[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7157953B2 - Nitride-based thin film composite structure and manufacturing method thereof - Google Patents

Nitride-based thin film composite structure and manufacturing method thereof Download PDF

Info

Publication number
JP7157953B2
JP7157953B2 JP2018166005A JP2018166005A JP7157953B2 JP 7157953 B2 JP7157953 B2 JP 7157953B2 JP 2018166005 A JP2018166005 A JP 2018166005A JP 2018166005 A JP2018166005 A JP 2018166005A JP 7157953 B2 JP7157953 B2 JP 7157953B2
Authority
JP
Japan
Prior art keywords
nitride
thin film
composite structure
based thin
film composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018166005A
Other languages
Japanese (ja)
Other versions
JP2019112291A (en
Inventor
貴英 平崎
大輔 末次
崇文 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to CN201880052361.7A priority Critical patent/CN111051582B/en
Priority to US16/637,553 priority patent/US11280027B2/en
Priority to PCT/JP2018/042932 priority patent/WO2019123954A1/en
Publication of JP2019112291A publication Critical patent/JP2019112291A/en
Application granted granted Critical
Publication of JP7157953B2 publication Critical patent/JP7157953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/06Epitaxial-layer growth by reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/44Gallium phosphide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Description

本発明は、窒化物系薄膜複合構造体とその製造方法に関する。 TECHNICAL FIELD The present invention relates to a nitride-based thin film composite structure and a manufacturing method thereof.

二酸化炭素の排出量の削減や、水俣条約による水銀使用の禁止を背景に、電力制御用パワーデバイスや一般照明としての発光デバイスへの窒化物半導体応用が期待されている。 With the reduction of carbon dioxide emissions and the ban on the use of mercury under the Minamata Treaty, nitride semiconductors are expected to be applied to power devices for power control and light-emitting devices for general lighting.

窒化物半導体は格子整合する初期基板が存在しないことから、薄膜、バルク結晶に寄らずSapphire(α-Al)やSiC、Si、ScAlMgO等の異種バルク単結晶上に窒化物半導体結晶は作製される。結晶成長の手法としては、有機金属気相成長法(MOCVD法)や分子線エピタキシー法(MBE法)、ハイドライド気相成長法(HVPE法)、スパッタリング法等が一般に知られている。 Since there is no lattice-matched initial substrate for nitride semiconductors, nitride semiconductor crystals are formed on heterogeneous bulk single crystals such as Sapphire (α-Al 2 O 3 ), SiC, Si, and ScAlMgO 4 regardless of whether they are thin films or bulk crystals. is produced. Commonly known crystal growth techniques include metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), and sputtering.

しかしながらいずれの手法によって窒化物半導体結晶を形成する場合でも、上述したバルク結晶を初期基板として用いた場合には窒化物半導体とは格子定数が異なり、その格子定数差が問題となる。格子不整合によって窒化物半導体結晶中に多量の欠陥が発生し、窒化物半導体結晶の品質低下によってデバイスの効率や寿命低下を引き起こす主原因となっている。このような問題を解決するため、選択的に横方向成長させて結晶欠陥を含まない窒化物半導体を成長する手法である、Epitaxial Lateral Overgrowth(以下、「ELO法」と記す。)がよく知られている。 However, regardless of which technique is used to form the nitride semiconductor crystal, when the bulk crystal described above is used as the initial substrate, the lattice constant differs from that of the nitride semiconductor, and the difference in lattice constant poses a problem. A large number of defects are generated in the nitride semiconductor crystal due to the lattice mismatch, which is the main cause of deterioration of the efficiency and life of the device due to deterioration of the quality of the nitride semiconductor crystal. In order to solve such problems, epitaxial lateral overgrowth (hereinafter referred to as "ELO method") is well known, which is a method of selectively growing a nitride semiconductor containing no crystal defects by lateral growth. ing.

そこで基板を断面方向から見た図6A及び図6Bを参照しながらELO法について説明する。図6Aは、ELO法によって結晶成長を行う前の試料における断面図であり、図6Bは、成長途中の試料における断面図である。ELO法では、種結晶基板上に加工した下地層(バッファ層)が用いられる。具体的には図6Aに示すように、バルク単結晶ウエハ601に成膜された結晶性薄膜602の上に、非晶質材料であるSiOやSiN等から成る周期的な開口部を有するマスク603の設けられた下地層が初期基板として用いられる。 Therefore, the ELO method will be described with reference to FIGS. 6A and 6B showing the substrate viewed from the cross-sectional direction. FIG. 6A is a cross-sectional view of the sample before crystal growth by the ELO method, and FIG. 6B is a cross-sectional view of the sample during growth. In the ELO method, a base layer (buffer layer) processed on a seed crystal substrate is used. Specifically, as shown in FIG. 6A, a mask having periodic openings made of an amorphous material such as SiO 2 or SiN is placed on a crystalline thin film 602 formed on a bulk single crystal wafer 601 . The underlying layer provided with 603 is used as the initial substrate.

図7Aには図6Aで示した断面図を上から見た平面図を示した。マスク702は、図7Aに示すように開口部701がストライプパターンであっても良いし、図7Bのように開口部701がドットパターンであっても良い。マスク開口部のサイズやピッチは2μm以上10μm以下であることが多い。図6Aのようなマスク加工をした基板上に結晶成長を行った場合には非晶質のマスク603上には原料分子の吸着が不安定となるためマスク直上を起点とした結晶成長が進行せず、マスク開口部のみを起点として結晶成長が進行する。結晶成長が進行するに従い、図6Bのようにマスク開口部を起点として成長した結晶604がマスク603を覆うように横方向成長する。最終的には結晶604がマスク603を完全に被覆することで基板上に一様に連続した結晶膜を形成する。この時、結晶欠陥はマスク開口部から引き継がれて成長した結晶中を伝搬することになるが、横方向成長によって伝搬方向が基板表面と垂直方向から平行な方向へと曲げられ、隣の開口部より横方向成長した結晶と会合し、転位のループを形成することで転位が対消滅する。このようにしてELO法を用いて作製された窒化物結晶は、転位密度をおよそ10cm-2以上10cm-2以下程度とELO法を用いない場合の10cm-2と比較すると2桁以上低減させることができる。 FIG. 7A shows a plan view of the cross-sectional view shown in FIG. 6A viewed from above. The mask 702 may have openings 701 in a stripe pattern as shown in FIG. 7A, or may have openings 701 in a dot pattern as shown in FIG. 7B. The size and pitch of mask openings are often 2 μm or more and 10 μm or less. When crystal growth is performed on a mask-processed substrate as shown in FIG. 6A, adsorption of raw material molecules on the amorphous mask 603 becomes unstable, so that crystal growth does not progress starting from right above the mask. Instead, crystal growth progresses starting only from the mask opening. As the crystal growth progresses, a crystal 604 grown starting from the mask opening grows laterally to cover the mask 603 as shown in FIG. 6B. Finally, the crystals 604 completely cover the mask 603 to form a uniformly continuous crystal film on the substrate. At this time, the crystal defect is taken over from the mask opening and propagates in the grown crystal, but the propagation direction is bent from the direction perpendicular to the substrate surface to the direction parallel to the substrate surface due to the lateral growth, and the adjacent opening The dislocations annihilate by associating with more laterally grown crystals and forming dislocation loops. The nitride crystal produced by using the ELO method in this way has a dislocation density of about 10 6 cm −2 to 10 7 cm −2 , compared to 10 9 cm −2 when the ELO method is not used. can be reduced by two orders of magnitude or more.

ELO法において重要な点は、基板表面に図7Aに示したようなLine and Spaceパターンや、図7Bに示したドットパターンのように基板表面に周期的にマスク702と開口部701とが形成された初期基板を用いることである。サイズやピッチが制御された基板表面の露出した開口部701と結晶成長が進行しない非晶質から成るマスク702によって横方向成長を促進し、高品質な窒化物結晶を成長することが可能となる。 An important point in the ELO method is that masks 702 and openings 701 are periodically formed on the substrate surface, such as the line and space pattern shown in FIG. 7A and the dot pattern shown in FIG. 7B. is to use the initial substrate. The exposed opening 701 on the substrate surface whose size and pitch are controlled and the amorphous mask 702 which prevents crystal growth promote lateral growth, making it possible to grow high-quality nitride crystals. .

