1)

この新しい知見により、減肉率を十分に低減させて、割れを安定して発生させずにt/D≦0.04、R/D≦1.2といった太径、薄肉、小Rでの鋼管の曲げ加工を可能とした。 Based on this new knowledge, it is possible to sufficiently reduce the wall thickness reduction rate and stably prevent the generation of cracks in large-diameter, thin-walled, small-R steel pipes such as t/D ≤ 0.04 and R/D ≤ 1.2. It is possible to bend the

本発明は上記の知見に基づいて、完成したものであり、その発明の要旨は次の通りである。 The present invention has been completed based on the above findings, and the gist of the invention is as follows.

(1)質量%にて、C:0.020%以下、N:0.020%以下、Si:0.03~1.20%、Mn:0.02~1.61%、P:0.050%以下、S:0.0050%以下、Ni:0.010~0.153%、Cr:10.0~30.0%、Mo:0.005~2.50%、Cu:0.005~2.00%、Nb:0.001~0.800%、Ti:0.001~0.300%、B:0~0.005%、Al:0~0.30%、Sn:0~0.12%、V:0~1.00%、Co:0~0.30%、W:0~0.05%、Sb:0~0.50%、REM:0~0.20%を含有し、残部がFeおよび不純物からなり、破断伸び≧28%、加工硬化指数(n値)≧0.18、平均塑性歪み比(平均r値)≧1.10、圧延方向塑性歪み比r≧0.80、かつ、0.40≧平均r値-1.1-1.1×(Δr-0.3)0.09であることを特徴とするフェライト系ステンレス鋼管用鋼板。
(2)質量%にて、B:0.0001~0.005%、Al:0.01~0.30%、Sn:0.001~0.50%、V:0.03~1.00%、Co:0.01~0.30%、W:0.005~3.00%、Sb:0.005~0.50%、REM:0.001~0.20%の1種または2種以上を含有することを特徴とする、上記(1)に記載のフェライト系ステンレス鋼管用鋼板。
(1) C: 0.020% or less, N: 0.020% or less, Si: 0.03 to 1.20%, Mn: 0.02 to 1.61 %, P: 0.020% or less, in mass % 050% or less, S: 0.0050% or less, Ni: 0.010-0.153%, Cr: 10.0-30.0%, Mo: 0.005-2.50%, Cu: 0.005 ~2.00%, Nb: 0.001-0.800%, Ti: 0.001-0.300%, B: 0-0.005%, Al: 0-0.30%, Sn: 0- 0.12 %, V: 0-1.00%, Co: 0-0.30%, W: 0-0.05 %, Sb: 0-0.50%, REM: 0-0.20% The balance is Fe and impurities, elongation at break ≥ 28%, work hardening index (n value) ≥ 0.18, average plastic strain ratio (average r value) ≥ 1.10, rolling direction plastic strain ratio r 0 A steel plate for ferritic stainless steel pipes, wherein ≧0.80 and 0.40≧ average r value−1.1−1.1×(Δr−0.3) 40.09 .
(2) In mass%, B: 0.0001 to 0.005%, Al: 0.01 to 0.30%, Sn: 0.001 to 0.50%, V: 0.03 to 1.00 %, Co: 0.01 to 0.30%, W: 0.005 to 3.00%, Sb: 0.005 to 0.50%, REM: 0.001 to 0.20% one or two The steel plate for ferritic stainless steel pipes according to (1) above, characterized in that it contains at least one species.

本発明によれば、太径、薄肉、小Rでの曲げ加工が行われる鋼管に適し、曲げ加工における減肉率を低減し、加工割れを防止可能なフェライト系ステンレス鋼管用鋼板を提供することが出来る。特に、本発明に係るフェライト系ステンレス鋼管用鋼板からなる鋼管によれば、t/D≦0.04といった太径・薄肉の形状であっても、十分に減肉を抑制でき、加工割れの発生を防止可能な小R曲げ加工を実施することが可能である。
また、本発明によれは、鋼板の成分組成を好適な範囲内に制御することによって、曲げ加工において、加工割れのみならず、皺をも防止することが可能となる。
According to the present invention, there is provided a steel plate for ferritic stainless steel pipes, which is suitable for large-diameter, thin-walled, and small-radius steel pipes that are bent, reduces the reduction in thickness during bending, and prevents work cracks. can be done. In particular, according to the steel pipe made of the steel plate for ferritic stainless steel pipe according to the present invention, even with a large diameter and thin shape such as t/D ≤ 0.04, it is possible to sufficiently suppress the reduction in wall thickness, and the occurrence of work cracks. It is possible to perform small-R bending that can prevent this.
Further, according to the present invention, by controlling the chemical composition of the steel sheet within a suitable range, it is possible to prevent not only work cracks but also wrinkles during bending.

実施例1~16、比較例1~8の、Δr値と平均r値、最大減肉率の関係を示すグラフである。4 is a graph showing the relationship between the Δr value, the average r value, and the maximum wall thickness reduction rate of Examples 1 to 16 and Comparative Examples 1 to 8. FIG. 本実施例の回転引き曲げ試験で用いる回転引き曲げ機の側面概略模式図である。It is a schematic side view of a rotary draw bending machine used in the rotary draw bending test of the present example.

本実施形態のフェライト系ステンレス鋼管用鋼板(以下、単に鋼板とも称する。)の成分組成について説明する。なお、以下の説明において、特に記載が無い場合、各元素の含有量の「%」は質量%を意味する。 The chemical composition of the steel plate for ferritic stainless steel pipes (hereinafter also simply referred to as steel plate) of the present embodiment will be described. In the following description, "%" of the content of each element means % by mass unless otherwise specified.

C、Nの含有量が多量であった場合、成形性や耐食性を劣化させる。そのため、含有量の上限をC、Nともに0.020%以下とした。好ましくは0.015%以下である。一方、C、N含有量を過剰に低減させることは製造コストの増大に繋がるため、好ましくは下限をC、Nともに0.001%以上とする。更に好ましくは、0.002%以上である。 When the content of C and N is large, it degrades formability and corrosion resistance. Therefore, the upper limits of the contents of both C and N are set to 0.020% or less. Preferably, it is 0.015% or less. On the other hand, excessively reducing the C and N contents leads to an increase in manufacturing costs, so the lower limits of both C and N are preferably 0.001% or more. More preferably, it is 0.002% or more.

Siは脱酸元素として知られ、耐高温酸化性を向上させるため、0.03%以上含有させる。好ましくは0.20%以上である。一方、Si含有量が1.20%を超えると曲げ加工性が著しく低下し、減肉率の増大や皺の発生を招くため、上限を1.20%以下とした。好ましくは1.10%以下であり、更に好ましくは1.00%以下である。 Si is known as a deoxidizing element, and is contained in an amount of 0.03% or more in order to improve high-temperature oxidation resistance. Preferably, it is 0.20% or more. On the other hand, if the Si content exceeds 1.20%, the bending workability is remarkably deteriorated, leading to an increase in the thickness reduction rate and the occurrence of wrinkles. It is preferably 1.10% or less, more preferably 1.00% or less.

