[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7177990B2 - lithium ion secondary battery - Google Patents

lithium ion secondary battery Download PDF

Info

Publication number
JP7177990B2
JP7177990B2 JP2019106458A JP2019106458A JP7177990B2 JP 7177990 B2 JP7177990 B2 JP 7177990B2 JP 2019106458 A JP2019106458 A JP 2019106458A JP 2019106458 A JP2019106458 A JP 2019106458A JP 7177990 B2 JP7177990 B2 JP 7177990B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
current collector
material layer
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019106458A
Other languages
Japanese (ja)
Other versions
JP2020202039A (en
Inventor
邦彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019106458A priority Critical patent/JP7177990B2/en
Publication of JP2020202039A publication Critical patent/JP2020202039A/en
Application granted granted Critical
Publication of JP7177990B2 publication Critical patent/JP7177990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池に関する。 The present invention relates to non-aqueous electrolyte secondary batteries.

近年、リチウムイオン二次電池等の非水電解質二次電池は、パソコン、携帯端末等のポータブル電源や、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両駆動用電源などに好適に用いられている。 In recent years, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have been used as portable power sources for personal computers and mobile terminals, and for driving vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). It is suitable for use as a power source for electric appliances.

非水電解質二次電池の正極は、一般的に、正極集電体上に正極活物質層が設けられた構成を有する。また正極は一般的に、集電を目的として、正極活物質層が設けられずに、正極集電体が露出した部分を有する。正極と負極との短絡を抑制するために、正極集電体が露出した部分と正極活物質層との境界部に絶縁層を設ける技術が知られている(例えば、特許文献1参照)。 A positive electrode of a non-aqueous electrolyte secondary battery generally has a structure in which a positive electrode active material layer is provided on a positive electrode current collector. Further, the positive electrode generally has a portion where the positive electrode current collector is exposed without the positive electrode active material layer being provided for the purpose of current collection. In order to suppress a short circuit between the positive electrode and the negative electrode, there is known a technique of providing an insulating layer at the boundary between the exposed portion of the positive electrode current collector and the positive electrode active material layer (see, for example, Patent Document 1).

特許文献1には、正極活物質層の端部が、厚さが漸次減少するテーパー領域を有し、テーパー領域の上に絶縁層の一部が重なることが記載されている。そして、特許文献1には、テーパー角(すなわち、正極活物質層端縁に垂直な断面におけるくさび形状の内角、あるいは正極活物質層および絶縁層との界面と、正極集電体の主面との正極活物質層側の角度)が45度以下であることが好ましいことが記載されている。 Patent Literature 1 describes that the end portion of the positive electrode active material layer has a tapered region in which the thickness gradually decreases, and the insulating layer partially overlaps the tapered region. And, in Patent Document 1, the taper angle (that is, the inner angle of the wedge shape in the cross section perpendicular to the edge of the positive electrode active material layer, or the interface between the positive electrode active material layer and the insulating layer, and the main surface of the positive electrode current collector) angle on the side of the positive electrode active material layer) is preferably 45 degrees or less.

特開2012-114079号公報JP 2012-114079 A

しかしながら、本発明者らが鋭意検討した結果、以下のことを見出した。
正極活物質層の端部がテーパー領域を有する場合、電池容量および電池抵抗の観点から、上記テーパー角は大きい方が好ましい。一方、非水電解質二次電池の充放電に伴い、正極活物質が膨張/収縮を起こす。そのため、正極活物質層と絶縁層との界面に応力が発生し、絶縁層と正極集電体との界面にその応力が伝播する。上記テーパー角が大きい場合には、この応力が大きくなる。充放電が繰り返されると、繰返し発生する応力によって絶縁層と正極集電体との剥離強度が低下する。その結果、非水電解質二次電池に外部からの変形力が加わった際に、絶縁層と正極集電体との界面が露出し易くなる。この界面の露出部において異物の進入等によって短絡が発生すると、温度上昇が大きいという問題がある。
However, as a result of intensive studies by the present inventors, the following facts were found.
When the end portion of the positive electrode active material layer has a tapered region, the taper angle is preferably large from the viewpoint of battery capacity and battery resistance. On the other hand, as the non-aqueous electrolyte secondary battery is charged and discharged, the positive electrode active material expands/contracts. Therefore, stress is generated at the interface between the positive electrode active material layer and the insulating layer, and propagates to the interface between the insulating layer and the positive electrode current collector. This stress increases when the taper angle is large. When charging and discharging are repeated, the peel strength between the insulating layer and the positive electrode current collector is reduced due to the repeated stress. As a result, when the non-aqueous electrolyte secondary battery is subjected to external deformation force, the interface between the insulating layer and the positive electrode current collector is likely to be exposed. If a short circuit occurs at the exposed portion of the interface due to entry of foreign matter or the like, there is a problem that the temperature rises significantly.

そこで本発明は、高容量かつ低抵抗であり、また正極集電体上に設けられた絶縁層と当該正極集電体との界面の露出部での短絡の発生による温度上昇が抑制された、非水電解質二次電池を提供することを目的とする。 Therefore, the present invention has a high capacity and low resistance, and suppresses temperature rise due to short circuiting at the exposed portion of the interface between the insulating layer provided on the positive electrode current collector and the positive electrode current collector. An object of the present invention is to provide a non-aqueous electrolyte secondary battery.

ここに開示される非水電解質二次電池は、正極と、負極と、非水電解質と、を備える。前記正極は、正極集電体と、正極活物質層と、絶縁層と、を備える。前記正極集電体は、少なくとも一つの端部に、前記正極集電体が露出した部分を有する。前記絶縁層は、前記正極活物質層と、前記正極集電体が露出した部分との境界部に位置している。前記正極集電体の主面と、前記正極活物質層および前記絶縁層の境界面とがなす前記正極活物質層側の角度は、45度以上90度以下である。前記正極集電体と前記絶縁層との間の剥離強度は、前記正極集電体と前記正極活物質層との間の剥離強度よりも大きい。前記正極活物質層の体積密度は、2.4g/cm以上3.5g/cm以下である。
このような構成によれば、高容量かつ低抵抗であり、また正極集電体上に設けられた絶縁層と当該正極集電体との界面の露出部での短絡の発生による温度上昇が抑制された、非水電解質二次電池が提供される、
A non-aqueous electrolyte secondary battery disclosed herein includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode includes a positive electrode current collector, a positive electrode active material layer, and an insulating layer. The positive electrode current collector has at least one end portion where the positive electrode current collector is exposed. The insulating layer is located at the boundary between the positive electrode active material layer and the exposed portion of the positive electrode current collector. The angle formed by the main surface of the positive electrode current collector and the interface between the positive electrode active material layer and the insulating layer on the side of the positive electrode active material layer is 45 degrees or more and 90 degrees or less. The peel strength between the positive electrode current collector and the insulating layer is greater than the peel strength between the positive electrode current collector and the positive electrode active material layer. The volume density of the positive electrode active material layer is 2.4 g/cm 3 or more and 3.5 g/cm 3 or less.
According to such a configuration, high capacity and low resistance are obtained, and temperature rise due to occurrence of short circuit at the exposed portion of the interface between the insulating layer provided on the positive electrode current collector and the positive electrode current collector is suppressed. A non-aqueous electrolyte secondary battery is provided,

