[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7175035B2 - flow control valve - Google Patents

flow control valve Download PDF

Info

Publication number
JP7175035B2
JP7175035B2 JP2021001330A JP2021001330A JP7175035B2 JP 7175035 B2 JP7175035 B2 JP 7175035B2 JP 2021001330 A JP2021001330 A JP 2021001330A JP 2021001330 A JP2021001330 A JP 2021001330A JP 7175035 B2 JP7175035 B2 JP 7175035B2
Authority
JP
Japan
Prior art keywords
valve
flow control
cylindrical portion
control valve
male threaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021001330A
Other languages
Japanese (ja)
Other versions
JP2022106385A (en
Inventor
康平 菱谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2021001330A priority Critical patent/JP7175035B2/en
Priority to CN202111559956.1A priority patent/CN114738532A/en
Publication of JP2022106385A publication Critical patent/JP2022106385A/en
Application granted granted Critical
Publication of JP7175035B2 publication Critical patent/JP7175035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/08Guiding yokes for spindles; Means for closing housings; Dust caps, e.g. for tyre valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/50Mechanical actuating means with screw-spindle or internally threaded actuating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Description

本発明は、流量制御弁に関する。 The present invention relates to flow control valves.

冷凍サイクルにおいて流量制御弁として使用されるモータ駆動型の電動弁は、モータにより回転駆動される弁軸の雄ねじ部を弁本体に設けられた雌ねじ孔に螺合させてなるねじ機構を有し、このねじ機構により回転運動を軸線方向運動に変換することによって、弁軸を軸線方向に変位させ、流量を制御している。 A motor-driven valve used as a flow control valve in a refrigeration cycle has a screw mechanism in which a male threaded portion of a valve shaft rotated by a motor is screwed into a female threaded hole provided in a valve body, The screw mechanism converts rotary motion into axial motion, thereby displacing the valve stem in the axial direction and controlling the flow rate.

例えば特許文献1に示すような流量制御弁において、内部に弁室を画成する弁本体と、モータのロータ及びねじ機構を収容する有底円筒状のキャンとが接合されている。かかる流量制御弁において、ロータに連結されたロータ軸の雄ねじ部が、雌ねじ孔に対して回転することによりロータ軸を軸線方向に移動させ、ニードル弁を保持する弁ホルダを軸線方向に移動させることができる。また、密閉された弁本体及びキャン内は冷媒で満たされている。 For example, in a flow control valve as disclosed in Patent Document 1, a valve body defining a valve chamber therein is joined to a bottomed cylindrical can that accommodates a rotor of a motor and a screw mechanism. In such a flow control valve, the male threaded portion of the rotor shaft connected to the rotor rotates with respect to the female threaded hole, thereby axially moving the rotor shaft and axially moving the valve holder holding the needle valve. can be done. In addition, the sealed valve body and can are filled with refrigerant.

特開2018-119595号公報JP 2018-119595 A

ところで、冷凍サイクル内を循環する冷媒には、コンプレッサなどの稼働中に異物が混入することがある。このため、異物が混入した冷媒が配管を通って流量制御弁の弁本体及びキャン内に進入し、ねじ機構付近に到達することも予想される。かかる場合、特許文献1の流量制御弁においては、雄ねじ部の端部が雌ねじ孔から外部に露出しているため、雄ねじ部に付着した異物が、ロータ軸の軸線方向移動に伴い雌ねじ孔内に進入し、それによりねじ間で噛み込みなどが生じ、ねじ機構の円滑な動作が阻害されるおそれがある。 By the way, the refrigerant circulating in the refrigerating cycle may be contaminated with foreign matter during operation of the compressor or the like. Therefore, it is expected that the refrigerant mixed with foreign matter may enter the valve body and the can of the flow control valve through the pipe and reach the vicinity of the screw mechanism. In such a case, in the flow control valve of Patent Document 1, since the end of the male threaded portion is exposed to the outside from the female threaded hole, foreign matter adhering to the male threaded portion may enter the female threaded hole as the rotor shaft moves in the axial direction. The foreign matter may enter the screw mechanism, causing jamming or the like between the screws, thereby hindering the smooth operation of the screw mechanism.

これに対し、流量制御弁の冷媒の入口に目の細かいフィルタなどを配置して、冷媒に混入した異物を捕獲することも一案である。しかしながら、流量制御弁にフィルタなどを設置すると、流量制御弁のコスト増を招来し、また定期的にフィルタの清掃が必要になりメンテナンスの手間も増える。 On the other hand, it is also an idea to arrange a fine-mesh filter or the like at the inlet of the refrigerant of the flow control valve to catch the foreign matter mixed in the refrigerant. However, if a filter or the like is installed in the flow control valve, the cost of the flow control valve will increase, and the filter will need to be cleaned regularly, increasing the maintenance effort.

そこで本発明は、コストやメンテナンスの手間を抑制しつつ、円滑な動作を確保できる流量制御弁を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a flow control valve capable of ensuring smooth operation while suppressing costs and labor for maintenance.

上記課題を解決するために、本発明の流量制御弁は、
キャンと、
前記キャンに接合される弁本体と、
前記キャンと前記弁本体とで囲われた空間内に配置され、前記弁本体に対して回転可能な弁軸と、前記弁本体に対して固定されたガイドステムと、を有し、
前記弁軸は、一体の部材から構成され、雄ねじ部、前記雄ねじ部の上側に配置された上部円筒部、及び前記雄ねじ部の下側に配置された下部円筒部を有し、
前記ガイドステムは、前記雄ねじ部に螺合する雌ねじ孔、前記雌ねじ孔の上側に配置され、前記上部円筒部に対向する上端ガイド部、及び前記雌ねじ孔の下側に配置され、前記下部円筒部に対向する下端ガイド部を有し、
前記上端ガイド部と前記上部円筒部との径方向の隙間、及び前記下端ガイド部と前記下部円筒部との径方向の隙間はいずれも、前記雌ねじ孔と前記雄ねじ部との径方向の隙間より小さい、ことを特徴する。
In order to solve the above problems, the flow control valve of the present invention is
Can and
a valve body joined to the can;
Having a valve shaft arranged in a space surrounded by the can and the valve body and rotatable with respect to the valve body, and a guide stem fixed with respect to the valve body,
The valve stem is composed of an integral member and has a male threaded portion, an upper cylindrical portion arranged above the male threaded portion, and a lower cylindrical portion arranged below the male threaded portion ,
The guide stem includes a female threaded hole that is screwed into the male threaded portion, an upper end guide portion that is arranged above the female threaded hole and faces the upper cylindrical portion, and a lower cylindrical portion that is arranged below the female threaded hole. has a lower end guide portion facing the
Both the radial clearance between the upper end guide portion and the upper cylindrical portion and the radial clearance between the lower end guide portion and the lower cylindrical portion are larger than the radial clearance between the female threaded hole and the male threaded portion. Characterized by being small.