Mnを多量に含有した場合、鋼板の加工硬化指数(n値)を十分に確保できず、成形性を低下させるため、含有量の上限を2.00%以下とした。好ましくは1.50%以下である。一方、精錬コストを考慮した場合、0.02%程度のMnは不可避的に混入するレベルである事から、下限を0.02%以下とした。好ましくは0.10%以上である。 If a large amount of Mn is contained, the work hardening index (n value) of the steel sheet cannot be sufficiently ensured, and formability is deteriorated. Preferably, it is 1.50% or less. On the other hand, considering the refining cost, about 0.02% of Mn is inevitably mixed, so the lower limit is set to 0.02% or less. Preferably it is 0.10% or more.

Pは耐食性や靭性に対して有害な元素であるため、その含有量は少ないほどよい。そのため、上限を0.050%以下と制限した。好ましくは、0.020%以下に制限する。一方、Pを過剰に低減させることは製造コストの増大に繋がるため、好ましくは0.001%以上とする。更に好ましくは、0.010%以上である。 Since P is an element harmful to corrosion resistance and toughness, its content should be as small as possible. Therefore, the upper limit is limited to 0.050% or less. Preferably, it is limited to 0.020% or less. On the other hand, excessive reduction of P leads to an increase in manufacturing cost, so it is preferably 0.001% or more. More preferably, it is 0.010% or more.

Sは耐食性を劣化させる元素であるため、その含有量は少ないほどよい。そのため、上限を0.0050%以下と制限した。一方、Sを過剰に低減させることは製造コストの増大に繋がるため、好ましくは0.0001%以上とする。更に好ましくは、0.0005~0.0050%である。 Since S is an element that deteriorates corrosion resistance, the smaller the content, the better. Therefore, the upper limit is limited to 0.0050% or less. On the other hand, excessive reduction of S leads to an increase in manufacturing cost, so it is preferably 0.0001% or more. More preferably, it is 0.0005 to 0.0050%.

Niは含有させることにより、耐食性を向上させる元素である。しかし、オーステナイト相の形成による低r値化や硬質化により、成形性の劣化に繋がるため、含有量の上限を2.000%以下とした。好ましくは0.500%以下である。また、0.010%程度のNiは不可避的に混入するレベルである事から、下限を0.010%以上とした。好ましくは0.100%以上である。 Ni is an element that improves corrosion resistance when contained. However, the lower r-value and hardening due to the formation of the austenite phase lead to deterioration of formability, so the upper limit of the content is made 2.000% or less. Preferably, it is 0.500% or less. In addition, about 0.010% of Ni is at a level that is unavoidably mixed, so the lower limit is made 0.010% or more. Preferably, it is 0.100% or more.

Crはステンレス鋼の基本特性である耐食性を担保する元素である。自動車の排気系部品に要求される耐食性を考慮してCr含有量の下限は10.0%以上とした。好ましくは、10.5%以上である。一方、Crを多量に含有すると、成形性を低下させる事から、上限は30.0%以下とした。加工性と製造コストの観点から、好ましくは、25.0%以下であり、更に好ましくは22.0%以下である。よりさらに好ましいのは20.0%以下である。 Cr is an element that ensures corrosion resistance, which is a basic characteristic of stainless steel. The lower limit of the Cr content is set at 10.0% or more in consideration of the corrosion resistance required for automobile exhaust system parts. Preferably, it is 10.5% or more. On the other hand, if a large amount of Cr is contained, the moldability is lowered, so the upper limit was made 30.0% or less. From the viewpoint of workability and manufacturing cost, the content is preferably 25.0% or less, more preferably 22.0% or less. Even more preferable is 20.0% or less.

MoもCr同様に耐食性を向上させる元素である。しかし過剰に含有させると成形性を低下させるおそれがある。そのため、成形性とコスト面を考慮して、Moの上限は2.50%以下とした。好ましくは、2.20%以下であり、さらに好ましくは2.00%以下である。一方、精錬コストを考慮した場合、0.005%程度は不可避的に混入するレベルである事から、Mo量の下限は0.005%以上とした。好ましくは0.05%以上である。 Like Cr, Mo is also an element that improves corrosion resistance. However, if it is contained excessively, there is a possibility that the formability is lowered. Therefore, considering formability and cost, the upper limit of Mo is set to 2.50% or less. It is preferably 2.20% or less, more preferably 2.00% or less. On the other hand, considering the refining cost, about 0.005% is the level of unavoidable contamination, so the lower limit of the Mo amount is set to 0.005% or more. Preferably it is 0.05% or more.

Cuは耐食性や高温強度を向上させ、相変態による結晶粒微細化に有効である。これらの効果は0.005%から発現するため、Cu含有量の下限は0.005%以上とした。好ましくは、0.05%以上である。一方、過剰なCuを含有すると、硬質化し、靭性や成形性を低下させる。そのためCu含有量の上限を2.00%以下とした。好ましくは、1.80%以下であり、更に好ましくは1.50%以下である。 Cu improves corrosion resistance and high-temperature strength, and is effective in refining crystal grains through phase transformation. Since these effects are exhibited from 0.005%, the lower limit of the Cu content is made 0.005% or more. Preferably, it is 0.05% or more. On the other hand, an excessive Cu content makes the steel hard and lowers toughness and formability. Therefore, the upper limit of the Cu content is made 2.00% or less. It is preferably 1.80% or less, more preferably 1.50% or less.

NbはC、Nと結合する事で、析出物を形成し、成形性を向上させる元素である。また、耐食性、特に溶接部の耐食性を向上させる。しかし、Nbを過剰に含有すると成形性を低下させる事から、上限を0.800%以下とした。好ましくは、0.700%以下であり、更に好ましくは0.500%以下である。一方、精錬コストを考慮した場合、0.001%程度は不可避的に混入するレベルである事から、Nb含有量の下限を0.001%以上とした。好ましくは、0.050%以上である。 Nb is an element that combines with C and N to form precipitates and improve formability. Also, it improves corrosion resistance, especially the corrosion resistance of welds. However, since an excessive Nb content lowers the moldability, the upper limit was made 0.800% or less. It is preferably 0.700% or less, more preferably 0.500% or less. On the other hand, considering the refining cost, about 0.001% is a level that is unavoidably mixed, so the lower limit of the Nb content is made 0.001% or more. Preferably, it is 0.050% or more.

