JP7178041B2 - Hematopoietic progenitor cell activator and related technology - Google Patents
Hematopoietic progenitor cell activator and related technology Download PDFInfo
- Publication number
- JP7178041B2 JP7178041B2 JP2018098349A JP2018098349A JP7178041B2 JP 7178041 B2 JP7178041 B2 JP 7178041B2 JP 2018098349 A JP2018098349 A JP 2018098349A JP 2018098349 A JP2018098349 A JP 2018098349A JP 7178041 B2 JP7178041 B2 JP 7178041B2
- Authority
- JP
- Japan
- Prior art keywords
- hematopoietic
- recovery
- heteroglycan
- peptide
- progenitor cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Medicines Containing Plant Substances (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Description
本発明は、造血系前駆細胞賦活剤及び放射線等による造血障害の回復に有用な造血障害回復剤に関する。 TECHNICAL FIELD The present invention relates to a hematopoietic progenitor cell activator and a hematopoietic injury recovery agent useful for recovery from hematopoietic injury caused by radiation or the like.
医学と生物学,2012年,Vol.156 No.10,pp.696-702には、5グレイのX線が全身照射されたマウスにクロレラ粉末を投与したところ、血小板、白血球、顆粒球、前期赤芽球系前駆細胞(BFUE)、顆粒球マクロファージコロニー形成細胞(CFU-GM)を生理食塩液投与対照群に比べて統計学的有意を持ち増加させたが、赤血球、リンパ球、単球、エリスロポエチン依存性後期赤芽球系前駆細胞(CFU-E)の増減は有意(P < 0.05)な変動ではなかったことが示されている。 In Medicine and Biology, 2012, Vol.156 No.10, pp.696-702, when chlorella powder was administered to mice that had been whole-body irradiated with 5 Gy of X-rays, platelets, leukocytes, granulocytes, prophase Erythroid progenitor cells (BFUE) and granulocyte-macrophage colony-forming cells (CFU-GM) increased with statistical significance compared to the saline-administered control group, but erythrocytes, lymphocytes, monocytes, It is shown that the increase or decrease in erythropoietin-dependent late erythroblastic progenitor cells (CFU-E) was not a significant (P < 0.05) variation.
特開2015-78160号公報には、アガリクス・ブラゼイ・ムリルの子実体の細胞壁破砕物と菌糸体抽出物との混合物とクロレラの細胞壁破砕物の熱水抽出物を含有する放射線造血障害回復剤が開示されている。 Japanese Patent Application Laid-Open No. 2015-78160 discloses a radiation hematopoietic injury recovery agent containing a mixture of a cell wall crushed product of fruiting bodies of Agaricus blazei muril and a mycelium extract and a hot water extract of a cell wall crushed product of Chlorella. disclosed.
しかしながら、クロレラから得ることができる造血系前駆細胞の賦活や放射線等による造血障害の回復に有用な物質は特定に至っていない。 However, substances that can be obtained from chlorella and are useful for activating hematopoietic progenitor cells and for recovering hematopoietic disorders caused by radiation have not yet been identified.
本発明の目的は、クロレラから得ることができる造血系前駆細胞の賦活や放射線等による造血障害の回復に有用な物質を有効成分とする造血系前駆細胞賦活剤及び放射線等による造血障害の回復に有用な造血障害回復剤を提供することにある。 An object of the present invention is to provide a hematopoietic progenitor cell activator containing, as an active ingredient, a substance useful for the activation of hematopoietic progenitor cells obtained from chlorella and for the recovery of hematopoietic disorders caused by radiation and the like, and for the recovery of hematopoietic disorders caused by radiation. An object of the present invention is to provide a useful hematopoietic disorder recovery agent.
本発明の造血系前駆細胞賦活剤及び造血障害回復剤は、次のように表すことができる。 The hematopoietic progenitor cell activator and hematopoietic disorder recovery agent of the present invention can be expressed as follows.
(1) 下記理化学的性質(a)、(b)、(c)、(d)及び(e)を有するペプチドヘテログリカンからなる造血系前駆細胞賦活剤。
(a) 平均分子量:100万
(b) 比旋光度:〔α〕D -11.6 (測定温度25℃)
(c) 窒素含量5.39%、蛋白質含量29.5%、多糖含量70.3%
(d) 糖組成(モル比):Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) アミノ酸組成(モル%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
合計 100%
(1) A hematopoietic progenitor cell activator comprising a peptide heteroglycan having the following physicochemical properties (a), (b), (c), (d) and (e) .
(a) average molecular weight: 1 million
(b) Specific rotation: [α] D -11.6 (Measurement temperature 25°C)
(c) nitrogen content 5.39%, protein content 29.5%, polysaccharide content 70.3%;
(d) Sugar composition (molar ratio): Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) Amino acid composition (mol%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
Total 100%
(2) 上記造血系前駆細胞が、赤芽球系前駆細胞、エリスロポエチン依存性単球系前駆細胞、及び、好中球-顆粒球系前駆細胞である上記(1)記載の造血系前駆細胞賦活剤。 (2) The hematopoietic progenitor cell activation according to (1) above, wherein the hematopoietic progenitor cells are erythroblastic progenitor cells, erythropoietin-dependent monocytic progenitor cells, and neutrophil-granulocyte progenitor cells. agent.
(3) 上記ペプチドヘテログリカンがクロレラ・ピレノイドサの細胞壁破砕物の熱水抽出液由来である上記(1)又は(2)記載の造血系前駆細胞賦活剤。 (3) The hematopoietic progenitor cell activator according to (1) or (2) above, wherein the peptide heteroglycan is derived from a hot water extract of cell wall fragment of Chlorella pyrenoidosa.
(4) 下記理化学的性質(a)、(b)、(c)、(d)及び(e)を有するペプチドヘテログリカンからなる造血障害回復剤。
(a) 平均分子量:100万
(b) 比旋光度:〔α〕D -11.6 (測定温度25℃)
(c) 窒素含量5.39%、蛋白質含量29.5%、多糖含量70.3%
(d) 糖組成(モル比):Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) アミノ酸組成(モル%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
合計 100%
(4) A hematopoietic disorder recovery agent comprising a peptide heteroglycan having the following physicochemical properties (a), (b), (c), (d) and (e) .
(a) average molecular weight: 1 million
(b) Specific rotation: [α] D -11.6 (Measurement temperature 25°C)
(c) nitrogen content 5.39%, protein content 29.5%, polysaccharide content 70.3%;
(d) Sugar composition (molar ratio): Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) Amino acid composition (mol%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
Total 100%
(5) 上記造血障害回復が、末梢血中の赤血球、血小板、白血球、顆粒球、リンパ球及び単球の数の増大、脾臓重量の増加、脾臓造血巣の回復、胸腺重量の増加、並びに、胸腺リンパ球数の回復に表れるものである上記(4)記載の造血障害回復剤。 (5) recovery from hematopoietic disorder is achieved by increasing the number of red blood cells, platelets, white blood cells, granulocytes, lymphocytes and monocytes in peripheral blood, increasing spleen weight, recovery of splenic hematopoietic foci, increasing thymus weight, and The hematopoietic disorder recovery agent according to (4) above, which is manifested in recovery of thymic lymphocyte count.
(6) 上記造血障害が放射線照射によるものである上記(4)又は(5)記載の造血障害回復剤。 (6) The hematopoietic disorder recovery agent according to (4) or (5) above, wherein the hematopoietic disorder is caused by irradiation.
(7) 上記ペプチドヘテログリカンがクロレラ・ピレノイドサの細胞壁破砕物の熱水抽出液由来である上記(4)乃至(6)の何れか1項に記載の造血障害回復剤。 (7) The hematopoietic disorder recovery agent according to any one of (4) to (6) above, wherein the peptide heteroglycan is derived from a hot water extract of cell wall fragment of Chlorella pyrenoidosa.
