[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7177671B2 - Filter body used for ozone oxidation decomposition treatment and manufacturing method thereof - Google Patents

Filter body used for ozone oxidation decomposition treatment and manufacturing method thereof Download PDF

Info

Publication number
JP7177671B2
JP7177671B2 JP2018217416A JP2018217416A JP7177671B2 JP 7177671 B2 JP7177671 B2 JP 7177671B2 JP 2018217416 A JP2018217416 A JP 2018217416A JP 2018217416 A JP2018217416 A JP 2018217416A JP 7177671 B2 JP7177671 B2 JP 7177671B2
Authority
JP
Japan
Prior art keywords
filter body
ozone
transition metal
high silica
containing oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018217416A
Other languages
Japanese (ja)
Other versions
JP2020081934A (en
Inventor
竜太 西出
実 田添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Priority to JP2018217416A priority Critical patent/JP7177671B2/en
Publication of JP2020081934A publication Critical patent/JP2020081934A/en
Application granted granted Critical
Publication of JP7177671B2 publication Critical patent/JP7177671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、VOCや気相無機還元性化合物をオゾンの酸化反応により分解処理を行う方法や装置に使用されるフィルター体及びその製造方法に関し、特に、簡易な工程でフィルター体の製造を可能とし、かつ該フィルターを用いることによって処理対象成分の分解処理性能を向上させることができるオゾン酸化分解処理に用いられるフィルター体及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a filter body used in a method and apparatus for decomposing VOCs and gas phase inorganic reducing compounds by an oxidation reaction of ozone, and a method for manufacturing the filter body. and a filter body used for ozone oxidative decomposition treatment capable of improving the decomposition treatment performance of the component to be treated by using the filter, and a method for producing the same.

揮発性有機化合物(VOC)は、常温常圧で大気中に容易に揮発する有機化学物質の総称であって、VOC(揮発性のアルコール類、ケトン類、エステル類、エーテル類、アルデヒド類や芳香族類等)は溶剤や燃料等として幅広く使用されている。しかしながら、環境中へ放出されると、健康被害を引き起こしたり悪臭の原因となる。特に、ホルムアルデヒドによるシックハウス症候群や化学物質過敏症が問題となっている。他にも、農作物はエチレンやアルデヒド、テルペン等に接触すると熟成が促進され鮮度保持に支障をきたす場合がある。 Volatile organic compounds (VOC) is a general term for organic chemical substances that easily volatilize into the atmosphere at normal temperature and pressure. etc.) are widely used as solvents and fuels. However, when released into the environment, it causes health hazards and odors. In particular, sick house syndrome and chemical hypersensitivity due to formaldehyde are problems. In addition, when agricultural products come into contact with ethylene, aldehyde, terpene, etc., ripening is accelerated and freshness retention may be hindered.

そこで、VOC等を酸化分解処理することが考えられる。例えば、VOCを含む排ガス処理において、ハニカムローターTSA(温度スイング吸着法)と触媒燃焼を用いる処理方法が多く採用されている。この処理方法は、例えば、排気ガス等に含まれるVOCを高シリカゼオライトに吸着させ、減容濃縮し、吸着したVOCを熱風により脱着させる。そして、脱離濃縮されたVOCを触媒燃焼で酸化分解する方法である。この方法は、濃縮した後に高温でVOCを分解するため効率的であるが、装置の複雑さや操作の煩雑さ等からコストがかかってしまう。 Therefore, it is conceivable to oxidatively decompose VOCs and the like. For example, in the treatment of exhaust gases containing VOCs, treatment methods using honeycomb rotor TSA (temperature swing adsorption) and catalytic combustion are often employed. In this treatment method, for example, VOCs contained in exhaust gas or the like are adsorbed on high-silica zeolite, volume-reduced and concentrated, and the adsorbed VOCs are desorbed by hot air. Then, it is a method of oxidatively decomposing the desorbed and concentrated VOCs by catalytic combustion. This method is efficient because it decomposes VOCs at a high temperature after concentrating, but it is costly due to the complexity of the apparatus, the complexity of the operation, and the like.

発明者らは、このことに鑑み、効率が良くコストの低減も望むことのできるVOC等のオゾン酸化処理を提案した(特許文献1参照)。この方法によると、VOCを含む排ガスにオゾンを供給した混合ガスを、ゼオライトと遷移金属含有酸化物よりなる吸着剤に接触させ、オゾンの酸化反応によりVOCを分解処理するものである。この処理方法は、装置が簡単な構成とすることができる。 In view of this, the inventors have proposed an ozone oxidation treatment for VOCs and the like, which is efficient and can be expected to reduce costs (see Patent Document 1). According to this method, a mixed gas in which ozone is supplied to an exhaust gas containing VOCs is brought into contact with an adsorbent composed of zeolite and a transition metal-containing oxide, and VOCs are decomposed by the oxidation reaction of ozone. This processing method can have a simple device configuration.

特開2015-174017号公報JP 2015-174017 A

本発明は、VOCや気相無機還元性化合物をオゾンの酸化反応により分解処理を行う方法や装置に用いられるフィルター体であって、簡易な工程で製造することができ、かつ、オゾンの供給量が少量であっても処理対象成分の分解効率を高めることができつつ、分解性能を長時間維持することのできるフィルター体及びその製造方法を提供する。 INDUSTRIAL APPLICABILITY The present invention provides a filter body for use in a method and apparatus for decomposing VOCs and gaseous inorganic reducing compounds by an oxidation reaction of ozone, which can be manufactured by a simple process and has an ozone supply amount. To provide a filter body capable of maintaining decomposition performance for a long period of time while enhancing the decomposition efficiency of a component to be treated even if the content of the filter is small, and to provide a method for manufacturing the filter body.

すなわち、第1の発明は、処理対象成分であるVOC及び気相無機還元性化合物の少なくとも一方を含有するガスとオゾンとを混合させ、触媒を担持したフィルターに接触させて、該処理対象成分とオゾンの促進酸化により前記処理対象成分を分解処理するオゾン酸化分解処理に用いられるフィルター体であって、前記フィルター体は、コバルト、マンガン、銅の複合酸化物からなる遷移金属含有酸化物多孔質体と高シリカペンタルゼオライト、脱アルミニウムフォージャサイト及びメソポーラスシリケートのいずれかよりなる高シリカ吸着材を1:3ないし1:50の重量比で含有する混合物を基材表面に担持してなることを特徴とするオゾン酸化分解処理に用いられるフィルター体に係る。 That is, in the first invention, a gas containing at least one of a VOC and a gas phase inorganic reducing compound, which are components to be treated, is mixed with ozone, and brought into contact with a filter carrying a catalyst, and the components to be treated and A filter body used for ozone oxidative decomposition treatment in which the components to be treated are decomposed by accelerated oxidation of ozone, wherein the filter body is a transition metal-containing oxide porous body made of a composite oxide of cobalt, manganese, and copper. and a high silica adsorbent made of one of high silica pentasil zeolite, dealuminated faujasite and mesoporous silicate in a weight ratio of 1:3 to 1:50 supported on the substrate surface. The present invention relates to a filter body used for ozone oxidation decomposition treatment.