TiはNbと同様にC、Nと結合する事で、析出物を形成し、成形性を向上させる元素であり、さらに耐食性、特に溶接部の耐食性も向上させる。しかし、Tiを過剰に含有すると成形性の低下や、介在物による疵の原因となるため、上限は0.300%以下とした。好ましくは0.200%以下である。一方、精錬コストを考慮した場合、0.001%程度は不可避的に混入するレベルである事から、Ti含有量の下限を0.001%以上とした。好ましくは、0.050%以上である。 Ti, like Nb, is an element that forms precipitates by combining with C and N to improve formability, and also improves corrosion resistance, particularly corrosion resistance of welds. However, an excessive Ti content causes deterioration in formability and defects due to inclusions, so the upper limit is made 0.300% or less. Preferably, it is 0.200% or less. On the other hand, considering the refining cost, about 0.001% is a level that is unavoidably mixed, so the lower limit of the Ti content is set to 0.001% or more. Preferably, it is 0.050% or more.

本実施形態に係るフェライト系ステンレス鋼管用鋼板は、上述してきた元素以外(残部)は、Fe及び不純物からなる。なお、本実施形態における「不純物」とは、鋼を工業的に製造する際に鉱石やスクラップ等のような原料をはじめとして製造工程の種々の要因によって混入する成分であり、不可避的に混入する成分も含む。
また本実施形態では必要に応じて、以下の元素を含有する事ができる。これらの元素を含有させる場合の下限は0%である。
The steel plate for ferritic stainless steel pipes according to the present embodiment is composed of Fe and impurities other than the above-described elements (remainder). In addition, the "impurities" in the present embodiment are components that are mixed due to various factors in the manufacturing process including raw materials such as ores and scraps when steel is manufactured industrially, and are unavoidably mixed. Including ingredients.
Moreover, in this embodiment, the following elements can be contained as necessary. The lower limit for containing these elements is 0%.

Bは二次加工性を向上させる元素であり、鋼管の拡管加工後の各種加工での2次加工割れを抑制する。その効果を得るためにはB含有量は0.0001%以上である事が望ましい。更に好ましくは0.0003%以上である。また、Bを過剰に含有した場合、成形性を低下させる事から、上限は0.005%以下とすることが望ましい。 B is an element that improves secondary workability, and suppresses secondary work cracking in various processes after expanding the steel pipe. In order to obtain the effect, the B content is desirably 0.0001% or more. More preferably, it is 0.0003% or more. Moreover, when B is contained excessively, the moldability is lowered, so the upper limit is preferably 0.005% or less.

Alは主に脱酸元素として添加される元素であり、さらに酸化スケールの剥離を抑制する効果がある。酸化スケールの剥離を抑制するためには含有量が0.01%以上である事が望ましい。酸化スケールの剥離抑制効果を更に向上させる観点から0.03%以上とすることが更に望ましい。また、Alが過剰に含有されている場合、伸びの低下や溶接の溶け込み性に影響を与える。本実施形態では伸びの低下による加工性の劣化を防ぐため、Al含有量の上限を0.30%以下とすることが望ましい。 Al is an element added mainly as a deoxidizing element, and has the effect of suppressing the peeling of oxide scale. In order to suppress peeling of oxide scale, the content is preferably 0.01% or more. From the viewpoint of further improving the effect of suppressing the peeling of oxide scale, it is more desirable to make it 0.03% or more. Moreover, when Al is contained excessively, it affects the decrease in elongation and weld penetration. In this embodiment, the upper limit of the Al content is desirably 0.30% or less in order to prevent deterioration of workability due to a decrease in elongation.

Vは隙間腐食を抑制させる元素である。この効果を得るためには0.03%以上含有させることが望ましい。また、更に効果を向上させる観点から0.05%以上含有させることが更に望ましい。また、Vが過剰に含有されていた場合、硬質化し、成形性を劣化させる。そのため、V含有量の上限を1.00%以下とすることが望ましい。 V is an element that suppresses crevice corrosion. In order to obtain this effect, it is desirable to contain 0.03% or more. Moreover, it is more desirable to contain 0.05% or more from the viewpoint of further improving the effect. Moreover, when V is contained excessively, it hardens and deteriorates formability. Therefore, it is desirable to set the upper limit of the V content to 1.00% or less.

Snは耐食性と高温強度の向上に寄与する元素である。これは0.001%以上含有する事で、発現されるため、Sn含有量の下限を0.001%以上とすることが望ましい。好ましくは0.005%以上である。しかし、Snを0.50%超含有させると、鋼板製造時にスラブ割れが生じる可能性がある。そのため、Sn含有量の上限を0.50%以下とすることが望ましい。 Sn is an element that contributes to the improvement of corrosion resistance and high-temperature strength. Since this is manifested by containing 0.001% or more, it is desirable to set the lower limit of the Sn content to 0.001% or more. Preferably it is 0.005% or more. However, if the Sn content exceeds 0.50%, slab cracking may occur during steel sheet production. Therefore, it is desirable to set the upper limit of the Sn content to 0.50% or less.

Wは耐食性と高温強度の向上に寄与するため、必要に応じて0.005%以上含有させることが望ましい。ただし、3.00%を超えてWを含有させると、鋼板製造時の靭性劣化に繋がるため、上限を3.00%以下とすることが望ましい。 Since W contributes to the improvement of corrosion resistance and high-temperature strength, it is desirable to contain 0.005% or more as necessary. However, if the content of W exceeds 3.00%, it leads to deterioration of toughness during steel sheet production, so the upper limit is preferably 3.00% or less.

Coは高温強度の向上に寄与する元素である。この効果は0.01%以上含有することで発現するため、Co含有量の下限を0.01%以上とすることが望ましい。しかし、Coを0.30%を超えて含有した場合、靭性の劣化を引き起こす可能性がある。そのため、上限を0.30%以下とすることが望ましい。 Co is an element that contributes to the improvement of high-temperature strength. Since this effect is manifested when the Co content is 0.01% or more, it is desirable to set the lower limit of the Co content to 0.01% or more. However, when the Co content exceeds 0.30%, there is a possibility of causing deterioration in toughness. Therefore, it is desirable to set the upper limit to 0.30% or less.

Sbは高温強度の向上に寄与する元素である。この効果はSbが粒界に偏析することで発現し、この現象はSb量が0.005%以上で発生する。そのため、Sb含有量の下限は0.005%以上とすることが望ましい。しかし、Sbを0.50%超含有した場合、過度の偏析による溶接割れが生じるため、上限を0.50%以下とすることが望ましい。 Sb is an element that contributes to improvement of high-temperature strength. This effect is manifested by the segregation of Sb at grain boundaries, and this phenomenon occurs when the amount of Sb is 0.005% or more. Therefore, it is desirable that the lower limit of the Sb content is 0.005% or more. However, if the Sb content exceeds 0.50%, weld cracking occurs due to excessive segregation, so the upper limit is preferably 0.50% or less.