本発明の造血系前駆細胞賦活剤及び造血障害回復剤は、それぞれ、造血系前駆細胞の賦活及び放射線等による造血障害の回復に効果的である。 The hematopoietic progenitor cell activator and hematopoietic injury recovery agent of the present invention are effective in activating hematopoietic progenitor cells and in recovering from hematopoietic injury caused by radiation or the like, respectively.
(1) 本発明の造血系前駆細胞賦活剤及び造血障害回復剤は、下記理化学的性質(a)、(b)、(c)、(d)及び(e)を有するペプチドヘテログリカンからなる。
(a) 平均分子量:100万
(b) 比旋光度:〔α〕D -11.6 (測定温度25℃)
(c) 窒素含量5.39%、蛋白質含量29.5%、多糖含量70.3%
(d) 糖組成(モル比):Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) アミノ酸組成(モル%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
合計 100%
(1) The hematopoietic progenitor cell activator and hematopoietic disorder recovery agent of the present invention comprise a peptide heteroglycan having the following physicochemical properties (a), (b), (c), (d) and (e) .
(a) average molecular weight: 1 million
(b) Specific rotation: [α] D -11.6 (Measurement temperature 25°C)
(c) nitrogen content 5.39%, protein content 29.5%, polysaccharide content 70.3%;
(d) Sugar composition (molar ratio): Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) Amino acid composition (mol%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
Total 100%
(2) 本発明における上記ペプチドヘテログリカンは、例えば次のように製造することができる。 (2) The peptide heteroglycan of the present invention can be produced, for example, as follows.
クロレラ・ピレノイドサ(Chlorella pyrenoidosa)の細胞壁破砕物(例えば、細胞壁破砕物を真空乾燥した後、粉砕した物)を、熱水抽出(例えば95-100℃の熱水による抽出。抽出時間は例えば2時間であるがこれに限らない。)し、抽出液を、例えば抽出後静置して上澄として、得る。 Hot water extraction (for example, extraction with hot water at 95-100 ° C. Extraction time is, for example, 2 hours). However, it is not limited to this.), and the extract is obtained, for example, as a supernatant by standing still after extraction.
得られた抽出液(好ましくは遠心分離による上澄液)から分子量10,000以下の低分子物質を、例えば透析濾過又は限外濾過により、除去し、分子量10,000以下の低分子物質が除去された液を得る。 Low-molecular-weight substances with a molecular weight of 10,000 or less are removed from the resulting extract (preferably the supernatant obtained by centrifugation) by, for example, diafiltration or ultrafiltration to remove low-molecular-weight substances with a molecular weight of 10,000 or less. get the liquid
この液に(例えば3倍体積量の)無水エタノールを加え、その沈殿物(例えば遠心分離を行った沈殿物)として粗多糖(FA)を得る。この粗多糖(FA)は、前記沈殿物を無水エタノールで洗浄し、次いで無水エーテルで洗浄し、乾燥(好ましくは真空乾燥)させたものであることが好ましい。 Absolute ethanol is added to this solution (for example, in a volume of 3 times) to obtain crude polysaccharide (FA) as a precipitate (for example, a precipitate after centrifugation). This crude polysaccharide (FA) is preferably obtained by washing the precipitate with absolute ethanol, then with anhydrous ether, and drying (preferably vacuum drying).
得られた粗多糖(FA)を水に溶解させ、イオン交換クロマトグラフィー[例えば、和光純薬工業社製のDEAE-Cellulose(Cl-)を使用]及び必要な勾配溶離[例えば、(gradient elution with 0→1.0M NaCl)]に供して分画し、画分(FA-1)を得る。 The resulting crude polysaccharide (FA) is dissolved in water and subjected to ion-exchange chromatography [for example, DEAE-Cellulose (Cl - ) manufactured by Wako Pure Chemical Industries, Ltd. is used] and necessary gradient elution [for example, (gradient elution with 0→1.0M NaCl)] to obtain a fraction (FA-1).
FA-1をゲル濾過法に供して精製することによって、すなわち、例えば和光純薬工業社製のSephadex G-50等を使用したゲル濾過法及び必要な勾配溶離[例えば(gradient elution with 0→2.0M NaCl)]により精製することによって、FA-1a、すなわち本発明のペプチドヘテログリカンを得ることができる。 By purifying FA-1 by subjecting it to a gel filtration method, that is, a gel filtration method using, for example, Sephadex G-50 manufactured by Wako Pure Chemical Industries, Ltd. and the necessary gradient elution [for example, gradient elution with 0 → 2.0 M NaCl)] to obtain FA-1a, the peptide heteroglycan of the present invention.
(3) 本発明におけるペプチドヘテログリカンの製造に用い得るクロレラ・ピレノイドサの細胞壁破砕物は、例えば次のようにして得ることができる。すなわち、先ずクロレラ濃度10重量%から25重量%のクロレラ粉体・水懸濁液を10℃以下に調整する。次にこの懸濁液を、下記のような連続湿式微粉砕機に送入し、破砕直後のスラリーが40℃以下になるよう微粉砕する。次いで、このようにして得られたクロレラスラリーを、直ちに10℃以下に冷却することにより、細胞壁が破砕されたクロレラを、品質劣化を生じさせることなく得ることができる。 (3) A cell wall fragment of Chlorella pyrenoidosa that can be used for producing the peptide heteroglycan of the present invention can be obtained, for example, as follows. That is, first, a chlorella powder/water suspension having a chlorella concentration of 10 % to 25% by weight is adjusted to 10° C. or lower. Next, this suspension is fed into a continuous wet pulverizer as described below and pulverized so that the slurry immediately after pulverization has a temperature of 40° C. or lower. Then, the chlorella slurry thus obtained is immediately cooled to 10° C. or less, whereby chlorella with crushed cell walls can be obtained without deterioration in quality.
上記連続湿式微粉砕機は、冷却外套を持つ密閉シリンダー中に多数の直径0.5mmから1.5mmのグラスビーズが封入されたものである。そのグラスビーズ容量は密閉シリンダー容量の80%から85%であり、グラスビーズを流入液体と混和・回転することにより、流入液体中の物質を摩砕するものである。 The continuous wet pulverizer consists of a large number of glass beads with a diameter of 0.5 mm to 1.5 mm enclosed in a closed cylinder with a cooling jacket. The glass bead volume is 80 % to 85% of the closed cylinder volume, and the glass beads are mixed with the inflow liquid and rotated to grind material in the inflow liquid.
このようにして細胞壁が破砕されたクロレラは、そのまま用いることもできるが、例えば、真空乾燥後粉砕を行う等の適宜の処理を施した後に使用してもよい。 Chlorella whose cell walls have been crushed in this way can be used as it is, but it may also be used after being subjected to an appropriate treatment such as vacuum drying followed by pulverization.
(4) 本発明の造血系前駆細胞賦活剤及び造血障害回復剤は、例えば経口投与や腹腔内投与により適用することができるが、投与方法は必ずしもこれらに限らない。投与の形態に特に限定はないが、例えば、粉末、錠剤、硬カプセル剤、軟カプセル剤、水に溶解した液剤若しくはその他の液剤とすることができる。 (4) The hematopoietic progenitor cell activator and hematopoietic disorder recovery agent of the present invention can be applied, for example, by oral administration or intraperitoneal administration, but the administration method is not necessarily limited to these. The administration form is not particularly limited, but for example, powders, tablets, hard capsules, soft capsules, liquids dissolved in water, or other liquids can be used.