第2の発明は、処理対象成分であるVOC及び気相無機還元性化合物の少なくとも一方を含有するガスとオゾンとを混合させ、触媒を担持したフィルターに接触させて、該処理対象成分とオゾンの促進酸化により前記処理対象成分を分解処理するオゾン酸化分解処理に用いられるフィルター体の製造方法であって、前記フィルター体は、コバルト、マンガン、銅の複合酸化物からなる遷移金属含有酸化物多孔質体と高シリカペンタシルゼオライト、脱アルミニウムフォージャサイト及びメソポーラスシリケートのいずれかよりなる高シリカ吸着材を水中で混合して混合スラリー状物とし、前記混合スラリー状物に基材を含浸させて焼成されてなることを特徴とするオゾン酸化分解処理に用いられるフィルター体の製造方法に係る。 In the second invention, a gas containing at least one of a VOC and a gaseous inorganic reducing compound, which are components to be treated, is mixed with ozone, and brought into contact with a filter carrying a catalyst, so that the components to be treated and ozone are mixed. A method for producing a filter body used for ozone oxidative decomposition treatment in which the component to be treated is decomposed by accelerated oxidation, wherein the filter body is a transition metal-containing porous oxide made of a composite oxide of cobalt, manganese, and copper. A high-silica adsorbent made of one of high-silica pentasil zeolite, dealuminated faujasite and mesoporous silicate is mixed in water to form a mixed slurry, and the mixed slurry is impregnated with a substrate and calcined. The present invention relates to a method for manufacturing a filter body used for ozone oxidative decomposition treatment, characterized by comprising:

第3の発明は、前記混合スラリー状物に含まれる前記遷移金属含有酸化物多孔質体分の割合が前記高シリカ吸着材分の割合よりも少ないことを特徴とする請求項2に記載のオゾン酸化分解処理に用いられるフィルター体の製造方法に係る。 A third aspect of the invention is characterized in that the ratio of the transition metal-containing oxide porous material contained in the mixed slurry is less than the ratio of the high silica adsorbent. The present invention relates to a method for manufacturing a filter body used for oxidative decomposition treatment.

第4の発明は、前記混合スラリー状物に含まれる前記遷移金属含有酸化物多孔質体分と前記高シリカ吸着材分が1:3ないし1:50の重量比である請求項2又は3に記載のオゾン酸化分解処理に用いられるフィルター体の製造方法に係る。 In a fourth aspect of the invention, the weight ratio of the transition metal-containing oxide porous material and the high silica adsorbent contained in the mixed slurry is 1:3 to 1:50. The present invention relates to a method for manufacturing a filter body used in the described ozone oxidation decomposition treatment.

第5の発明は、前記遷移金属含有酸化物多孔質体のBET比表面積が100m/g以上である請求項4に記載のオゾン酸化分解処理に用いられるフィルター体の製造方法に係る。 A fifth invention relates to the method for producing a filter body used for ozone oxidation decomposition treatment according to claim 4, wherein the transition metal-containing oxide porous body has a BET specific surface area of 100 m 2 /g or more.

第1の発明に係るオゾン酸化分解処理に用いられるフィルター体によると、処理対象成分であるVOC及び気相無機還元性化合物の少なくとも一方を含有するガスとオゾンとを混合させ、触媒を担持したフィルターに接触させて、該処理対象成分とオゾンの促進酸化により前記処理対象成分を分解処理するオゾン酸化分解処理に用いられるフィルター体であって、前記フィルター体は、コバルト、マンガン、銅の複合酸化物からなる遷移金属含有酸化物多孔質体と高シリカペンタルゼオライト、脱アルミニウムフォージャサイト及びメソポーラスシリケートのいずれかよりなる高シリカ吸着材を1:3ないし1:50の重量比で含有する混合物を基材表面に担持してなるため、オゾンの供給量が少量であっても処理対象成分の除去率を高めることができ、かつ処理対象成分の分解性能を長時間維持することができる。 According to the filter body used for the ozone oxidative decomposition treatment according to the first invention, a filter carrying a catalyst by mixing a gas containing at least one of VOCs and gas phase inorganic reducing compounds, which are the components to be treated, with ozone. A filter body used for ozone oxidative decomposition treatment in which the target component is decomposed by accelerated oxidation of the target component and ozone by contacting the filter body with a composite oxide of cobalt, manganese, and copper and a high silica adsorbent made of one of high silica pentasil zeolite, dealuminated faujasite and mesoporous silicate at a weight ratio of 1:3 to 1:50. Since it is supported on the surface of the base material, even if the amount of ozone supplied is small, the removal rate of the component to be treated can be increased, and the decomposition performance of the component to be treated can be maintained for a long period of time.

第2の発明に係るオゾン酸化分解処理に用いられるフィルター体の製造方法によると、処理対象成分であるVOC及び気相無機還元性化合物の少なくとも一方を含有するガスとオゾンとを混合させ、触媒を担持したフィルターに接触させて、該処理対象成分とオゾンの促進酸化により前記処理対象成分を分解処理するオゾン酸化分解処理に用いられるフィルター体の製造方法であって、前記フィルター体は、コバルト、マンガン、銅の複合酸化物からなる遷移金属含有酸化物多孔質体と高シリカペンタシルゼオライト、脱アルミニウムフォージャサイト及びメソポーラスシリケートのいずれかよりなる高シリカ吸着材を水中で混合して混合スラリー状物とし、前記混合スラリー状物に基材を含浸させて焼成されてなるため、簡易な工程で、処理対象成分の除去率が高く、分解性能を長時間維持することが可能なフィルター体を製造することができる。 According to the method for manufacturing the filter body used for the ozone oxidative decomposition treatment according to the second invention, a gas containing at least one of VOCs and gas phase inorganic reducing compounds, which are the components to be treated, is mixed with ozone to produce a catalyst. A method for producing a filter body used for ozone oxidative decomposition treatment in which the target component is decomposed by accelerated oxidation of the target component and ozone by contacting the supported filter, wherein the filter body contains cobalt and manganese. , a transition metal-containing oxide porous material comprising a copper complex oxide and a high silica adsorbent comprising any one of high silica pentasil zeolite, dealuminated faujasite and mesoporous silicate are mixed in water to form a mixed slurry. Since the mixed slurry is impregnated with the base material and baked, the filter body can be manufactured by a simple process with a high removal rate of the target component and capable of maintaining the decomposition performance for a long time. be able to.

第3の発明に係るオゾン酸化分解処理に用いられるフィルター体の製造方法によると、第2の発明において、前記混合スラリー状物に含まれる前記遷移金属含有酸化物多孔質体分の割合が前記高シリカ吸着材分の割合よりも少ないため、安価であり、フィルター体の分解性能が高くなる。 According to the method for producing a filter body used for ozone oxidation decomposition treatment according to the third invention, in the second invention, the ratio of the transition metal-containing oxide porous body contained in the mixed slurry is the high Since it is less than the proportion of the silica adsorbent, it is inexpensive and the decomposition performance of the filter body is high.