本発明の一実施形態に係るリチウムイオン二次電池の内部構造を模式的に示す断面図である。1 is a cross-sectional view schematically showing the internal structure of a lithium ion secondary battery according to one embodiment of the present invention; FIG. 本発明の一実施形態に係るリチウムイオン二次電池の捲回電極体の構成を示す模式図である。1 is a schematic diagram showing the configuration of a wound electrode body of a lithium ion secondary battery according to one embodiment of the present invention; FIG. 本発明の一実施形態に係るリチウムイオン二次電池の正極の模式断面図である。1 is a schematic cross-sectional view of a positive electrode of a lithium ion secondary battery according to one embodiment of the present invention; FIG. 図3の四角枠A内の拡大図である。4 is an enlarged view of the inside of the square frame A in FIG. 3; FIG.

以下、本発明による実施の形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない非水電解質二次電池の一般的な構成および製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 BEST MODE FOR CARRYING OUT THE INVENTION Embodiments according to the present invention will be described below. In addition, matters other than matters specifically mentioned in this specification and necessary for the implementation of the present invention (for example, the general configuration and manufacturing process of a non-aqueous electrolyte secondary battery that does not characterize the present invention) can be grasped as a design matter of a person skilled in the art based on the prior art in the field. The present invention can be implemented based on the contents disclosed in this specification and common general technical knowledge in the field.

明細書において「リチウムイオン二次電池」とは、電荷担体としてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。
以下、扁平角型のリチウムイオン二次電池を例にして、本発明について詳細に説明するが、本発明をかかる実施形態に記載されたものに限定することを意図したものではない。
As used herein , the term "lithium ion secondary battery" refers to a secondary battery that utilizes lithium ions as charge carriers and that is charged and discharged by charge transfer associated with the lithium ions between the positive and negative electrodes.
Hereinafter, the present invention will be described in detail using a flat prismatic lithium ion secondary battery as an example, but the present invention is not intended to be limited to those described in the embodiments.

図1に示すリチウムイオン二次電池100は、扁平形状の捲回電極体20と非水電解質80とが扁平な角形の電池ケース(即ち外装容器)30に収容されることにより構築される密閉型電池である。電池ケース30には外部接続用の正極端子42および負極端子44と、電池ケース30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36とが設けられている。また、電池ケース30には、非水電解質80を注入するための注入口(図示せず)が設けられている。正極端子42は、正極集電板42aと電気的に接続されている。負極端子44は、負極集電板44aと電気的に接続されている。電池ケース30の材質としては、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料が用いられる。 The lithium ion secondary battery 100 shown in FIG. 1 is a closed type constructed by housing a flat wound electrode body 20 and a non-aqueous electrolyte 80 in a flat rectangular battery case (that is, an outer container) 30. Battery. The battery case 30 is provided with a positive terminal 42 and a negative terminal 44 for external connection, and a thin safety valve 36 set to release the internal pressure when the internal pressure of the battery case 30 rises above a predetermined level. ing. Further, the battery case 30 is provided with an injection port (not shown) for injecting the non-aqueous electrolyte 80 . The positive terminal 42 is electrically connected to the positive collector plate 42a. The negative terminal 44 is electrically connected to the negative collector plate 44a. As the material of the battery case 30, for example, a metal material such as aluminum that is lightweight and has good thermal conductivity is used.

捲回電極体20は、図1および図2に示すように、長尺状の正極シート50と、長尺状の負極シート60とが、2枚の長尺状のセパレータシート70を介して重ね合わされて長手方向に捲回された形態を有する。 As shown in FIGS. 1 and 2, the wound electrode body 20 is formed by stacking a long positive electrode sheet 50 and a long negative electrode sheet 60 with two long separator sheets 70 interposed therebetween. It has a configuration in which it is wound in the longitudinal direction.

正極シート50は、図2および図3に示すように、長尺状の正極集電体52と、正極集電体52上に形成された正極活物質層54と、を有する。図示例では、正極活物質層54は、正極集電体52の両面上に設けられているが、片面上に設けられていてもよい。また正極集電体52は、正極活物質層54が形成されずに正極集電体52が露出した部分(正極集電体露出部)52aを有する。図2に示すように、正極集電体露出部52aは捲回電極体20の捲回軸方向(即ち、上記長手方向に直交するシート幅方向)の一端から外方にはみ出すように形成されている。また、正極シート50は、正極集電体52上に形成された絶縁層56を備える。絶縁層56は、正極活物質層54に隣接しており、正極シート50の面方向において、正極活物質層54と、正極集電体露出部52aとの間に位置している。言い換えると、絶縁層56は、正極活物質層54と、正極集電体露出部52aとの境界部に位置している。図示例では、絶縁層56は、正極集電体52の両面上に設けられているが、片面上に設けられていてもよい。図2に示すように、正極集電体露出部52aには、正極集電板42aが接合されている。 The positive electrode sheet 50 has, as shown in FIGS. 2 and 3 , an elongated positive electrode current collector 52 and a positive electrode active material layer 54 formed on the positive electrode current collector 52 . In the illustrated example, the positive electrode active material layer 54 is provided on both sides of the positive electrode current collector 52, but may be provided on one side. Further, the positive electrode current collector 52 has a portion (positive electrode current collector exposed portion) 52a where the positive electrode current collector 52 is exposed without the positive electrode active material layer 54 being formed. As shown in FIG. 2, the positive electrode current collector exposed portion 52a is formed so as to protrude outward from one end of the wound electrode assembly 20 in the winding axial direction (that is, in the sheet width direction orthogonal to the longitudinal direction). there is The positive electrode sheet 50 also includes an insulating layer 56 formed on the positive electrode current collector 52 . The insulating layer 56 is adjacent to the positive electrode active material layer 54 and positioned between the positive electrode active material layer 54 and the positive electrode current collector exposed portion 52 a in the surface direction of the positive electrode sheet 50 . In other words, the insulating layer 56 is located at the boundary between the positive electrode active material layer 54 and the positive electrode current collector exposed portion 52a. In the illustrated example, the insulating layer 56 is provided on both sides of the positive electrode current collector 52, but may be provided on one side. As shown in FIG. 2, the positive electrode current collector plate 42a is joined to the positive electrode current collector exposed portion 52a.