また種々の形態を形成する上で、各種賦形剤、結合剤、崩壊剤、滑沢剤、コーティング剤、着色剤、矯味剤、矯臭剤、可塑剤等を適宜用いることができる。 Various excipients, binders, disintegrants, lubricants, coating agents, coloring agents, corrigents, corrigents, plasticizers and the like can be appropriately used to form various forms.
賦形剤の例としては、糖類(乳糖,白糖,ブドウ糖,マンニトール),デンプン(バレイショ,コムギ,トウモロコシ),無機物(炭酸カルシウム,硫酸カルシウム,炭酸水素ナトリウム,塩化ナトリウム),結晶セルロース,植物末(カンゾウ末,ゲンチアナ末)等を挙げることができる。 Examples of excipients include sugars (lactose, white sugar, glucose, mannitol), starch (potato, wheat, corn), inorganic substances (calcium carbonate, calcium sulfate, sodium hydrogen carbonate, sodium chloride), crystalline cellulose, plant powder ( Glycyrrhiza powder, gentian powder) and the like can be mentioned.
結合剤の例としては、デンプンのり液,アラビアゴム,ゼラチン,アルギン酸ナトリウム,メチルセルロース(MC),エチルセルロース(EC),ポリビニルピロリドン(PVP),ポリビニルアルコール(PVA),ヒドロキシプロピルセルロース(HPC),カルボキシメチルセルロース(CMC)等を挙げることができる。 Examples of binders include starch paste, gum arabic, gelatin, sodium alginate, methylcellulose (MC), ethylcellulose (EC), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), hydroxypropylcellulose (HPC), carboxymethylcellulose. (CMC) and the like.
崩壊剤の例としては、デンプン,寒天,ゼラチン末,結晶セルロース,CMC・Na,CMC・Ca,炭酸カルシウム,炭酸水素ナトリウム,アルギン酸ナトリウム等を挙げることができる。 Examples of disintegrants include starch, agar, gelatin powder, crystalline cellulose, CMC·Na, CMC·Ca, calcium carbonate, sodium hydrogen carbonate, sodium alginate and the like.
滑沢剤の例としては、ステアリン酸マグネシウム,タルク,水素添加植物油,マクロゴール,シリコーン油等を挙げることができる。 Examples of lubricants include magnesium stearate, talc, hydrogenated vegetable oils, macrogol, and silicone oils.
コーティング剤の例としては、糖衣(白糖,HPC,セラック),膠衣(ゼラチン,グリセリン,ソルビトール),フィルムコーティング〔ヒドロキシプロピルメチルセルロース(HPMC),EC,HPC,PVP〕,腸溶性コーティング〔ヒドロキシプロピルメチルセルロースフタレート(HPMCP),セルロースアセテートフタレート(CAP)〕等を挙げることができる。 Examples of coating agents include sugar coating (white sugar, HPC, shellac), glue coating (gelatin, glycerin, sorbitol), film coating [hydroxypropylmethylcellulose (HPMC), EC, HPC, PVP], enteric coating [hydroxypropylmethylcellulose phthalate (HPMCP), cellulose acetate phthalate (CAP)] and the like.
着色剤の例としては、水溶性食用色素,レーキ色素)等を挙げることができる。矯味剤の例としては、乳糖,白糖,ブドウ糖,マンニトール)等を挙げることができる。矯臭剤の例としては、芳香性精油類),光線遮断剤(酸化チタン)等を挙げることができる。可塑剤の例としては、フタル酸エステル類,植物油,ポリエチレングリコール)等を挙げることができる。 Examples of coloring agents include water-soluble food dyes and lake dyes. Examples of flavoring agents include lactose, sucrose, glucose, mannitol, and the like. Examples of flavoring agents include aromatic essential oils), light shielding agents (titanium oxide), and the like. Examples of plasticizers include phthalates, vegetable oils, polyethylene glycol) and the like.
なお、本発明の放射線造血障害回復剤のヒトに対する投与量は、1日当り例えば0.83mg/kg程度とすることができる。 The dose of the radiation-induced hematopoietic injury recovery agent of the present invention for humans can be, for example, about 0.83 mg/kg per day.
本発明におけるペプチドヘテログリカンによる造血系前駆細胞賦活効果及び放射線造血障害回復効果についての試験を行った。 Tests were conducted on the hematopoietic progenitor cell activating effect and radiation hematopoietic injury recovery effect of the peptide heteroglycan of the present invention.
1.被験物質 1. test substance
(1) 冷却外套を持つ密閉シリンダー中にその密閉シリンダー容量の80%から85%の容量の多数の直径0.5mmから1.5mmのグラスビーズが封入されており、そのグラスビーズを流入液体と混和・回転することにより流入液体中の物質を摩砕する連続湿式微粉砕機(商品名:ダイノーミル[KD型]WAB, Inc.製)に、10℃以下に調整されたクロレラ・ピレノイドサ濃度10重量%から25重量%のクロレラ・ピレノイドサ粉体・水懸濁液を送入して、破砕直後のスラリーが40℃以下になるよう微粉砕し、次いで、このようにして得られたクロレラ・ピレノイドサスラリーを、直ちに10℃以下に冷却し、真空乾燥後、粉砕することにより、細胞壁破砕クロレラ・ピレノイドサ乾燥粉末が得られた。 (1) A closed cylinder with a cooling mantle contains a large number of glass beads with a diameter of 0.5 mm to 1.5 mm having a volume of 80 % to 85% of the volume of the closed cylinder. Chlorella pyrenoidosa concentration 10 Chlorella-pyrenoid sa powder/water suspension of 25% by weight to 25% by weight is fed, pulverized so that the slurry immediately after crushing is 40 ° C. or less, and then the chlorella-pyrenoid obtained in this way. The suspension slurry was immediately cooled to 10° C. or less, vacuum dried, and pulverized to obtain a dry powder of cell wall-crushed Chlorella pyrenoidosa.
(2) 得られた細胞壁破砕クロレラ・ピレノイドサ乾燥粉末を水に懸濁させた後、95℃から100℃で2時間煮沸した。 (2) The resulting dry powder of crushed cell walls of Chlorella pyrenoidosa was suspended in water and then boiled at 95 °C to 100°C for 2 hours.
これを常温に冷却した後、静置状態で上澄をダイアフィルターG-10T(日本真空技術社製:分画分子量10000)を用いて限外濾過して第1の濾過残渣を得た。 After cooling to room temperature, the supernatant was ultrafiltered using a diafilter G-10T (manufactured by Nippon Vacuum Engineering Co., Ltd.: molecular weight cut off: 10,000) while still standing to obtain a first filtration residue.
前記静置状態における沈殿物を、再度、95℃から100℃で2時間にわたり水で煮沸し、これを常温に冷却した後、静置状態で上澄をダイアフィルターG-10T(日本真空技術社製:分画分子量10000)を用いて限外濾過して第2の濾過残渣を得、第1の濾過残渣と第2の濾過残渣を混合した。 The precipitate in the stationary state is again boiled with water at 95 ° C. to 100 ° C. for 2 hours, cooled to room temperature, and the supernatant is filtered by a diafilter G-10T (Japan Vacuum Engineering Co., Ltd.) in a stationary state. The second filter residue was obtained by ultrafiltration using a product with a molecular weight cut off of 10,000, and the first filter residue and the second filter residue were mixed.
この混合物を3℃で12時間静置した後、室温で10,000 rpmで20分間遠心分離処理し、上澄と沈殿に分けた。 The mixture was allowed to stand at 3° C. for 12 hours, then centrifuged at room temperature at 10,000 rpm for 20 minutes to separate the supernatant and precipitate.