第4の発明に係るオゾン酸化分解処理に用いられるフィルター体の製造方法によると、第2又は3の発明において、前記混合スラリー状物に含まれる前記遷移金属含有酸化物多孔質体分と前記高シリカ吸着材分が1:3ないし1:50の重量比であるため、フィルター体の性能がより高くなる。 According to the method for producing a filter body used for ozone oxidation decomposition treatment according to the fourth invention, in the second or third invention, the transition metal-containing oxide porous body portion and the high A weight ratio of 1:3 to 1:50 for the silica adsorbent content results in higher performance of the filter body.

第5の発明に係るオゾン酸化分解処理に用いられるフィルター体の製造方法によると、第2ないし4の発明において、前記遷移金属含有酸化物多孔質体のBET比表面積が100m/g以上であるため、フィルター体の分解性能が高くなる。 According to a method for producing a filter body used for ozone oxidation decomposition treatment according to a fifth invention, in the second to fourth inventions, the transition metal-containing oxide porous body has a BET specific surface area of 100 m 2 /g or more. Therefore, the decomposition performance of the filter body is enhanced.

本発明により製造されたフィルター体は、処理対象成分であるVOCや気相無機還元性化合物をオゾンによる酸化分解処理方法ないし装置に用いられる。 The filter body manufactured according to the present invention is used in a method or an apparatus for oxidatively decomposing VOCs and gas phase inorganic reducing compounds, which are components to be treated, with ozone.

この方法ないし装置においては、処理対象成分であるVOCを含有する排ガスをオゾンを混合し、当該フィルター体に混合した気体を供給することによって、フィルター体に接触させる。フィルター体に担持された高シリカ吸着材がVOCを吸着して濃縮し、遷移金属含有酸化物多孔体の触媒反応によりオゾンの酸化反応を促進して効率よくVOCの分解除去を行う。 In this method or apparatus, exhaust gas containing VOCs, which are the components to be treated, is mixed with ozone, and the mixed gas is supplied to the filter body to bring it into contact with the filter body. The high-silica adsorbent carried on the filter body adsorbs and concentrates VOCs, and the oxidation reaction of ozone is accelerated by the catalytic reaction of the transition metal-containing oxide porous body to efficiently decompose and remove VOCs.

フィルター体は、遷移金属含有酸化物多孔質体と高シリカ吸着材の混合物を基材表面に担持してなる。はじめに、遷移金属含有酸化物多孔質体としてコバルト、マンガン、銅のうち一又は複数の酸化物と、高シリカ吸着材として高シリカペンタルゼオライト、脱アルミニウムフォージャサイト及びメソポーラスシリケートのいずれかが用意され、遷移金属含有酸化物多孔質体と高シリカ吸着材は適量水中に分散され、十分に撹拌された混合スラリー状物が調製される。 The filter body carries a mixture of a transition metal-containing oxide porous body and a high silica adsorbent on the substrate surface. First, one or more oxides of cobalt, manganese, and copper are prepared as the transition metal-containing oxide porous material, and one of high silica pentasil zeolite, dealuminated faujasite, and mesoporous silicate is prepared as the high silica adsorbent. Then, appropriate amounts of the transition metal-containing oxide porous body and the high silica adsorbent are dispersed in water and sufficiently stirred to prepare a mixed slurry.

これらの混合物を担持する基礎として基材が用いられる。基材は、例えば、ガラス製やアルミナ製、活性炭製等が挙げられる。該基材を混合スラリー状物に含浸させ、基材表面に遷移金属含有酸化物多孔質体と高シリカ吸着材の混合物を付着させて、100℃~150℃で乾燥させ、200~500℃で焼成する。基材の形状としては、装置の形状に応じて適宜決定され、例えば、ハニカム形状や平板と波板を組み合わせた段ボール形状等が挙げられる。乾燥時に、基材表面の混合物の量が少ないときは、再度、基材をスラリー状物に含浸させて乾燥させる工程を繰り返すのがよい。 A substrate is used as a basis for carrying these mixtures. Examples of the base material include glass, alumina, activated carbon, and the like. The base material is impregnated with the mixed slurry, and the mixture of the transition metal-containing oxide porous material and the high silica adsorbent is attached to the surface of the base material, dried at 100 to 150 ° C., and dried at 200 to 500 ° C. Bake. The shape of the substrate is appropriately determined according to the shape of the device, and examples thereof include a honeycomb shape and a corrugated cardboard shape obtained by combining a flat plate and a corrugated plate. When the amount of the mixture on the surface of the base material is small during drying, it is preferable to repeat the step of impregnating the base material with the slurry and drying it again.

遷移金属含有酸化物多孔質体は、コバルト、マンガン、銅のうち一又は複数の酸化物であり、実施例ではコバルト、マンガン、銅の3種類からなる複合酸化物を用いた。これら酸化物は、各金属塩水溶液と苛性ソーダ等のアルカリ水溶液をそれぞれ水媒体中に滴下し、3種金属の共沈物を析出させ、該共沈物を、濾過、水洗いし、乾燥させたのちに100~500℃の範囲で熱処理をして得る。金属塩は、特に限定されず、硫酸塩、硝酸塩等が使用される。アルカリ水溶液は、苛性ソーダの他に、ソーダ灰や重曹等、様々なものを使用することができる。各金属塩の割合として、各金属の全体に対するモル比として、コバルトは40mol%以下、マンガンは30~70mol%、銅は25~45mol%の範囲が好適である。金属塩の水溶液の濃度は、おおよそ5~50質量%が適当である。沈殿条件として、沈殿pHをpH5~14の範囲、より好ましくはpH9~13の範囲がよい。熱処理の温度はより好ましくは100~300℃の範囲がよい。この際、熱処理の温度が高すぎると比表面積が減少してVOCの吸着性能が低下するため、BET比表面積が100m/g以上となるよう熱処理温度を調節することによって吸着性能の高い遷移金属含有酸化物多孔質体を得ることができる。 The transition metal-containing oxide porous material is one or a plurality of oxides of cobalt, manganese, and copper, and in the examples, a composite oxide composed of three kinds of cobalt, manganese, and copper was used. These oxides are obtained by dropping an aqueous solution of each metal salt and an aqueous alkali solution such as caustic soda into an aqueous medium to precipitate a coprecipitate of the three metals, filtering the coprecipitate, washing it with water, and drying it. It is obtained by heat-treating in the range of 100 to 500°C. The metal salt is not particularly limited, and sulfates, nitrates and the like are used. Various alkaline aqueous solutions such as soda ash and sodium bicarbonate can be used in addition to caustic soda. As the proportion of each metal salt, the molar ratio of each metal to the total is preferably 40 mol % or less for cobalt, 30 to 70 mol % for manganese, and 25 to 45 mol % for copper. A suitable concentration of the aqueous solution of the metal salt is approximately 5 to 50% by mass. As the precipitation condition, the precipitation pH is preferably in the range of pH 5-14, more preferably in the range of pH 9-13. The heat treatment temperature is more preferably in the range of 100 to 300°C. At this time, if the heat treatment temperature is too high , the specific surface area is reduced and the VOC adsorption performance is lowered. An oxide-containing porous body can be obtained.