本発明によれば、コストやメンテナンスの手間を抑制しつつ、円滑な動作を確保できる流量制御弁を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the flow control valve which can ensure smooth operation|movement can be provided, suppressing the effort of cost and maintenance.

図1は、本発明の実施形態に係る流量制御弁を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a flow control valve according to an embodiment of the invention. 図2は、流量制御弁の雌ねじ孔と雄ねじ部の一部を拡大して示す断面図である。FIG. 2 is a cross-sectional view showing an enlarged part of the female threaded hole and the male threaded portion of the flow control valve. 図3は、比較例にかかる流量制御弁を示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing a flow control valve according to a comparative example.

以下、図面を参照して、本発明にかかる実施形態について説明する。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る流量制御弁1を示す縦断面図である。ここで、流量制御弁1におけるロータ側を上方といい、ニードル弁側を下方という。 FIG. 1 is a longitudinal sectional view showing a flow control valve 1 according to an embodiment of the invention. Here, the rotor side of the flow control valve 1 is referred to as the upper side, and the needle valve side is referred to as the lower side.

(流量制御弁の構成)
流量制御弁1は、上端が開口した有底円筒状の弁本体10と、弁本体10の上端面に下端部が溶接等により密封接合された有頂円筒状のキャン45と、弁本体10の内側に固定されたガイドステム15と、ガイドステム15の内側に配設された弁軸21と、弁軸21に対し一体的に回動可能に連結固定されたロータ30と、ロータ30を回転駆動すべくキャン45の外周に外嵌されたステータ50とを備えている。ここでは、ロータ30とステータ50とでステッピングモータが構成される。流量制御弁1の軸線をLとする。
(Configuration of flow control valve)
The flow control valve 1 includes a bottomed cylindrical valve body 10 whose upper end is open, a capped cylindrical can 45 whose lower end is hermetically joined to the upper end surface of the valve body 10 by welding or the like, and the valve body 10. A guide stem 15 fixed inside, a valve shaft 21 arranged inside the guide stem 15, a rotor 30 integrally rotatably connected and fixed to the valve shaft 21, and the rotor 30 is driven to rotate. A stator 50 fitted on the outer circumference of the can 45 is provided. Here, the rotor 30 and the stator 50 constitute a stepping motor. Let L be the axis of the flow control valve 1 .

弁本体10は、中空円筒部10aと底壁部10bとを連設してなる。弁本体10はSUS製の板材をプレス成形することによって形成できるが、SUS素材を圧造することによって形成してもよい。 The valve body 10 is formed by connecting a hollow cylindrical portion 10a and a bottom wall portion 10b. The valve body 10 can be formed by press-molding a plate material made of SUS, but may be formed by forging a SUS material.

底壁部10bにおいて、その中央に円形の開口10dが形成されており、開口10dには、弁座部材11がロウ付け等で固定されている。弁座部材11は、開口10dに嵌合した小径円筒部11aと、小径円筒部11aより大径の大径円筒部11bとを連設してなる。大径円筒部11bの内周に第1の配管T1の端部が嵌挿され、ロウ付けなどにより接続されている。 A circular opening 10d is formed in the center of the bottom wall portion 10b, and a valve seat member 11 is fixed to the opening 10d by brazing or the like. The valve seat member 11 comprises a small-diameter cylindrical portion 11a fitted in the opening 10d and a large-diameter cylindrical portion 11b having a larger diameter than the small-diameter cylindrical portion 11a. The end of the first pipe T1 is inserted into the inner periphery of the large-diameter cylindrical portion 11b and connected by brazing or the like.

弁座部材11は、その中央に貫通したオリフィス11dを有し、オリフィス11dの上端に弁座11eが形成されている。オリフィス11dは下端側に向かうにしたがって拡径している。 The valve seat member 11 has an orifice 11d passing through its center, and a valve seat 11e is formed at the upper end of the orifice 11d. The orifice 11d expands in diameter toward the lower end side.

弁本体10の中空円筒部10aには、入口開口10eが形成されており、入口開口10eに第2の配管T2の端部が嵌挿され、ロウ付けなどにより接続されている。入口開口10eの軸線をOとする。 An inlet opening 10e is formed in the hollow cylindrical portion 10a of the valve body 10, and the end of the second pipe T2 is inserted into the inlet opening 10e and connected by brazing or the like. Let O be the axis of the entrance opening 10e.

弁本体10の上端にキャン45の下端が突き当てられた状態で、キャン45の下端内周に鍔状円盤18が嵌合しており、これらは溶接により接合されている。これにより、弁本体10とキャン45とが密閉した状態で一体化される。 With the lower end of the can 45 abutting against the upper end of the valve body 10, the collar-shaped disk 18 is fitted to the inner circumference of the lower end of the can 45, and these are joined by welding. As a result, the valve body 10 and the can 45 are integrated in a hermetically sealed state.

鍔状円盤18は、複数の貫通孔18aを備えており、この貫通孔18aを介して、冷媒が弁本体10側とキャン45側との間で移動することを可能とする。 The brim-shaped disc 18 has a plurality of through holes 18a through which the refrigerant can move between the valve main body 10 side and the can 45 side.

図1において、キャン45の外側において、ヨーク51、ボビン52、ステータコイル53、及び樹脂モールドカバー(不図示)等からなるステータ50が配置されている。ステータコイル53は、不図示のリード線を介して外部の制御装置に接続され、ステータコイル53の通電励磁によって、キャン45内に配設されたロータ30を軸線L回りに回転可能となっている。 In FIG. 1, a stator 50 including a yoke 51, a bobbin 52, a stator coil 53, and a resin mold cover (not shown) is arranged outside the can 45. As shown in FIG. The stator coil 53 is connected to an external control device via a lead wire (not shown), and the rotor 30 arranged in the can 45 can be rotated around the axis L by energization and excitation of the stator coil 53 . .