REM(希土類元素)は一般的な定義に従い、スカンジウム(Sc)、イットリウム(Y)の2元素と、ランタン(La)からルテチウム(Lu)まで15元素(ランタノイド)の総称を指す。
REMは耐酸化性の向上に寄与し、必要に応じて0.001%以上含有させてもよい。しかし、REMを0.20%を超えて含有すると、REMの硫化物による耐食性の低下を生じる可能性があるため、上限を0.20%以下とすることが望ましい。なお、REMを含有させる場合は、前述の元素群の中の単独であっても、2元素以上の混合物であってもよい。
REM (rare earth elements) is a generic term for two elements, scandium (Sc) and yttrium (Y), and fifteen elements (lanthanides), from lanthanum (La) to lutetium (Lu), according to a general definition.
REM contributes to the improvement of oxidation resistance, and may be contained in an amount of 0.001% or more, if necessary. However, if the content of REM exceeds 0.20%, the sulfide of REM may lower the corrosion resistance, so the upper limit is preferably 0.20% or less. When REM is contained, it may be a single element in the group of elements described above or a mixture of two or more elements.

本実施形態のフェライト系ステンレス鋼管用鋼板は、本発明の効果を損なわない範囲で上記説明した以外の元素を含有させてもよい。 The steel plate for ferritic stainless steel pipes of the present embodiment may contain elements other than those described above as long as the effects of the present invention are not impaired.

次に、本実施形態に係るフェライト系ステンレス鋼管用鋼板の伸び、加工硬化指数(n値)、塑性歪み比(r値)について説明する。 Next, the elongation, work hardening index (n value), and plastic strain ratio (r value) of the steel plate for ferritic stainless steel pipes according to this embodiment will be described.

本実施形態では、鋼管を曲げ加工した際の減肉率を小さくするために、素材となる鋼板の塑性歪み比(r値)を制御することが重要である。具体的には、平均r値と、圧延方向のr値(r)を適正範囲に制御する。 In the present embodiment, it is important to control the plastic strain ratio (r value) of the steel plate as the raw material in order to reduce the thickness reduction rate when bending the steel pipe. Specifically, the average r value and the rolling direction r value (r 0 ) are controlled within appropriate ranges.

平均r値を1.10以上とすることが、減肉率を低減し加工割れを防止するために必要であるため、これを下限とした。減肉率を安定して低減し、加工割れをより抑制するためには、平均r値を1.15以上とすることが好ましい。なお、平均r値の上限は特に設けられるものではなく、一般的な製造設備、装置等で製造可能なフェライト系ステンレス鋼板の平均r値を考慮して適宜決定してよいが、例えば3.00以下を上限としてもよい。
なお、平均r値は、下記式(3)によって求めることができる。
An average r value of 1.10 or more is necessary to reduce the rate of thickness reduction and prevent cracking during work, so this was made the lower limit. In order to stably reduce the thickness reduction rate and further suppress work cracks, it is preferable to set the average r value to 1.15 or more. Note that the upper limit of the average r-value is not particularly set, and may be determined appropriately in consideration of the average r-value of ferritic stainless steel sheets that can be manufactured with general manufacturing equipment, devices, etc. For example, 3.00 The following may be set as the upper limit.
Note that the average r value can be obtained by the following formula (3).

平均r値=(r+2r45+r90)/4 ・・・(3)
但し、(3)式中のrは圧延方向のr値、r90は圧延直角方向のr値、r45は圧延45度方向のr値を示す。
Average r value=(r 0 +2r 45 +r 90 )/4 (3)
However, in the formula (3), r0 indicates the r value in the rolling direction, r90 indicates the r value in the direction perpendicular to the rolling direction, and r45 indicates the r value in the 45 ° rolling direction.

さらに、減肉率を30%未満に低減するためには、rを0.80以上とする必要があるため、これを下限とした。減肉率を安定して低減し、加工割れをより抑制するためには、rを0.90以上とすることが好ましい。なお、rの上限は特に設けられるものではないが、異方性Δrが極端に大きくなることを防ぐために、rは4.00以下を上限とすることが好ましい。さらに好ましくは、1.10≦r≦3.00である。 Furthermore, in order to reduce the thickness reduction rate to less than 30%, it is necessary to set r0 to 0.80 or more, so this was made the lower limit. In order to stably reduce the thickness reduction rate and further suppress working cracks, r 0 is preferably 0.90 or more. The upper limit of r0 is not particularly set, but it is preferable that the upper limit of r0 is 4.00 or less in order to prevent the anisotropy Δr from becoming extremely large. More preferably, 1.10≦r 0 ≦3.00.

なお、平均r値や圧延方向のr値(r)の制御方法は特に限定しないが、鋼板の製造工程の各条件を調整することで上記範囲に制御すればよい。例えば、冷延での圧下率や、最終焼鈍温度を適正な値とすることなど、製造条件を適宜設定することによって平均r値や圧延方向のr値を制御することが出来る。 The method for controlling the average r value and the r value (r 0 ) in the rolling direction is not particularly limited, but may be controlled within the above ranges by adjusting the conditions of the steel sheet manufacturing process. For example, the average r-value and the r-value in the rolling direction can be controlled by properly setting the manufacturing conditions such as setting the rolling reduction in cold rolling and the final annealing temperature to appropriate values.

また、本実施形態において、鋼板の伸びは、鋼管とした後の曲げ加工時における減肉率や皺の形成に影響するため、28%以上とする。好ましくは30%以上である。 Further, in the present embodiment, the elongation of the steel sheet is set to 28% or more because it affects the rate of reduction in thickness and the formation of wrinkles during bending after forming the steel pipe. Preferably it is 30% or more.

また、鋼板のn値が0.18以上であるときに鋼管の曲げ加工時の減肉率を抑制することが出来るため、鋼板のn値を0.18以とする。好ましくは0.20以上である。 Further, when the steel plate has an n value of 0.18 or more, the thickness reduction rate of the steel pipe during bending can be suppressed, so the steel plate has an n value of 0.18 or more. Preferably it is 0.20 or more.