高シリカ吸着材は、処理対象成分とオゾンを吸着すればよく、いずれも使用することができるが、高シリカペンタルゼオライト、脱アルミニウムフォージャサイト及びメソポーラスシリケートとするとより吸着性能を高めることができる。 Any of the high silica adsorbents may be used as long as they adsorb the target component and ozone, but high silica pentasil zeolite, dealuminated faujasite and mesoporous silicate can further enhance the adsorption performance. .

本発明のフィルター体が使用されるオゾン酸化分解処理方法は、VOC等の処理対象成分を含む排ガスとオゾン発生装置により生じたオゾンガスとを混合させ、フィルター体が備えられた処理塔内に注入して該フィルター体に接触させ、フィルター体表面においてオゾンによる処理対象成分の酸化分解処理を行う。このとき、オゾンと排ガスに含まれる処理対象成分の濃度比(オゾン濃度/(C1換算濃度ppmC))が0.8よりも大きい方が好ましい。また、オゾン濃度が高ければ高いほどVOC等の処理対象成分の分解処理は安定して高い除去率を維持することができる。 In the ozone oxidative decomposition method using the filter body of the present invention, an exhaust gas containing components to be treated such as VOCs and ozone gas generated by an ozone generator are mixed and injected into a treatment tower equipped with a filter body. The filter body is brought into contact with the surface of the filter body, and the components to be treated are oxidatively decomposed by ozone on the surface of the filter body. At this time, it is preferable that the concentration ratio (ozone concentration/(C1 conversion concentration ppmC)) of the components to be treated contained in the ozone and the exhaust gas is larger than 0.8. Also, the higher the ozone concentration, the more stable the decomposition treatment of the components to be treated such as VOCs and the higher the removal rate can be maintained.

[測定項目と測定方法]
発明者らは、後記する各試作例及び比較例のフィルター体に関し、処理対象成分をトルエンとし、オゾンによる分解処理実験を行い吸着分解性能を評価した。処理対象成分のトルエンを70ppm(490ppmC)の濃度で含有する排ガスを用い、オゾンガス(735ppm又は2450ppmの濃度)を注入して混合させ、各試作例又は比較例のフィルター体に接触させ時間経過毎の処理塔入口のトルエン濃度と処理塔出口のトルエン濃度を測定した。
[Measurement items and measurement methods]
The inventors used toluene as the component to be treated for filter bodies of prototype examples and comparative examples to be described later, and performed decomposition treatment experiments with ozone to evaluate the adsorption and decomposition performance. Using exhaust gas containing toluene, which is a component to be treated, at a concentration of 70 ppm (490 ppmC), ozone gas (concentration of 735 ppm or 2450 ppm) is injected and mixed, and brought into contact with the filter body of each prototype example or comparative example. The toluene concentration at the inlet of the treatment tower and the toluene concentration at the outlet of the treatment tower were measured.

[試作例及び比較例のフィルター体の製造]
〈試作例1〉
遷移金属含有酸化物多孔質体(『DAIPYROXIDE #7812』:大日精化工業株式会社製)13.5gと高シリカゼオライト(USKY700:ユニオン昭和株式会社製)4.5gにバインダー(『スノーテックスC』:日産化学株式会社製)21.6gと精製水72.0gとを混合させた混合スラリー状物に活性炭製のハニカム形状の基材(ピッチ3mm、山高1.6mm、縦幅20mm、横幅20mm、奥行100mm、体積40cm)を含浸させて基材表面を該スラリー状物で被覆させ、120℃で乾燥し、450℃で焼成して試作例1のフィルター体を得た(遷移金属含有酸化物多孔質体と高シリカ吸着材の重量比は3:1である)。
[Manufacturing of Filter Body of Prototype Example and Comparative Example]
<Prototype example 1>
Transition metal-containing oxide porous material (“DAIPYROXIDE #7812”: manufactured by Dainichiseika Kogyo Co., Ltd.) 13.5 g and high silica zeolite (USKY700: manufactured by Union Showa Co., Ltd.) 4.5 g Binder (“Snowtex C” : Nissan Chemical Co., Ltd.) 21.6 g and purified water 72.0 g were mixed, and a honeycomb-shaped substrate made of activated carbon (pitch 3 mm, peak height 1.6 mm, vertical width 20 mm, horizontal width 20 mm, 100 mm in depth and 40 cm in volume) was impregnated to coat the surface of the substrate with the slurry , dried at 120°C, and fired at 450°C to obtain the filter body of Prototype Example 1 (transition metal-containing oxide The weight ratio of the porous body to the high silica adsorbent is 3:1).

〈試作例2〉
遷移金属含有酸化物多孔質体13.5gと高シリカゼオライト4.5gにバインダー21.6gと精製水72.0gとを混合させた混合スラリー状物にガラス製のハニカム形状に成形された基材(ピッチ3mm、山高1.6mm、縦幅20mm、横幅20mm、奥行100mm、体積40cm)を含浸させて基材表面を該スラリー状物で被覆させ、120℃で乾燥し、450℃で焼成して試作例2のフィルター体を得た(遷移金属含有酸化物多孔質体と高シリカ吸着材の重量比は3:1である)。試作例2の作成に際し、用いた遷移金属含有酸化物多孔質体、高シリカゼオライト及びバインダーは、試作例1と同様である。
<Prototype example 2>
13.5 g of a transition metal-containing oxide porous material, 4.5 g of high silica zeolite, 21.6 g of a binder, and 72.0 g of purified water were mixed to form a mixed slurry, and the substrate was formed into a honeycomb shape made of glass. (Pitch: 3 mm, Height: 1.6 mm, Length: 20 mm, Width: 20 mm, Depth: 100 mm, Volume: 40 cm 3 ) was impregnated to coat the substrate surface with the slurry, dried at 120°C, and fired at 450°C. Thus, a filter body of Prototype Example 2 was obtained (the weight ratio of the transition metal-containing oxide porous body and the high silica adsorbent was 3:1). The transition metal-containing oxide porous body, high silica zeolite, and binder used in the preparation of Prototype Example 2 are the same as in Prototype Example 1.

〈試作例3〉
遷移金属含有酸化物多孔質体の量を9.0g、高シリカゼオライトの量を9.0gとした以外は試作例2に準じ、試作例3のフィルター体を得た(遷移金属含有酸化物多孔質体と高シリカ吸着材の重量比は1:1である)。
<Prototype example 3>
A filter body of Prototype Example 3 was obtained according to Prototype Example 2 except that the amount of the transition metal-containing oxide porous material was 9.0 g and the amount of the high silica zeolite was 9.0 g (transition metal-containing oxide porous material The weight ratio of solid to high silica adsorbent is 1:1).