この上澄を回収して3℃でダイアフィルターG-10T(日本真空技術社製:分画分子量10000)を用いて限外濾過することにより、非濾過画分(M.W. 10,000以上)と濾過画分(M.W. 10,000以下) を得た。 The supernatant was recovered and ultrafiltered at 3°C using a diafilter G-10T (manufactured by Nippon Vacuum Engineering Co., Ltd.: molecular weight cut off: 10,000) to separate an unfiltered fraction (M.W. 10,000 or more) and a filtered fraction. (M.W. less than 10,000).
この非濾過画分に、容量の3倍の無水エタノールを加えて室温で10,000 rpmで遠心分離処理し、上澄と沈殿に分けた。 Three times the volume of absolute ethanol was added to the non-filtered fraction and centrifuged at 10,000 rpm at room temperature to separate the supernatant and precipitate.
沈殿は、無水エタノールで3回洗浄後、無水エーテルで1回洗浄した。その後、40℃で真空乾燥してFA(粗多糖)を得た。 The precipitate was washed three times with absolute ethanol and then once with absolute ether. After that, it was vacuum-dried at 40° C. to obtain FA (crude polysaccharide).
FAを水に溶解させ、イオン交換クロマトグラフィー[和光純薬工業社製のDEAE-Cellulose(Cl-)を使用]及び勾配溶離[(gradient elution with 0→1.0M NaCl)]に供して画分FA-1、FA-2、FA-3に分画した。 FA was dissolved in water and subjected to ion-exchange chromatography [DEAE-Cellulose (Cl − ) manufactured by Wako Pure Chemical Industries, Ltd.] and gradient elution [(gradient elution with 0 → 1.0 M NaCl)] to obtain fraction FA. Fractionated into -1, FA-2 and FA-3.
画分FA-1を、ゲル濾過法[和光純薬工業社製のSephadex G-50を使用]及び勾配溶離(gradient elution with 0→2.0M NaCl)により精製することによって、FA-1aを得た。 Fraction FA-1 was purified by gel filtration [using Sephadex G-50 manufactured by Wako Pure Chemical Industries, Ltd.] and gradient elution (gradient elution with 0→2.0 M NaCl) to obtain FA-1a. .
クロレラ・ピレノイドサ乾燥粉末400gからの粗多糖FAおよび本発明のペプチドヘテログリカンFA-1aの収量は、真空凍結乾燥粉末でそれぞれ15.63g及び253.27mgであった。 The yields of crude polysaccharide FA and peptide heteroglycan FA-1a of the present invention from 400 g of Chlorella pyrenoidosa dry powder were 15.63 g and 253.27 mg, respectively, as vacuum freeze-dried powder.
FA-1aを下記のように分析した結果、下記理化学的性質(a)、(b)、(c)、(d)及び(e)を有するペプチドヘテログリカン(単に「ペプチドヘテログリカン」とも言う。)であることが判明した。 As a result of analyzing FA-1a as described below, it was found to be a peptide heteroglycan (also simply referred to as "peptide heteroglycan") having the following physicochemical properties (a), (b), (c), (d) and (e) . ).
(i) 糖組成の分析 (i) Analysis of sugar composition
全糖については,フェノール硫酸法(比色法)により分析した。 Total sugar was analyzed by the phenol-sulfuric acid method (colorimetric method).
構成糖組成の分析は次のように行った。 Analysis of constituent sugar composition was carried out as follows.
検体であるFA-1a(2mg)をジメチルスルホキシド(DMSO,0.5mL)に溶解させ、その溶液に対し水酸化ナトリウム(20mg)及びヨウ化メチル(0.2mL)を添加した。 The specimen FA-1a (2 mg) was dissolved in dimethylsulfoxide (DMSO, 0.5 mL), and sodium hydroxide (20 mg) and methyl iodide (0.2 mL) were added to the solution.
これを撹拝した後、クロロホルム(1.5mL)で抽出を行い、減圧乾固してメチル化多糖を得た。 After stirring, the mixture was extracted with chloroform (1.5 mL) and dried under reduced pressure to obtain a methylated polysaccharide.
これに対し80%ギ酸(1mL)を添加し滅圧乾固した後、2Nトリフルオロ酢酸(1mL)によりメチル化多糖を得た。 To this, 80% formic acid (1 mL) was added, dried under reduced pressure, and methylated polysaccharide was obtained with 2N trifluoroacetic acid (1 mL).
これに80%ギ酸(1mL)を添加し滅圧乾固した後、2Nトリフルオロ酢酸(1mL)によりメチル化多糖を加水分解し、滅圧乾固して部分メチル化多糖を得た。 After adding 80% formic acid (1 mL) and drying under vacuum, the methylated polysaccharide was hydrolyzed with 2N trifluoroacetic acid (1 mL) and dried under vacuum to obtain a partially methylated polysaccharide.
この部分メチル化多糖に少量の蒸留水と水酸化ホウ素ナトリウム(5mg)を添加し、一晩放置後、酢酸で水酸化ホウ素ナトリウムを分解した。 A small amount of distilled water and sodium borohydride (5 mg) were added to this partially methylated polysaccharide, and the mixture was allowed to stand overnight, after which the sodium borohydride was decomposed with acetic acid.
更にホウ酸を除去して部分メチル化アルジトールを得た。これに無水酢酸・ピリジン(1:1)混合液(1mL)を加え4時間加熱後、冷却乾固した。続いてクロロホルム(2mL)と蒸留水(1mL)を添加して混合後、クロロホルム層を回収して無水硫酸ナトリウム(1.5g)を添加し、脱水処理を行った後、減圧乾固した。 Further removal of boric acid gave partially methylated alditols. A mixed solution (1 mL) of acetic anhydride/pyridine (1:1) was added thereto, and the mixture was heated for 4 hours and then cooled to dryness. Subsequently, chloroform (2 mL) and distilled water (1 mL) were added and mixed, then the chloroform layer was recovered, anhydrous sodium sulfate (1.5 g) was added, dehydration was performed, and the mixture was dried under reduced pressure.
これを蒸留水200μLに溶解させ、その溶液30μLを高速液体クロマトグラフイー(HPLC)分析(島津LC-9A型)に供し、構成糖の同定・定量を行つた。 This was dissolved in 200 μL of distilled water, and 30 μL of the solution was subjected to high performance liquid chromatography (HPLC) analysis (Shimadzu LC-9A) to identify and quantify constituent sugars.
(ii) 全窒素の定量 (ii) determination of total nitrogen;
セミミクロナルダール法により測定した。 Measured by the semi-micronaldahl method.
(iii) タンパクの定量 (iii) Protein quantification
タンパク定量はLowry法により行なった。 Protein quantification was performed by the Lowry method.
(iv) アミノ酸分析 (iv) amino acid analysis
検体(1mg)を6N塩酸(1mL)と共に封管し,110℃,20時間の加水分解処理後,日立835型アミノ酸自動分析装置に供した。 A test sample (1 mg) was sealed with 6N hydrochloric acid (1 mL), hydrolyzed at 110°C for 20 hours, and subjected to a Hitachi 835 automatic amino acid analyzer.
(v) 平均分子量の測定 (v) Measurement of average molecular weight
平均分子量の測定は,ゲル濾過法(Sephadex G-100、和光純薬工業)により行った。 The average molecular weight was measured by a gel filtration method (Sephadex G-100, Wako Pure Chemical Industries).
ゲル濾過用多糖分子量マーカーには,α-1,6結合の直鎖状多糖類pullulanキットShodex standard P-82(昭和電工)および標準デキストラン(Sigma-Aldrich)を用いた。 As polysaccharide molecular weight markers for gel filtration, α-1,6-linked linear polysaccharide pullulan kit Shodex standard P-82 (Showa Denko) and standard dextran (Sigma-Aldrich) were used.