特許第3189877号公報Japanese Patent No. 3189877

ELO法は、低転位密度の結晶を作製する上で有用な手法であるが、ELO法で使用するための下地基板を用意するためには多数の成膜や加工が必要となる。このことから、成膜や加工を行うための設備を導入、維持するためのコスト、また多数の工程を含むために生産性の面で課題がある。まず、設備コストについて、下地となるMOCVD法やMBE法による結晶性薄膜602を作製するための設備や、SiOやSiNから成るマスク702を形成するためのCVDやスパッタリングの設備、さらにマスク702の開口部701を作成するためのリソグラフィーやフッ酸等を用いたエッチングのための設備が必須となる。CVDは原料が可燃性であることが多く危険かつ高価なことに加え、除害装置、例えば排ガス処理装置等を有したCVD装置やリソグラフィーのための露光装置も極めて高価であり、生産コストを大きく引き上げる要因となる。次に、生産性の面について、ELO法では成膜や露光、エッチング等の多数の工程を含むため、生産に要する時間を大きく増加させる。 The ELO method is a useful technique for producing crystals with a low dislocation density, but many film formations and processes are required to prepare a base substrate for use in the ELO method. For this reason, there are problems in terms of productivity due to the cost of introducing and maintaining facilities for film formation and processing, and the inclusion of a large number of processes. First, with regard to equipment costs, equipment for fabricating the underlying crystalline thin film 602 by MOCVD or MBE, equipment for CVD or sputtering for forming the mask 702 made of SiO 2 or SiN, and equipment for the mask 702 . Equipment for lithography for creating the opening 701 and etching using hydrofluoric acid or the like is essential. In addition to being dangerous and expensive because many of the raw materials used in CVD are flammable, CVD equipment equipped with abatement equipment, such as exhaust gas treatment equipment, and exposure equipment for lithography are also extremely expensive, increasing production costs. cause to raise. Next, in terms of productivity, since the ELO method includes many steps such as film formation, exposure, and etching, it greatly increases the time required for production.

本発明は、上述したような従来法の課題を解決するものであり、安価なスパッタリング法を用いた1段階の工程によってELO法で使用される加工基板と同等の機能を持つ窒化物系薄膜複合構造体とその成膜方法を提供することを目的とする。 The present invention solves the problems of the conventional methods as described above, and a nitride-based thin film composite having the same function as the processing substrate used in the ELO method is manufactured by a one-step process using an inexpensive sputtering method. An object of the present invention is to provide a structure and a method for forming the same.

本発明に係る窒化物系薄膜複合構造体は、バルク単結晶ウエハ上に形成された窒化物薄膜を含む窒化物系薄膜複合構造体であって、
前記バルク単結晶ウエハの結晶構造と特定の配向関係を持って前記バルク単結晶ウエハ上に設けられた窒化物微結晶と、
前記窒化物微結晶を取り囲み、且つ、前記バルク単結晶ウエハの表面を覆う非晶質の窒化物薄膜と、
によって構成される。
A nitride-based thin film composite structure according to the present invention is a nitride-based thin film composite structure including a nitride thin film formed on a bulk single crystal wafer,
Nitride microcrystals provided on the bulk single crystal wafer in a specific orientation relationship with the crystal structure of the bulk single crystal wafer;
an amorphous nitride thin film surrounding the nitride crystallites and covering the surface of the bulk single crystal wafer;
Consists of

また、本発明に係る窒化物系薄膜複合構造体の製造方法は、スパッタリング装置の真空チャンバー内にバルク単結晶基板と、ターゲット材と、を用意するステップと、
前記真空チャンバー内に窒素を30%以上含むガスを導入し、0.1Pa以上0.5Pa以下の圧力とし、基板の温度が25℃以上1000℃以下で、周波数1kHz以上100kHz以下で電力を印加する時間割合が0.1%以上30%以下となる電力パルスを印加してプラズマを発生させ、反応性スパッタリング法によって、前記基板上に窒化物微結晶と、前記窒化物微結晶を取り囲み、且つ、前記バルク単結晶基板の表面全面を覆う非晶質の窒化物薄膜と、を成膜するステップと、
を含む。
In addition, a method for manufacturing a nitride-based thin film composite structure according to the present invention includes the steps of preparing a bulk single crystal substrate and a target material in a vacuum chamber of a sputtering apparatus;
A gas containing 30% or more nitrogen is introduced into the vacuum chamber, the pressure is set to 0.1 Pa or more and 0.5 Pa or less, the temperature of the substrate is 25 ° C. or more and 1000 ° C. or less, and electric power is applied at a frequency of 1 kHz or more and 100 kHz or less. applying a power pulse with a time rate of 0.1% or more and 30% or less to generate plasma, surround the nitride microcrystals on the substrate and the nitride microcrystals by a reactive sputtering method, and forming an amorphous nitride thin film covering the entire surface of the bulk single crystal substrate;
including.

本発明に係る窒化物系薄膜複合構造体及びその製造方法によって、CVDやリソグラフィーといった成膜や露光工程を利用することなく、ELO法を用いて窒化物結晶を作製した場合と同等以上の結晶品質の窒化物結晶を作製するための下地基板を提供することができる。 The nitride-based thin film composite structure and the method for manufacturing the same according to the present invention provide a crystal quality equal to or higher than that obtained when nitride crystals are manufactured using the ELO method without using film formation and exposure processes such as CVD and lithography. It is possible to provide a base substrate for producing a nitride crystal of.

実施の形態1に係る窒化物系薄膜複合構造体の断面構造を示す概略断面図である。1 is a schematic cross-sectional view showing a cross-sectional structure of a nitride-based thin film composite structure according to Embodiment 1; FIG. 図1Aの窒化物系薄膜複合構造体の平面図である。1B is a plan view of the nitride-based thin film composite structure of FIG. 1A; FIG. バルク単結晶ウエハと窒化物微結晶の配向関係を示す図である。FIG. 2 is a diagram showing the orientation relationship between a bulk single crystal wafer and nitride microcrystals; 図2Aにおいて、バルク単結晶ウエハがサファイアである場合の結晶軸を示す図である。FIG. 2B is a diagram showing the crystallographic axis when the bulk single crystal wafer is sapphire in FIG. 2A. 図2Aにおいて、窒化物微結晶がAlNである場合の結晶軸を示す図である。FIG. 2B is a view showing the crystallographic axis when the nitride microcrystal is AlN in FIG. 2A. 図2B及び図2Cのサファイアの[1-100]軸とAlNの[1-100]軸との配向関係を示す概略図である。FIG. 2C is a schematic diagram showing the orientation relationship between the [1-100] axis of sapphire and the [1-100] axis of AlN of FIGS. 2B and 2C; 実施の形態1に係るスパッタリング装置の構成を示す概略図である。1 is a schematic diagram showing the configuration of a sputtering apparatus according to Embodiment 1; FIG. 実施の形態1に係る窒化物系薄膜複合構造体の微結晶であるAlN(0002)面のX線ロッキングカーブ反射を示す図である。4 is a diagram showing X-ray rocking curve reflection of the AlN (0002) plane, which is the microcrystal of the nitride-based thin film composite structure according to Embodiment 1. FIG. 実施の形態1に係る窒化物系薄膜複合構造体の上にMOCVD成長したGaNの光学顕微鏡像である。4 is an optical microscope image of GaN grown by MOCVD on the nitride-based thin film composite structure according to Embodiment 1. FIG. 従来のELO法で用いられる基板の断面構造を示す概略断面図である。It is a schematic cross-sectional view showing a cross-sectional structure of a substrate used in a conventional ELO method. 図6Aの基板上に結晶成長を行った場合の状態を示す概略断面図である。6B is a schematic cross-sectional view showing a state in which crystal growth is performed on the substrate of FIG. 6A; FIG. 従来のELO法で用いられるマスク加工パターンの一例を示す平面図である。It is a top view which shows an example of the mask processing pattern used by the conventional ELO method. 従来のELO法で用いられるマスク加工パターンの別例を示す平面図である。FIG. 10 is a plan view showing another example of a mask processing pattern used in the conventional ELO method;

第1の態様に係る窒化物系薄膜複合構造体は、バルク単結晶ウエハ上に形成された窒化物薄膜を含む窒化物系薄膜複合構造体であって、
前記バルク単結晶ウエハの結晶構造と特定の配向関係を持って前記バルク単結晶ウエハ上に設けられた窒化物微結晶と、
前記窒化物微結晶を取り囲み、且つ、前記バルク単結晶ウエハの表面を覆う非晶質の窒化物薄膜と、
によって構成される。
A nitride-based thin film composite structure according to a first aspect is a nitride-based thin film composite structure including a nitride thin film formed on a bulk single crystal wafer,
Nitride microcrystals provided on the bulk single crystal wafer in a specific orientation relationship with the crystal structure of the bulk single crystal wafer;
an amorphous nitride thin film surrounding the nitride crystallites and covering the surface of the bulk single crystal wafer;
Consists of

第2の態様に係る窒化物系薄膜複合構造体は、上記第1の態様において、上面が平坦であってもよい。 In the nitride-based thin film composite structure according to the second aspect, in the first aspect, the upper surface may be flat.

第3の態様に係る窒化物系薄膜複合構造体は、上記第2の態様において、上面の算術平均粗さが0.1nm以上であって10nm以下であってもよい。 In the nitride-based thin film composite structure according to the third aspect, in the second aspect, the upper surface may have an arithmetic mean roughness of 0.1 nm or more and 10 nm or less.