また本実施形態では、鋼板の面内異方性Δrと平均r値を適切に制御することが重要である。
一般に、圧延方向のr値(r)と圧延90度方向のr値(r90)は、減肉抑制に大きく寄与することが知られている。しかし、上述したように、本発明者らは、圧延方向のr値(r)と圧延90度方向のr値(r90)が、圧延45度方向のr値(r45)と比較して極端に大きい(面内異方性Δrが大きい)場合、逆に減肉率が大きくなることを見出した。すなわち、減肉率を抑制し加工割れを防止するためには、平均r値を高めるだけでは不十分であり、r、r45およびr90のバランスを図り、Δrの増大を防ぐことが重要である。具体的には、下記(1)式を満たすように平均r値とΔrを制御することにより、t/D≦0.04、R/D≦1.2といった太径、薄肉、小Rでの鋼管曲げ加工を行った際に、割れの発生を安定して防止することが出来る。
ここで、面内異方性Δrは下記(2)式で算出するものとする。
Also, in this embodiment, it is important to appropriately control the in-plane anisotropy Δr and the average r value of the steel sheet.
In general, it is known that the r value (r 0 ) in the rolling direction and the r value (r 90 ) in the 90° rolling direction greatly contribute to suppression of thinning. However, as described above, the present inventors compared the r-value (r 0 ) in the rolling direction and the r-value (r 90 ) in the 90-degree rolling direction with the r-value (r 45 ) in the 45-degree rolling direction. It has been found that, conversely, when the in-plane anisotropy Δr is extremely large (the in-plane anisotropy Δr is large), the thickness reduction rate increases. That is, in order to suppress the reduction rate and prevent work cracking, it is not enough to increase the average r value, and it is important to balance r 0 , r 45 and r 90 to prevent an increase in Δr. is. Specifically, by controlling the average r value and Δr so as to satisfy the following formula (1), a large diameter, thin wall, and small R such as t / D ≤ 0.04 and R / D ≤ 1.2 It is possible to stably prevent the occurrence of cracks when bending a steel pipe.
Here, the in-plane anisotropy Δr is calculated by the following formula (2).

平均r値-1.1-1.1×(Δr-0.3)≧0 ・・・(1)
Δr=(r+r90-2r45)/2 ・・・(2)
但し、(1)、(2)式中のrは圧延方向のr値、r90は圧延直角方向のr値、r45は圧延45度方向のr値を示す。
Average r value -1.1 - 1.1 x (Δr - 0.3) 4 ≥ 0 (1)
Δr=(r 0 +r 90 −2r 45 )/2 (2)
However, in the formulas (1) and (2), r0 indicates the r value in the rolling direction, r90 indicates the r value in the direction perpendicular to the rolling direction, and r45 indicates the r value in the 45 ° rolling direction.

なお、鋼板において上記(1)式を満たすためには、鋼板の製造工程の各条件を適宜調整することで、r、r45およびr90、ならびに平均r値を制御すればよい。各r値に影響を及ぼす条件因子としては、例えば、圧延時の加熱温度や圧下率、焼鈍温度等が挙げられる。このような製造条件を適宜調整することで、(1)式を満足するような鋼板を製造することができる。
以下に、本実施形態に係る鋼板の好適な製造方法、条件について説明するが、あくまでこれは一例であって、本発明はこれに限定されるものではない。
In order to satisfy the above formula (1) in the steel sheet, r 0 , r 45 and r 90 and the average r value may be controlled by appropriately adjusting the conditions of the steel sheet manufacturing process. Conditional factors that affect each r value include, for example, the heating temperature and rolling reduction during rolling, and the annealing temperature. By appropriately adjusting such manufacturing conditions, a steel sheet that satisfies the formula (1) can be manufactured.
Preferred manufacturing methods and conditions for the steel sheet according to the present embodiment will be described below, but these are merely examples, and the present invention is not limited thereto.

本実施形態の鋼板を製造するにあたり、製鋼、熱間圧延、熱延板焼鈍、冷間圧延、冷延板焼鈍(仕上げ焼鈍)を順次施してよい。
製鋼後の鋼片は、所定の温度に加熱され、所定の板厚に連続圧延で熱間圧延される。このときの加熱温度は、平均r値を高め、かつ面内異方性Δrの増大を抑制し、式(1)を満足させる観点から、1150~1250℃とすることが望ましい。
熱間圧延後は熱延板焼鈍・酸洗を行ってもよく、熱延板焼鈍工程は省略してもよい。
熱間圧延後の冷間圧延は、通常のゼンジミアミル、タンデムミルのいずれで圧延してもよい。冷間圧延においては、圧下率、圧延パス回数、圧延速度、圧延温度などの条件は、本実施形態の鋼板の各構成・各条件を満たし得るように適宜選択・設定すればよい。例えば圧下率はr値に影響を及ぼす因子であるため、平均r値および式(1)が適正範囲となるよう調整することが望ましい。
冷間圧延後は冷延板焼鈍(仕上げ焼鈍)を行ってよいが、仕上げ焼鈍の温度は、結晶粒粗大化によるr値増加の観点から、850~1050℃とすることが望ましい。仕上げ焼鈍は、必要であれば水素ガスあるいは窒素ガスなどの無酸化雰囲気で焼鈍する光輝焼鈍でもよいし、大気中で焼鈍しても構わない。
In manufacturing the steel sheet of the present embodiment, steelmaking, hot rolling, hot-rolled sheet annealing, cold rolling, and cold-rolled sheet annealing (finish annealing) may be sequentially performed.
The steel slab after steelmaking is heated to a predetermined temperature and hot-rolled to a predetermined plate thickness by continuous rolling. The heating temperature at this time is desirably 1150 to 1250° C. from the viewpoint of increasing the average r value, suppressing an increase in the in-plane anisotropy Δr, and satisfying the formula (1).
After hot rolling, hot-rolled sheet annealing and pickling may be performed, and the hot-rolled sheet annealing step may be omitted.
Cold rolling after hot rolling may be carried out by either a normal Sendzimir mill or a tandem mill. In the cold rolling, the conditions such as the rolling reduction, the number of rolling passes, the rolling speed, and the rolling temperature may be appropriately selected and set so as to satisfy each configuration and each condition of the steel sheet of the present embodiment. For example, since the rolling reduction is a factor that affects the r value, it is desirable to adjust the average r value and the formula (1) so that they fall within the proper ranges.
After cold rolling, cold-rolled sheet annealing (finish annealing) may be performed, but the final annealing temperature is preferably 850 to 1050° C. from the viewpoint of increasing the r value due to coarsening of grains. The finish annealing may be bright annealing in which annealing is performed in a non-oxidizing atmosphere such as hydrogen gas or nitrogen gas, if necessary, or may be annealing in the atmosphere.

以上説明した製造方法により、本実施形態に係るフェライト系ステンレス鋼管用鋼板を製造することができる。 By the manufacturing method described above, the steel plate for ferritic stainless steel pipes according to the present embodiment can be manufactured.

以上説明した本実施形態のフェライト系ステンレス鋼管用鋼板によれば、太径、薄肉、小Rでの曲げ加工が行われる鋼管に好適に採用でき、当該鋼管の曲げ加工における減肉率を低減し、加工割れを安定して防止することが出来る。 According to the steel plate for ferritic stainless steel pipes of the present embodiment described above, it can be suitably used for steel pipes that are bent with a large diameter, thin wall, and small radius, and the thickness reduction rate during bending of the steel pipe can be reduced. , processing cracks can be stably prevented.

以下に本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、以下の実施例で用いた条件に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Examples of the present invention will be described below, but the conditions in the examples are examples of conditions adopted for confirming the feasibility and effect of the present invention, and the present invention is used in the following examples. It is not limited to the conditions Various conditions can be adopted in the present invention as long as the objects of the present invention are achieved without departing from the gist of the present invention.