正極シート50を構成する正極集電体52としては、例えばアルミニウム箔等が挙げられる。
正極活物質層54は、正極活物質を含有する。正極活物質としては、例えばリチウム遷移金属酸化物(例、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5等)、リチウム遷移金属リン酸化合物(例、LiFePO等)等が挙げられる。正極活物質層54は、活物質以外の成分、例えば導電材、バインダ、リン酸リチウム等を含み得る。導電材としては、例えばアセチレンブラック(AB)等のカーボンブラックやその他(例、グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、例えばポリフッ化ビニリデン(PVDF)等を使用し得る。
Examples of the positive electrode current collector 52 forming the positive electrode sheet 50 include aluminum foil.
The positive electrode active material layer 54 contains a positive electrode active material. Examples of positive electrode active materials include lithium transition metal oxides (eg, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1 .5O4 , etc.), lithium transition metal phosphate compounds ( eg, LiFePO4 , etc.), and the like. The positive electrode active material layer 54 may contain components other than the active material, such as a conductive material, a binder, lithium phosphate, and the like. Carbon black such as acetylene black (AB) and other carbon materials (eg, graphite) can be suitably used as the conductive material. As the binder, for example, polyvinylidene fluoride (PVDF) or the like can be used.

絶縁層56は、典型的には、無機フィラー、およびバインダを含有する。
無機フィラーの形状は、特に制限はなく、粒子状、繊維状、板状、フレーク状等であってよい。
無機フィラーの平均粒子径は、特に制限はなく、例えば0.01μm以上10μm以下であり、好ましくは0.1μm以上5μm以下であり、より好ましくは0.2μm以上2μm以下である。なお、無機フィラーの平均粒子径は、例えば、レーザ回折散乱法により求めることができる。
無機フィラーとしては、絶縁性を有するものが用いられ、具体的に例えば、アルミナ(Al)、マグネシア(MgO)、シリカ(SiO)、チタニア(TiO)等の無機酸化物、窒化アルミニウム、窒化ケイ素等の窒化物、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム等の金属水酸化物、マイカ、タルク、ベーマイト、ゼオライト、アパタイト、カオリン等の粘土鉱物、ガラス繊維等が挙げられ、これらは、単独で、または2種以上を組み合わせて用いることができる。なかでも、アルミナ、ベーマイト、およびマグネシアが好ましい。
バインダとしては、例えば、アクリル系バインダ、スチレンブタジエンゴム(SBR)、ポリオレフィン系バインダ等が挙げられ、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系ポリマーを用いることもできる。
絶縁層56中のバインダの含有量には、特に制限はないが、例えば、1質量%以上30質量%以下であり、好ましくは3質量以上25質量%以下である。
The insulating layer 56 typically contains an inorganic filler and a binder.
The shape of the inorganic filler is not particularly limited, and may be particulate, fibrous, plate-like, flake-like, or the like.
The average particle size of the inorganic filler is not particularly limited, and is, for example, 0.01 μm or more and 10 μm or less, preferably 0.1 μm or more and 5 μm or less, more preferably 0.2 μm or more and 2 μm or less. In addition, the average particle size of the inorganic filler can be obtained by, for example, a laser diffraction scattering method.
As the inorganic filler, one having insulating properties is used. Specifically, for example, inorganic oxides such as alumina (Al 2 O 3 ), magnesia (MgO), silica (SiO 2 ), titania (TiO 2 ), nitrides, etc. Nitrides such as aluminum and silicon nitride, metal hydroxides such as calcium hydroxide, magnesium hydroxide and aluminum hydroxide, mica, talc, boehmite, zeolite, apatite, clay minerals such as kaolin, and glass fibers. These can be used alone or in combination of two or more. Among them, alumina, boehmite and magnesia are preferred.
Examples of binders include acrylic binders, styrene-butadiene rubber (SBR), polyolefin binders, and the like. Fluoropolymers such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE) can also be used.
The content of the binder in the insulating layer 56 is not particularly limited, but is, for example, 1% by mass or more and 30% by mass or less, preferably 3% by mass or more and 25% by mass or less.

本実施形態においては、正極集電体52の主面と、正極活物質層54および絶縁層56の境界面とがなす、正極活物質層54側の角度が45度以上90度以下である。図4は、図3の四角枠A内の拡大図であり、正極集電体52の主面、ならびに正極活物質層54および絶縁層56の境界面に垂直な断面図である。よって、図4においてこの角度は、正極活物質層54および絶縁層56の境界線58と、正極集電体52とがなす、正極活物質層54側の角度θとして表すことができる。なお、境界線58が直線でない場合には、直線近似を行い、角度θを求めるとよい。よって、境界面が平面でない場合には、平面近似を行って、上記の角度を求めるとよい。
当該角度θが45度以上90度以下であることによって、高容量かつ低抵抗なリチウム二次電池100となる。当該角度θは、好ましくは45度以上75度以下であり、より好ましくは50度以上70度以下である。
なお、当該角度θの大きい正極を作製する方法には特に制限はないが、正極活物質層を形成するためのペーストおよび絶縁層を形成するためのペーストを、ダイコータ等によって同時に塗工し、乾燥して正極活物質層および絶縁層を同時に形成する方法が簡便である。このとき、正極活物質層を形成するためのペースト、および絶縁層を形成するためのペーストの固形分濃度や粘度等を調整することにより、角度θをさらにある程度調整することができる。
In the present embodiment, the angle formed by the main surface of the positive electrode current collector 52 and the interface between the positive electrode active material layer 54 and the insulating layer 56 on the positive electrode active material layer 54 side is 45 degrees or more and 90 degrees or less. FIG. 4 is an enlarged view of the square frame A of FIG. Therefore, in FIG. 4 , this angle can be expressed as an angle θ on the side of the positive electrode active material layer 54 formed by the boundary line 58 between the positive electrode active material layer 54 and the insulating layer 56 and the positive electrode current collector 52 . If the boundary line 58 is not a straight line, it is preferable to obtain the angle θ by linear approximation. Therefore, if the boundary surface is not a plane, plane approximation should be performed to obtain the above angle.
When the angle θ is 45 degrees or more and 90 degrees or less, the lithium secondary battery 100 has a high capacity and a low resistance. The angle θ is preferably 45 degrees or more and 75 degrees or less, more preferably 50 degrees or more and 70 degrees or less.
The method for producing a positive electrode with a large angle θ is not particularly limited, but the paste for forming the positive electrode active material layer and the paste for forming the insulating layer are simultaneously coated by a die coater or the like, and dried. A simple method is to form the positive electrode active material layer and the insulating layer at the same time. At this time, the angle θ can be further adjusted to some extent by adjusting the solid content concentration, viscosity, etc. of the paste for forming the positive electrode active material layer and the paste for forming the insulating layer.