第4の態様に係る窒化物系薄膜複合構造体は、上記第1から第3のいずれかの態様において、前記窒化物系薄膜複合構造体は、Al、Ga、Inの内、1種類以上の金属元素が窒化された2元もしくは3元以上の元素から構成されてもよい。 A nitride-based thin film composite structure according to a fourth aspect is a nitride-based thin film composite structure according to any one of the first to third aspects, wherein the nitride-based thin film composite structure contains one or more of Al, Ga, and In. It may be composed of binary or ternary elements obtained by nitriding the metal element.

第5の態様に係る窒化物系薄膜複合構造体は、上記第1から第4のいずれかの態様において、前記窒化物微結晶同士の間隔が5nm以上50μm以下であってもよい。 In a nitride-based thin film composite structure according to a fifth aspect, in any one of the first to fourth aspects, the distance between the nitride microcrystals may be 5 nm or more and 50 μm or less.

第6の態様に係る窒化物系薄膜複合構造体は、上記第1から第5のいずれかの態様において、前記窒化物系薄膜複合構造体において、膜厚が5nm以上100nm以下であってもよい。 A nitride-based thin film composite structure according to a sixth aspect may be the nitride-based thin film composite structure according to any one of the first to fifth aspects, and may have a film thickness of 5 nm or more and 100 nm or less. .

第7の態様に係る窒化物系薄膜複合構造体は、上記第1から第4のいずれかの態様において、前記窒化物系薄膜複合構造体は、Sapphire(α―Al)、Si、SiC、GaP、GaAs、ZnO、MgO、ScAlMgOの群から選択されるいずれか一つのバルク単結晶ウエハ上に形成されてもよい。 A nitride-based thin film composite structure according to a seventh aspect is the nitride-based thin film composite structure according to any one of the first to fourth aspects, wherein the nitride-based thin film composite structure comprises Sapphire (α-Al 2 O 3 ), Si, It may be formed on any one bulk single crystal wafer selected from the group of SiC, GaP, GaAs, ZnO, MgO, ScAlMgO4 .

第8の態様に係る窒化物系薄膜複合構造体の製造方法は、スパッタリング装置の真空チャンバー内にバルク単結晶基板と、ターゲット材と、を用意するステップと、
前記真空チャンバー内に窒素を30%以上含むガスを導入し、0.1Pa以上0.5Pa以下の圧力とし、基板の温度が25℃以上1000℃以下で、周波数1kHz以上100kHz以下で電力を印加する時間割合が0.1%以上30%以下となる電力パルスを印加してプラズマを発生させ、反応性スパッタリング法によって、前記基板上に窒化物微結晶と、前記窒化物微結晶を取り囲み、且つ、前記バルク単結晶基板の表面全面を覆う非晶質の窒化物薄膜と、を成膜するステップと、
を含む。
A method for manufacturing a nitride-based thin film composite structure according to an eighth aspect comprises the steps of preparing a bulk single crystal substrate and a target material in a vacuum chamber of a sputtering apparatus;
A gas containing 30% or more nitrogen is introduced into the vacuum chamber, the pressure is set to 0.1 Pa or more and 0.5 Pa or less, the temperature of the substrate is 25 ° C. or more and 1000 ° C. or less, and electric power is applied at a frequency of 1 kHz or more and 100 kHz or less. applying a power pulse with a time rate of 0.1% or more and 30% or less to generate plasma, surround the nitride microcrystals on the substrate and the nitride microcrystals by a reactive sputtering method, and forming an amorphous nitride thin film covering the entire surface of the bulk single crystal substrate;
including.

第9の態様に係る窒化物系薄膜複合構造体の製造方法は、上記第8の態様において、反応性スパッタリングにおいて、ターゲット材とガスとを反応させて前記基板上に薄膜を形成する反応性スパッタリングを行う際にプラズマを発生させるために直流電流をパルス状に供給してもよい。 A method for manufacturing a nitride-based thin film composite structure according to a ninth aspect is the reactive sputtering according to the eighth aspect, in which a target material and a gas are reacted to form a thin film on the substrate. A direct current may be supplied in a pulsed manner to generate a plasma when performing the step.

以下、図面を参照しながら、実施の形態に係る窒化物系薄膜複合構造体とその製造方法について詳細に説明する。なお、図面において実質的に同一の部材については同一の符号を付している。 Hereinafter, a nitride-based thin film composite structure and a method for manufacturing the same according to an embodiment will be described in detail with reference to the drawings. In addition, the same code|symbol is attached|subjected about the substantially same member in drawing.

(実施の形態1)
<窒化物系薄膜複合構造体>
始めに、図1A及び図1Bを主として参照しながら、実施の形態1の窒化物系薄膜複合構造体100について説明する。図1Aは、実施の形態1のバルク単結晶ウエハ101上に窒化物系薄膜複合構造体100を積層した積層体の断面構造を示す概略断面図である。図1Bは、図1Aの窒化物系薄膜複合構造体100の平面図である。この窒化物系薄膜複合構造体100は、バルク単結晶ウエハ101の上に形成され、バルク単結晶の結晶構造と特定の配向関係を持って上記バルク単結晶ウエハ上に設けられた窒化物微結晶102と、上記窒化物微結晶と同一の材料からなる非晶質の窒化物薄膜103と、の複合体により構成される。バルク結晶ウエハ101の上には複数の窒化物微結晶102が配置されている。複数の窒化物微結晶102のそれぞれは、例えば単結晶である。複数の窒化物微結晶102のそれぞれは、バルク単結晶の結晶構造と特定の配向関係を持ってバルク単結晶ウエハ上に設けられている。すなわち、複数の窒化物微結晶102は互いに結晶軸の方向が一致している。
(Embodiment 1)
<Nitride thin film composite structure>
First, a nitride-based thin film composite structure 100 of Embodiment 1 will be described mainly with reference to FIGS. 1A and 1B. FIG. 1A is a schematic cross-sectional view showing a cross-sectional structure of a laminate obtained by laminating a nitride-based thin film composite structure 100 on a bulk single crystal wafer 101 of Embodiment 1. FIG. FIG. 1B is a plan view of the nitride-based thin film composite structure 100 of FIG. 1A. This nitride-based thin film composite structure 100 is formed on a bulk single crystal wafer 101, and includes nitride microcrystals provided on the bulk single crystal wafer in a specific orientation relationship with the crystal structure of the bulk single crystal. 102 and an amorphous nitride thin film 103 made of the same material as the nitride microcrystals. A plurality of nitride crystallites 102 are arranged on a bulk crystal wafer 101 . Each of the plurality of nitride microcrystals 102 is, for example, a single crystal. Each of the plurality of nitride microcrystals 102 is provided on the bulk single crystal wafer with a specific orientation relationship with the crystal structure of the bulk single crystal. That is, the crystal axes of the plurality of nitride microcrystals 102 are aligned with each other.

ここで図2A乃至図2Dを用いて、上述したバルク単結晶ウエハの結晶構造と特定の配向関係を持って上記バルク単結晶ウエハ上に設けられた窒化物微結晶について説明する。図2Aは、バルク単結晶ウエハとしてSapphire(0001)基板を用い、窒化物微結晶としてAlN(窒化アルミニウム)を用いた場合における単結晶バルクウエハと微結晶の配向関係を表す概略図である。図2Bは、バルク単結晶ウエハがサファイアである場合の結晶軸を示す図である。図2Cは、窒化物微結晶がAlNである場合の結晶軸を示す図である。
Sapphireは、コランダム型の結晶構造を持ち、その単位格子201は六角柱で表すことができる。また、AlNは、ウルツ鉱型の結晶構造を持ち、その単位格子202も同様に六角柱で表すことができる。図2A及び図2Dは、それぞれの単位格子の六角柱の[0001]軸を一致するように重ね、上から見た平面図を示している。こで特定の配向関係とは、まず、Sapphireの結晶軸[0001]とAlNの結晶軸[0001]との方向が一致している配向関係を持つことである。次に、Sapphireの[1-100]軸に対してAlNの[1-100]軸が30°回転した配向関係を持つことである。すなわち、図2Dに示すように、Sapphireの単位格子がAlNの単位格子の上に中心軸を一致させた状態で[0001]軸が30°回転して上に乗っている状態である。
Here, with reference to FIGS. 2A to 2D, nitride microcrystals provided on the bulk single crystal wafer having a specific orientation relationship with the crystal structure of the bulk single crystal wafer will be described. FIG. 2A is a schematic diagram showing the orientation relationship between a single crystal bulk wafer and microcrystals when a Sapphire (0001) substrate is used as a bulk single crystal wafer and AlN (aluminum nitride) is used as nitride microcrystals. FIG. 2B is a diagram showing crystal axes when the bulk single crystal wafer is sapphire. FIG. 2C is a diagram showing crystal axes when the nitride crystallites are AlN.
Sapphire has a corundum-type crystal structure, and its unit cell 201 can be represented by a hexagonal prism. AlN has a wurtzite crystal structure, and its unit cell 202 can also be represented by a hexagonal prism. FIG. 2A and FIG. 2D show plan views viewed from above, with the [0001] axes of the hexagonal prisms of the respective unit cells overlapping. Here, the specific orientation relationship means that the Sapphire crystal axis [0001] and the AlN crystal axis [0001] have the same orientation relationship. Next, it has an orientation relationship in which the [1-100] axis of AlN is rotated by 30° with respect to the [1-100] axis of Sapphire. That is, as shown in FIG. 2D, the Sapphire unit cell is placed on the AlN unit cell with the [0001] axis rotated by 30° with the central axis aligned with the AlN unit cell.