ロータ30の内側に配設された樹脂製のガイドステム15は、中実円筒状の本体15aと、中空円筒部15bとを連設してなる。本体15aは、その中央を貫通する貫通開口15eを有する。貫通開口15eは、上端側の円筒状である上端ガイド部15fと、下端側の円筒状である下端ガイド部15gと、上端ガイド部15fと下端ガイド部15gとの間に形成された雌ねじ孔15cとを有する。下端ガイド部15gの内径は、弁軸21の雄ねじ部21bのねじ山外径より大きいため、ガイドステム15に対して弁軸21を下方より挿入して組み付けることができる。また上端ガイド部15fの内径が、雄ねじ部21bのねじ山外径より小さいため、その段部を利用して閉弁方向用可動ストッパ35を設置できる。 The resin-made guide stem 15 disposed inside the rotor 30 comprises a solid cylindrical main body 15a and a hollow cylindrical portion 15b. The main body 15a has a through opening 15e passing through its center. The through opening 15e includes a cylindrical upper end guide portion 15f on the upper end side, a cylindrical lower end guide portion 15g on the lower end side, and a female screw hole 15c formed between the upper end guide portion 15f and the lower end guide portion 15g. and Since the inner diameter of the lower end guide portion 15g is larger than the outer diameter of the screw thread of the male thread portion 21b of the valve shaft 21, the valve shaft 21 can be inserted into the guide stem 15 from below. In addition, since the inner diameter of the upper end guide portion 15f is smaller than the outer diameter of the screw thread of the male screw portion 21b, the valve closing direction movable stopper 35 can be installed using the stepped portion.

中空円筒部15bの中間部外周には、弁本体10の上端に溶接された鍔状円盤18が固定されており、この鍔状円盤18を介して、ガイドステム15は弁本体10に対して固定されている。中空円筒部15bには、均圧穴15dが形成されている。 A collar-shaped disk 18 welded to the upper end of the valve body 10 is fixed to the outer periphery of the intermediate portion of the hollow cylindrical portion 15b. It is A pressure equalizing hole 15d is formed in the hollow cylindrical portion 15b.

また、ロータ30及び弁軸21の制御用原点位置を設定すべく、ガイドステム15の本体15aの上面には、断面矩形状の閉弁方向用固定ストッパ55が上向きに突設されており、またガイドステム15の本体15aの下面には、断面矩形状の開弁方向用固定ストッパ56が下向きに突設されている。ここで、ロータ30及び弁軸21の制御用原点位置とは、閉弁方向用可動ストッパ35が閉弁方向用固定ストッパ55に当接して係止され、ロータ30及び弁軸21が最下降位置に達した時の位置のことである。 In order to set the origin position for control of the rotor 30 and the valve shaft 21, a fixed stopper 55 for the valve closing direction having a rectangular cross section is provided on the upper surface of the main body 15a of the guide stem 15, and protrudes upward. A valve-opening direction fixed stopper 56 having a rectangular cross section projects downward from the lower surface of the main body 15 a of the guide stem 15 . Here, the origin position for control of the rotor 30 and the valve shaft 21 means that the movable stopper 35 for the valve-closing direction is in contact with the fixed stopper 55 for the valve-closing direction, and the rotor 30 and the valve shaft 21 are at the lowest position. is the position when it reaches

金属製の弁軸21は、ロータ30に取り付けられた環状の連結体32が外嵌した端部21aと、ガイドステム15の上端ガイド部15fに嵌合する上部円筒部21fと、雌ねじ孔15cに螺合する雄ねじ部21bと、下端ガイド部15gに嵌合する下部円筒部21gと、下端連結部21dとを同軸に連設してなる。 The metal valve shaft 21 has an end portion 21a fitted with an annular connecting body 32 attached to the rotor 30, an upper cylindrical portion 21f fitted to the upper end guide portion 15f of the guide stem 15, and an internal screw hole 15c. A male threaded portion 21b to be screwed together, a lower cylindrical portion 21g to be fitted to the lower end guide portion 15g, and a lower end connecting portion 21d are coaxially connected.

ここで、上端ガイド部15fと上部円筒部21fとの径方向の隙間、及び下端ガイド部15gと下部円筒部21gとの径方向の隙間は、雌ねじ孔15cと雄ねじ部21bとの径方向の隙間より小さくなっている。 Here, the radial gap between the upper end guide portion 15f and the upper cylindrical portion 21f and the radial gap between the lower end guide portion 15g and the lower cylindrical portion 21g are the radial gaps between the female threaded hole 15c and the male threaded portion 21b. is getting smaller.

ここで、上端ガイド部15fと上部円筒部21fとの径方向の隙間は、上端ガイド部15fの内径と、上部円筒部21fの外径との差をいい、また下端ガイド部15gと下部円筒部21gとの径方向の隙間は、下端ガイド部15gの内径と、下部円筒部21gの外径との差をいう。雌ねじ孔15cと雄ねじ部21bとの径方向の隙間については、以下に説明する。 Here, the radial gap between the upper end guide portion 15f and the upper cylindrical portion 21f refers to the difference between the inner diameter of the upper end guide portion 15f and the outer diameter of the upper cylindrical portion 21f, and the gap between the lower end guide portion 15g and the lower cylindrical portion. 21g refers to the difference between the inner diameter of the lower end guide portion 15g and the outer diameter of the lower cylindrical portion 21g. The radial gap between the female threaded hole 15c and the male threaded portion 21b will be described below.

図2は、雌ねじ孔15cと雄ねじ部21bの一部を拡大して示す断面図である。雌ねじ孔15cと雄ねじ部21bとの間には、所定のガタが軸線方向に存在する。このガタがあるために、雌ねじ孔15cと雄ねじ部21bとは径方向にも相対的に動きうる。 FIG. 2 is a cross-sectional view showing an enlarged part of the female screw hole 15c and the male screw portion 21b. A predetermined backlash exists in the axial direction between the female threaded hole 15c and the male threaded portion 21b. Due to this backlash, the female threaded hole 15c and the male threaded portion 21b can also move relative to each other in the radial direction.

図2において、雌ねじ孔15cに対して径方向に最も近接した雄ねじ部21bを実線で示し、雌ねじ孔15cに対して径方向に最も離間した雄ねじ部21bを点線で示す。明らかであるが、雌ねじ孔15cと雄ねじ部21bの近接または離間状態は、軸線Lを挟んだ反対側では逆になる。 In FIG. 2, the male threaded portion 21b radially closest to the female threaded hole 15c is indicated by a solid line, and the male threaded portion 21b radially most distant from the female threaded hole 15c is indicated by a dotted line. As is apparent, the proximity or separation between the female threaded hole 15c and the male threaded portion 21b is reversed on the opposite side with the axis L interposed therebetween.