本実施形態においては、正極集電体52と絶縁層56との間の剥離強度が、正極集電体52と正極活物質層54との間の剥離強度よりも大きい。
充放電時の正極活物質の膨張/収縮により応力が発生するため、正極活物質層54から絶縁層56へと応力が印加される。応力を受ける絶縁層56と正極集電体52との間の剥離強度を、応力を発生する正極活物質層54と正極集電体52との間の剥離強度よりも大きくすることによって、正極集電体52と絶縁層56との間の剥離を抑制することができる。したがって、絶縁層56と正極集電体52との界面が露出し難くなり、界面の露出部における短絡による温度上昇を抑制することができる。
なお、正極集電体52と絶縁層56との間の剥離強度の制御方法については、特に制限はないが、例えば、絶縁層56に用いるバインダの種類と量によって容易に当該剥離強度を制御することができる。また、正極集電体52と正極活物質層54との間の剥離強度の制御方法については、正極活物質層54に用いるバインダの種類と量によって容易に当該剥離強度を制御することができる。よって、絶縁層56中に含まれるバインダの含有率(質量%)が、正極活物質層54中に含まれるバインダの含有率(質量%)よりも大きいことが好ましい。
In this embodiment, the peel strength between the positive electrode current collector 52 and the insulating layer 56 is greater than the peel strength between the positive electrode current collector 52 and the positive electrode active material layer 54 .
Since stress is generated by expansion/contraction of the positive electrode active material during charge/discharge, the stress is applied from the positive electrode active material layer 54 to the insulating layer 56 . By making the peel strength between the insulating layer 56 and the positive electrode current collector 52 that receive stress greater than the peel strength between the positive electrode active material layer 54 that generates stress and the positive electrode current collector 52, the positive electrode collector Separation between the conductor 52 and the insulating layer 56 can be suppressed. Therefore, the interface between the insulating layer 56 and the positive electrode current collector 52 is less likely to be exposed, and temperature rise due to a short circuit at the exposed portion of the interface can be suppressed.
The method for controlling the peel strength between the positive electrode current collector 52 and the insulating layer 56 is not particularly limited. be able to. As for the method for controlling the peel strength between the positive electrode current collector 52 and the positive electrode active material layer 54 , the peel strength can be easily controlled by the type and amount of the binder used for the positive electrode active material layer 54 . Therefore, the binder content (mass %) in the insulating layer 56 is preferably higher than the binder content (mass %) in the positive electrode active material layer 54 .

本実施形態においては、正極活物質層54の体積密度が、2.4g/cm以上3.5g/cm以下である。体積密度が2.4g/cm未満だと、正極活物質層54および絶縁層56の形成時に、絶縁層56に含まれる無機フィラーが正極活物質層54に侵入し、これにより電池抵抗が高くなる。一方、正極活物質層54内の空隙によって正極活物質の膨張/収縮による応力の一部が吸収されるが、体積密度が3.5g/cmを超えると、空隙が減って空隙による応力の吸収効果が低減し、絶縁層56へ印加される応力が過度に大きくなる。その結果、過度の応力によって、絶縁層56と正極集電体52との界面が剥離して露出し、この露出部における短絡による温度上昇が起こる。 In this embodiment, the volume density of the positive electrode active material layer 54 is 2.4 g/cm 3 or more and 3.5 g/cm 3 or less. If the volume density is less than 2.4 g/cm 3 , the inorganic filler contained in the insulating layer 56 penetrates into the positive electrode active material layer 54 when the positive electrode active material layer 54 and the insulating layer 56 are formed, thereby increasing the battery resistance. Become. On the other hand, the voids in the positive electrode active material layer 54 partially absorb the stress due to the expansion/contraction of the positive electrode active material. The absorption effect is reduced and the stress applied to the insulating layer 56 becomes excessively large. As a result, the interface between the insulating layer 56 and the positive electrode current collector 52 is exfoliated and exposed due to excessive stress, and a short circuit at the exposed portion causes a temperature rise.

負極シート60は、図2に示すように、長尺状の負極集電体62と、負極集電体62上に形成された負極活物質層64と、を有する。図示例では、負極活物質層64は、負極集電体62の両面上に設けられているが、片面上に設けられていてもよい。また負極集電体62は、負極活物質層64が形成されずに負極集電体62が露出した部分(負極集電体露出部)62aを有する。負極集電体露出部62aは捲回電極体20の捲回軸方向(即ち、上記長手方向に直交するシート幅方向)の他方の端から外方にはみ出すように形成されている。負極集電体露出部62aには、負極集電板44aが接合されている。 The negative electrode sheet 60 has, as shown in FIG. 2 , an elongated negative electrode current collector 62 and a negative electrode active material layer 64 formed on the negative electrode current collector 62 . In the illustrated example, the negative electrode active material layer 64 is provided on both sides of the negative electrode current collector 62, but may be provided on one side. Further, the negative electrode current collector 62 has a portion (negative electrode current collector exposed portion) 62a where the negative electrode current collector 62 is exposed without the negative electrode active material layer 64 being formed. The negative electrode current collector exposed portion 62a is formed to protrude outward from the other end of the wound electrode body 20 in the winding axial direction (that is, the sheet width direction orthogonal to the longitudinal direction). A negative electrode collector plate 44a is joined to the negative electrode collector exposed portion 62a.