また、別の配向関係の例として、単結晶バルクウエハとしてZnO(酸化亜鉛)の(0001)面を用い、窒化物微結晶としてAlNを選択したような、共にウルツ鉱構造の組み合わせを選択した場合が挙げられる。この場合には、それぞれのウルツ鉱の[0001]方向と[1-100]軸とが共に一致している配向関係を持つ。すなわち、それぞれの単位格子が[0001]軸及び[1-100]軸を共に一致させ、回転することなく上に乗っている状態である(図示せず)。 As another example of the orientation relationship, there is a case where a combination of wurtzite structures is selected, such as using the (0001) plane of ZnO (zinc oxide) as a single crystal bulk wafer and selecting AlN as a nitride microcrystal. mentioned. In this case, the [0001] direction and the [1-100] axis of each wurtzite have the same orientation relationship. That is, each unit cell has the [0001] axis and the [1-100] axis aligned and is placed on top without rotating (not shown).

さらに、窒化物微結晶と同一の材料からなる非晶質の窒化物薄膜とは、特定の決まった微結晶と同一組成から構成される化合物であるが、特定の結晶構造を持たないアモルファス構造の窒化物薄膜を指す。 Furthermore, the amorphous nitride thin film made of the same material as the nitride crystallites is a compound composed of the same composition as the specific crystallites, but it has an amorphous structure that does not have a specific crystal structure. Refers to a nitride thin film.

微結晶102は、成膜プロセス中に自発的に形成されるため、微結晶同士の間隔や大きさは後述する窒化物系薄膜複合構造体の製造方法におけるプロセス条件によって制御することができる。本窒化物系薄膜複合構造体は、MOCVD法やMBE法、HVPE法によっても形成することができる。しかし、MOCVD法やMBE法、HVPE法は、基板温度が高温であり基板上のマイグレーションにともなって結晶が成長する方式である。このことから、上記方法では、基板である単結晶バルクウエハの上に形成される結晶の表面粗さは成長速度や基板温度やその他の形成条件によって敏感に変化してしまい、結晶状態と平坦性を同時に制御することが難しい。一方、スパッタリング法は、基板温度が比較的低温であることから、マイグレーションの距離が小さく、平坦な膜を形成しやすい。基板の表面粗さに影響をうけるが、スパッタリング法により、算術平均粗さRaが0.1nm以上であって10nm以下である薄膜を形成することが可能である。すなわち、本開示の窒化物系薄膜複合構造体は上面が平坦であることが好ましい。さらに、本開示の窒化物系薄膜複合構造体は、上面の算術平均粗さが0.1nm以上であって10nm以下であることが好ましい。特に、成膜された薄膜において膜厚の面内均一性や平坦性に優れ、かつ生産設備のコストが安いことから、窒化物系薄膜複合構造体の成膜は、スパッタリング法によって行うことが望ましい。 Since the microcrystals 102 are spontaneously formed during the film formation process, the spacing and size of the microcrystals can be controlled by the process conditions in the method for manufacturing a nitride-based thin film composite structure, which will be described later. This nitride-based thin film composite structure can also be formed by the MOCVD method, the MBE method, and the HVPE method. However, the MOCVD method, MBE method, and HVPE method are methods in which the substrate temperature is high and crystals grow due to migration on the substrate. For this reason, in the above method, the surface roughness of a crystal formed on a single crystal bulk wafer, which is a substrate, changes sensitively depending on the growth rate, substrate temperature, and other formation conditions, and the crystal state and flatness are affected. difficult to control at the same time. On the other hand, in the sputtering method, the substrate temperature is relatively low, so the distance of migration is small and a flat film can be easily formed. Although affected by the surface roughness of the substrate, it is possible to form a thin film having an arithmetic mean roughness Ra of 0.1 nm or more and 10 nm or less by the sputtering method. That is, the nitride-based thin film composite structure of the present disclosure preferably has a flat upper surface. Furthermore, the nitride-based thin film composite structure of the present disclosure preferably has an upper surface with an arithmetic mean roughness of 0.1 nm or more and 10 nm or less. In particular, the formed thin film has excellent in-plane uniformity and flatness of the film thickness, and the cost of production equipment is low, so it is desirable that the film formation of the nitride-based thin film composite structure is performed by a sputtering method. .

<スパッタリング装置>
次に、実施の形態1に係る窒化物系薄膜複合構造体を形成するためのスパッタリング装置300について説明する。図3は、実施の形態1に係るスパッタリング装置300の構成を示す概略図である。このスパッタリング装置300は、真空チャンバー301と、真空ポンプ302と、ガス供給源304と、バッキングプレート308と、直流電源330と、パルス化ユニット332と、制御部の一例として機能する電源制御器340と、パルス制御器341と、基板ホルダー305と、を備えている。
<Sputtering device>
Next, a sputtering apparatus 300 for forming a nitride-based thin film composite structure according to Embodiment 1 will be described. FIG. 3 is a schematic diagram showing the configuration of a sputtering apparatus 300 according to Embodiment 1. As shown in FIG. This sputtering apparatus 300 includes a vacuum chamber 301, a vacuum pump 302, a gas supply source 304, a backing plate 308, a DC power supply 330, a pulsing unit 332, and a power supply controller 340 functioning as an example of a control section. , a pulse controller 341 and a substrate holder 305 .

真空チャンバー301は、ゲートバルブ303を介して接続された真空ポンプ302で排気することによって、真空状態への減圧を行うことができる。 The vacuum chamber 301 can be evacuated to a vacuum state by exhausting with a vacuum pump 302 connected via a gate valve 303 .

ガス供給源304は、スパッタリングに必要なガスを真空チャンバー301へ一定速度で供給することができる。ガス供給源304で供給するガスは、例えば窒素又は酸素など目的の材料と反応性を持ったガス、又は、反応性を持ったガスと不活性なアルゴンなどの希ガスとの混合ガスなどが選択できる。 A gas supply source 304 can supply a gas required for sputtering to the vacuum chamber 301 at a constant rate. The gas supplied by the gas supply source 304 is selected from, for example, a gas having reactivity with the target material, such as nitrogen or oxygen, or a mixed gas of a reactive gas and a rare gas such as inert argon. can.

ゲートバルブ303は、その開閉率を変化させることで、真空チャンバー301内の真空度を所望のガス圧力に制御することができる。 The gate valve 303 can control the degree of vacuum in the vacuum chamber 301 to a desired gas pressure by changing its opening/closing ratio.

図3において、真空チャンバー301の上部内には、ターゲット材307が配置されている。ターゲット材307は、任意のスパッタ材料であるが、例えば窒化物を形成する金属材料又は半導体材料などの無機材料である。本実施の形態1の場合は、高純度(6N:99.9999%)のAlである。 In FIG. 3, a target material 307 is arranged in the upper part of the vacuum chamber 301 . The target material 307 is any sputter material, but an inorganic material, such as a metallic material that forms a nitride or a semiconductor material. In the case of the first embodiment, Al of high purity (6N: 99.9999%) is used.

バッキングプレート308は、真空チャンバー301の上部内に配置されて、後述する基板ホルダー305に対向するように、ターゲット材307を支持している。 The backing plate 308 is arranged in the upper part of the vacuum chamber 301 and supports the target material 307 so as to face the substrate holder 305 which will be described later.