〈試作例4〉
遷移金属含有酸化物多孔質体の量を4.5g、高シリカゼオライトの量を13.5gとした以外は試作例2に準じ、試作例4のフィルター体を得た(遷移金属含有酸化物多孔質体と高シリカ吸着材の重量比は1:3である)。
<Prototype example 4>
A filter body of Prototype Example 4 was obtained according to Prototype Example 2 except that the amount of the transition metal-containing oxide porous material was 4.5 g and the amount of the high silica zeolite was 13.5 g (transition metal-containing oxide porous material The weight ratio of solid to high silica adsorbent is 1:3).

〈試作例5〉
遷移金属含有酸化物多孔質体の量を1.63g、高シリカゼオライトの量を16.3gとした以外は試作例2に準じ、試作例5のフィルター体を得た(遷移金属含有酸化物多孔質体と高シリカ吸着材の重量比は1:10である)。
<Prototype example 5>
A filter body of Prototype Example 5 was obtained according to Prototype Example 2 except that the amount of the transition metal-containing oxide porous material was 1.63 g and the amount of the high silica zeolite was 16.3 g (transition metal-containing oxide porous material The weight ratio of solid to high silica adsorbent is 1:10).

〈試作例6〉
遷移金属含有酸化物多孔質体の量を0.69g、高シリカゼオライトの量を17.3gとした以外は試作例2に準じ、試作例6のフィルター体を得た(遷移金属含有酸化物多孔質体と高シリカ吸着材の重量比は1:25である)。
<Prototype example 6>
A filter body of Prototype Example 6 was obtained according to Prototype Example 2 except that the amount of the transition metal-containing oxide porous material was 0.69 g and the amount of the high silica zeolite was 17.3 g (transition metal-containing oxide porous material The weight ratio of solid to high silica adsorbent is 1:25).

〈試作例7〉
遷移金属含有酸化物多孔質体の量を0.35g、高シリカゼオライトの量を17.6gとした以外は試作例2に準じ、試作例7のフィルター体を得た(遷移金属含有酸化物多孔質体と高シリカ吸着材の重量比は1:50である)。
<Prototype example 7>
A filter body of Prototype Example 7 was obtained according to Prototype Example 2 except that the amount of the transition metal-containing oxide porous material was 0.35 g and the amount of the high silica zeolite was 17.6 g (transition metal-containing oxide porous material The weight ratio of the solid to the high silica adsorbent is 1:50).

〈試作例8〉
遷移金属含有酸化物多孔質体の量を1.12g、高シリカゼオライトの量を16.8gとした以外は試作例2に準じ、試作例8のフィルター体を得た(遷移金属含有酸化物多孔質体と高シリカ吸着材の重量比は1:15である)。
<Prototype Example 8>
A filter body of Prototype Example 8 was obtained according to Prototype Example 2 except that the amount of the transition metal-containing oxide porous material was 1.12 g and the amount of the high silica zeolite was 16.8 g (transition metal-containing oxide porous material The weight ratio of solid to high silica adsorbent is 1:15).

〈試作例9〉
遷移金属含有酸化物多孔質体の量を0.85g、高シリカゼオライトの量を17.1gとした以外は試作例2に準じ、試作例9のフィルター体を得た(遷移金属含有酸化物多孔質体と高シリカ吸着材の重量比は1:20である)。
<Prototype example 9>
A filter body of Prototype Example 9 was obtained according to Prototype Example 2 except that the amount of the transition metal-containing oxide porous material was 0.85 g and the amount of the high silica zeolite was 17.1 g (transition metal-containing oxide porous material The weight ratio of the solid to the high silica adsorbent is 1:20).

〈試作例10〉
遷移金属含有酸化物多孔質体の量を0.85g、高シリカゼオライトの量を17.4gとした以外は試作例2に準じ、試作例10のフィルター体を得た(遷移金属含有酸化物多孔質体と高シリカ吸着材の重量比は1:30である)。
<Prototype Example 10>
A filter body of Prototype Example 10 was obtained according to Prototype Example 2 except that the amount of the transition metal-containing oxide porous material was 0.85 g and the amount of the high silica zeolite was 17.4 g (transition metal-containing oxide porous material The weight ratio of the solid to the high silica adsorbent is 1:30).

〈比較例1〉
遷移金属含有酸化物多孔質体の量を9.0g、高シリカゼオライトの量を0.0gとした以外は試作例1に準じ、比較例1のフィルター体を得た(遷移金属含有酸化物多孔質体と高シリカ吸着材の重量比は1:0である)。
<Comparative Example 1>
A filter body of Comparative Example 1 was obtained (transition metal-containing oxide porous The weight ratio of solid to high silica adsorbent is 1:0).

〈比較例2〉
はじめに、高シリカ吸着材18.0gとバインダー21.6gと精製水21.6gとを混合したスラリー状物に基材を含浸させて乾燥、焼成した後に、遷移金属含有酸化物多孔質体9.0gとバインダー21.6gと精製水72.0とを混合したスラリー状物に再度含浸させて乾燥、焼成して高シリカ吸着材と遷移金属含有酸化物多孔質体を基材表面に積層して担持する比較例2のフィルター体を得た(遷移金属含有酸化物多孔質体と高シリカ吸着材の重量比は1:3である)。原料や乾燥、焼成温度は試作例1と同様である。
<Comparative Example 2>
First, the substrate was impregnated with a slurry obtained by mixing 18.0 g of a high silica adsorbent, 21.6 g of a binder, and 21.6 g of purified water, followed by drying and firing. 0 g, 21.6 g of binder, and 72.0 g of purified water are impregnated again into a slurry, dried, and fired to laminate the high silica adsorbent and the transition metal-containing oxide porous material on the surface of the substrate. A filter body of Comparative Example 2 to be supported was obtained (the weight ratio of the transition metal-containing oxide porous body and the high silica adsorbent was 1:3). The raw materials, drying, and firing temperature are the same as in Prototype Example 1.

〈比較例3〉
遷移金属含有酸化物多孔質体の量を9.0g、高シリカゼオライトの量を0.0gとした以外は試作例2に準じ、比較例3のフィルター体を得た(遷移金属含有酸化物多孔質体と高シリカ吸着材の重量比は1:0である)。
<Comparative Example 3>
A filter body of Comparative Example 3 was obtained (transition metal-containing oxide porous The weight ratio of solid to high silica adsorbent is 1:0).

〈比較例4〉
遷移金属含有酸化物多孔質体の量を0.0g、高シリカゼオライトの量を9.0gとした以外は試作例2に準じ、比較例4のフィルター体を得た(遷移金属含有酸化物多孔質体と高シリカ吸着材の重量比は0:1である)。
<Comparative Example 4>
A filter body of Comparative Example 4 was obtained (transition metal-containing oxide porous The weight ratio of solid to high silica adsorbent is 0:1).

[トルエンの分解性能評価]
試作例2~10及び比較例3,4のフィルター体に関し、処理対象成分をトルエンとし、分解性能を通気試験により評価した。表1はそれぞれの試験条件である。
[Toluene decomposition performance evaluation]
Regarding the filter bodies of Prototype Examples 2 to 10 and Comparative Examples 3 and 4, toluene was used as the component to be treated, and the decomposition performance was evaluated by a ventilation test. Table 1 shows the respective test conditions.