負極シート60を構成する負極集電体62としては、例えば銅箔等が挙げられる。負極活物質層64に含まれる負極活物質としては、例えば黒鉛、ハードカーボン、ソフトカーボン等の炭素材料を使用し得る。負極活物質層64は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、例えばスチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。 Examples of the negative electrode current collector 62 forming the negative electrode sheet 60 include copper foil. As the negative electrode active material contained in the negative electrode active material layer 64, for example, a carbon material such as graphite, hard carbon, or soft carbon can be used. The negative electrode active material layer 64 may contain components other than the active material, such as binders and thickeners. As the binder, for example, styrene-butadiene rubber (SBR) or the like can be used. As a thickening agent, for example, carboxymethyl cellulose (CMC) or the like can be used.

セパレータ70としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔性シート(フィルム)が挙げられる。かかる多孔性シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。セパレータ70の表面には、耐熱層(HRL)が設けられていてもよい。 Examples of the separator 70 include porous sheets (films) made of resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide. Such a porous sheet may have a single-layer structure or a laminated structure of two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer). A heat-resistant layer (HRL) may be provided on the surface of the separator 70 .

本実施形態では、非水電解質80として、非水電解液が用いられている。非水電解質80は、典型的には非水溶媒および支持塩を含有する。
非水溶媒としては、一般的なリチウムイオン二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を、特に限定なく用いることができる。なかでも、カーボネート類が好ましく、その具体例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、モノフルオロエチレンカーボネート(MFEC)、ジフルオロエチレンカーボネート(DFEC)、モノフルオロメチルジフルオロメチルカーボネート(F-DMC)、トリフルオロジメチルカーボネート(TFDMC)等が挙げられる。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。
支持塩としては、例えば、LiPF、LiBF、LiClO等のリチウム塩(好ましくはLiPF)を好適に用いることができる。支持塩の濃度は、0.7mol/L以上1.3mol/L以下が好ましい。
In this embodiment, a non-aqueous electrolyte is used as the non-aqueous electrolyte 80 . Non-aqueous electrolyte 80 typically contains a non-aqueous solvent and a supporting electrolyte.
As the non-aqueous solvent, organic solvents such as various carbonates, ethers, esters, nitriles, sulfones, lactones, etc., which are used in electrolytes of general lithium ion secondary batteries, can be used without particular limitation. can be done. Among them, carbonates are preferable, and specific examples thereof include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), monofluoroethylene carbonate ( MFEC), difluoroethylene carbonate (DFEC), monofluoromethyldifluoromethyl carbonate (F-DMC), trifluorodimethyl carbonate (TFDMC) and the like. Such non-aqueous solvents can be used singly or in combination of two or more.
Lithium salts such as LiPF 6 , LiBF 4 and LiClO 4 (preferably LiPF 6 ) can be suitably used as the supporting salt. The concentration of the supporting salt is preferably 0.7 mol/L or more and 1.3 mol/L or less.

なお、上記非水電解質80は、本発明の効果を著しく損なわない限りにおいて、例えば、ビフェニル(BP)、シクロヘキシルベンゼン(CHB)等のガス発生剤;ホウ素原子および/またはリン原子を含むオキサラト錯体化合物、ビニレンカーボネート(VC)等の被膜形成剤;分散剤;増粘剤等の各種添加剤を含み得る。 The non-aqueous electrolyte 80 includes, for example, a gas generating agent such as biphenyl (BP) and cyclohexylbenzene (CHB); an oxalato complex compound containing a boron atom and/or a phosphorus atom; , film-forming agents such as vinylene carbonate (VC); dispersants; and various additives such as thickeners.

以上のように、正極集電体52の主面と、絶縁層56および正極集電体52の境界面とがなす角度θが、45度以上90度以下であり、正極集電体52と絶縁層56との間の剥離強度が、正極集電体52と正極活物質層54との間の剥離強度よりも大きく、正極活物質層54の体積密度が、2.4g/cm以上3.5g/cm以下であるという構成の組み合わせによって、高容量かつ低抵抗であり、また正極集電体上に設けられた絶縁層と当該正極集電体との界面の露出部での短絡の発生による温度上昇が抑制された、リチウムイオン二次電池100が提供される。 As described above, the angle θ between the main surface of the positive electrode current collector 52 and the boundary surface between the insulating layer 56 and the positive electrode current collector 52 is 45 degrees or more and 90 degrees or less, and the positive electrode current collector 52 is insulated. 3. The peel strength between the layer 56 is greater than the peel strength between the positive electrode current collector 52 and the positive electrode active material layer 54, and the volume density of the positive electrode active material layer 54 is 2.4 g/cm 3 or more. The combination of the configuration of 5 g/cm 3 or less provides high capacity and low resistance, and the occurrence of short circuits at the exposed portion of the interface between the insulating layer provided on the positive electrode current collector and the positive electrode current collector. Provided is a lithium-ion secondary battery 100 in which temperature rise due to is suppressed.

リチウムイオン二次電池100は、各種用途に利用可能である。好適な用途としては、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両に搭載される駆動用電源が挙げられる。リチウムイオン二次電池100は、典型的には複数個を直列および/または並列に接続してなる組電池の形態でも使用され得る。 The lithium ion secondary battery 100 can be used for various purposes. Suitable applications include drive power supplies mounted in vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). The lithium ion secondary battery 100 can also be used typically in the form of an assembled battery in which a plurality of batteries are connected in series and/or in parallel.

なお、一例として扁平形状の捲回電極体20を備える角形のリチウムイオン二次電池100について説明した。しかしながら、リチウムイオン二次電池は、積層型電極体を備えるリチウムイオン二次電池として構成することもできる。また、リチウムイオン二次電池は、円筒形リチウムイオン二次電池、ラミネート型リチウムイオン二次電池等として構成することもできる。また、ここに開示される技術は、リチウムイオン二次電池以外の非水電解質二次電池にも適用可能である。 As an example, the prismatic lithium ion secondary battery 100 including the flattened wound electrode body 20 has been described. However, the lithium ion secondary battery can also be configured as a lithium ion secondary battery with a laminated electrode body. Also, the lithium ion secondary battery can be configured as a cylindrical lithium ion secondary battery, a laminated lithium ion secondary battery, or the like. In addition, the technology disclosed herein can also be applied to non-aqueous electrolyte secondary batteries other than lithium ion secondary batteries.

以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。 EXAMPLES Examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples.