表1に示す化学組成を有するステンレス鋼(鋼No.1~23)を溶製し、鋳片を製造した。その後、得られた鋳片を用いて、表2に示す実施例1~16、及び比較例9~15は、加熱温度1150~1250℃で熱間圧延を行い、厚さ5.0mmの熱延鋼板を製造した。この熱延鋼板を焼鈍後、厚さ5.0mmから1.2mmまで冷間圧延を行い、850~1050℃での仕上げ焼鈍を施して、供試材を作成した。 Stainless steels (Steel Nos. 1 to 23) having chemical compositions shown in Table 1 were melted to produce slabs. After that, using the obtained slabs, Examples 1 to 16 and Comparative Examples 9 to 15 shown in Table 2 were hot-rolled at a heating temperature of 1150 to 1250 ° C., and hot-rolled to a thickness of 5.0 mm. A steel plate was manufactured. After the hot-rolled steel sheet was annealed, it was cold-rolled to a thickness of 5.0 mm to 1.2 mm and subjected to finish annealing at 850 to 1050° C. to prepare a test material.

一方、比較例1~8は以下の製造条件を上記の条件から変更した。
表2に示す比較例1~4は、熱延鋼板の厚さを4.0mmとし、その後1.2mmまで冷間圧延を行った。表2に示す比較例5~8は、加熱温度1100℃で熱間圧延を行い、熱延鋼板を製造した。
On the other hand, in Comparative Examples 1 to 8, the following manufacturing conditions were changed from the above conditions.
In Comparative Examples 1 to 4 shown in Table 2, the thickness of the hot-rolled steel sheet was set to 4.0 mm and then cold-rolled to 1.2 mm. In Comparative Examples 5 to 8 shown in Table 2, hot rolling was performed at a heating temperature of 1100° C. to produce hot rolled steel sheets.

Figure 0007178791000001
Figure 0007178791000001

Figure 0007178791000002
Figure 0007178791000002

次に、得られた供試材(ステンレス鋼板;実施例1~16、比較例1~15)の機械特性を下記試験方法によって評価した。 Next, the mechanical properties of the obtained test materials (stainless steel plates; Examples 1 to 16 and Comparative Examples 1 to 15) were evaluated by the following test methods.

供試材から、JIS13B号引張試験片を採取して、JIS Z 2241に準拠した常温引張試験を行い、鋼板の常温伸び(El)および加工硬化指数(n値)、塑性歪み比(r値)を評価した。 A JIS No. 13B tensile test piece was taken from the test material, and a normal temperature tensile test was performed in accordance with JIS Z 2241, and the normal temperature elongation (El) and work hardening index (n value) of the steel plate, plastic strain ratio (r value). evaluated.

加工硬化指数(n値)は、均一歪みが生じている範囲の真応力-真歪み曲線の値を、下記のSwiftの式(式(4))に最小二乗法を用いてフィッティングさせ、鋼板のn値を導出した。
σ=C(ε+k)・・・(4)
ただし、(3)式中のσは真応力、εは真歪み、C、kは定数である。
The work hardening index (n value) is obtained by fitting the value of the true stress-true strain curve in the range where uniform strain occurs to the following Swift formula (formula (4)) using the least squares method. n values were derived.
σ=C(ε+k) n (4)
In the equation (3), σ is true stress, ε is true strain, and C and k are constants.

塑性歪み比(r値)は、供試材から圧延方向、圧延45度方向、圧延90度方向それぞれの方向において、JIS13B号引張試験片を採取し、JIS Z 2254に準拠した塑性ひずみ比試験を行った。試験片の幅方向歪みと板厚歪みの比は、伸びが15%の時点で測定した。
試験結果を表2に示す。
For the plastic strain ratio (r value), JIS 13B tensile test pieces were taken from the test material in the rolling direction, the 45 degree rolling direction, and the 90 degree rolling direction, and a plastic strain ratio test was performed in accordance with JIS Z 2254. gone. The ratio of the strain in the width direction to the thickness strain of the test piece was measured when the elongation was 15%.
Table 2 shows the test results.

鋼板のn値が大きいほど、歪み伝播性が良くなるため、局所的な変形が抑制される。鋼管の曲げ加工では減肉は局所的に起こるため、鋼板のn値が大きいほど鋼管の減肉抑制に寄与する。 The larger the n-value of the steel sheet, the better the strain propagation property, so local deformation is suppressed. Since thinning of the steel pipe occurs locally in the bending of the steel pipe, the greater the n value of the steel plate, the more it contributes to the suppression of thinning of the steel pipe.

次に、パイプ曲げ試験を行い、減肉率および皺の発生について評価した。
具体的には、表1の成分、表2の機械的特性を示す厚さ1.2mmの鋼板(実施例1~16、比較例1~15)を、成形条件、造管後矯正量を制御し、外形D=φ42.7mmの電縫溶接管(t/D=0.028)を造管した。この鋼管を図2のような回転引き曲げ機を用いて曲げ半径R=45mmで90度曲げを行った。
バックブースター押し力Fは、鋼管断面に鋼管の0.2%耐力の0.4倍の押し力が作用する値とした。プレッシャーダイの移動速度は一定で、曲げ終了時のプレッシャーダイの移動量Lが鋼管中央部の移動量(R×π/2)の1.18倍とした。
最大減肉率は、曲げ外側の板厚t減少が最大となった位置において求め、皺の有無については、目視ならびに触感によって評価した。最大減肉率が30%未満となったものを合格(〇)と評価した。
Next, a pipe bending test was performed to evaluate the rate of wall thickness reduction and the occurrence of wrinkles.
Specifically, steel sheets with a thickness of 1.2 mm (Examples 1 to 16, Comparative Examples 1 to 15) exhibiting the components shown in Table 1 and the mechanical properties shown in Table 2 were prepared by controlling the forming conditions and the post-tube straightening amount. Then, an electric resistance welded pipe (t/D=0.028) with an outer diameter D=φ42.7 mm was produced. This steel pipe was bent 90 degrees with a bending radius R of 45 mm using a rotary drawing and bending machine as shown in FIG.
The back booster pushing force F was set to a value at which a pushing force 0.4 times the 0.2% proof stress of the steel pipe acts on the cross section of the steel pipe. The movement speed of the pressure die was constant, and the movement amount L of the pressure die at the end of bending was set to 1.18 times the movement amount (R×π/2) of the central portion of the steel pipe.
The maximum thickness reduction rate was obtained at the position where the plate thickness t decrease on the outer side of the bending was maximum, and the presence or absence of wrinkles was evaluated visually and by touch. Those with a maximum thickness reduction rate of less than 30% were evaluated as pass (◯).