(vi) 比旋光度の測定 (vi) Measurement of specific rotation
比旋光度の測定には円木分光自動旋光計(DIP-360型)を用い、測定温度は25℃とした。
(a) 平均分子量:100万
(b) 比旋光度:〔α〕D -11.6 (測定温度25℃)
(c) 窒素含量5.39%、蛋白質含量29.5%、多糖含量70.3%
(d) 糖組成(モル比):Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) アミノ酸組成(モル%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
合計 100%
For the measurement of the specific optical rotation, a circular wood spectroscopic automatic polarimeter (DIP-360 type) was used, and the measurement temperature was 25°C.
(a) average molecular weight: 1 million
(b) Specific rotation: [α] D -11.6 (Measurement temperature 25°C)
(c) nitrogen content 5.39%, protein content 29.5%, polysaccharide content 70.3%;
(d) Sugar composition (molar ratio): Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) Amino acid composition (mol%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
Total 100%
2.供試動物 2. test animal
日本エスエルシー株式会社から入手した6週齢のICR/Slc雄マウスのうち、下記飼育条件で7日間予備飼育した後、一般症状観察および尿検査で異常が認められなかった7週齢のマウスを試験に供した。 Six-week-old ICR/Slc male mice obtained from Japan SLC Co., Ltd. were preliminarily bred for seven days under the following breeding conditions. submitted for testing.
3.飼育条件 3. breeding conditions
供試動物は三重大学生命科学研究支援センター動物施設の実験指針による、温度23±2℃、相対湿度55±5%のバリアシステムの環境下で、1群10匹とし、プラスチックケージに5匹ずつ同居させ、固型飼料(クレアCE-7 日本クレア株式会社製)と水道水を自由に摂取させた。 Test animals are 10 animals per group, 5 animals each in a plastic cage under a barrier system environment with a temperature of 23 ± 2°C and a relative humidity of 55 ± 5% according to the experimental guidelines of the animal facility of the Mie University Life Science Research Support Center. They were allowed to live together and freely ingest solid feed (CLEA CE-7 manufactured by CLEA Japan, Inc.) and tap water.
4.放射線照射方法及び照射線量 4. Radiation irradiation method and irradiation dose
(1) 照射方法 (1) Irradiation method
PHILIPS MG 226/4.5(日本フィリップス社製 高精度X線発生装置)を用い、管電圧200KV、管電流9mA、線量率0.365Gy/minの照射条件で、供試動物を一匹ずつアクリル板製の照射用カプセルに入れて水平回転させながらX線全身照射を行った。 Using a PHILIPS MG 226/4.5 (a high-precision X-ray generator manufactured by Philips Japan), under the irradiation conditions of a tube voltage of 200 KV, a tube current of 9 mA, and a dose rate of 0.365 Gy/min, each test animal was placed on an acrylic plate. The whole body was irradiated with X-rays while being placed in an irradiation capsule and rotated horizontally.
(2) 照射線量の検討 (2) Examination of irradiation dose
供試動物に免疫抑制を惹起する十分な線量を決定するために、3群(10匹ずつ)の供試動物に対し、それぞれ2.5Gy, 5.0Gy, 7.0Gy の全身照射を行った。 To determine the dose sufficient to induce immunosuppression in the test animals, three groups (10 animals each) were subjected to total body irradiation of 2.5 Gy, 5.0 Gy, and 7.0 Gy, respectively.
7.OGy照射群では照射11日後に1例が死亡し、平均生存日数は16.4±3.2であった。死亡したマウスを剖見したところ、特に胸腺と脾臓について、重量減少と萎縮が散見された。 7.In the OGy irradiation group, one patient died 11 days after irradiation, and the average survival time was 16.4±3.2. Necropsy of dead mice showed occasional weight loss and atrophy, especially in the thymus and spleen.
5.OGy照射群および2.5Gy照射群では、何れも10例全例が生存した。そこで本実験では、5.OGy照射を採用した。 5. All 10 cases survived in both the OGy irradiation group and the 2.5Gy irradiation group. Therefore, in this experiment, 5.OGy irradiation was adopted.
5.放射線照射及び被験物質投与 5. Irradiation and test substance administration
次の3群(10匹ずつ)の供試動物(上記7週齢のマウス)を用いて、被験物質(ペプチドヘテログリカン)の造血系前駆細胞の賦活及び放射線照射による造血障害の回復効果について検討を行った。 Using the following 3 groups (10 animals each) of test animals (7-week-old mice above), the activation of hematopoietic progenitor cells by the test substance (peptide heteroglycan) and the recovery effect of radiation-induced hematopoietic damage were examined. did
(a) 5.OGy全身照射・ペプチドヘテログリカン投与群 (a) 5.OGy whole body irradiation/peptide heteroglycan administration group
5.OGy全身照射の24時間後より、ペプチドヘテログリカンの投与量を10mg/kg/日としてペプチドヘテログリカンの蒸留水溶液をO.2ml/体重10gの割合で1日2回(朝・夕)10日間にわたり連日腹腔内投与し、照射日及びその後10日間にわたり、上記飼育条件で飼育した。 5. From 24 hours after OGy whole-body irradiation, the dosage of peptide heteroglycan is 10 mg/kg/day, and the distilled aqueous solution of peptide heteroglycan is administered at a rate of 0.2 ml/10 g of body weight twice a day (morning and evening). The rats were intraperitoneally administered every day for 10 days, and raised under the above breeding conditions on the day of irradiation and for 10 days thereafter.
(b) 5.0Gy全身照射群(ペプチドヘテログリカン非投与) (b) 5.0 Gy total body irradiation group (no peptide heteroglycan administration)
5.OGy全身照射の24時間後より、生理食塩液をO.2ml/体重10gの割合で1日2回(朝・夕)10日間にわたり連日腹腔内投与し、照射日及びその後10日間にわたり、上記飼育条件で飼育した。 5. From 24 hours after OGy whole body irradiation, physiological saline was intraperitoneally administered twice a day (morning and evening) at a rate of 0.2 ml/10 g of body weight for 10 consecutive days. The animals were bred under the breeding conditions described above.
(c) 非照射群(0Gy) (c) Non-irradiated group (0 Gy)
上記(b)と同じタイミングで生理食塩液をO.2ml/体重10gの割合で1日2回(朝・夕)10日間にわたり連日腹腔内投与し、上記(b)の照射日及びその後10日間にわたり、上記飼育条件で飼育した。 At the same timing as in (b) above, physiological saline was intraperitoneally administered at a rate of 0.2 ml/10 g body weight twice a day (morning and evening) for 10 consecutive days. They were bred under the breeding conditions described above for a period of time.
6.成熟血球レベルと造血前駆細胞数 6. Mature blood cell level and number of hematopoietic progenitor cells
(1) 測定 (1) Measurement
(1-1) 成熟血球レベル (1-1) Mature blood cell level
上記10日間飼育の翌日、上記(a)群、(b)群及び(c)群の各個体について、エーテル麻酔下、後大動脈よりヘパリン添加末梢血を採取して測定に供した。 On the next day after the 10-day feeding, heparinized peripheral blood was collected from the posterior aorta of each individual in groups (a), (b) and (c) under ether anesthesia and subjected to measurement.
赤血球数、血小板数及び白血球数は、全自動多項目分析装置(日本電子社製)で測定した。 Red blood cell count, platelet count and white blood cell count were measured with a fully automatic multi-item analyzer (manufactured by JEOL Ltd.).
顆粒球数、リンパ球数、及び単球数については、血液塗抹標本を作製してギムザ染色を行い顕微鏡下で測定した。 The granulocyte count, lymphocyte count, and monocyte count were measured under a microscope after preparing a blood smear and Giemsa staining.