<実施例および比較例のリチウムイオン二次電池の作製>
分散機を用いて、導電材としてのアセチレンブラック(AB)、ポリフッ化ビニリデン(PVdF)およびN-メチル-2-ピロリドン(NMP)が混合されたペーストを得た。このペーストに、正極活物質としてのLiNi1/3Co1/3Mn1/3(LNCM)とLiPOとの混合粉体を投入した後、固形分を均一に分散させ、正極ペーストを調製した。なお、正極合材ペーストは、LNCM:LiPO:AB:PVdF=87:3:8:2(質量比)となるように調製した。
無機フィラーとしてのベーマイトと、バインダとしてのPVdFと、NMPとを分散機を用いて混合して、絶縁層ペーストを調製した。
この正極ペーストを、長尺状のアルミニウム箔の両面に帯状に塗布し、乾燥することにより正極活物質層を形成した。正極ペーストの塗布は、アルミニウム箔の一端に沿って行い、正極活物質層が形成されていない集電体露出部が形成されるようにした。
絶縁層ペーストを、集電体露出部上の正極活物質層と隣接する部分に沿って塗布し、乾燥して絶縁層を形成した。
このとき、正極集電体の主面と、正極活物質層および絶縁層の境界面とがなす正極活物質層側の角度(以下、「テーパー角度」ともいう)が大きいものについては、正極ペーストと絶縁層ペーストとを同時に塗布した。テーパー角度が小さいものについては、正極ペーストの塗布および乾燥により正極活物質層を形成した後、絶縁層ペーストを塗布および乾燥して絶縁層を形成した。
また、正極ペーストと絶縁層ペーストの固形分濃度を変更することにより、テーパー角度および正極活物質層の体積密度を調整した。
また、比較例1~5に対し、比較例6~13および実施例1~6では、絶縁層ペースト中のバインダ量を多くした。
このようにして、図3に示す形態の正極シートを作製した。
負極活物質としての天然黒鉛(C)と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、C:SBR:CMC=98:1:1の質量比でイオン交換水と混合して、負極ペーストを調製した。この負極ペーストを、長尺状の銅箔の両面に帯状に塗布して乾燥した後、プレスすることにより負極シートを作製した。
セパレータとして、PP/PE/PPの三層構造を有する多孔性ポリオレフィンシートを用意した。
正極シートとセパレータシートと負極シートとを、セパレータが、正極シートと負極シートとの間に介在するように積層して電極体を作製した。このとき、正極シートの絶縁層と、セパレータとの間にNi片を配置した。
次に、電極体に端子類を取り付け、ラミネートケースに収容した。
続いて、ラミネートケースに非水電解質を注入し、ラミネートケースを気密に封止した。なお、非水電解質には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とをEC:EMC:DMC=3:4:3の体積比で含む混合溶媒に、支持塩としてのLiPFを1.0mol/Lの濃度で溶解させたものを用いた。
このようにしてリチウムイオン二次電池を作製した。
<Production of Lithium Ion Secondary Batteries of Examples and Comparative Examples>
A dispersing machine was used to obtain a paste in which acetylene black (AB), polyvinylidene fluoride (PVdF) and N-methyl-2-pyrrolidone (NMP) were mixed as conductive materials. After adding a mixed powder of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (LNCM) and Li 3 PO 4 as a positive electrode active material to this paste, the solid content was uniformly dispersed to form a positive electrode. A paste was prepared. The positive electrode mixture paste was prepared so that LNCM:Li 3 PO 4 :AB:PVdF=87:3:8:2 (mass ratio).
An insulating layer paste was prepared by mixing boehmite as an inorganic filler, PVdF as a binder, and NMP using a disperser.
This positive electrode paste was applied in strips on both sides of an elongated aluminum foil and dried to form a positive electrode active material layer. The positive electrode paste was applied along one end of the aluminum foil so as to form a current collector exposed portion where the positive electrode active material layer was not formed.
The insulating layer paste was applied along the portion adjacent to the positive electrode active material layer on the current collector exposed portion, and dried to form an insulating layer.
At this time, when the angle formed by the main surface of the positive electrode current collector and the boundary surface between the positive electrode active material layer and the insulating layer on the positive electrode active material layer side (hereinafter also referred to as “taper angle”) is large, the positive electrode paste and insulating layer paste were applied at the same time. For those with a small taper angle, a positive electrode paste was applied and dried to form a positive electrode active material layer, and then an insulating layer paste was applied and dried to form an insulating layer.
Also, the taper angle and the volume density of the positive electrode active material layer were adjusted by changing the solid content concentrations of the positive electrode paste and the insulating layer paste.
Further, compared to Comparative Examples 1-5, in Comparative Examples 6-13 and Examples 1-6, the amount of binder in the insulating layer paste was increased.
Thus, a positive electrode sheet having the configuration shown in FIG. 3 was produced.
Natural graphite (C) as a negative electrode active material, styrene-butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener were mixed at a mass ratio of C:SBR:CMC = 98:1:1. was mixed with ion-exchanged water to prepare a negative electrode paste. This negative electrode paste was applied in strips on both sides of a long copper foil, dried, and then pressed to prepare a negative electrode sheet.
A porous polyolefin sheet having a three-layer structure of PP/PE/PP was prepared as a separator.
A positive electrode sheet, a separator sheet, and a negative electrode sheet were laminated such that the separator was interposed between the positive electrode sheet and the negative electrode sheet to produce an electrode assembly. At this time, a Ni piece was placed between the insulating layer of the positive electrode sheet and the separator.
Next, terminals were attached to the electrode body and housed in a laminate case.
Subsequently, a non-aqueous electrolyte was injected into the laminate case, and the laminate case was hermetically sealed. The non-aqueous electrolyte includes a mixed solvent containing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) in a volume ratio of EC:EMC:DMC=3:4:3, and a supporting salt. A solution in which LiPF 6 was dissolved at a concentration of 1.0 mol/L was used.
Thus, a lithium ion secondary battery was produced.

<テーパー角度測定>
上記で作製した正極を裁断し、その断面を走査型電子顕微鏡(SEM)にて観察した。断面SEM画像から、正極集電体の主面と、正極活物質層および絶縁層の境界面とがなす、正極活物質層側の角度(テーパー角度)を求めた。結果を表1に示す。
<Taper angle measurement>
The positive electrode produced above was cut, and the cross section was observed with a scanning electron microscope (SEM). From the cross-sectional SEM image, the angle (taper angle) on the side of the positive electrode active material layer formed by the main surface of the positive electrode current collector and the boundary surface between the positive electrode active material layer and the insulating layer was obtained. Table 1 shows the results.

<正極活物質層の体積密度測定>
正極活物質層を所定の寸法に切り出し、その重さを求め、体積密度(g/cm)を算出した。結果を表1に示す。
<Measurement of Volume Density of Positive Electrode Active Material Layer>
The positive electrode active material layer was cut into a predetermined size, its weight was determined, and the volume density (g/cm 3 ) was calculated. Table 1 shows the results.