Figure 0007177671000001
Figure 0007177671000001

試作例1及び比較例1,2のフィルター体について、試験No.1の条件でトルエンの分解試験を行い、各フィルター体の分解性能を表2に示した。各経過時間ごとに入口のトルエンの濃度(ppmC)と出口のトルエンの濃度(ppmC)を計測し、トルエンの除去率(%)を測定した。 Regarding the filter bodies of Prototype Example 1 and Comparative Examples 1 and 2, Test No. A toluene decomposition test was performed under the conditions of No. 1, and the decomposition performance of each filter body is shown in Table 2. The toluene concentration (ppmC) at the inlet and the toluene concentration (ppmC) at the outlet were measured at each elapsed time to measure the removal rate (%) of toluene.

Figure 0007177671000002
Figure 0007177671000002

[結果と考察]
表2から理解されるように、試作例1のフィルター体は、比較例1及び2のフィルター体よりもトルエン分解性能が高いことを示した。試作例1は比較例1よりも遷移金属含有酸化物多孔質体の量を少なくしても高い分解性能を示した。また、高シリカ吸着材と遷移金属含有酸化物多孔質体の混合物を基材表面に担持する試作例1は、基材表面に高シリカ吸着材と遷移金属含有酸化物多孔質体を積層して担持する比較例2よりも分解性能が高いことが示された。つまり、本発明のフィルター体は安価かつ省工程で容易に製造が可能でありながら従来と同等以上のVOCの分解性能を有することが分かった。
[Results and discussion]
As can be seen from Table 2, the filter body of Prototype Example 1 exhibited higher toluene decomposition performance than the filter bodies of Comparative Examples 1 and 2. Prototype Example 1 showed higher decomposition performance than Comparative Example 1 even when the amount of the transition metal-containing oxide porous material was reduced. Further, in Prototype Example 1 in which a mixture of a high silica adsorbent and a transition metal-containing porous oxide material is supported on the substrate surface, a high silica adsorbent and a transition metal-containing porous oxide material are laminated on the substrate surface. It was shown that the decomposition performance is higher than that of Comparative Example 2, which supports. In other words, it was found that the filter body of the present invention can be easily manufactured at a low cost with a reduced number of processes, and yet has a VOC decomposition performance equal to or greater than that of the conventional filter body.

次に、試作例2~4及び比較例3,4のフィルター体について、試験No.1の条件でトルエンの分解試験を行い、各フィルター体の分解性能を表3に示した。また、試験No.2の条件で行った分解試験の結果を表4に示した。各経過時間ごとに入口のトルエンの濃度(ppmC)と出口のトルエンの濃度(ppmC)を計測し、トルエンの除去率(%)を測定した。 Next, test no. A toluene decomposition test was performed under the conditions of No. 1, and Table 3 shows the decomposition performance of each filter body. Also, test no. Table 4 shows the results of the decomposition test conducted under the conditions of No. 2. The toluene concentration (ppmC) at the inlet and the toluene concentration (ppmC) at the outlet were measured at each elapsed time to measure the removal rate (%) of toluene.

Figure 0007177671000003
Figure 0007177671000003

Figure 0007177671000004
Figure 0007177671000004

[結果と考察]
表3及び4から理解されるように、試作例2~4のフィルター体は、いずれも比較例3及び4のトルエンの分解性能と同等又はそれ以上であることを示した。本発明のフィルター体は安価かつ省工程で容易に製造が可能でありながら従来と同等以上のVOCの分解性能を有することが分かった。特に、遷移金属含有酸化物多孔質体の割合が高シリカ吸着材分よりも小さい試作例4については、長時間にわたりトルエンの除去率が高く維持されていることが分かった。また、表3及び4の試験結果から、オゾンの供給量を増加させることでトルエンの除去率が向上することがわかった。
[Results and discussion]
As can be seen from Tables 3 and 4, the filter bodies of Prototype Examples 2 to 4 all exhibited the same or higher toluene decomposition performance than Comparative Examples 3 and 4. It was found that the filter body of the present invention can be easily manufactured at a low cost with a reduced number of processes, and has a VOC decomposition performance equal to or greater than that of the conventional filter body. In particular, it was found that Prototype Example 4, in which the ratio of the transition metal-containing oxide porous material was smaller than that of the high-silica adsorbent, maintained a high removal rate of toluene over a long period of time. Also, from the test results in Tables 3 and 4, it was found that the removal rate of toluene was improved by increasing the amount of supplied ozone.

次に、表3及び4の結果から、遷移金属含有酸化物多孔質体の割合が小さい(高シリカ吸着材の割合が大きい)フィルター体の性能が高いことが理解されたため、遷移金属含有酸化物多孔質体と高シリカ吸着材の比率を変更した試作例5~7で同様の試験を行った。試験No.1の条件でトルエンの通気試験の結果を表5、試験No.2の条件での通気試験を表6に示す。 Next, from the results of Tables 3 and 4, it was understood that the performance of the filter body with a small proportion of the transition metal-containing oxide porous material (large proportion of the high silica adsorbent) was high. A similar test was conducted for Prototype Examples 5 to 7 in which the ratio of the porous material to the high silica adsorbent was changed. Test no. Table 5 shows the results of the toluene permeation test under the conditions of No. Table 6 shows the ventilation test under the conditions of No. 2.

Figure 0007177671000005
Figure 0007177671000005

Figure 0007177671000006
Figure 0007177671000006

[結果と考察]
試作例5~7のいずれのフィルター体についても比較例3及び4のフィルター体よりもトルエンの分解性能が高い。また、試作例4のフィルター体と比較しても、より分解性能が向上した。特に、遷移金属含有酸化物多孔質体と高シリカ吸着材の比率が1:25(遷移金属含有酸化物多孔質体の比率が3.8%)である試作例6のフィルター体の分解性能が最も高く、長時間除去率を高く維持することができた。
[Results and discussion]
All of the filter bodies of Prototype Examples 5 to 7 have higher toluene decomposition performance than the filter bodies of Comparative Examples 3 and 4. Moreover, even when compared with the filter body of Prototype Example 4, the decomposition performance was further improved. In particular, the decomposition performance of the filter body of Prototype Example 6 in which the ratio of the transition metal-containing oxide porous material and the high silica adsorbent is 1:25 (the ratio of the transition metal-containing oxide porous material is 3.8%) is It was the highest, and a high removal rate could be maintained for a long time.

また、表3及び4の結果と同様に、いずれもオゾンの供給量を増加させることで処理対象成分であるトルエンの分解性能が向上することが示された。 In addition, similar to the results in Tables 3 and 4, it was shown that the decomposition performance of toluene, which is the component to be treated, was improved by increasing the supply amount of ozone.

ここで、さらに良好な性能のフィルター体を導くために、遷移金属含有酸化物多孔質体と高シリカ吸着材の比率をより細かく変更した試作例8~10で実験を行った。試験No.1の条件でトルエンの分解試験の結果を表7に示す。 Here, in order to derive a filter body with even better performance, experiments were conducted with Prototype Examples 8 to 10 in which the ratio of the transition metal-containing oxide porous body and the high silica adsorbent was changed more finely. Test no. Table 7 shows the results of the toluene decomposition test under condition 1.