(1-2) 造血前駆細胞数 (1-2) Number of hematopoietic progenitor cells
供試動物をエーテル麻酔下で頸椎脱臼によって安楽死させた後、大腿骨、骨髄および脾臓を摘出し、仁保の方法に準じた脾臓細胞浮遊液および骨髄細胞浮遊液の調製に用いた。 After the test animal was euthanized by cervical dislocation under ether anesthesia, the femur, bone marrow and spleen were extracted and used for the preparation of spleen cell suspension and bone marrow cell suspension according to Niho's method.
摘出した脾臓を、予め4℃に冷却しておいたEagle's MEM培地に移した後、2枚のスライドガラスを用いて脾臓を圧砕し、脾細胞浮遊液を得た。更に、ステンレス製メッシュを用いて濾過することにより単細胞浮遊液を得、培養あるいは抗体産生細胞検出に用いた。 After the excised spleen was transferred to Eagle's MEM medium previously cooled to 4° C., the spleen was crushed using two glass slides to obtain a splenocyte suspension. Furthermore, a single-cell suspension was obtained by filtration using a stainless steel mesh, and used for culture or detection of antibody-producing cells.
また、摘出した大腿骨一本の骨髄を20%牛胎児血清(U.S.A.St.Louis Mo.Sigma Chemical Co.製)を含むDMEM培地(Nissui Pharmaceutical Co.製)に浮遊させ、大腿骨一本あたりの骨髄(有核)細胞数の算定を行った。 In addition, the bone marrow of one excised femur was suspended in DMEM medium (manufactured by Nissui Pharmaceutical Co.) containing 20% fetal bovine serum (manufactured by U.S.A. St. Louis Mo.Sigma Chemical Co.), Bone marrow (nucleated) cell counts were performed.
[i] BFU-E(Erythroid burst_forming cell、前期赤芽球系前駆細胞)の細胞数測定 [i] Measurement of BFU-E (Erythroid burst_forming cell, early erythroid progenitor cell)
上記脾臓細胞浮遊液および骨髄細胞浮遊液における脾細胞及び骨髄細胞を、それぞれ2×106cells/ml濃度で直径35mmのプラスチック製ペトリ皿(U.S.A. Falcon[商標] No 1008)を用いて2U/ml EPO(ヒト遺伝子組換リコンビナントエリスロポエチン U.S.A. Mo. St.Louis Sigma Chemical Co.製)存在下で、メチルセルロース法にて培養した後、細胞数を測定した。 Splenocytes and bone marrow cells in the splenocyte suspension and bone marrow cell suspension were added at a concentration of 2×10 6 cells/ml, respectively, to 2 U/ml using a 35 mm diameter plastic petri dish (USA Falcon™ No 1008). After culturing by the methylcellulose method in the presence of EPO (manufactured by Mo. St. Louis Sigma Chemical Co., USA, recombinant human recombinant erythropoietin), the number of cells was measured.
[ii] CFU-E(Colony-forming unit-erythropoetin dependent、エリスロポエチン依存性単球系前駆細胞・後期赤芽球系前駆細胞)の細胞数測定 [ii] CFU-E (Colony-forming unit-erythropoetin dependent, erythropoietin-dependent monocytic progenitor/late erythroblastic progenitor)
上記脾臓細胞浮遊液および骨髄細胞浮遊液における脾細胞及び骨髄細胞を、それぞれ2×105cells/ml濃度で直径35mmのプラスチック製ペトリ皿(U.S.A. Falcon[商標] No 1008)を用いて2U/ml EPO(ヒト遺伝子組換リコンビナントエリスロポエチン U.S.A. Mo. St.Louis Sigma Chemical Co.製)存在下で、メチルセルロース法にて培養した後、細胞数を測定した。 Splenocytes and bone marrow cells in the splenocyte suspension and bone marrow cell suspension were added at a concentration of 2×10 5 cells/ml, respectively, using a 35 mm diameter plastic petri dish (USA Falcon (trademark) No 1008) at 2 U/ml. After culturing by the methylcellulose method in the presence of EPO (manufactured by Mo. St. Louis Sigma Chemical Co., USA, recombinant human recombinant erythropoietin), the number of cells was measured.
[iii] CFU-GM(Granulocytes-macrophage colony-forming cell、顆粒球マクロファージコロニー形成細胞)の細胞数測定 [iii] CFU-GM (Granulocytes-macrophage colony-forming cell) cell count measurement
上記脾臓細胞浮遊液および骨髄細胞浮遊液における脾細胞及び骨髄細胞を、それぞれ2xlO5cells/ml濃度で1%Pokeweed mitogen(U.S.A. N.Y. Grand Island GIBCO[商標])、10%牛胎児血清を含むRPMI 1640培地(U.S.A.St.Louis Mo.Sigma Chemical Co.製)に浮遊させ、37℃、5%CO2下で一週間培養した後、細胞数を測定した。 The spleen cells and bone marrow cells in the spleen cell suspension and bone marrow cell suspension were added to RPMI 1640 medium containing 1% Pokeweed mitogen ( USANY Grand Island GIBCO (trademark)) and 10% fetal bovine serum at a concentration of 2xlO5 cells/ml, respectively. (manufactured by USA St. Louis Mo. Sigma Chemical Co.) and cultured at 37° C. under 5% CO 2 for one week, and then the number of cells was measured.
(2) 結果 (2) Results
測定結果を表1に示す。 Table 1 shows the measurement results.
(2-1) 5.0Gy全身照射群(b)(ペプチドヘテログリカン非投与群) (2-1) 5.0 Gy total body irradiation group (b) (peptide heteroglycan non-administration group)
非照射群(c)に比し、末梢赤血球数、血小板数、末梢白血球数、顆粒球数、リンパ球数、及び単球数、並びに、骨髄及び脾臓におけるBFU-E前期赤芽球系前駆細胞数、CFU-E後期赤芽球系前駆細胞数、及びCFU-GM顆粒球マクロファージコロニー形成細胞数が、何れも有意に少ないという結果が得られた。 Peripheral red blood cell count, platelet count, peripheral white blood cell count, granulocyte count, lymphocyte count, monocyte count, and BFU-E pro-erythroblastic progenitor cells in bone marrow and spleen compared to non-irradiated group (c) CFU-E late erythroid progenitor cell count, and CFU-GM granulocyte-macrophage colony-forming cell count were all significantly lower.
(2-2) 5.OGy全身照射・ペプチドヘテログリカン投与群(a) (2-2) 5. OGy whole body irradiation/peptide heteroglycan administration group (a)
末梢赤血球数、血小板数、末梢白血球数、顆粒球数、リンパ球数、及び単球数は、5.0Gy全身照射群(b)に比し、何れも有意に多いという結果が得られた。 The peripheral red blood cell count, platelet count, peripheral white blood cell count, granulocyte count, lymphocyte count, and monocyte count were all significantly higher than in the 5.0 Gy total body irradiation group (b).
骨髄及び脾臓におけるCFU-E後期赤芽球系前駆細胞数は、5.0Gy全身照射群(b)に比し有意に多く、非照射群(c)におけるものに迫るものであった。 The number of CFU-E late erythroblastic progenitor cells in the bone marrow and spleen was significantly higher than that in the 5.0 Gy total body irradiation group (b) and approached that in the non-irradiation group (c).