平均r値≦3.0、伸びEl≧28%、n値≧0.18、平均r値-1.1-1.1×(Δr-0.3)≧0を満たした実施例1~10は最大減肉率30%未満であり、割れ、皺ともになく曲げ加工を行う事ができた。また、実施例11~16は、皺こそ発生したものの、最大減肉率30%未満であり、割れもおきず、比較的良好な曲げ加工を行う事ができた。
図1に、実施例1~16、比較例1~8の、Δr値と平均r値、最大減肉率の関係を示すグラフを示す。当該グラフからも、平均r値≦3.0、平均r値-1.1-1.1×(Δr-0.3)≧0を満たした実施例は最大減肉率30%未満を達成でき、成形性に優れていることが分かる。
Examples 1 to 3 satisfying average r value ≤ 3.0, elongation El ≥ 28%, n value ≥ 0.18, average r value -1.1-1.1 × (Δr-0.3) 4 ≥ 0 No. 10 had a maximum thickness reduction rate of less than 30%, and could be bent without cracks or wrinkles. In addition, in Examples 11 to 16, although wrinkles occurred, the maximum thickness reduction rate was less than 30%, cracks did not occur, and relatively good bending could be performed.
FIG. 1 shows a graph showing the relationship between the Δr value, the average r value, and the maximum thickness reduction rate of Examples 1 to 16 and Comparative Examples 1 to 8. From this graph, the examples satisfying the average r value ≤ 3.0 and the average r value -1.1 - 1.1 x (Δr - 0.3) 4 ≥ 0 achieved a maximum thickness reduction rate of less than 30%. It can be seen that the moldability is excellent.

平均r値≦3.0、および平均r値-1.1-1.1×(Δr-0.3)≧0を満たさなかった比較例1~2の最大減肉率は30%以上であった。この様な最大減肉率では割れ等の不具合が発生する可能性が有る。さらに、曲げの内径側で皺が発生した。皺が発生すると、金型に負荷がかかり、金型寿命を縮める可能性がある。 Average r value ≤ 3.0 and average r value -1.1 - 1.1 × (Δr - 0.3) 4 ≥ 0 were not satisfied. there were. At such a maximum thickness reduction rate, defects such as cracks may occur. Furthermore, wrinkles were generated on the inner diameter side of the bend. When wrinkles occur, a load is applied to the mold, possibly shortening the life of the mold.

≧0.8、および平均r値-1.1-1.1×(Δr-0.3)≧0を満たさなかった比較例3~4の最大減肉率は30%以上だった。この様な最大減肉率では割れ等の不具合が発生する可能性が有る。さらに、曲げの内径側で皺が発生した。皺が発生すると、金型に負荷がかかり、金型寿命を縮める可能性がある。 Comparative Examples 3 and 4, which did not satisfy r 0 ≧0.8 and average r value −1.1−1.1×(Δr−0.3) 4 ≧0, had a maximum thickness reduction rate of 30% or more. . At such a maximum thickness reduction rate, defects such as cracks may occur. Furthermore, wrinkles were generated on the inner diameter side of the bend. When wrinkles occur, a load is applied to the mold, possibly shortening the life of the mold.

平均r値-1.1-1.1×(Δr-0.3)≧0を満たさなかった比較例5~8の最大減肉率は30%以上だった。この様な最大減肉率では割れ等の不具合が発生する可能性が有る。 Comparative Examples 5 to 8, which did not satisfy the average r value -1.1 - 1.1 x (Δr - 0.3) 4 ≥ 0, had a maximum thickness reduction rate of 30% or more. At such a maximum thickness reduction rate, defects such as cracks may occur.

本発明の成分範囲外の鋼No.11~17を使用した比較例9~15では、最大減肉率が30%を超えた。
また、Mo、Cu、Nb、Ti、Alが範囲を外れた比較例13~17は鋼板の伸びElが28%未満となった。
Steel No. outside the composition range of the present invention. In Comparative Examples 9 to 15 using Nos. 11 to 17, the maximum wall thickness reduction rate exceeded 30%.
Further, in Comparative Examples 13 to 17 in which Mo, Cu, Nb, Ti and Al were out of range, the elongation El of the steel sheet was less than 28%.

本発明は、自動車排気系部品等の曲げ加工が厳しく、かつ高温酸化や熱疲労が厳しい用途に使用されるフェライト系ステンレス鋼管用鋼板に関するものであり、t/D≦0.04、R/D≦1.2の太径、薄肉、小R曲げにおける割れや皺を防止するものである。
以上に述べたように、本発明は自動車排気系に要求されている厳しい鋼管の曲げ条件において、割れのない、もしくは減肉率が小さい、成形性に優れたフェライト系ステンレス鋼溶接管を提供する事ができるようになり、その産業的価値は大きい。
TECHNICAL FIELD The present invention relates to steel sheets for ferritic stainless steel pipes, which are used in applications such as automotive exhaust system parts that require severe bending, high-temperature oxidation, and thermal fatigue. It prevents cracks and wrinkles in bending with a large diameter of ≦1.2, a thin wall, and a small radius.
INDUSTRIAL APPLICABILITY As described above, the present invention provides a ferritic stainless steel welded pipe with excellent formability that does not crack or has a small wall thickness reduction rate under the severe steel pipe bending conditions required for automobile exhaust systems. It becomes possible to do things, and its industrial value is great.

Claims (2)