Figure 0007177671000007
Figure 0007177671000007

[結果と考察]
表7に示される通り、遷移金属含有酸化物多孔質体と高シリカ吸着材の比率が1:20(遷移金属含有酸化物多孔質体の比率が4.7%)である試作例9のフィルター体の分解性能が最も高く、除去率を長時間高く維持できることがわかった。
[Results and discussion]
As shown in Table 7, the filter of Prototype Example 9 in which the ratio of the transition metal-containing oxide porous material and the high silica adsorbent is 1:20 (the ratio of the transition metal-containing oxide porous material is 4.7%) It was found that the decomposition performance of the body is the highest, and the removal rate can be maintained high for a long time.

試作例2~10の試験No.1の条件で216時間(9日間)経過後除去率のまとめを表8に示す。 Test Nos. of Prototype Examples 2-10. Table 8 shows a summary of the removal rate after 216 hours (9 days) under condition 1.

Figure 0007177671000008
Figure 0007177671000008

表8に示されるように、遷移金属含有酸化物多孔質体の割合が小さい(高シリカゼオライトの割合が大きい)フィルター体は、試作例2及び3と比べて処理対象成分であるトルエンの分解性能が高いことが示された。また、試作例9の分解性能が最も高く、試作例6,8及び10の分解性能も特に高いことから、遷移金属含有酸化物多孔質体の比率が3~7%、特には5%前後であるフィルター体とすると、より分解性能を向上させることができることが分かった。これらは、オゾンの供給量が少ない場合でも高い分解性能を示し、経済的で殊更有用である。 As shown in Table 8, the filter body with a small proportion of transition metal-containing oxide porous material (high proportion of high-silica zeolite) has a decomposition performance of toluene, which is a component to be treated, compared to Prototype Examples 2 and 3. was shown to be high. In addition, the decomposition performance of Prototype Example 9 is the highest, and the decomposition performance of Prototype Examples 6, 8 and 10 is particularly high, so that the ratio of the transition metal-containing oxide porous material is 3 to 7%, especially around 5%. It was found that a certain filter body can further improve the decomposition performance. These exhibit high decomposition performance even when the supply amount of ozone is small, and are economical and particularly useful.

高シリカ吸着材は、オゾンよりもVOCを吸着しやすく、フィルター体に担持された高シリカ吸着材によってVOCは吸着されて濃縮されるため、オゾンとの接触効率が上がったと考えられる。遷移金属含有酸化物多孔質体は少量であってもVOCとオゾンの触媒反応を促進することができることが分かった。 The high-silica adsorbent adsorbs VOCs more easily than ozone, and the VOCs are adsorbed and concentrated by the high-silica adsorbent carried on the filter body. It was found that even a small amount of the transition metal-containing oxide porous material can promote the catalytic reaction between VOC and ozone.

[まとめ]
比較例2の基材表面に高シリカ吸着材と遷移金属含有酸化物多孔質体を積層して担持するフィルター体と、試作例1の高シリカ吸着材と遷移金属含有酸化物多孔質体の混合物を基材表面に担持するフィルター体を比較して、試作例1の性能が高いことが示された。また、試作例2~10を用いた分解実験により、遷移金属含有酸化物多孔質体の割合が小さい(高シリカ吸着材の割合が大きい)試作例のフィルター体の性能が高いことが示され、さらには遷移金属含有酸化物多孔質体の比率が5%前後とすると、特に性能が向上することが分かった。高シリカ吸着材及び遷移金属含有酸化物多孔質体それぞれがフィルター体の表面に露出することにより、VOCを吸着しつつ、オゾンによる分解を促進することができると考えられる。
[summary]
A filter body in which a high silica adsorbent and a transition metal-containing oxide porous material are laminated and supported on the substrate surface of Comparative Example 2, and a mixture of a high silica adsorbent and a transition metal-containing oxide porous material of Prototype Example 1 It was shown that the performance of Prototype Example 1 was higher than that of the filter body carrying on the surface of the base material. In addition, decomposition experiments using Prototype Examples 2 to 10 showed that the performance of the filter bodies of the prototype examples with a small proportion of the transition metal-containing oxide porous material (a large proportion of the high silica adsorbent) was high. Furthermore, it was found that the performance is particularly improved when the ratio of the transition metal-containing oxide porous material is around 5%. By exposing the high-silica adsorbent and the transition metal-containing oxide porous body to the surface of the filter body, it is believed that the decomposition by ozone can be promoted while adsorbing VOCs.

本発明の製造方法は、簡易な工程で分解性能に優れたフィルター体を製造することができ、経済的であり環境負荷を抑えることができる。また、本発明の製造方法により製造されたフィルター体は、処理対象成分の分解性能が高く、さらに分解性能を長時間維持することができるため、経済的であり極めて有望である。
INDUSTRIAL APPLICABILITY The production method of the present invention can produce a filter body with excellent decomposition performance in a simple process, is economical, and can reduce environmental load. In addition, the filter body manufactured by the manufacturing method of the present invention has high decomposition performance of the component to be treated and can maintain the decomposition performance for a long time, and is economical and very promising.

Claims (5)