直流電源330は、パルス化ユニット332とバッキングプレート308とを介して、ターゲット材307に電気的に接続され、ターゲット材307に電圧を印加することができる。パルス化ユニット332は、直流電源330によって発生した直流電流を、内蔵するコンデンサ等に蓄積し、内蔵する半導体スイッチング素子等によりオン又はオフして、パルス化することができる。なお、パルス化ユニット332は、パルス制御器341によって制御され、直流電源330及びパルス制御器341は、電源制御器340によって制御される。また、直流電源330からパルス化ユニット332への電流は電流計331によって計測され、計測された電流値が電源制御器340にフィードバックされる。つまり、電源制御器340において、電流計331で計測した電流値が所定の値となるように直流電源330をフィードバック制御する。 A DC power supply 330 is electrically connected to the target material 307 via the pulsing unit 332 and the backing plate 308 and can apply a voltage to the target material 307 . The pulsing unit 332 can store the DC current generated by the DC power supply 330 in a built-in capacitor or the like, turn it on or off by a built-in semiconductor switching element or the like, and turn it into a pulse. The pulsing unit 332 is controlled by a pulse controller 341 , and the DC power supply 330 and the pulse controller 341 are controlled by the power supply controller 340 . Also, the current from the DC power supply 330 to the pulsing unit 332 is measured by an ammeter 331 and the measured current value is fed back to the power supply controller 340 . That is, the power supply controller 340 feedback-controls the DC power supply 330 so that the current value measured by the ammeter 331 becomes a predetermined value.

マグネット309及びヨーク310は、真空チャンバー301の上部内のバッキングプレート308の裏面に配置され、ターゲット材307の表面に磁場を発生させることができる。マグネット309は1つ以上であればよい。なお、マグネット309は、永久磁石、電磁石のいずれであってもよい。ヨーク310は、マグネット309の一端と接続されており、磁気回路を構成し、ターゲット材307と反対側への不要な磁場の漏洩を抑制できる。 A magnet 309 and a yoke 310 are arranged behind the backing plate 308 in the upper part of the vacuum chamber 301 and can generate a magnetic field on the surface of the target material 307 . One or more magnets 309 may be provided. Note that the magnet 309 may be either a permanent magnet or an electromagnet. The yoke 310 is connected to one end of the magnet 309 , forms a magnetic circuit, and can suppress unnecessary magnetic field leakage to the side opposite to the target material 307 .

図3において、真空チャンバー301の下部内には、基板306を支持する基板ホルダー305が配置されている。基板ホルダー305は、基板306の下部に配置され、バッキングプレート308で支持されたターゲット材307の表面に基板306の表面が対向するように、基板306を支持する。 In FIG. 3, a substrate holder 305 that supports a substrate 306 is arranged in the lower part of the vacuum chamber 301 . The substrate holder 305 is arranged below the substrate 306 and supports the substrate 306 so that the surface of the substrate 306 faces the surface of the target material 307 supported by the backing plate 308 .

<窒化物系薄膜複合構造体の製造方法>
次に、本実施の形態1による窒化物系薄膜複合構造体の製造方法、つまり、窒化物系薄膜複合構造体の成膜手順を説明する。
(1)まず始めに基板投入を行う。前述の図3の基板306の位置に、成膜しようとする基板306、例えばSapphire(0001)基板(「バルク単結晶ウエハ」)を設置する。基板306の設置については、真空チャンバー301を大気開放して直接手で設置する場合、又は、大気開放せずに、ロードロックチャンバーからロボットアーム等を用いて機械で設置する場合もある。
(2)続いて、真空ポンプ302を作動させて真空チャンバー301内が真空状態になるように減圧を行い、所定の真空度に到達した後、ガス供給源304からガスを導入し、所定のガス圧力となるようにゲートバルブ303の開度を調整する。
(3)ガス流量と圧力が安定すると、電力を印加し、プラズマを発生させ、成膜を開始する。この場合、窒化物微結晶と非晶質の窒化物薄膜との成膜は、一段階で行う。成膜条件としては、例えば、真空チャンバー内に窒素を30%以上含むガスを導入し、0.1Pa以上0.5Pa以下の圧力とする。また、基板の温度は25℃以上1000℃以下である。さらに、周波数1kHz以上100kHz以下で電力を印加する時間割合が0.1%以上30%以下となる電力パルスを印加してプラズマを発生させている。以上の条件下において、所望の膜厚となるように任意の時間だけ成膜を行った後、基板を取り出して一連の動作は終了する。
以上によって、バルク単結晶ウエハである基板306への窒化物系薄膜構造体の成膜を行うことができる。
<Manufacturing method of nitride-based thin film composite structure>
Next, a method for manufacturing a nitride-based thin film composite structure according to Embodiment 1, that is, a film formation procedure for a nitride-based thin film composite structure will be described.
(1) First, the board is loaded. A substrate 306 on which a film is to be deposited, for example, a Sapphire (0001) substrate (“bulk single crystal wafer”) is placed at the position of the substrate 306 in FIG. The substrate 306 may be placed directly by hand after opening the vacuum chamber 301 to the atmosphere, or may be placed mechanically from a load lock chamber using a robot arm or the like without opening to the atmosphere.
(2) Subsequently, the vacuum pump 302 is operated to reduce the pressure so that the inside of the vacuum chamber 301 becomes a vacuum state, and after reaching a predetermined degree of vacuum, a gas is introduced from the gas supply source 304, The opening degree of the gate valve 303 is adjusted so as to obtain the pressure.
(3) When the gas flow rate and pressure are stabilized, power is applied to generate plasma to start film formation. In this case, the film formation of the nitride microcrystals and the amorphous nitride thin film is performed in one step. As film formation conditions, for example, a gas containing 30% or more of nitrogen is introduced into a vacuum chamber, and the pressure is set to 0.1 Pa or more and 0.5 Pa or less. Also, the temperature of the substrate is 25° C. or higher and 1000° C. or lower. Furthermore, plasma is generated by applying a power pulse with a frequency of 1 kHz or more and 100 kHz or less and a power application time ratio of 0.1% or more and 30% or less. Under the above conditions, film formation is performed for an arbitrary time so as to obtain a desired film thickness, and then the substrate is taken out to complete a series of operations.
As described above, a nitride-based thin film structure can be formed on the substrate 306, which is a bulk single crystal wafer.

次に、上述したスパッタリング法によって成膜した窒化物系薄膜複合構造体の評価方法について記述する。窒化物系薄膜複合構造体中の微結晶102と非晶質103の複合体の評価は、X線による構造解析と窒化物系薄膜複合構造体を初期基板としてMOCVD法で成長したGaNを光学顕微鏡によって観察することで行う。 Next, a method for evaluating the nitride-based thin film composite structure formed by the sputtering method described above will be described. Evaluation of the composite of microcrystals 102 and amorphous 103 in the nitride-based thin film composite structure was carried out by X-ray structural analysis and the observation of GaN grown by MOCVD using the nitride-based thin film composite structure as an initial substrate using an optical microscope. by observing by

X線による評価の詳細を説明する。X線による構造解析は、文献(Journal of Crystal Growth、268(2004)、1-7)に記載された手法を用いて、AlN(0002)のX線ロッキングカーブ反射のピークを微結晶由来の幅の狭いピークと非晶質由来の幅の広いピークとの重なりと仮定し、ガウス関数を用いて微結晶由来のピークと、非晶質由来のピークとを分離することで、微結晶102と非晶質103とのそれぞれの存在を確認できる。ここでX線ピークの幅は具体的な数値で表すことができないが、分離された2つのピークのうち相対的に幅が狭いピークが微結晶由来、幅の広いピークが非晶質由来と関連付けている。 Details of X-ray evaluation will be described. Structural analysis by X-ray was carried out using the method described in the literature (Journal of Crystal Growth, 268 (2004), 1-7), and the peak of the X-ray rocking curve reflection of AlN (0002) was separated from the width derived from the crystallites. Assuming that a narrow peak and a wide peak derived from amorphous overlap, and separating the peak derived from the crystallite and the peak derived from the amorphous using a Gaussian function, the crystallite 102 and the amorphous The presence of each with crystalloid 103 can be confirmed. Here, the width of the X-ray peak cannot be represented by a specific numerical value, but among the two separated peaks, the relatively narrow peak is related to microcrystal origin, and the wide peak is related to amorphous origin. ing.

次に、光学顕微鏡による評価について説明する。微結晶102の間隔は、X線では評価できないため、窒化物系薄膜複合構造体を初期基板としてGaNをMOCVD成長し、結晶成長が進行した位置を光学顕微鏡で観察することで評価する。スパッタリング法で成膜した窒化物薄膜の全面が結晶もしくは非晶質だった場合には、層状に成長したGaNもしくは多結晶のGaNがそれぞれ成長するはずである。一方、微結晶と非晶質の複合体が成長している場合には、微結晶部分では微結晶が結晶核となり結晶成長が容易に進行するためにGaNの結晶構造に由来する六角柱状の結晶が観測される。これに対し、非晶質部分では結晶成長が進行しないために何も観察されないはずである。従ってスパッタリング法で作成した薄膜が微結晶と非晶質の複合体であれば、六角柱がある間隔を持って並んだ光学顕微鏡像が観察される。 Next, evaluation by an optical microscope will be described. Since the distance between microcrystals 102 cannot be evaluated by X-rays, GaN is grown by MOCVD using a nitride-based thin film composite structure as an initial substrate, and the positions where crystal growth has progressed are evaluated by observing with an optical microscope. If the entire surface of the nitride thin film formed by the sputtering method is crystalline or amorphous, layered GaN or polycrystalline GaN should grow, respectively. On the other hand, when a composite of microcrystals and amorphous is grown, the microcrystals serve as crystal nuclei in the microcrystal portion, and crystal growth proceeds easily. is observed. On the other hand, nothing should be observed in the amorphous portion because crystal growth does not proceed. Therefore, if the thin film formed by the sputtering method is a composite of microcrystals and amorphous, an optical microscope image of hexagonal prisms arranged at certain intervals can be observed.