質量%にて、
C:0.020%以下、
N:0.020%以下、
Si:0.03~1.20%、
Mn:0.02~1.61%、
P:0.050%以下、
S:0.0050%以下、
Ni:0.010~0.153%、
Cr:10.0~30.0%、
Mo:0.005~2.50%、
Cu:0.005~2.00%、
Nb:0.001~0.800%、
Ti:0.001~0.300%、
B:0~0.005%、
Al:0~0.30%、
Sn:0~0.12%、
V:0~1.00%、
Co:0~0.30%、
W:0~0.05%、
Sb:0~0.50%、
REM:0~0.20%
を含有し、残部がFeおよび不純物からなり、
破断伸び≧28%、
加工硬化指数(n値)≧0.18、
平均塑性歪み比(平均r値)≧1.10、
圧延方向塑性歪み比r0≧0.80、
かつ、0.40≧平均r値-1.1-1.1×(面内異方性Δr-0.3)0.09であることを特徴とするフェライト系ステンレス鋼管用鋼板。
In % by mass,
C: 0.020% or less,
N: 0.020% or less,
Si: 0.03 to 1.20%,
Mn: 0.02-1.61 %,
P: 0.050% or less,
S: 0.0050% or less,
Ni: 0.010 to 0.153%,
Cr: 10.0 to 30.0%,
Mo: 0.005-2.50%,
Cu: 0.005 to 2.00%,
Nb: 0.001 to 0.800%,
Ti: 0.001 to 0.300%,
B: 0 to 0.005%,
Al: 0-0.30%,
Sn: 0-0.12 %,
V: 0 to 1.00%,
Co: 0-0.30%,
W: 0 to 0.05 %,
Sb: 0 to 0.50%,
REM: 0-0.20%
and the balance consists of Fe and impurities,
Elongation at break ≧28%,
Work hardening index (n value) ≥ 0.18,
Average plastic strain ratio (average r value) ≥ 1.10,
rolling direction plastic strain ratio r0≧0.80,
A steel plate for a ferritic stainless steel pipe, wherein 0.40≧ average r value−1.1−1.1×(in-plane anisotropy Δr−0.3) 40.09 .
質量%にて、
B:0.0001~0.005%、
Al:0.01~0.30%、
Sn:0.001~0.50%、
V:0.03~1.00%、
Co:0.01~0.30%、
W:0.005~3.00%、
Sb:0.005~0.50%、
REM:0.001~0.20%の1種または2種以上を含有することを特徴とする請求項1に記載のフェライト系ステンレス鋼管用鋼板。
In % by mass,
B: 0.0001 to 0.005%,
Al: 0.01 to 0.30%,
Sn: 0.001 to 0.50%,
V: 0.03 to 1.00%,
Co: 0.01 to 0.30%,
W: 0.005 to 3.00%,
Sb: 0.005 to 0.50%,
REM: The steel sheet for ferritic stainless steel pipes according to claim 1, characterized by containing one or more of 0.001 to 0.20%.
JP2018067593A 2018-03-30 2018-03-30 Steel plates for ferritic stainless steel pipes Active JP7178791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018067593A JP7178791B2 (en) 2018-03-30 2018-03-30 Steel plates for ferritic stainless steel pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018067593A JP7178791B2 (en) 2018-03-30 2018-03-30 Steel plates for ferritic stainless steel pipes

Publications (2)

Publication Number Publication Date
JP2019178362A JP2019178362A (en) 2019-10-17
JP7178791B2 true JP7178791B2 (en) 2022-11-28

Family

ID=68277977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018067593A Active JP7178791B2 (en) 2018-03-30 2018-03-30 Steel plates for ferritic stainless steel pipes

Country Status (1)

Country Link
JP (1) JP7178791B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332549A (en) 2001-05-10 2002-11-22 Nisshin Steel Co Ltd Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor
JP2005200746A (en) 2004-01-19 2005-07-28 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel for automobile exhaust system member
JP2006089814A (en) 2004-09-24 2006-04-06 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet having excellent workability and its production method
JP2006193771A (en) 2005-01-12 2006-07-27 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet with excellent workability, and its manufacturing method
JP2006291294A (en) 2005-04-11 2006-10-26 Nisshin Steel Co Ltd Ferritic stainless steel sheet superior in spinning formability, and spinning method
JP2007016306A (en) 2005-06-09 2007-01-25 Jfe Steel Kk Ferritic stainless steel sheet for original pipe of bellows
JP2009001834A (en) 2007-06-19 2009-01-08 Jfe Steel Kk Ferritic stainless steel superior in high-temperature strength, heat resistance and workability
JP2009235570A (en) 2008-03-07 2009-10-15 Jfe Steel Corp Ferritic stainless steel having excellent heat resistance and weldability
CN104060166A (en) 2014-06-18 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparation method thereof, as well as hot-galvanized steel sheet and preparation method thereof
JP2017179480A (en) 2016-03-30 2017-10-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust component excellent in processability, steel tube and manufacturing method therefor
JP2017179406A (en) 2016-03-28 2017-10-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for fuel pump member and fuel pump member

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332549A (en) 2001-05-10 2002-11-22 Nisshin Steel Co Ltd Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor
JP2005200746A (en) 2004-01-19 2005-07-28 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel for automobile exhaust system member
JP2006089814A (en) 2004-09-24 2006-04-06 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet having excellent workability and its production method
JP2006193771A (en) 2005-01-12 2006-07-27 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet with excellent workability, and its manufacturing method
JP2006291294A (en) 2005-04-11 2006-10-26 Nisshin Steel Co Ltd Ferritic stainless steel sheet superior in spinning formability, and spinning method
JP2007016306A (en) 2005-06-09 2007-01-25 Jfe Steel Kk Ferritic stainless steel sheet for original pipe of bellows
JP2009001834A (en) 2007-06-19 2009-01-08 Jfe Steel Kk Ferritic stainless steel superior in high-temperature strength, heat resistance and workability
JP2009235570A (en) 2008-03-07 2009-10-15 Jfe Steel Corp Ferritic stainless steel having excellent heat resistance and weldability
CN104060166A (en) 2014-06-18 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparation method thereof, as well as hot-galvanized steel sheet and preparation method thereof
JP2017179406A (en) 2016-03-28 2017-10-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for fuel pump member and fuel pump member
JP2017179480A (en) 2016-03-30 2017-10-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust component excellent in processability, steel tube and manufacturing method therefor

Also Published As

Publication number Publication date
JP2019178362A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
EP2554699B1 (en) Steel sheet with high tensile strength and superior ductility and method for producing same
TWI465587B (en) Ferritic stainless steel having excellent oxidation resistance
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5396752B2 (en) Ferritic stainless steel with excellent toughness and method for producing the same
EP2410068A1 (en) Duplex stainless steel plate having excellent press moldability
JP2010059452A (en) Cold-rolled steel sheet and producing method therefor
JP2011219826A (en) High-strength steel sheet having excellent warm rolling workability and method for producing the same
KR20140117686A (en) Ferritic stainless steel plate having excellent heat resistance and excellent workability
KR20150048885A (en) High-strength cold-rolled steel sheet and method for manufacturing same
TWI472629B (en) Ferritic stainless steel having excellent heat resistance and workability
EP2551366B1 (en) High-strength electrical-resistance-welded steel pipe and manufacturing method therefor
TW201321526A (en) Ferritic stainless steel
JP6746035B1 (en) Austenitic stainless steel sheet
JP6811112B2 (en) Ferrite Duplex Stainless Steel Sheet and Its Manufacturing Method
CN107208207B (en) High-strength steel sheet and method for producing same
JP2021004384A (en) Stainless steel
JP4185425B2 (en) Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time
JP4833698B2 (en) High strength steel plate for die quench
WO2014045542A1 (en) Easily worked ferrite stainless-steel sheet
JP7278079B2 (en) Cold-rolled stainless steel sheet, hot-rolled stainless steel sheet, and method for manufacturing hot-rolled stainless steel sheet
JP2001262234A (en) Method for producing ferritic stainless steel sheet for automotive exhaust system excellent in deep drawability
JP2015024414A (en) Method of manufacturing high-strength press component
JP7178791B2 (en) Steel plates for ferritic stainless steel pipes
US20170275722A1 (en) Ferritic stainless steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220727

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220727

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220817

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221115

R150 Certificate of patent or registration of utility model

Ref document number: 7178791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150