処理対象成分であるVOC及び気相無機還元性化合物の少なくとも一方を含有するガスとオゾンとを混合させ、触媒を担持したフィルターに接触させて、該処理対象成分とオゾンの促進酸化により前記処理対象成分を分解処理するオゾン酸化分解処理に用いられるフィルター体であって、
前記フィルター体は、コバルト、マンガン、銅の複合酸化物からなる遷移金属含有酸化物多孔質体と高シリカペンタルゼオライト、脱アルミニウムフォージャサイト及びメソポーラスシリケートのいずれかよりなる高シリカ吸着材を1:3ないし1:50の重量比で含有する混合物を基材表面に担持してなる
ことを特徴とするオゾン酸化分解処理に用いられるフィルター体。
A gas containing at least one of a VOC and a gaseous inorganic reducing compound, which are components to be treated, is mixed with ozone and brought into contact with a filter supporting a catalyst, and the components to be treated and ozone are acceleratedly oxidized to obtain the target to be treated. A filter body used for ozone oxidation decomposition treatment that decomposes components,
The filter body comprises a transition metal-containing oxide porous body made of a composite oxide of cobalt, manganese and copper, and a high silica adsorbent made of one of high silica pentasil zeolite, dealuminated faujasite and mesoporous silicate. : A filter body for use in ozone oxidative decomposition treatment, characterized in that a mixture containing : 3 to 1:50 is supported on the surface of a base material.
処理対象成分であるVOC及び気相無機還元性化合物の少なくとも一方を含有するガスとオゾンとを混合させ、触媒を担持したフィルターに接触させて、該処理対象成分とオゾンの促進酸化により前記処理対象成分を分解処理するオゾン酸化分解処理に用いられるフィルター体の製造方法であって、
前記フィルター体は、コバルト、マンガン、銅の複合酸化物からなる遷移金属含有酸化物多孔質体と高シリカペンタシルゼオライト、脱アルミニウムフォージャサイト及びメソポーラスシリケートのいずれかよりなる高シリカ吸着材を水中で混合して混合スラリー状物とし、前記混合スラリー状物に基材を含浸させて焼成されてなる
ことを特徴とするオゾン酸化分解処理に用いられるフィルター体の製造方法。
A gas containing at least one of a VOC and a gaseous inorganic reducing compound, which are components to be treated, is mixed with ozone and brought into contact with a filter supporting a catalyst, and the components to be treated and ozone are acceleratedly oxidized to obtain the target to be treated. A method for manufacturing a filter body used for ozone oxidation decomposition treatment for decomposing components,
The filter body comprises a transition metal-containing oxide porous body made of a composite oxide of cobalt, manganese and copper and a high silica adsorbent made of one of high silica pentasil zeolite, dealuminated faujasite and mesoporous silicate in water. A method for producing a filter body for use in ozone oxidative decomposition treatment, characterized in that a mixed slurry is obtained by mixing with and impregnating a base material in the mixed slurry, followed by calcining.
前記混合スラリー状物に含まれる前記遷移金属含有酸化物多孔質体分の割合が前記高シリカ吸着材分の割合よりも少ないことを特徴とする請求項2に記載のオゾン酸化分解処理に用いられるフィルター体の製造方法。 3. Use for ozone oxidative decomposition treatment according to claim 2, wherein the ratio of the transition metal-containing oxide porous material contained in the mixed slurry is less than the ratio of the high silica adsorbent. A method for manufacturing a filter body. 前記混合スラリー状物に含まれる前記遷移金属含有酸化物多孔質体分と前記高シリカ吸着材分が1:3ないし1:50の重量比である請求項2又は3に記載のオゾン酸化分解処理に用いられるフィルター体の製造方法。 4. The ozone oxidative decomposition treatment according to claim 2 or 3, wherein the weight ratio of said transition metal-containing oxide porous material to said high silica adsorbent contained in said mixed slurry is 1:3 to 1:50. A method for manufacturing a filter body used for 前記遷移金属含有酸化物多孔質体のBET比表面積が100m/g以上である請求項4に記載のオゾン酸化分解処理に用いられるフィルター体の製造方法。 5. The method for producing a filter body used for ozone oxidation decomposition treatment according to claim 4, wherein the transition metal-containing oxide porous body has a BET specific surface area of 100 m 2 /g or more.
JP2018217416A 2018-11-20 2018-11-20 Filter body used for ozone oxidation decomposition treatment and manufacturing method thereof Active JP7177671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018217416A JP7177671B2 (en) 2018-11-20 2018-11-20 Filter body used for ozone oxidation decomposition treatment and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018217416A JP7177671B2 (en) 2018-11-20 2018-11-20 Filter body used for ozone oxidation decomposition treatment and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2020081934A JP2020081934A (en) 2020-06-04
JP7177671B2 true JP7177671B2 (en) 2022-11-24

Family

ID=70905312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018217416A Active JP7177671B2 (en) 2018-11-20 2018-11-20 Filter body used for ozone oxidation decomposition treatment and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7177671B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116351456B (en) * 2023-02-17 2024-04-30 南京大学 Preparation method and application of supported catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222697A (en) 2005-12-26 2007-09-06 National Institute Of Advanced Industrial & Technology Decomposition/removal method for volatile organic compound
JP2008200627A (en) 2007-02-21 2008-09-04 Mitsubishi Electric Corp Air cleaning apparatus
JP2010104915A (en) 2008-10-30 2010-05-13 Kobe Steel Ltd Deodorant for removing acetaldehyde and method for removing acetaldehyde
JP2015174017A (en) 2014-03-14 2015-10-05 吸着技術工業株式会社 Acceleration of ozone oxidation reaction using transition metal-containing oxide porous body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222697A (en) 2005-12-26 2007-09-06 National Institute Of Advanced Industrial & Technology Decomposition/removal method for volatile organic compound
JP2008200627A (en) 2007-02-21 2008-09-04 Mitsubishi Electric Corp Air cleaning apparatus
JP2010104915A (en) 2008-10-30 2010-05-13 Kobe Steel Ltd Deodorant for removing acetaldehyde and method for removing acetaldehyde
JP2015174017A (en) 2014-03-14 2015-10-05 吸着技術工業株式会社 Acceleration of ozone oxidation reaction using transition metal-containing oxide porous body

Also Published As

Publication number Publication date
JP2020081934A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
TWI826408B (en) A catalyst for catalyzing formaldehyde oxidation and the preparation and use of the same
CN109248679B (en) VOCs normal-temperature degradation efficient catalyst and preparation and application thereof
CN101884906B (en) Modified honeycomb activated carbon with nitrogen oxide adsorption function and preparation method thereof
CN108940304B (en) Mn/Ce/Cu-based low-temperature plasma catalyst and preparation and application thereof
CN102247746A (en) Formaldehyde elimination agent and preparation method thereof
KR102123168B1 (en) Ozone oxidation decomposition treatment method of VOC and/or gaseous inorganic reducing compound in gas
CN114259978A (en) Preparation process of efficient coal-fired flue gas demercuration adsorbent and product thereof
CN102000547B (en) Cuprous chloride-modified honeycomb activated carbon adsorbing material and preparation method thereof
JP6396045B2 (en) Method for ozone oxidation reaction of VOC and / or gas phase inorganic reducing compound and method for producing ultrafine oxide particles used in the method
JP7177671B2 (en) Filter body used for ozone oxidation decomposition treatment and manufacturing method thereof
JPH09225301A (en) Method for purifying fumigation exhaust gas and catalyst therefor
CN108686651B (en) Catalyst for simultaneously denitrifying and removing mercury from flue gas, and preparation method and application thereof
CN101693193A (en) Rare earth-Cu-Fe active carbon adsorbent, preparation method and application thereof
CN110038645A (en) A kind of composite catalyst and the preparation method and application thereof
JP2009090206A (en) Air cleaning apparatus and air cleaning method
CN109926033B (en) Modified small pore molecular sieve adsorbent and its preparation method and use
CN101837300B (en) Photocatalysis coupled catalyst based on ozone and preparation method thereof
KR101538000B1 (en) The method of oxidizing hazardous compounds by the mixture containing manganese
JP6345964B2 (en) NOx adsorbent and method for producing the same
WO1996022827A1 (en) Deodorant material, process for producing the same, and method of deodorization
KR101329828B1 (en) A tungsten/titania-based catalyst and a method of preparing the same
JP4904695B2 (en) Deodorizing body, method for producing deodorizing body, and deodorizing apparatus using the same
JP2009082785A (en) Method and apparatus for treating gas containing harmful substance
JPH0780056A (en) Deodorizing method
CN114210314B (en) Double-precursor carbon-based catalyst, preparation method thereof and application of double-precursor carbon-based catalyst in removing formaldehyde and mercury

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221111

R150 Certificate of patent or registration of utility model

Ref document number: 7177671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150