(実施例1)
実施の形態1の実施例1における検討結果を以下に記す。実施例1では、スパッタ法を用い、ターゲット材としてAlを使用し、反応性ガスとして窒素を用いて窒化物系薄膜複合構造体の成膜を行った。成膜圧力は0.45Paとなるように窒素ガスの流量を制御し、ランプ加熱によって基板温度は400℃に一定に保った。プラズマ放電のためにターゲットに印加した電力は0.15kWとし、パルスの条件は、周波数10kHzで、電力を印加するデューティー比は5%とした。成膜した窒化物系薄膜複合構造体の膜厚は20nmとなるように成膜時間を調整した。
(Example 1)
The examination result in Example 1 of Embodiment 1 is described below. In Example 1, a sputtering method was used, Al was used as a target material, and nitrogen was used as a reactive gas to form a nitride-based thin film composite structure. The nitrogen gas flow rate was controlled so that the deposition pressure was 0.45 Pa, and the substrate temperature was kept constant at 400° C. by lamp heating. The power applied to the target for plasma discharge was 0.15 kW, the pulse condition was a frequency of 10 kHz, and the duty ratio of power application was 5%. The film formation time was adjusted so that the film thickness of the formed nitride-based thin film composite structure was 20 nm.

ここで成膜圧力はプラズマ放電が起こる圧力であればよく、0.1Pa以上1Pa以下であればよい。望ましくは0.1Pa以上0.5Pa以下である。0.1Pa未満ではプラズマ放電を維持するのが難しく、放電不良を生じる場合がある。1Paを越える場合、反応性ガスによる窒化反応が不十分となり金属Alが析出する等、膜質が劣化する場合がある。上記成膜では完全窒素系で行っているが、スパッタガスとしてArを添加してもよく、望ましくは供給されるガス種中の窒素が30%以上100%以下の範囲が望ましい。窒素の割合が30%未満では窒化反応が不十分となり、窒化不良によって金属Alの析出や成膜後の試料取り出し時の酸化等の問題が引き起こされる。基板温度については25℃以上1000℃以下であればよいが、望ましくは25℃以上600℃以下の範囲である。それ以上の温度、1000℃を越える温度では過度の結晶化が起こり、微結晶と非晶質との複合構造体の形成が難しい。なお、下限温度の25℃は室温の目安であり、室温であればこれより低くてもよい。
また、プラズマ放電のためにターゲットに印加する電力のパルスの周波数について、低周波側、例えば1kHz未満の条件では、本発明者の検討においては、プラズマ放電が極めて不安定となる。また、高周波側は、例えば100kHzを超えると、一周期が10マイクロ秒程度となり、電源装置の制約などでデューティー比を所望の値まで下げることができない。そのため、周波数については、1kHz以上でかつ100kHz以下が適当であると考える。
Here, the film formation pressure may be any pressure at which plasma discharge occurs, and may be 0.1 Pa or more and 1 Pa or less. Desirably, it is 0.1 Pa or more and 0.5 Pa or less. If the pressure is less than 0.1 Pa, it is difficult to maintain the plasma discharge, and discharge failure may occur. When it exceeds 1 Pa, the nitriding reaction by the reactive gas becomes insufficient, and the film quality may be deteriorated such as deposition of metal Al. Although the above film formation is performed in a complete nitrogen system, Ar may be added as a sputtering gas, and the nitrogen content in the gas species to be supplied is desirably in the range of 30% to 100%. If the proportion of nitrogen is less than 30%, the nitriding reaction becomes insufficient, and problems such as precipitation of metal Al and oxidation when taking out the sample after film formation are caused by insufficient nitriding. The substrate temperature may be 25° C. or higher and 1000° C. or lower, preferably in the range of 25° C. or higher and 600° C. or lower. If the temperature is higher than 1000° C., excessive crystallization occurs, making it difficult to form a composite structure of microcrystals and amorphous. The lower limit temperature of 25° C. is a guideline for room temperature, and the temperature may be lower than this as long as it is room temperature.
Further, in the study of the present inventors, the plasma discharge becomes extremely unstable when the frequency of the power pulse applied to the target for plasma discharge is on the low frequency side, for example, less than 1 kHz. On the high frequency side, for example, when the frequency exceeds 100 kHz, one cycle is about 10 microseconds, and the duty ratio cannot be lowered to a desired value due to limitations of the power supply. Therefore, the appropriate frequency is considered to be 1 kHz or more and 100 kHz or less.

また、瞬間的に大電力を印加し、解離エネルギーの高い窒素ガスを反応性の高い原子状窒素、またはラジカル状態の窒素を生成する目的の達成のためには、一周期における電力を印加する時間は、短時間であることが望ましい。しかし、一周期における電力を印加する時間の割合が、デューティー比0.1%未満においては、電力の立ち上がりの途中であり、設定の電力に達するための時間が不十分である。またデューティー比30%を越えた付近から、前述の窒素ガスが解離されてできる原子状窒素又はラジカル状態の窒素が減少し、デューティー比50%程度になると通常の直流スパッタと変わらない状況となる。従って、一周期における電力を印加する時間の割合については、デューティー比0.1%以上30%以下が適切である。膜厚については1nm以上100nm以下であればよく、望ましくは5nm以上50nm以下である。1nmよりも膜厚が薄い場合には、窒化物系薄膜複合構造体を下地層としてMOCVD法やHVPEにより窒化物半導体の結晶成長を行った際の昇温時に熱分解により消失してしまう。一方、100nmよりも厚い場合には、微結晶の密度が過多となることや微結晶の配向が乱れてしまうために窒化物系薄膜複合構造体の下地層としての機能が失われる。 In addition, in order to achieve the purpose of instantaneously applying a large power and generating nitrogen gas with high dissociation energy into highly reactive atomic nitrogen or radical nitrogen, the time for applying power in one cycle is should be short. However, if the ratio of the power application time in one cycle is less than 0.1%, the power is in the middle of rising and the time to reach the set power is insufficient. When the duty ratio exceeds 30%, the amount of atomic nitrogen or radical nitrogen produced by the dissociation of the nitrogen gas decreases, and when the duty ratio reaches about 50%, the situation is the same as that of normal DC sputtering. Therefore, a duty ratio of 0.1% or more and 30% or less is appropriate for the ratio of time for applying power in one cycle. The film thickness may be 1 nm or more and 100 nm or less, preferably 5 nm or more and 50 nm or less. If the film thickness is less than 1 nm, the film disappears due to thermal decomposition during temperature rise during nitride semiconductor crystal growth by MOCVD or HVPE using the nitride-based thin film composite structure as a base layer. On the other hand, if it is thicker than 100 nm, the density of the microcrystals becomes excessive and the orientation of the microcrystals is disturbed, so that the nitride-based thin film composite structure loses its function as a base layer.

次に、成膜した窒化物系薄膜複合構造体の評価結果について説明する。スパッタリング法によって作製した窒化物系薄膜複合構造体に対し、前述した目的のためX線ロッキングカーブ測定を行い、得られたAlN(0002)面の反射ピークを微結晶、非晶質由来のピークに分離した結果を図4に示す。詳細な方法については上述の通りであるため省略する。実線がX線測定によって得られた生データ、一点鎖線、二点鎖線はそれぞれフィッティングによって求めた微結晶、非晶質由来のピークとなっており、点線はその和を表している。生データと点線はほぼ重なる良いフィッティング結果となっており、スパッタリング法によって成膜した窒化物系薄膜複合構造体が微結晶と非晶質の複合体であることを支持する結果である。 Next, evaluation results of the formed nitride-based thin film composite structure will be described. An X-ray rocking curve measurement was performed on the nitride-based thin film composite structure produced by the sputtering method for the purpose described above, and the obtained reflection peak of the AlN (0002) plane was attributed to microcrystals and amorphous. The separation results are shown in FIG. Since the detailed method is as described above, it will be omitted. The solid line is the raw data obtained by X-ray measurement, the one-dot chain line and the two-dot chain line are peaks derived from microcrystals and amorphous obtained by fitting, respectively, and the dotted line represents the sum of the peaks. The raw data and the dotted line are good fitting results that almost overlap, and this result supports that the nitride-based thin film composite structure formed by the sputtering method is a composite of microcrystals and amorphous.