図2において、雌ねじ孔15cと、雌ねじ孔15cから最も離間した雄ねじ部21bとの径方向の距離Δ(図2中のΔMax)を、ここでは雌ねじ孔15cと雄ねじ部21bとの径方向の隙間と定義する。上端ガイド部15fと上部円筒部21fとの径方向の隙間、及び下端ガイド部15gと下部円筒部21gとの径方向の隙間は、いずれも距離ΔMax未満である。 In FIG. 2, the radial distance Δ (ΔMax in FIG. 2) between the female threaded hole 15c and the male threaded portion 21b farthest from the female threaded hole 15c is defined as the radial gap between the female threaded hole 15c and the male threaded portion 21b. defined as A radial gap between the upper end guide portion 15f and the upper cylindrical portion 21f and a radial gap between the lower end guide portion 15g and the lower cylindrical portion 21g are both less than the distance ΔMax.

距離ΔMaxを持つ雌ねじ孔15cと雄ねじ部21bとの間の空間Sは、雄ねじ部21bの周囲を螺旋状に延在して、上端ガイド部15fと上部円筒部21fとの間の隙間、及び下端ガイド部15gと下部円筒部21gとの間の隙間につながっている。 A space S between the female threaded hole 15c and the male threaded portion 21b having a distance ΔMax extends helically around the male threaded portion 21b to form a gap between the upper end guide portion 15f and the upper cylindrical portion 21f and the lower end It is connected to the gap between the guide portion 15g and the lower cylindrical portion 21g.

図1において、弁軸21の端部21aに圧入により固定された閉弁方向用可動ストッパ35が、端部21aと上部円筒部21fとの間の段部に突き当てるようにして配設され、ロータ30の上壁下面に係止されている。閉弁方向用可動ストッパ35の下面には、断面矩形状のストッパ部35aが形成されている。 In FIG. 1, a valve closing direction movable stopper 35 fixed by press fitting to the end portion 21a of the valve shaft 21 is disposed so as to abut against a step portion between the end portion 21a and the upper cylindrical portion 21f, It is engaged with the lower surface of the upper wall of the rotor 30 . A stopper portion 35a having a rectangular cross section is formed on the lower surface of the movable stopper 35 for the valve closing direction.

また、弁軸21の下部円筒部21gの下端部には、鍔状部21cの上面に突き当てるようにして、開弁方向用可動ストッパ36が圧入により嵌合している。開弁方向用可動ストッパ36の上面には、断面矩形状のストッパ部36aが形成されている。なお、開弁方向用可動ストッパ36の内周に雌ねじを形成し、下部円筒部21gの外周に雄ねじを形成し、これらねじ同士を螺合させることにより両者の固定を行ってもよい。 A valve-opening direction movable stopper 36 is press-fitted to the lower end of the lower cylindrical portion 21g of the valve shaft 21 so as to abut against the upper surface of the brim portion 21c. A stopper portion 36a having a rectangular cross section is formed on the upper surface of the movable stopper 36 for the valve opening direction. A female thread may be formed on the inner periphery of the valve-opening direction movable stopper 36, and a male thread may be formed on the outer periphery of the lower cylindrical portion 21g.

弁軸21の下方において、弁ホルダ23が、弁ホルダ23の内側に摺動可能に嵌合して配設されている。弁ホルダ23は、中空円筒部23aと、上壁23bとを連設した有頂円筒形状を有している。上壁23bの中央には、段付き開口23cが形成されており、中空円筒部23aは連通穴23dを有する。弁ホルダ23の中空円筒部23aの開放した下端は、第2の配管T2より下方に配設され、カシメ固定された環状部材27により閉止されている。 Below the valve shaft 21 , a valve holder 23 is slidably fitted inside the valve holder 23 . The valve holder 23 has a truncated cylindrical shape in which a hollow cylindrical portion 23a and an upper wall 23b are connected. A stepped opening 23c is formed in the center of the upper wall 23b, and the hollow cylindrical portion 23a has a communicating hole 23d. The open lower end of the hollow cylindrical portion 23a of the valve holder 23 is disposed below the second pipe T2 and closed by an annular member 27 which is crimped and fixed.

段付き開口23cの段部に弁軸21の鍔状部21cが当接した状態で、下端連結部21dが段付き開口23cを貫通しており、この下端連結部21dを拡径するようにカシメ加工することで、弁軸21と弁ホルダ23とが固定連結されている。弁本体10と弁ホルダ23との間に、弁室29が画成される。 The lower end connecting portion 21d passes through the stepped opening 23c in a state where the flange portion 21c of the valve shaft 21 is in contact with the stepped portion of the stepped opening 23c. By processing, the valve shaft 21 and the valve holder 23 are fixedly connected. A valve chamber 29 is defined between the valve body 10 and the valve holder 23 .

環状部材27を通して弁ホルダ23から先端を突出させるようにして、ニードル弁25が配置されている。ニードル弁25は、弁鍔部25aと、円筒部25bと、下方に向かうにしたがって縮径する円錐部25cとを連設してなる。 A needle valve 25 is arranged such that its tip protrudes from the valve holder 23 through the annular member 27 . The needle valve 25 comprises a valve collar portion 25a, a cylindrical portion 25b, and a conical portion 25c whose diameter decreases downward.

弁鍔部25aの外径は、環状部材27の内径より大きいため、弁ホルダ23からニードル弁25が脱落することが阻止される。弁鍔部25aと環状部材27との間には、ワッシャ28が配設されている。 Since the outer diameter of the valve collar portion 25 a is larger than the inner diameter of the annular member 27 , the needle valve 25 is prevented from falling off from the valve holder 23 . A washer 28 is arranged between the valve collar portion 25 a and the annular member 27 .

弁ホルダ23の上壁23bと、ニードル弁25との間に、下端鍔部26aを有する円筒状のばね受け部材26が配設されている。さらに上壁23bと下端鍔部26aとの間には、コイルバネ24が配設され、弁ホルダ23に対してばね受け部材26を下方に向かって付勢している。 Between the upper wall 23b of the valve holder 23 and the needle valve 25, a cylindrical spring receiving member 26 having a lower flange 26a is arranged. A coil spring 24 is arranged between the upper wall 23b and the lower flange 26a to urge the spring receiving member 26 downward against the valve holder 23. As shown in FIG.