<剥離強度測定>
剥離強度は、JIS Z 0237:2009(粘着テープ・粘着シートの試験方法)に準じた90°剥離試験により測定した。具体的には、上記で作製した正極について、正極活物質層部分の試験片と絶縁層部分の試験片を切り出した。試験片の正極活物質層または絶縁層を試験台に固定し、90°剥離試験機(今田製作所製「SV-201-NA-50SL」)を用いて、正極集電体を90°方向に引張って剥離強度を測定した。
正極活物質層部分の試験片の剥離強度(すなわち、正極活物質層と正極集電体との間の剥離強度)と絶縁層部分の試験片の剥離強度(すなわち、絶縁層と正極集電体との間の剥離強度)を比較した。剥離強度が大きかった方の層を、表1に記す。
<Peel strength measurement>
The peel strength was measured by a 90° peel test according to JIS Z 0237:2009 (testing method for adhesive tapes and adhesive sheets). Specifically, a test piece of the positive electrode active material layer portion and a test piece of the insulating layer portion were cut out from the positive electrode prepared above. The positive electrode active material layer or insulating layer of the test piece was fixed on a test stand, and the positive electrode current collector was pulled in the 90° direction using a 90° peeling tester (“SV-201-NA-50SL” manufactured by Imada Seisakusho). to measure the peel strength.
The peel strength of the test piece of the positive electrode active material layer portion (that is, the peel strength between the positive electrode active material layer and the positive electrode current collector) and the peel strength of the test piece of the insulating layer portion (that is, the insulating layer and the positive electrode current collector and peel strength) were compared. The layer with the higher peel strength is listed in Table 1.

<抵抗測定>
作製したリチウムイオン二次電池に活性化処理を施した後、SOC50%に調整した。これを-10℃の環境下に置き、40Aの電流値で10秒間放電した。このときの電圧降下量ΔVを取得し、電流値とΔVを用いてIV抵抗を算出した。結果を表1に示す。
<Resistance measurement>
After performing an activation process on the produced lithium ion secondary battery, the SOC was adjusted to 50%. This was placed in an environment of -10°C and discharged at a current value of 40A for 10 seconds. The voltage drop amount ΔV at this time was obtained, and the IV resistance was calculated using the current value and ΔV. Table 1 shows the results.

<容量測定>
上記作製したリチウムイオン二次電池を25℃の環境下に置いた。定電流-定電圧方式とし、各評価用リチウム二次電池を1/3Cの電流値で4.2Vまで定電流充電を行った後、電流値が1/50Cになるまで定電圧充電を行い、満充電状態にした。その後、リチウムイオン二次電池を1/3Cの電流値で3.0Vまで定電流放電した。そして、このときの放電容量を測定した。
また、リファレンスとして、絶縁層ペーストを使用しなかった以外は上記と同様にして、絶縁層を有していないリチウムイオン二次電池を作製し、上記と同様にして放電容量を測定した。
リファレンスのリチウムイオン二次電池の放電容量に対する、各実施例および各比較例のリチウムイオン二次電池の放電容量の比を百分率で求めた。結果を表1に示す。
<Capacity measurement>
The lithium ion secondary battery produced above was placed in an environment at 25°C. Using a constant current-constant voltage method, each lithium secondary battery for evaluation was charged at a current value of 1/3C to 4.2V, and then charged at a constant voltage until the current value became 1/50C. Fully charged. After that, the lithium ion secondary battery was subjected to constant current discharge to 3.0 V at a current value of 1/3C. Then, the discharge capacity at this time was measured.
As a reference, a lithium ion secondary battery having no insulating layer was produced in the same manner as described above except that the insulating layer paste was not used, and the discharge capacity was measured in the same manner as described above.
The ratio of the discharge capacity of the lithium ion secondary battery of each example and each comparative example to the discharge capacity of the reference lithium ion secondary battery was determined in percentage. Table 1 shows the results.

<短絡による温度上昇評価>
上記作製したリチウムイオン二次電池に対して、パルス充放電を繰り返した。その後、ラミネートケースに温度センサを取り付けた。Ni片が配置された部分に、ラミネートケースを介して圧力を印加して、意図的に短絡を発生させた。温度センサにより、リチウムイオン二次電池の温度をモニタリングし、最高到達温度と短絡前の温度との差を求めた。結果を表1に示す。
<Evaluation of temperature rise due to short circuit>
Pulse charge/discharge was repeated with respect to the lithium ion secondary battery produced above. After that, a temperature sensor was attached to the laminate case. A short circuit was intentionally caused by applying pressure through the laminate case to the portion where the Ni piece was arranged. A temperature sensor was used to monitor the temperature of the lithium ion secondary battery, and the difference between the highest temperature reached and the temperature before the short circuit was obtained. Table 1 shows the results.

Figure 0007177990000001
Figure 0007177990000001

表1の結果より、テーパー角が45度以上90度以下であり、正極集電体と絶縁層との間の剥離強度が、正極集電体と正極活物質層との間の剥離強度よりも大きく、正極活物質層の体積密度が、2.4g/cm以上3.5g/cm以下である場合に、抵抗が小さく、容量が大きく、かつ短絡時の温度上昇が小さいことがわかる。
以上のことから、ここに開示される非水電解質二次電池によれば、高容量かつ低抵抗となり、かつ正極集電体上に設けられた絶縁層と当該正極集電体との界面の露出部での短絡の発生による温度上昇が抑制されることがわかる。
From the results in Table 1, the taper angle is 45 degrees or more and 90 degrees or less, and the peel strength between the positive electrode current collector and the insulating layer is higher than the peel strength between the positive electrode current collector and the positive electrode active material layer. It can be seen that when the volume density of the positive electrode active material layer is 2.4 g/cm 3 or more and 3.5 g/cm 3 or less, the resistance is small, the capacity is large, and the temperature rise at the time of short circuit is small.
From the above, according to the non-aqueous electrolyte secondary battery disclosed herein, high capacity and low resistance are obtained, and the interface between the insulating layer provided on the positive electrode current collector and the positive electrode current collector is exposed. It can be seen that the temperature rise due to the occurrence of a short circuit at the part is suppressed.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