次に、スパッタリング法により作製した窒化物系薄膜複合構造体の上にMOCVD法でGaNを成膜した結果について説明する。III族原料にはトリメチルガリウム(TMG)、V族原料にはNHをそれぞれ用いた。TMGは23sccm、NHは5SLMだけ供給し、リアクタ中のトータルフローは50SLMとなるように水素ガスで希釈した。基板温度は1050℃とし、GaNの成長を60分間行った。得られた試料の光学顕微鏡による観察結果を図5に示す。図5によれば、ウルツ鉱構造に由来する六角形の形をしたGaNが観察された。また走査型電子顕微鏡による観察を行ったところ、高さ1μm以上
20μm以下の柱状の結晶が50nm以上20μm以下の間隔で得られていることがわかった。GaNの結晶成長は微結晶を起点として進行するため、バルク単結晶ウエハ上に形成された窒化物系薄膜複合構造体中の微結晶も同様に、50nm以上20μmの間隔を持って点在していることがわかる。この微結晶の間隔は成膜条件によって制御することができ、その間隔は5nm以上50μm以下であればよく、望ましくは50nm以上20μm以下である。5nmよりも小さい場合には、その後のMOCVD法やHVPE法で窒化物半導体の結晶成長を行った際に結晶同士の結合界面が欠陥となるため高品質な結晶を成長することができない。一方、微結晶同士の間隔が50μm以上になるとMOCVD法やHVPE法で結晶成長を行った際に微結晶を起点として成長した窒化物半導体結晶が結合できなくなるためピットやマイクロパイプといった重大な欠陥を生成する原因となる。一方で六角柱が形成されていない領域においては、GaNの成長は確認されず、核形成もおきていないことがわかった。この領域では上述したように単結晶バルク基板は非晶質に覆われていることを支持する結果を得た。
Next, the results of forming a GaN film by the MOCVD method on the nitride-based thin film composite structure produced by the sputtering method will be described. Trimethylgallium (TMG) was used as the group III source, and NH3 was used as the group V source. 23 sccm of TMG and 5 SLM of NH 3 were supplied and diluted with hydrogen gas so that the total flow in the reactor was 50 SLM. The substrate temperature was set to 1050° C., and GaN was grown for 60 minutes. FIG. 5 shows the results of observation of the obtained sample with an optical microscope. According to FIG. 5, hexagonal GaN derived from the wurtzite structure was observed. Observation with a scanning electron microscope revealed that columnar crystals with a height of 1 μm or more and 20 μm or less were obtained at intervals of 50 nm or more and 20 μm or less. Since the crystal growth of GaN proceeds starting from microcrystals, the microcrystals in the nitride-based thin film composite structure formed on the bulk single crystal wafer are also scattered at intervals of 50 nm or more and 20 μm. I know there is. The interval between the microcrystals can be controlled by film formation conditions, and the interval should be 5 nm or more and 50 μm or less, preferably 50 nm or more and 20 μm or less. If it is smaller than 5 nm, when the nitride semiconductor crystal is grown by the subsequent MOCVD method or HVPE method, the bonding interface between the crystals becomes a defect, so that a high-quality crystal cannot be grown. On the other hand, when the distance between the microcrystals is 50 μm or more, the nitride semiconductor crystals grown from the microcrystals cannot be bonded when the crystal growth is performed by the MOCVD method or the HVPE method, resulting in serious defects such as pits and micropipes. cause it to generate. On the other hand, it was found that the growth of GaN was not confirmed in the regions where the hexagonal prisms were not formed, and no nucleation occurred. A result was obtained that supports the fact that the single-crystal bulk substrate is covered with an amorphous layer in this region as described above.

従って、スパッタ法を用いて作製した窒化物系薄膜複合構造体上にMOCVD法を用いてGaNを成長した試料の光学顕微鏡による観察結果は、窒化物系薄膜複合構造体は微結晶と非晶質からなる複合構造体であることを支持する結果であった。 Therefore, the results of optical microscopic observation of a sample in which GaN was grown by MOCVD on a nitride thin film composite structure fabricated by sputtering revealed that the nitride thin film composite structure was microcrystalline and amorphous. It was a result supporting that it is a composite structure consisting of.

以上の実施形態により、スパッタ法を用いて単結晶バルク基板上に微結晶と非晶質からなる窒化物系薄膜複合構造体が形成できることがわかった。従って安価なスパッタリング法を用いた1段階の工程によってELO法で使用される加工基板と同等の機能を持つ窒化物系薄膜複合構造体とその成膜方法を提供することが可能となる。 According to the above embodiments, it was found that a nitride-based thin film composite structure composed of microcrystals and amorphous can be formed on a single crystal bulk substrate using a sputtering method. Therefore, it is possible to provide a nitride-based thin film composite structure having the same function as a processed substrate used in the ELO method and a method for forming the same by a one-step process using an inexpensive sputtering method.

なお、本開示においては、前述した様々な実施の形態及び/又は実施例のうちの任意の実施の形態及び/又は実施例を適宜組み合わせることを含むものであり、それぞれの実施の形態及び/又は実施例が有する効果を奏することができる。 It should be noted that the present disclosure includes appropriate combinations of any of the various embodiments and / or examples described above, and each embodiment and / or The effects of the embodiment can be obtained.

本実施の形態に係る窒化物系薄膜複合構造体及びその製造方法は、GaNをはじめとしたAlN、InNおよびそれらの混晶から成る窒化物半導体をMOCVDやHVPE法によって成長するための下地層及びその製造方法として利用できる。また、ELO法で作製していた高品質結晶と同等の品質を持つ前記窒化物半導体を安価に、効率よく生産することが可能であるため有用である。 A nitride-based thin film composite structure and a method for manufacturing the same according to the present embodiment provide a base layer and a base layer for growing nitride semiconductors including GaN, AlN, InN, and their mixed crystals by MOCVD or HVPE. It can be used as its manufacturing method. In addition, it is useful because it is possible to inexpensively and efficiently produce the nitride semiconductor having the same quality as high-quality crystals produced by the ELO method.

100 窒化物系薄膜複合構造体
101 バルク単結晶ウエハ
102 窒化物微結晶
103 非晶質窒化物薄膜
201 Sapphireの単位格子
202 AlNの単位格子
300 スパッタリング装置
301 真空チャンバー
302 真空ポンプ
303 ゲートバルブ
304 ガス供給源
305 基板ホルダー
306 基板
307 ターゲット材
308 バッキングプレート
309 マグネット
310 ヨーク
330 直流電源
331 電流計
332 パルス化ユニット
340 電源制御器
341 パルス制御器
601 バルク単結晶ウエハ
602 結晶性薄膜
603 非晶質マスク
701 開口部
702 マスク
100 Nitride thin film composite structure 101 Bulk single crystal wafer 102 Nitride microcrystal 103 Amorphous nitride thin film 201 Sapphire unit cell 202 AlN unit cell 300 Sputtering device 301 Vacuum chamber 302 Vacuum pump 303 Gate valve 304 Gas supply Source 305 Substrate holder 306 Substrate 307 Target material 308 Backing plate 309 Magnet 310 Yoke 330 DC power supply 331 Ammeter 332 Pulse unit 340 Power supply controller 341 Pulse controller 601 Bulk monocrystalline wafer 602 Crystalline thin film 603 Amorphous mask 701 Aperture Part 702 mask

Claims (8)