円錐部25cが弁座部材11の弁座11eに着座して、上方に向かう押圧力を受けたときに、ニードル弁25により上向きに付勢されたばね受け部材26が弁ホルダ23の上壁23bの下面(または下端連結部21d)に当接することで、ニードル弁25は弁軸21に対して軸線方向に係止される。 When the conical portion 25c is seated on the valve seat 11e of the valve seat member 11 and receives an upward pressing force, the spring receiving member 26 urged upward by the needle valve 25 is pushed upward by the upper wall 23b of the valve holder 23. The needle valve 25 is axially locked to the valve shaft 21 by contacting the lower surface (or the lower end connecting portion 21d).

上記した弁軸21、弁ホルダ23、ニードル弁25、及びコイルバネ24は、ニードル弁25が弁座11eから離隔している状態(開弁状態)においては、ガイドステム15に対して実質的に一体的に回転しながら昇降する。 The valve shaft 21, the valve holder 23, the needle valve 25, and the coil spring 24 are substantially integrated with the guide stem 15 when the needle valve 25 is separated from the valve seat 11e (valve open state). ascends and descends while rotating.

(流量制御弁の動作)
流量制御弁1の動作を、具体的に説明する。
ここで、第2の配管T2から弁室29内に冷媒(流体)が進入しているものとする。
(Operation of flow control valve)
The operation of the flow control valve 1 will be specifically described.
Here, it is assumed that refrigerant (fluid) is entering the valve chamber 29 from the second pipe T2.

外部の制御装置からステータ50にパルス給電が行われることにより、ロータ30及び弁軸21が一方向に回転駆動され、雌ねじ孔15cと雄ねじ部21bからなるねじ送り機構により、弁軸21及び閉弁方向用可動ストッパ35が回転しながら下降し、ニードル弁25が弁座11eに着座してオリフィス11dが閉止される。これにより、弁室29から第1の配管T1側へ向かう冷媒の流れを遮断する。 By supplying pulse power to the stator 50 from an external control device, the rotor 30 and the valve shaft 21 are rotationally driven in one direction, and the valve shaft 21 and the valve are closed by a screw feed mechanism consisting of a female screw hole 15c and a male screw portion 21b. The directional movable stopper 35 descends while rotating, and the needle valve 25 is seated on the valve seat 11e to close the orifice 11d. This blocks the flow of refrigerant from the valve chamber 29 toward the first pipe T1.

この時点では、可動ストッパ35は未だ固定ストッパ55に当接しておらず、ロータ30及び弁軸21の回転下降は停止されず、コイルバネ24が所定量圧縮されるまでパルス給電が継続される。それにより、ニードル弁25が弁座11eに着座したまま回転が制止される一方、ロータ30、弁軸21、弁ホルダ23等はさらに回転しながら下降する。 At this time, the movable stopper 35 is not yet in contact with the fixed stopper 55, the rotor 30 and the valve shaft 21 do not stop rotating, and pulse power supply continues until the coil spring 24 is compressed by a predetermined amount. As a result, the rotation of the needle valve 25 is restrained while being seated on the valve seat 11e, while the rotor 30, the valve shaft 21, the valve holder 23, and the like further rotate and descend.

このとき、着座したニードル弁25に対して弁軸21及び弁ホルダ23が下降するため、コイルバネ24が縮長圧縮され、これにより弁軸21及び弁ホルダ23の下降力が吸収される。その後、コイルバネ24の圧縮量が所定量となったとき、可動ストッパ35が固定ストッパ55に当接して係止され、ロータ30及び弁軸21が最下降位置に達し、ステータ50に対しパルス給電が継続されてもロータ30及び弁軸21の下降は強制的に停止される。 At this time, since the valve shaft 21 and the valve holder 23 are lowered with respect to the seated needle valve 25 , the coil spring 24 is contracted and compressed, thereby absorbing the downward force of the valve shaft 21 and the valve holder 23 . After that, when the amount of compression of the coil spring 24 reaches a predetermined amount, the movable stopper 35 abuts against the fixed stopper 55 and is locked. Even if it continues, the descent of the rotor 30 and the valve shaft 21 is forcibly stopped.

このように、ニードル弁25が弁座11eに着座してオリフィス11dが閉止された後においても、可動ストッパ35が固定ストッパ55に当接して係止される制御用原点位置に達するまでは、ロータ30、弁軸21、及び弁ホルダ23の回転下降が継続されることにより、コイルバネ24が圧縮される。そのため、コイルバネ24の付勢力によりニードル弁25が弁座11eに強く押し付けられ、冷媒漏れ等を確実に防止できる。 In this manner, even after the needle valve 25 is seated on the valve seat 11e and the orifice 11d is closed, the rotor 10 is still maintained until the movable stopper 35 reaches the control origin position where the movable stopper 35 abuts against the fixed stopper 55 and is locked. 30, the valve stem 21, and the valve holder 23 continue to rotate downward, and the coil spring 24 is compressed. Therefore, the needle valve 25 is strongly pressed against the valve seat 11e by the urging force of the coil spring 24, thereby reliably preventing refrigerant leakage and the like.

一方、上記制御用原点位置からステータ50に、逆極性のパルス給電を行うと、ロータ30及び弁軸21が閉弁時とは逆方向に回転駆動され、雌ねじ孔15cと雄ねじ部21bからなるねじ送り機構により、ロータ30、弁軸21、弁ホルダ23及び開弁方向用可動ストッパ36が回転しながら上昇する。これに伴い、ニードル弁25に対する押圧力が弱められ、コイルバネ24が伸張して、ニードル弁25が弁座11eから離れると、オリフィス11dが開放される。これにより、第2の配管T2から弁室29内へと進入した冷媒は、円錐部25cと弁座11e他との間の隙間を通過して、オリフィス11dを通って第1の配管T1へと流れる。 On the other hand, when a reverse polarity pulse power supply is applied to the stator 50 from the control origin position, the rotor 30 and the valve shaft 21 are driven to rotate in the direction opposite to that when the valve is closed, and the screw formed by the female screw hole 15c and the male screw portion 21b is rotated. The feed mechanism raises the rotor 30, the valve shaft 21, the valve holder 23, and the valve opening direction movable stopper 36 while rotating. As a result, the pressing force applied to the needle valve 25 is weakened, the coil spring 24 expands, and when the needle valve 25 is separated from the valve seat 11e, the orifice 11d is opened. As a result, the refrigerant that has entered the valve chamber 29 from the second pipe T2 passes through the gap between the conical portion 25c and the valve seat 11e, etc., and passes through the orifice 11d to the first pipe T1. flow.