20 捲回電極体
30 電池ケース
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極シート(正極)
52 正極集電体
52a 正極集電体露出部
54 正極活物質層
56 絶縁層
58 正極活物質層および絶縁層の境界線
60 負極シート(負極)
62 負極集電体
62a 負極集電体露出部
64 負極活物質層
70 セパレータシート(セパレータ)
80 非水電解質
100 リチウムイオン二次電池
20 Wound electrode assembly 30 Battery case 36 Safety valve 42 Positive electrode terminal 42a Positive electrode current collector 44 Negative electrode terminal 44a Negative electrode current collector 50 Positive electrode sheet (positive electrode)
52 Positive electrode current collector 52a Positive electrode current collector exposed portion 54 Positive electrode active material layer 56 Insulating layer 58 Boundary line 60 between positive electrode active material layer and insulating layer Negative electrode sheet (negative electrode)
62 Negative electrode current collector 62a Negative electrode current collector exposed portion 64 Negative electrode active material layer 70 Separator sheet (separator)
80 nonaqueous electrolyte 100 lithium ion secondary battery

Claims (1)

正極と、
負極と、
非水電解質と、
を備えるリチウムイオン二次電池であって、
前記正極は、正極集電体と、正極活物質層と、絶縁層と、を備え、
前記正極集電体は、少なくとも一つの端部に、前記正極集電体が露出した部分を有し、
前記絶縁層は、前記正極活物質層と、前記正極集電体が露出した部分との境界部に位置し、
前記正極集電体の主面と、前記正極活物質層および前記絶縁層の境界面とがなす前記正極活物質層側の角度が、45度以上66度以下であり、
前記正極集電体と前記絶縁層との間の剥離強度が、前記正極集電体と前記正極活物質層との間の剥離強度よりも大きく、
前記正極活物質層の体積密度が、2.4g/cm以上3.5g/cm以下である、
リチウムイオン二次電池。
a positive electrode;
a negative electrode;
a non-aqueous electrolyte;
A lithium ion secondary battery comprising
The positive electrode includes a positive electrode current collector, a positive electrode active material layer, and an insulating layer,
The positive electrode current collector has at least one end portion where the positive electrode current collector is exposed,
The insulating layer is located at a boundary between the positive electrode active material layer and the exposed portion of the positive electrode current collector,
the angle formed by the main surface of the positive electrode current collector and the boundary surface between the positive electrode active material layer and the insulating layer on the side of the positive electrode active material layer is 45 degrees or more and 66 degrees or less;
The peel strength between the positive electrode current collector and the insulating layer is greater than the peel strength between the positive electrode current collector and the positive electrode active material layer,
The positive electrode active material layer has a volume density of 2.4 g/cm 3 or more and 3.5 g/cm 3 or less.
Lithium-ion secondary battery.
JP2019106458A 2019-06-06 2019-06-06 lithium ion secondary battery Active JP7177990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019106458A JP7177990B2 (en) 2019-06-06 2019-06-06 lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019106458A JP7177990B2 (en) 2019-06-06 2019-06-06 lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2020202039A JP2020202039A (en) 2020-12-17
JP7177990B2 true JP7177990B2 (en) 2022-11-25

Family

ID=73742788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019106458A Active JP7177990B2 (en) 2019-06-06 2019-06-06 lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP7177990B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230106145A (en) * 2021-12-29 2023-07-12 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Insulation paste and its manufacturing method, cathode pole piece, secondary battery, battery module, battery pack and electric device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114079A (en) 2010-11-05 2012-06-14 Gs Yuasa Corp Electrode for electricity storage element, electricity storage element employing the same, and method of manufacturing electrode for electricity storage element
JP2012178252A (en) 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd Lithium ion secondary battery and its positive electrode
WO2012124188A1 (en) 2011-03-14 2012-09-20 日立マクセルエナジー株式会社 Electrode for nonaqueous secondary batteries, method for producing same, and nonaqueous secondary battery
JP2018049716A (en) 2016-09-21 2018-03-29 株式会社東芝 Electrode structure, secondary battery, battery pack and vehicle
WO2018168607A1 (en) 2017-03-13 2018-09-20 株式会社Gsユアサ Electrode and capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114079A (en) 2010-11-05 2012-06-14 Gs Yuasa Corp Electrode for electricity storage element, electricity storage element employing the same, and method of manufacturing electrode for electricity storage element
JP2012178252A (en) 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd Lithium ion secondary battery and its positive electrode
WO2012124188A1 (en) 2011-03-14 2012-09-20 日立マクセルエナジー株式会社 Electrode for nonaqueous secondary batteries, method for producing same, and nonaqueous secondary battery
JP2018049716A (en) 2016-09-21 2018-03-29 株式会社東芝 Electrode structure, secondary battery, battery pack and vehicle
WO2018168607A1 (en) 2017-03-13 2018-09-20 株式会社Gsユアサ Electrode and capacitor

Also Published As

Publication number Publication date
JP2020202039A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP7169524B2 (en) Non-aqueous electrolyte secondary battery
JP7205717B2 (en) positive electrode
KR102243458B1 (en) Non-aqueous electrolyte secondary battery, and method of producing non-aqueous electrolyte secondary battery
JP2018106903A (en) Lithium ion secondary battery
CN112072061B (en) Nonaqueous electrolyte secondary battery
JP2021044138A (en) Nonaqueous electrolyte secondary battery
JP7174335B2 (en) Non-aqueous electrolyte secondary battery
WO2014002561A1 (en) Non-aqueous electrolyte secondary battery
JP7177990B2 (en) lithium ion secondary battery
JP6274532B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP7228113B2 (en) Non-aqueous electrolyte secondary battery
JP2017130317A (en) Nonaqueous electrolyte secondary battery having wound electrode body
US11302905B2 (en) Negative electrode of nonaqueous lithium-ion secondary battery and nonaqueous lithium-ion secondary battery using same
JP7054440B2 (en) Secondary battery
JP6907834B2 (en) Non-aqueous electrolyte secondary battery
JP7236030B2 (en) lithium ion secondary battery
JP2016085853A (en) Separator for nonaqueous electrolyte secondary battery and use thereof
CN114583244B (en) Lithium ion secondary battery
JP7165305B2 (en) Non-aqueous electrolyte secondary battery
JP6928873B2 (en) Non-aqueous electrolyte secondary battery
JP7006450B2 (en) Non-aqueous electrolyte secondary battery
JP2018190624A (en) Nonaqueous electrolyte secondary battery
JP6731155B2 (en) Non-aqueous electrolyte secondary battery
JP2021190377A (en) Nonaqueous electrolyte secondary battery
JP2020077477A (en) Nonaqueous electrolyte lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220506

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221026

R151 Written notification of patent or utility model registration

Ref document number: 7177990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151