バルク単結晶ウエハ上に形成された窒化物薄膜を含む窒化物系薄膜複合構造体であって、
前記バルク単結晶ウエハの結晶構造と特定の配向関係を持って前記バルク単結晶ウエハ上に設けられた窒化物微結晶と、
前記窒化物微結晶の外側面を取り囲み、且つ、前記バルク単結晶ウエハの表面を覆う非晶質の窒化物薄膜と、
を備え、
前記窒化物微結晶同士の間隔が5nm以上50μm以下であるとともに、前記窒化物微結晶が表面に露出するように構成した、窒化物系薄膜複合構造体。
A nitride-based thin film composite structure comprising a nitride thin film formed on a bulk single crystal wafer,
Nitride microcrystals provided on the bulk single crystal wafer in a specific orientation relationship with the crystal structure of the bulk single crystal wafer;
an amorphous nitride thin film surrounding the outer surface of the nitride crystallites and covering the surface of the bulk single crystal wafer;
with
A nitride-based thin film composite structure , wherein the distance between the nitride microcrystals is 5 nm or more and 50 μm or less, and the nitride microcrystals are exposed on the surface .
上面が平坦である、請求項1に記載の窒化物系薄膜複合構造体。 2. The nitride-based thin film composite structure according to claim 1, wherein the upper surface is flat. 上面の算術平均粗さが0.1nm以上であって10nm以下である、請求項2に記載の窒化物系薄膜複合構造体。 3. The nitride-based thin film composite structure according to claim 2, wherein the upper surface has an arithmetic mean roughness of 0.1 nm or more and 10 nm or less. 前記窒化物系薄膜複合構造体は、Al、Ga、Inの内、1種類以上の金属元素が窒化された2元もしくは3元以上の元素から構成される、請求項1から3のいずれか一項に記載の窒化物系薄膜複合構造体。 4. The nitride-based thin-film composite structure according to any one of claims 1 to 3, wherein the nitride-based thin film composite structure is composed of binary or ternary elements obtained by nitriding one or more metal elements of Al, Ga, and In. 10. A nitride-based thin film composite structure according to claim 1. 前記窒化物系薄膜複合構造体において、膜厚が5nm以上100nm以下である、請求項1からのいずれか一項に記載の窒化物系薄膜複合構造体。 5. The nitride-based thin film composite structure according to claim 1 , wherein the nitride-based thin film composite structure has a film thickness of 5 nm or more and 100 nm or less. 前記窒化物系薄膜複合構造体は、Sapphire(α―Al)、Si、SiC、GaP、GaAs、ZnO、MgO、ScAlMgOの群から選択されるいずれか一つのバルク単結晶ウエハ上に形成された、請求項1からのいずれか一項に記載の窒化物系薄膜複合構造体。 The nitride-based thin film composite structure is any one bulk single crystal wafer selected from the group of Sapphire (α-Al 2 O 3 ), Si, SiC, GaP, GaAs, ZnO, MgO, ScAlMgO 4 A formed nitride-based thin film composite structure according to any one of claims 1 to 5 . スパッタリング装置の真空チャンバー内にバルク単結晶基板と、ターゲット材と、を用意するステップと、
前記真空チャンバー内に窒素を30%以上含むガスを導入し、0.1Pa以上0.5Pa以下の圧力とし、基板の温度が25℃以上1000℃以下で、周波数1kHz以上100kHz以下で電力を印加する時間割合が0.1%以上30%以下となる電力パルスを印加してプラズマを発生させ、反応性スパッタリング法によって、前記基板上に窒化物微結晶と、前記窒化物微結晶を取り囲み、且つ、前記バルク単結晶基板の表面全面を覆う非晶質の窒化物薄膜と、を成膜するステップと、
を含む、窒化物系薄膜複合構造体の製造方法。
preparing a bulk single crystal substrate and a target material in a vacuum chamber of a sputtering apparatus;
A gas containing 30% or more nitrogen is introduced into the vacuum chamber, the pressure is set to 0.1 Pa or more and 0.5 Pa or less, the temperature of the substrate is 25 ° C. or more and 1000 ° C. or less, and electric power is applied at a frequency of 1 kHz or more and 100 kHz or less. applying a power pulse with a time rate of 0.1% or more and 30% or less to generate plasma, surround the nitride microcrystals on the substrate and the nitride microcrystals by a reactive sputtering method, and forming an amorphous nitride thin film covering the entire surface of the bulk single crystal substrate;
A method for manufacturing a nitride-based thin film composite structure, comprising:
反応性スパッタリングにおいて、ターゲット材とガスとを反応させて前記基板上に薄膜を形成する反応性スパッタリングを行う際にプラズマを発生させるために直流電流をパルス状に供給する、請求項に記載の窒化物系薄膜複合構造体の製造方法。 8. The method according to claim 7 , wherein, in reactive sputtering, a direct current is supplied in a pulsed form to generate plasma when performing reactive sputtering in which a target material and a gas are reacted to form a thin film on the substrate. A method for manufacturing a nitride-based thin film composite structure.
JP2018166005A 2017-12-21 2018-09-05 Nitride-based thin film composite structure and manufacturing method thereof Active JP7157953B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880052361.7A CN111051582B (en) 2017-12-21 2018-11-21 Nitride-based thin film composite structure and method for producing same
US16/637,553 US11280027B2 (en) 2017-12-21 2018-11-21 Composite nitride-based film structure and method for manufacturing same
PCT/JP2018/042932 WO2019123954A1 (en) 2017-12-21 2018-11-21 Composite nitride-based film structure and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017245402 2017-12-21
JP2017245402 2017-12-21

Publications (2)

Publication Number Publication Date
JP2019112291A JP2019112291A (en) 2019-07-11
JP7157953B2 true JP7157953B2 (en) 2022-10-21

Family

ID=67221219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018166005A Active JP7157953B2 (en) 2017-12-21 2018-09-05 Nitride-based thin film composite structure and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP7157953B2 (en)
CN (1) CN111051582B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046712A (en) * 2021-03-10 2021-06-29 无锡吴越半导体有限公司 Method for manufacturing gallium nitride single crystal substrate based on magnetron sputtering aluminum nitride

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3189877B2 (en) 1997-07-11 2001-07-16 日本電気株式会社 Crystal growth method of low dislocation gallium nitride
JP2014500218A (en) 2010-11-23 2014-01-09 ソイテック Improved template layer for heteroepitaxial deposition of III-nitride semiconductor materials using HVPE process
JP2014500219A (en) 2010-11-23 2014-01-09 ソイテック Methods for forming group III nitride materials and structures formed by such methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986285A (en) * 1996-11-07 1999-11-16 Fuji Xerox, Co., Ltd. Group III-V amorphous and microcrystalline optical semiconductor including hydrogen, and method of forming thereof
EP2192625B1 (en) * 2005-04-04 2012-02-15 Tohoku Techno Arch Co., Ltd. Method for growth of GaN single crystal, method for preparation of GaN substrate, process for producing GaN-based element, and GaN-based element
JP5272390B2 (en) * 2007-11-29 2013-08-28 豊田合成株式会社 Group III nitride semiconductor manufacturing method, group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, and lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3189877B2 (en) 1997-07-11 2001-07-16 日本電気株式会社 Crystal growth method of low dislocation gallium nitride
JP2014500218A (en) 2010-11-23 2014-01-09 ソイテック Improved template layer for heteroepitaxial deposition of III-nitride semiconductor materials using HVPE process
JP2014500219A (en) 2010-11-23 2014-01-09 ソイテック Methods for forming group III nitride materials and structures formed by such methods

Also Published As

Publication number Publication date
CN111051582A (en) 2020-04-21
CN111051582B (en) 2022-10-04
JP2019112291A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
US8673074B2 (en) Growth of planar non-polar {1 -1 0 0} M-plane and semi-polar {1 1 -2 2} gallium nitride with hydride vapor phase epitaxy (HVPE)
CA2712148C (en) Method for producing a laminated body having a1-based group-iii nitride single crystal layer, laminated body produced by the method, method for producing a1-based group-iii nitride single crystal substrate employing the laminated body, and aluminum nitride single crystal substrate
US8482104B2 (en) Method for growth of indium-containing nitride films
US8728938B2 (en) Method for substrate pretreatment to achieve high-quality III-nitride epitaxy
US7338828B2 (en) Growth of planar non-polar {1 -1 0 0} m-plane gallium nitride with metalorganic chemical vapor deposition (MOCVD)
JP5451280B2 (en) Wurtzite crystal growth substrate, manufacturing method thereof, and semiconductor device
US8629065B2 (en) Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE)
JP2008290898A (en) Low-resistivity silicon carbide single crystal substrate
WO2014141601A1 (en) Film formation method, method for manufacturing semiconductor light-emitting element, semiconductor light-emitting element, and lighting apparatus
JP2007230823A (en) Method for manufacturing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
KR20180091741A (en) Underlayer substrate for diamond film-forming and method for preparing diamond substrate using the same
JP7352271B2 (en) Method for manufacturing nitride semiconductor substrate
JP2004111848A (en) Sapphire substrate, epitaxial substrate using it, and its manufacturing method
JP7157953B2 (en) Nitride-based thin film composite structure and manufacturing method thereof
WO2019123954A1 (en) Composite nitride-based film structure and method for manufacturing same
JP2019192697A (en) Semiconductor substrate and manufacturing method of the same
Kimura et al. Molecular beam epitaxial growth of GaN on (0001) Al2O3 using an ultrathin amorphous buffer layer deposited at low temperature
JP2003142406A (en) Method for manufacturing semiconductor device
JP7364301B1 (en) Semiconductor substrate manufacturing method, semiconductor substrate, and semiconductor substrate manufacturing device
JPH07240374A (en) Iii-v group compound semiconductor crystal
EP4431634A1 (en) Base substrate, single crystal diamond multilayer substrate, method for producing base substrate, and method for producing single crystal diamond multilayer substrate
JP7569527B2 (en) LAMINATED BODY, SINGLE CRYSTAL DIAMOND SUBSTRATE AND METHOD FOR MANUFACTURING SAME
WO2023154510A1 (en) Lattice polarity control in iii-nitride semiconductor heterostructures
Lee et al. Growth of self-standing GaN substrates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220928

R151 Written notification of patent or utility model registration

Ref document number: 7157953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151