この場合、ステータ50へのパルス給電に応じてニードル弁25のリフト量が定まるため、冷媒の流量制御を行える。さらにパルス給電を続けることで、最終的にニードル弁25が全開状態となる。さらにパルス給電が継続された場合、可動ストッパ36が開弁方向用固定ストッパ56に当接して係止され、これにより、ロータ30、弁軸21、及び弁ホルダ23の回転及び上昇が強制的に停止せしめられる。 In this case, since the lift amount of the needle valve 25 is determined according to the pulse power supply to the stator 50, the refrigerant flow rate can be controlled. By continuing the pulse power supply, the needle valve 25 is finally fully opened. When the pulse power supply continues, the movable stopper 36 abuts against the valve-opening direction fixed stopper 56 and is locked, thereby forcibly rotating and lifting the rotor 30, the valve shaft 21, and the valve holder 23. be stopped.

次に、比較例となる弁本体を参照して、本実施形態の流量制御弁1の作用効果について説明する。図3は、比較例にかかる流量制御弁1Aを示す縦断面図であるが、ステータは省略している。
比較例においては、上記実施形態に対して弁軸21A,ガイドステム15A,閉弁方向用可動ストッパ35A、開弁方向用可動ストッパ36Aの形状が異なる。それ以外の共通する構成については、同じ符号を付して重複説明を省略する。
Next, the effects of the flow control valve 1 of this embodiment will be described with reference to a valve main body as a comparative example. FIG. 3 is a longitudinal sectional view showing a flow control valve 1A according to a comparative example, but the stator is omitted.
In the comparative example, the shapes of the valve shaft 21A, the guide stem 15A, the valve closing direction movable stopper 35A, and the valve opening direction movable stopper 36A are different from those of the above embodiment. Other common configurations are denoted by the same reference numerals, and overlapping descriptions are omitted.

図3において、弁軸21Aは、雄ねじ部21Abの両側に上端円筒部と下端円筒部を有しておらず、またガイドステム15Aは、上端ガイド部と下端ガイド部を有しておらず、本体15Aaを貫通して、雌ねじ孔15Acが形成されている。雄ねじ部21Abは、雌ねじ孔15Acの両端から突き出て、キャン45内の空間に露出しており、閉弁方向用可動ストッパ35A、開弁方向用可動ストッパ36Aは、露出した雄ねじ部21Abに螺合している。 In FIG. 3, the valve shaft 21A does not have an upper end cylindrical portion and a lower end cylindrical portion on both sides of the male thread portion 21Ab, and the guide stem 15A does not have an upper end guide portion and a lower end guide portion. A female screw hole 15Ac is formed through 15Aa. The male threaded portion 21Ab protrudes from both ends of the female threaded hole 15Ac and is exposed in the space inside the can 45. The valve closing direction movable stopper 35A and the valve opening direction movable stopper 36A are screwed into the exposed male threaded portion 21Ab. is doing.

流量制御弁1Aにおいて、第2の配管T2から弁室29内に進入した冷媒は、鍔状円盤18の貫通孔18aを介して、弁本体10側からキャン45側に流れる。冷媒の一部は均圧穴15Adを介してガイドステム15Aの中空円筒部15Ab内に向かい、残りの冷媒は、ロータ30と本体15Aaとの間を通過して、弁軸21Aの上部に至る。ここで、冷媒内に混入する金属粉などの異物は、冷媒と共にキャン45の内部へと移動する。 In the flow control valve 1A, the refrigerant entering the valve chamber 29 from the second pipe T2 flows through the through hole 18a of the brim-shaped disk 18 from the valve main body 10 side to the can 45 side. Part of the refrigerant flows through the pressure equalizing hole 15Ad into the hollow cylindrical portion 15Ab of the guide stem 15A, and the rest of the refrigerant passes between the rotor 30 and the main body 15Aa and reaches the top of the valve shaft 21A. Here, foreign matter such as metal powder mixed in the coolant moves into the can 45 together with the coolant.

図3に示す流量制御弁1Aにおいては、雄ねじ部21Abは、雌ねじ孔15Acの両端から露出するように突き出ているため、キャン45の内部へと移動した異物がねじ表面に付着する場合がある。かかる場合、弁軸21Aの移動に伴って、異物が雌ねじ孔15Ac内へと引き込まれ、雄ねじ部21Abと雌ねじ孔15Acとの間で噛み込まれるおそれがある。この異物の噛み込みにより、弁軸21Aとガイドステム15Aとの円滑な相対移動が阻害されることが懸念される。 In the flow control valve 1A shown in FIG. 3, the male threaded portion 21Ab protrudes so as to be exposed from both ends of the female threaded hole 15Ac. In such a case, foreign matter may be drawn into the female threaded hole 15Ac as the valve stem 21A moves, and may be caught between the male threaded portion 21Ab and the female threaded hole 15Ac. It is feared that smooth relative movement between the valve shaft 21A and the guide stem 15A may be hindered by this foreign matter being caught.

これに対し、図1に示す本実施形態の流量制御弁1によれば、弁軸21の雄ねじ部21bが、ガイドステム15の雌ねじ孔15cの両側から露出していない。より具体的には、弁軸21の雄ねじ部21bの上側に、上部円筒部21fが上端ガイド部15fに対向して形成され、またその下側に、下部円筒部21gが下端ガイド部15gに対向して形成されている。さらに、上端ガイド部15fと上部円筒部21fとの径方向の隙間、及び下端ガイド部15gと下部円筒部21gとの径方向の隙間は、雌ねじ孔15cと雄ねじ部21bとの径方向の隙間(距離ΔMax)より小さくなっている。 On the other hand, according to the flow control valve 1 of this embodiment shown in FIG. More specifically, an upper cylindrical portion 21f is formed on the upper side of the male thread portion 21b of the valve shaft 21 so as to face the upper end guide portion 15f, and a lower cylindrical portion 21g is formed on the lower side thereof and faces the lower end guide portion 15g. It is formed by Furthermore, the radial gap between the upper end guide portion 15f and the upper cylindrical portion 21f and the radial gap between the lower end guide portion 15g and the lower cylindrical portion 21g are the radial gap ( distance ΔMax).