更に、骨髄及び脾臓におけるBFU-E前期赤芽球系前駆細胞数及びCFU-GM顆粒球マクロファージコロニー形成細胞数は、5.0Gy全身照射群(b)に比し何れも有意に多く、非照射群(c)よりも多いものであった。 Furthermore, the number of BFU-E early erythroid progenitor cells and the number of CFU-GM granulocyte-macrophage colony-forming cells in the bone marrow and spleen were both significantly higher than in the 5.0 Gy whole body irradiation group (b), and the non-irradiation group It was more than (c).
7.組織学的所見 7. histological findings
上記10日間飼育の翌日、上記各群におけるそれぞれ3例の脾臓及び胸腺を切除し、4℃で10%ホルマリン液で固定した後、通常の方法により4μmパラフィン切片を作製し、ヘマトキシリン・エオシン染色を行って観察した。結果は次の通りである。 On the day after the 10 days of breeding, the spleens and thymuses of 3 animals in each group were excised, fixed with 10% formalin at 4°C, and then 4 µm paraffin sections were prepared by a conventional method and stained with hematoxylin and eosin. went and watched. The results are as follows.
(1) 胸腺 (1) Thymus
(1-1) 5.0Gy全身照射群(b)(図1) (1-1) 5.0 Gy whole body irradiation group (b) (Fig. 1)
リンパ球の破壊が強く、核破片、核濃縮を示す細胞が散在し、それに代わって大型の細網細胞が増殖していた。リンパ球は減少し、皮質・髄質境界が不明瞭となり、細網細胞に置き換えられた像が散見された。 Lymphocyte destruction was strong, and nuclear debris and nuclear pyknotic cells were scattered, and instead, large reticular cells proliferated. Lymphocytes decreased, the cortex-medullary boundary became unclear, and some images were replaced by reticular cells.
(1-2) 5.OGy全身照射・ペプチドヘテログリカン投与群(a)(図2) (1-2) 5. OGy whole body irradiation/peptide heteroglycan administration group (a) (Fig. 2)
胸腺重量は5.0Gy全身照射群(b)に比し著明に大きく、組織学的には、放射線照射によりリンパ球が減少した(b)群に比し、より強いリンパ球数の回復傾向が認められた。 The thymus weight was significantly larger than that of the 5.0Gy total body irradiation group (b), and histologically, there was a stronger tendency to recover the lymphocyte count than that of the group (b), in which lymphocytes were decreased by irradiation. Admitted.
(2) 脾臓 (2) Spleen
(2-1) 5.0Gy全身照射群(b)(図3) (2-1) 5.0 Gy whole body irradiation group (b) (Fig. 3)
白脾髄のリンパ球減少がみられ、リンパ濾胞は縮小した。赤脾臓には、赤血球が破壊したものとみられる著明なヘモジデリン色素沈着が認められた。 Lymphocytopenia was observed in the white pulp of the spleen, and the lymphoid follicles shrank. The red spleen showed marked hemosiderin pigmentation, which was probably caused by destruction of red blood cells.
(2-2) 5.OGy全身照射・ペプチドヘテログリカン投与群(a)(図4) (2-2) 5. OGy whole body irradiation/peptide heteroglycan administration group (a) (Fig. 4)
脾臓重量は5.0Gy全身照射群(b)に比し著明に大きく、組織学的には、放射線照射による赤血球の破壊によるヘモジデリン色素沈着はほとんど認められず、旺盛な造血巣の回復が見られた。 The spleen weight was significantly larger than that of the 5.0 Gy total body irradiation group (b), and histologically, almost no hemosiderin pigmentation due to destruction of red blood cells by irradiation was observed, and vigorous recovery of hematopoietic foci was observed. rice field.
8.以上のように、造血障害が引き起こされる放射線照射を受けた供試動物に対し被験物質(ペプチドヘテログリカン)を投与することにより、マクロファージ造血前駆細胞であるCFU-GM、未分化な赤血球系造血前駆細胞であるBFU-E数、比較的分化した赤血球系前駆細胞であるCFU-E数及び未梢赤血球数に著明な増加が認められ、組織学的にも、造血巣の回復と脾臓・胸腺障害の軽減が認められた。 8. As described above, administration of a test substance (peptide heteroglycan) to test animals exposed to irradiation, which causes hematopoietic disorders, revealed that CFU-GM, macrophage hematopoietic progenitor cells, and undifferentiated erythroid hematopoietic progenitor cells BFU-E cells, relatively differentiated erythroid progenitor cells CFU-E, and peripheral erythrocytes showed marked increases. A reduction in disability was noted.
なお、本明細書中、水溶液の濃度は原則として質量容量%である。統計処理についてはStudent'sのt-testにより検定を行い、5%未満を有意差ありと判定した。 In this specification, the concentration of the aqueous solution is, in principle, mass volume %. Statistical processing was performed by Student's t-test, and a significant difference of less than 5% was determined.
Claims (11)
(a) 平均分子量:100万
(b) 比旋光度:〔α〕D -11.6 (測定温度25℃)
(c) 窒素含量5.39%、蛋白質含量29.5%、多糖含量70.3%
(d) 糖組成(モル比):Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) アミノ酸組成(モル%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
合計 100% A hematopoietic progenitor cell activator comprising a peptide heteroglycan having the following physicochemical properties (a), (b), (c), (d) and (e) .
(a) average molecular weight: 1 million
(b) Specific rotation: [α] D -11.6 (Measurement temperature 25°C)
(c) nitrogen content 5.39%, protein content 29.5%, polysaccharide content 70.3%;
(d) Sugar composition (molar ratio): Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) Amino acid composition (mol%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
Total 100%
(a) 平均分子量:100万
(b) 比旋光度:〔α〕D -11.6 (測定温度25℃)
(c) 窒素含量5.39%、蛋白質含量29.5%、多糖含量70.3%
(d) 糖組成(モル比):Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) アミノ酸組成(モル%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
合計 100% A hematopoietic disorder recovery agent comprising a peptide heteroglycan having the following physicochemical properties (a), (b), (c), (d) and (e) .
(a) average molecular weight: 1 million
(b) Specific rotation: [α] D -11.6 (Measurement temperature 25°C)
(c) nitrogen content 5.39%, protein content 29.5%, polysaccharide content 70.3%;
(d) Sugar composition (molar ratio): Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) Amino acid composition (mol%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
Total 100%
得られた抽出液から、分子量10,000以下の低分子物質が除去された液を得、
この液に無水エタノールを加えてその沈殿物として粗多糖を得、
得られた粗多糖を水に溶解させ、イオン交換クロマトグラフィー及び必要な勾配溶離に供して分画し、
得られた画分の一つを精製することにより、下記理化学的性質(a)、(b)、(c)、(d)及び(e)を有するペプチドヘテログリカンからなる造血系前駆細胞賦活剤を製造する方法。
(a) 平均分子量:100万
(b) 比旋光度:〔α〕D -11.6 (測定温度25℃)
(c) 窒素含量5.39%、蛋白質含量29.5%、多糖含量70.3%
(d) 糖組成(モル比):Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) アミノ酸組成(モル%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
合計 100% Chlorella pyrenoidosa cell wall crushed product is extracted with hot water,
obtaining a liquid from which low-molecular-weight substances having a molecular weight of 10,000 or less have been removed from the resulting extract;
Absolute ethanol is added to this liquid to obtain a crude polysaccharide as a precipitate,
the resulting crude polysaccharide is dissolved in water and subjected to ion exchange chromatography and gradient elution as required to fractionate;
By purifying one of the obtained fractions, a hematopoietic progenitor cell activator consisting of a peptide heteroglycan having the following physicochemical properties (a), (b), (c), (d) and (e) how to manufacture
(a) average molecular weight: 1 million
(b) Specific rotation: [α] D -11.6 (Measurement temperature 25°C)
(c) nitrogen content 5.39%, protein content 29.5%, polysaccharide content 70.3%;
(d) Sugar composition (molar ratio): Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) Amino acid composition (mol%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
Total 100%
得られた抽出液から、分子量10,000以下の低分子物質が除去された液を得、
この液に無水エタノールを加えてその沈殿物として粗多糖を得、
得られた粗多糖を水に溶解させ、イオン交換クロマトグラフィー及び必要な勾配溶離に供して分画し、
得られた画分の一つを精製することにより、下記理化学的性質(a)、(b)、(c)、(d)及び(e)を有するペプチドヘテログリカンからなる造血障害回復剤を製造する方法。
(a) 平均分子量:100万
(b) 比旋光度:〔α〕D -11.6 (測定温度25℃)
(c) 窒素含量5.39%、蛋白質含量29.5%、多糖含量70.3%
(d) 糖組成(モル比):Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) アミノ酸組成(モル%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
合計 100% Chlorella pyrenoidosa cell wall crushed product is extracted with hot water,
obtaining a liquid from which low-molecular-weight substances having a molecular weight of 10,000 or less have been removed from the resulting extract;
Absolute ethanol is added to this liquid to obtain a crude polysaccharide as a precipitate,
the resulting crude polysaccharide is dissolved in water and subjected to ion exchange chromatography and gradient elution as required to fractionate;
By purifying one of the obtained fractions, a hematopoietic injury recovery agent consisting of a peptide heteroglycan having the following physicochemical properties (a), (b), (c), (d) and (e) is produced. how to.