このため、比較的大きな異物は、上端ガイド部15fと上部円筒部21fとの隙間、または下端ガイド部15gと下部円筒部21gとの隙間を通過できず、雌ねじ孔15cと雄ねじ部21bとの間に進入できないため、異物の噛み込みが生じることがない。 For this reason, relatively large foreign matter cannot pass through the gap between the upper end guide portion 15f and the upper cylindrical portion 21f or the gap between the lower end guide portion 15g and the lower cylindrical portion 21g. can not enter, foreign matter will not be caught.

一方、比較的小さな異物は、上端ガイド部15fと上部円筒部21fとの隙間、または下端ガイド部15gと下部円筒部21gとの隙間を通過して、雌ねじ孔15cと雄ねじ部21bとの間に進入する可能性がある。しかしながら、このような異物は、距離Δ(ΔMax)より小さな寸法を有することとなるため、図2に示す螺旋状の空間Sにとどまり、雌ねじ孔15cと雄ねじ部21bとの間で噛み込まれるおそれは少ない。 On the other hand, relatively small foreign matter passes through the gap between the upper end guide portion 15f and the upper cylindrical portion 21f or the gap between the lower end guide portion 15g and the lower cylindrical portion 21g, and passes between the female threaded hole 15c and the male threaded portion 21b. may enter. However, since such a foreign matter has a dimension smaller than the distance Δ (ΔMax), it remains in the spiral space S shown in FIG. it is less.

ここで、距離Δと異物のサイズについてさらに説明する。図2に示すように、雄ねじ部21bは雌ねじ孔15cに対して径方向に移動できるため距離Δは変動する。雌ねじ孔15cに対して雄ねじ部21bが径方向に最も近接した実線位置の距離ΔをΔMinとし、雌ねじ孔15cに対して雄ねじ部21bが径方向に最も離間した点線位置の距離ΔをΔMaxとし、ΔMinとΔMaxの中間距離となる隙間をΔMid(=(ΔMin+ΔMax)/2)とする。この場合、異物が隙間ΔMidのときに形成される空間Sに収まるサイズであれば、異物が空間Sに留まった状態でも、雄ねじ部21bは雌ねじ孔15cの中心軸と同軸で回転できるため摺動に悪影響を与えない。つまり、雌ねじ孔15cと雄ねじ部21bの間への異物の噛み込みは抑制される。すなわち、ガイド部と円筒部(上部円筒部、下部円筒部)との径方向の隙間は、雌ねじ孔15cと雄ねじ部21bとの径方向の隙間ΔMidより小さいことが望ましい。 Here, the distance Δ and the size of the foreign matter will be further explained. As shown in FIG. 2, the distance Δ varies because the male threaded portion 21b can move radially with respect to the female threaded hole 15c. The distance Δ of the solid line position where the male threaded portion 21b is radially closest to the female threaded hole 15c is ΔMin, the distance Δ of the dotted line position where the male threaded portion 21b is radially most distant from the female threaded hole 15c is ΔMax, Let ΔMid (=(ΔMin+ΔMax)/2) be the intermediate distance between ΔMin and ΔMax. In this case, if the foreign matter is of a size that fits in the space S formed when the gap ΔMid is formed, even if the foreign matter stays in the space S, the male threaded portion 21b can rotate coaxially with the central axis of the female threaded hole 15c. does not adversely affect That is, foreign matter is prevented from getting caught between the female threaded hole 15c and the male threaded portion 21b. That is, the radial gap between the guide portion and the cylindrical portion (upper cylindrical portion, lower cylindrical portion) is preferably smaller than the radial gap ΔMid between the female threaded hole 15c and the male threaded portion 21b.

なお、異物がΔMidのときに形成される空間Sに収まらないサイズであっても、ΔMaxのときに形成される空間Sに収まるサイズであれば、異物は空間Sに留まるため、雌ねじ孔15cと雄ねじ部21bの間に異物が噛み込んでねじの回転がロックするおそれを低減できる。すなわち、ガイド部と円筒部(上部円筒部、下部円筒部)との径方向の隙間は、雌ねじ孔15cと雄ねじ部21bとの径方向の隙間(距離ΔMax)より小さければ本発明の効果を発揮できる。 Note that even if the size of the foreign matter does not fit in the space S formed at ΔMid, if the foreign matter has a size that fits in the space S formed at ΔMax, the foreign matter stays in the space S. It is possible to reduce the risk of locking the rotation of the screw due to foreign matter getting caught between the male screw portions 21b. That is, if the radial gap between the guide portion and the cylindrical portion (upper cylindrical portion, lower cylindrical portion) is smaller than the radial gap (distance ΔMax) between the female threaded hole 15c and the male threaded portion 21b, the effect of the present invention is exhibited. can.

キャン45内の冷媒は、流量制御弁1の動作により弁室29へと循環し、第1の配管T1を介して流量制御弁1の外部へと排出されるため、それにより冷媒中の異物もキャン45内に留まることがなく、異物除去のためにキャン45内を定期的に清掃する必要もない。すなわち、本実施形態によれば、コストやメンテナンスの手間を抑制しつつ、円滑な動作を確保できる流量制御弁1を提供することができる。 Refrigerant in the can 45 is circulated to the valve chamber 29 by the operation of the flow control valve 1 and discharged to the outside of the flow control valve 1 through the first pipe T1. It does not remain in the can 45, and there is no need to periodically clean the inside of the can 45 to remove foreign matter. That is, according to the present embodiment, it is possible to provide the flow control valve 1 capable of ensuring smooth operation while reducing cost and maintenance effort.

1 流量制御弁
10 弁本体
11 弁座部材
11e 弁座
15 ガイドステム
21 弁軸
23 弁ホルダ
24 コイルバネ
25 ニードル弁
26 ばね受け部材
27 環状部材
29 弁室
30 ロータ
35 閉弁方向用可動ストッパ
36 開弁方向用可動ストッパ
50 ステータ
53 ステータコイル
55 閉弁方向用固定ストッパ
56 開弁方向用固定ストッパ

1 flow control valve 10 valve main body 11 valve seat member 11e valve seat 15 guide stem 21 valve shaft 23 valve holder 24 coil spring 25 needle valve 26 spring bearing member 27 annular member 29 valve chamber 30 rotor 35 movable stopper 36 for valve closing direction valve opening directional movable stopper 50 stator 53 stator coil 55 valve closing direction fixed stopper 56 valve opening direction fixed stopper

Claims (6)

キャンと、
前記キャンに接合される弁本体と、
前記キャンと前記弁本体とで囲われた空間内に配置され、前記弁本体に対して回転可能な弁軸と、前記弁本体に対して固定されたガイドステムと、を有し、
前記弁軸は、一体の部材から構成され、雄ねじ部、前記雄ねじ部の上側に配置された上部円筒部、及び前記雄ねじ部の下側に配置された下部円筒部を有し、
前記ガイドステムは、前記雄ねじ部に螺合する雌ねじ孔、前記雌ねじ孔の上側に配置され、前記上部円筒部に対向する上端ガイド部、及び前記雌ねじ孔の下側に配置され、前記下部円筒部に対向する下端ガイド部を有し、
前記上端ガイド部と前記上部円筒部との径方向の隙間、及び前記下端ガイド部と前記下部円筒部との径方向の隙間はいずれも、前記雌ねじ孔と前記雄ねじ部との径方向の隙間より小さい、
ことを特徴とする流量制御弁。
Can and
a valve body joined to the can;
Having a valve shaft arranged in a space surrounded by the can and the valve body and rotatable with respect to the valve body, and a guide stem fixed with respect to the valve body,
The valve stem is composed of an integral member and has a male threaded portion, an upper cylindrical portion arranged above the male threaded portion, and a lower cylindrical portion arranged below the male threaded portion ,
The guide stem includes a female threaded hole that is screwed into the male threaded portion, an upper end guide portion that is arranged above the female threaded hole and faces the upper cylindrical portion, and a lower cylindrical portion that is arranged below the female threaded hole. has a lower end guide portion facing the
Both the radial clearance between the upper end guide portion and the upper cylindrical portion and the radial clearance between the lower end guide portion and the lower cylindrical portion are larger than the radial clearance between the female threaded hole and the male threaded portion. small,
A flow control valve characterized by:
少なくとも一方の前記ガイド部の内径は、前記雄ねじ部のねじ山外径より大きい、
ことを特徴とする請求項1に記載の流量制御弁。
The inner diameter of at least one of the guide portions is larger than the thread outer diameter of the male threaded portion,
The flow control valve according to claim 1, characterized in that:
前記上端ガイド部の内径は、前記下端ガイド部の内径より小さい、
ことを特徴とする請求項2に記載の流量制御弁。
The inner diameter of the upper end guide portion is smaller than the inner diameter of the lower end guide portion,
3. The flow control valve according to claim 2, characterized in that:
前記弁軸には、前記上部円筒部に隣接して可動ストッパが圧入または螺合により固定されており、
前記ガイドステムは、前記弁軸が所定量回転したときに、前記可動ストッパに当接する固定ストッパを有する、
ことを特徴とする請求項1~3のいずれか一項に記載の流量制御弁。
A movable stopper is fixed to the valve shaft by press fitting or screwing adjacent to the upper cylindrical portion ,
The guide stem has a fixed stopper that contacts the movable stopper when the valve shaft rotates by a predetermined amount.
The flow control valve according to any one of claims 1 to 3, characterized in that:
前記弁軸は金属製であり、前記ガイドステムは樹脂製である、
ことを特徴とする請求項1~4のいずれか一項に記載の流量制御弁。
The valve stem is made of metal, and the guide stem is made of resin.
The flow control valve according to any one of claims 1 to 4, characterized in that:
前記弁軸に対し一体的に回動可能に連結固定されたロータと、前記キャンの外周に外嵌されたステータと、をさらに備え、
前記ロータと前記ステータとを有してステッピングモータが構成されることを特徴とする請求項1~5のいずれか一項に記載の流量制御弁。
further comprising: a rotor integrally rotatably connected and fixed to the valve shaft; and a stator fitted around the outer circumference of the can,
The flow control valve according to any one of claims 1 to 5, wherein the rotor and the stator constitute a stepping motor.
JP2021001330A 2021-01-07 2021-01-07 flow control valve Active JP7175035B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021001330A JP7175035B2 (en) 2021-01-07 2021-01-07 flow control valve
CN202111559956.1A CN114738532A (en) 2021-01-07 2021-12-20 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021001330A JP7175035B2 (en) 2021-01-07 2021-01-07 flow control valve

Publications (2)

Publication Number Publication Date
JP2022106385A JP2022106385A (en) 2022-07-20
JP7175035B2 true JP7175035B2 (en) 2022-11-18

Family

ID=82275573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021001330A Active JP7175035B2 (en) 2021-01-07 2021-01-07 flow control valve

Country Status (2)

Country Link
JP (1) JP7175035B2 (en)
CN (1) CN114738532A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138387A (en) 2018-02-13 2019-08-22 株式会社鷺宮製作所 Motor valve and refrigeration cycle system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138387A (en) 2018-02-13 2019-08-22 株式会社鷺宮製作所 Motor valve and refrigeration cycle system

Also Published As

Publication number Publication date
CN114738532A (en) 2022-07-12
JP2022106385A (en) 2022-07-20

Similar Documents

Publication Publication Date Title
JP5563862B2 (en) Motorized valve
JP4550528B2 (en) Motorized valve
JP2007205565A (en) Motor operated valve
KR20170113208A (en) Motor valve and method of assembling the same
CN107542966B (en) Electric valve
EP2441989A1 (en) Electrically operated valve
JP5926552B2 (en) Motorized valve
KR20070096792A (en) Electric motor valve
JP2009228689A (en) Electric valve
JP7175035B2 (en) flow control valve
JP5424919B2 (en) Motorized valve
JP2010223384A (en) Reversible type motor operated valve
CN109854796B (en) Electric valve
CN110529605B (en) Electronic expansion valve
JP6618977B2 (en) Motorized valve
JP6515164B2 (en) Flow control valve
JP7006981B2 (en) Solenoid valve
CN220227844U (en) Electric valve
JP7332191B2 (en) electric valve
JP7511250B2 (en) Motor-operated valve
JP7550465B2 (en) Motor-operated valve
CN112879573A (en) Electronic expansion valve
JP7072907B2 (en) Solenoid valve
JP7455410B2 (en) Motorized valves and how to assemble them
JP6928978B2 (en) Electric valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221031

R150 Certificate of patent or registration of utility model

Ref document number: 7175035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150