(a) Average molecular weight: 1 million
(b) Specific rotation: [α] D -11.6 (Measurement temperature 25°C)
(c) nitrogen content 5.39%, protein content 29.5%, polysaccharide content 70.3%;
(d) Sugar composition (molar ratio): Gal:GIc:Man:Xyl:Rha:Ara:Fru=32:25:13:8:7:5:3
(e) Amino acid composition (mol%):
Glu 15.1
Asp 13.8
Ala 9.9
Leu 8.9
Thr 6.5
Lys 6.2
Va1 5.9
Gly 5.8
Pro 5.5
Ser 5.4
Arg 4.8
Phe 3.6
Ileu 3.1
Tyr 2.1
His 1.7
Met 1.6
Cys 0.1
Total 100%
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018098349A JP7178041B2 (en) | 2018-05-22 | 2018-05-22 | Hematopoietic progenitor cell activator and related technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018098349A JP7178041B2 (en) | 2018-05-22 | 2018-05-22 | Hematopoietic progenitor cell activator and related technology |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019202953A JP2019202953A (en) | 2019-11-28 |
JP7178041B2 true JP7178041B2 (en) | 2022-11-25 |
Family
ID=68726134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018098349A Active JP7178041B2 (en) | 2018-05-22 | 2018-05-22 | Hematopoietic progenitor cell activator and related technology |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7178041B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7559287B2 (en) | 2022-05-25 | 2024-10-01 | 湖南省華芯医療器械有限公司 | Disposable portion of endoscope handle, endoscope handle and endoscope |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015078160A (en) | 2013-10-17 | 2015-04-23 | 浩子 伊藤 | Radiation hematopoietic injury ameliorating agent and food and drink composition for ameliorating radiation hematopoietic injury |
JP2017052912A (en) | 2015-09-11 | 2017-03-16 | 浩子 伊藤 | Peptide heteropolysaccharide, manufacturing method therefor, and complement third component activator |
-
2018
- 2018-05-22 JP JP2018098349A patent/JP7178041B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015078160A (en) | 2013-10-17 | 2015-04-23 | 浩子 伊藤 | Radiation hematopoietic injury ameliorating agent and food and drink composition for ameliorating radiation hematopoietic injury |
JP2017052912A (en) | 2015-09-11 | 2017-03-16 | 浩子 伊藤 | Peptide heteropolysaccharide, manufacturing method therefor, and complement third component activator |
Non-Patent Citations (3)
Title |
---|
医学と生物学 (2012) vol.156, no.10, p.696-702 |
日本水産学会誌 (2015) vol.81, no.2, p.267-273 |
日本薬学会第115年会講演要旨集 (1995) p.102(13-172) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7559287B2 (en) | 2022-05-25 | 2024-10-01 | 湖南省華芯医療器械有限公司 | Disposable portion of endoscope handle, endoscope handle and endoscope |
Also Published As
Publication number | Publication date |
---|---|
JP2019202953A (en) | 2019-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Meng et al. | Protective effects of polysaccharides from Cordyceps gunnii mycelia against cyclophosphamide-induced immunosuppression to TLR4/TRAF6/NF-κB signalling in BALB/c mice | |
McLaren et al. | Ultrastructural observations on the in vitro interaction between rat eosinophils and some parasitic helminths (Schistosoma mansoni, Trichinella spiralis and Nippostrongylus brasiliensis). | |
US9585828B2 (en) | Proteoglycan-containing material | |
RU2668955C2 (en) | New salvianolic acid compound t, preparation method therefor and use thereof | |
JP7178041B2 (en) | Hematopoietic progenitor cell activator and related technology | |
WO2011010678A1 (en) | Polyphenol-containing composition for oral administration or external use and use of same | |
Čolić et al. | Garlic extracts stimulate proliferation of rat lymphocytes in vitro by increasing IL-2 and IL-4 production | |
Yu et al. | Structural analysis and attenuates hyperuricemic nephropathy of dextran from the Imperata cylindrica Beauv. var. major (Nees) CE Hubb. | |
Sakagami et al. | Partial purification of novel differentiation-inducing substance (s) from hot water extract of Japanese pine cone | |
JPH0539305A (en) | Immuno suppressive polysaccharide extracted from astragalus membranaceous and pharma- ceutical composition containing same | |
Xu et al. | Wound healing activity of a skin substitute from residues of culinary-medicinal winter mushroom flammulina velutipes (agaricomycetes) cultivation | |
KR20040059495A (en) | Method of inducing apoptosis and compositions therefor | |
Li et al. | Euglena gracilis and its aqueous extract constructed with chitosan-hyaluronic acid hydrogel facilitate cutaneous wound healing in mice without inducing excessive inflammatory response | |
Huang et al. | A Water‐Soluble Polysaccharide from the Fibrous Root of Anemarrhena asphodeloides Bge. and Its Immune Enhancement Effect in Vivo and in Vitro | |
US20220339232A1 (en) | Phytocomplex and selected extract of a meristematic cell line of a plant belonging to the genus melissa | |
KR101080842B1 (en) | A method for extracting functional polysaccharides from seaweeds with high yield and the functional polysaccharides extracted by irradiation | |
KR100440863B1 (en) | Extract of herb mixture for heamatopoiesis augmentation and protection from radiation | |
JP6144997B2 (en) | Complement third component activator | |
JP6093238B2 (en) | Hematopoietic progenitor cell recovery agent for radiation damage | |
JP2015078160A (en) | Radiation hematopoietic injury ameliorating agent and food and drink composition for ameliorating radiation hematopoietic injury | |
JP2005526142A (en) | Preparation and standardization of immunomodulating peptide-binding glucan with verifiable oral absorption obtained from Coriolis versatile | |
EP4026550A1 (en) | Composition for preventing or treating salivary gland disesaes using cell-derived vesicle | |
KR20180013204A (en) | A composition comprising ethyl acetate fraction of grasshopper for improving liver function as in gradient compounds | |
CN111646965A (en) | Compound Sinkiangel E and application thereof in preparation of antitumor drugs | |
KR100401955B1 (en) | The pharmaceutical composition and its preparation method of herb mixture for immunomodulation, heamatopoiesis augmentation and protection from radiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210423 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211228 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220920 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221104 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7178041 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |