[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7157475B2 - Load-bearing wall structure of wooden structure building and load-bearing wall construction method - Google Patents

Load-bearing wall structure of wooden structure building and load-bearing wall construction method Download PDF

Info

Publication number
JP7157475B2
JP7157475B2 JP2020514132A JP2020514132A JP7157475B2 JP 7157475 B2 JP7157475 B2 JP 7157475B2 JP 2020514132 A JP2020514132 A JP 2020514132A JP 2020514132 A JP2020514132 A JP 2020514132A JP 7157475 B2 JP7157475 B2 JP 7157475B2
Authority
JP
Japan
Prior art keywords
load
stiffening metal
bearing wall
metal plate
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020514132A
Other languages
Japanese (ja)
Other versions
JPWO2019203148A1 (en
JPWO2019203148A5 (en
Inventor
潮 須藤
克己 新見
知哉 長谷川
勝見 多田
晃三 赤井
英二 中塚
雅人 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshino Gypsum Co Ltd
Original Assignee
Yoshino Gypsum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshino Gypsum Co Ltd filed Critical Yoshino Gypsum Co Ltd
Publication of JPWO2019203148A1 publication Critical patent/JPWO2019203148A1/en
Publication of JPWO2019203148A5 publication Critical patent/JPWO2019203148A5/ja
Application granted granted Critical
Publication of JP7157475B2 publication Critical patent/JP7157475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Finishing Walls (AREA)

Description

本発明は、木構造建築物の耐力壁構造及び耐力壁施工方法に関するものであり、より詳細には、パンチングシェア現象の発生を確実に防止するとともに、耐力壁の靱性を高めてその壁倍率を向上することができる木構造建築物の耐力壁構造及び耐力壁施工方法関するものである。 TECHNICAL FIELD The present invention relates to a load-bearing wall structure and a load-bearing wall construction method for a wooden structure building. The present invention relates to a load-bearing wall structure of a wooden structure building that can be improved and a load-bearing wall construction method.

住宅建築物等の比較的小規模な建築物の工法として、長い歴史を有する木造軸組工法、1970年代以降に普及した壁構造の木造枠組壁工法、1960年代以降に普及した鉄骨軸組工法、近年において普及しつつあるスチールハウス工法等が知られている。木造軸組工法は、一般に角形断面の材木を柱・梁として組付けて木造軸組構造を構築する工法であり、我が国(日本国)において最も普及した在来工法である。木造枠組壁工法は、ツーバイフォー工法とも呼ばれ、「木材を使用した枠組に構造用合板その他これに類するものを打ち付けることにより、壁及び床版を設ける工法」(平成14年、国土交通省告示第1540号及び第1541号)である。鉄骨軸組工法は、柱、梁及びブレース等を構成する鋼材を組付けて鋼構造軸組を構築する工法である。スチールハウス工法は、概念的には木造枠組壁工法の木製枠組材を軽量形鋼に置換した構成のものであり、薄板軽量形鋼造(平成13年、国土交通省告示1641号)に規定された鋼構造枠組壁工法である。また、小規模建築物に関する他の構造として、ラーメン構造形式又は壁構造形式の鉄筋コンクリート構造等が知られている。 As construction methods for relatively small-scale buildings such as residential buildings, the wooden frame construction method has a long history, the wooden frame wall construction method for wall structures has been popular since the 1970s, the steel frame construction method has been popular since the 1960s, The steel house construction method and the like, which are becoming popular in recent years, are known. The wooden frame construction method is a method of constructing a wooden frame structure by generally assembling timbers with square cross sections as columns and beams, and is the most popular conventional construction method in Japan. The wooden frame wall construction method is also called the two-by-four construction method, and is ``a method of installing walls and floor slabs by attaching structural plywood or other similar materials to a framework using wood'' (Ministry of Land, Infrastructure, Transport and Tourism notification No. 2002). 1540 and 1541). The steel framework construction method is a method of constructing a steel structure framework by assembling steel materials that constitute columns, beams, braces, and the like. Conceptually, the steel house construction method replaces the wooden framing materials of the wooden frame wall construction method with lightweight shaped steel. It is a steel structure frame wall construction method. In addition, as other structures related to small-scale buildings, reinforced concrete structures such as rigid-frame structures or wall structures are known.

我が国における小規模建築物としては、このように多種多用な構造の建築物が知られているが、以下、本発明と関連する技術として、木構造建築物の耐震性能について説明する。 Small-scale buildings in Japan are known to have a wide variety of structures as described above. Below, as a technique related to the present invention, the seismic performance of wooden structures will be described.

一般に、木構造建築物の工法は、木造軸組工法及び木造枠組壁工法に大別される。近年の大規模地震等の影響により、木構造建築物の耐震性等に関する研究が、我が国において近年殊に注目されている。我が国における建築設計の実務においては、短期水平荷重(地震力、風圧等)に抗する木構造建築物の強度を示す指標として、構造耐力上有効な耐力壁の軸組長さ(建築平面図における壁の長さ)が一般に使用される(特許文献1:特開2001-227086号公報)。軸組長さの算定には、耐力壁の構造に相応した壁倍率が用いられる。壁倍率は、耐力壁の耐震性能又は耐力性能の指標であり、その数値が大きいほど、耐震強度が大きい。特定枚数の耐力壁を設計上採用すべき場合、壁倍率が比較的高い耐力壁構造を採用すると、建築物全体の耐震性を向上することができる。即ち、我が国においては、木構造建築物は、所要の耐震性を発揮し得る建築基準法上の必要壁量を要し、短期水平荷重に抗する木造建築物の強度は、耐力壁の壁倍率に壁長を乗じた値に比例し、通常の建築設計においては、必要壁量以上の存在壁量(耐力壁の軸組長さ×壁倍率)を梁間方向及び桁行方向の双方において設計上確保する必要がある。一般に、壁倍率が比較的大きい耐力壁構造を採用すると、耐力壁の枚数(設置箇所数)を低減し、設計自由度を向上することができ、逆に、壁倍率が比較的小さい耐力壁構造を採用すると、耐力壁の枚数(設置箇所数)が増大し、設計自由度が低下する。従って、壁倍率の数値が大きい壁構造は、建築物の設計自由度及び耐震性を向上する上で有利である。 In general, construction methods for wooden structures are roughly classified into wooden frame construction methods and wooden frame wall construction methods. Due to the effects of large-scale earthquakes in recent years, studies on the earthquake resistance of wooden structures have received particular attention in recent years in Japan. In the practice of architectural design in Japan, as an indicator of the strength of a wooden structure building that can withstand short-term horizontal loads (seismic force, wind pressure, etc.), the length of a load-bearing wall that is effective in terms of structural strength length) is generally used (Patent Document 1: Japanese Unexamined Patent Application Publication No. 2001-227086). For the calculation of the framing length, the wall scale factor corresponding to the structure of the load-bearing wall is used. The wall magnification is an index of the seismic performance or bearing capacity of a load-bearing wall, and the larger the value, the greater the seismic strength. When a specific number of load-bearing walls are to be used in the design, the earthquake resistance of the entire building can be improved by adopting a load-bearing wall structure with a relatively high wall magnification. In other words, in Japan, a wooden structure building requires the wall volume required by the Building Standards Law to exhibit the required earthquake resistance, and the strength of a wooden building that can withstand short-term horizontal loads depends on the wall ratio of the load-bearing wall. is proportional to the value obtained by multiplying the wall length by the wall length, and in normal architectural design, the amount of existing walls (frame length of load-bearing wall x wall magnification) that is greater than the required wall amount is secured in the design in both the beam direction and the girder direction. There is a need. In general, if a load-bearing wall structure with a relatively large wall ratio is adopted, the number of load-bearing walls (the number of installation locations) can be reduced and the degree of freedom in design can be improved. , the number of load-bearing walls (the number of installation locations) increases, and the degree of freedom in design decreases. Therefore, a wall structure with a large wall magnification is advantageous in improving the degree of design freedom and earthquake resistance of a building.

長年に亘って我が国で使用されてきた汎用の木構造耐力壁の壁倍率は、建築基準法施行令第46条及び建設省告示第1100号(昭和56年6月1日)に規定されている。他方、このような汎用の壁構造に属しない近年の多くの耐力壁については、同条第4項表1(八)に規定された国土交通大臣の認定に基づいて壁倍率を定める必要がある。このため、近年施工される多くの木構造耐力壁の壁倍率は、指定性能評価機関が実施する性能試験に基づいて壁倍率を設定する必要があり、この性能試験の試験方法等は、各試験・検査機関が公表している「木造の耐力壁及びその倍率 性能試験・評価業務方法書」等に詳細に記載されている。 The wall ratio of general-purpose wooden load-bearing walls that have been used in Japan for many years is stipulated in Article 46 of the Building Standards Law Enforcement Ordinance and Ministry of Construction Notification No. 1100 (June 1, 1981). . On the other hand, for many recent load-bearing walls that do not belong to such general-purpose wall structures, it is necessary to determine the wall ratio based on the approval of the Minister of Land, Infrastructure, Transport and Tourism as stipulated in Table 1 (8) of paragraph 4 of the same article. . For this reason, it is necessary to set the wall ratio for many wooden structure load-bearing walls that have been constructed in recent years based on performance tests conducted by designated performance evaluation organizations.・It is described in detail in the “Wooden load-bearing wall and its magnification performance test/evaluation work method manual” published by the inspection agency.

「木造の耐力壁及びその倍率 性能試験・評価業務方法書」等の多くの文献に記載されたとおり、木構造耐力壁の壁倍率を求める性能試験は、耐力壁の面内せん断(剪断)試験である。この試験においては、耐力壁の試験体に対して所定の水平荷重が繰り返し加力され、水平荷重とせん断変形角との関係等が求められる。壁倍率は、「木造軸組工法住宅の許容応力度設計[1](2017年版)」、第63頁及び第300頁(非特許文献1)等の多くの技術文献に記載される如く、水平荷重及びせん断変形角に基づいて短期許容せん断耐力を算定し、これを所定の耐力(壁長(m)×1.96(kN/m))で除した値である。従って、壁倍率は、短期許容せん断耐力を基準数値で除して指数化した値である。ここに、壁倍率算出の根拠である短期許容せん断耐力は、以下の4つの指標のうち最も小さい値を示す値(短期基準耐力)に対し、ばらつき係数を乗じ且つ所定の係数(耐力低下の要因を評価する係数)を乗じた値である。
(1)降伏耐力
(2)塑性率に基づいて補正した終局耐力の値(以下、「終局耐力(補正値)」という。)
(3)最大耐力の2/3の値(以下、「最大耐力相当値」という。)
(4)せん断変形角=1/120radの時の耐力
As described in many documents such as "Wooden load-bearing walls and their magnification performance test and evaluation work method manual", the performance test to determine the wall magnification of wooden structural load-bearing walls is the in-plane shear test of load-bearing walls. is. In this test, a predetermined horizontal load is repeatedly applied to a load-bearing wall specimen, and the relationship between the horizontal load and the shear deformation angle is obtained. The wall magnification is the horizontal It is the value obtained by calculating the short-term allowable shear strength based on the load and the shear deformation angle and dividing it by the predetermined strength (wall length (m) x 1.96 (kN/m)). Therefore, the wall magnification is a value obtained by dividing the short-term allowable shear strength by the reference value and converting it into an index. Here, the short-term allowable shear strength, which is the basis for calculating the wall magnification, is obtained by multiplying the value indicating the smallest value (short-term standard strength) among the following four indices by a coefficient of variation and obtaining a predetermined coefficient (factor of strength reduction is a value multiplied by a coefficient that evaluates
(1) Yield strength
(2) Value of ultimate yield strength corrected based on plasticity rate (hereinafter referred to as “ultimate yield strength (corrected value)”)
(3) 2/3 of maximum yield strength (hereinafter referred to as "maximum yield strength equivalent value")
(4) Yield strength at shear deformation angle = 1/120 rad

例えば、特定のせん断変形角において最大耐力が得られた後、せん断変形角を僅かに増大した時点で面材の縁切れ、割れ等が発生して耐力が急激に低下し又は早期にせん断破壊する耐力壁の場合、最大耐力相当値が比較的大きな値を示したとしても、終局耐力(補正値)が小さく、この結果、比較的小さい値の壁倍率しか得られないことが比較的多い。これに対し、特定のせん断変形角において最大耐力が得られた後、最大耐力を発揮したせん断変形角を更に増大しても、耐力が大きく低下せず、しかも、せん断破壊し難いことがある。このような耐力壁の場合、終局耐力(補正値)が比較的大きく、従って、最大耐力相当値が比較的小さい値であったとしても、比較的大きな値の壁倍率を設定し得ることが多い。即ち、木構造耐力壁の壁倍率は、必ずしも最大耐力相当値の増大のみに依存したものではなく、終局耐力等の他の要因と関連した総合的検討により、所望の如く増大し得る性質を有する。 For example, after the maximum yield strength is obtained at a specific shear deformation angle, when the shear deformation angle is slightly increased, the edge of the face material, cracks, etc. occur, resulting in a rapid decrease in yield strength or early shear failure. In the case of load-bearing walls, even if the maximum strength equivalent value shows a relatively large value, the ultimate strength (correction value) is small, and as a result, only a relatively small value of wall magnification is obtained in many cases. On the other hand, after the maximum yield strength is obtained at a specific shear deformation angle, even if the shear deformation angle at which the maximum yield strength is exhibited is further increased, the yield strength does not decrease significantly, and shear fracture may be difficult to occur. In the case of such a load-bearing wall, even if the ultimate strength (correction value) is relatively large and therefore the value corresponding to the maximum strength is relatively small, it is often possible to set a relatively large wall magnification. . That is, the wall magnification of a wooden structural bearing wall does not necessarily depend only on the increase in the value equivalent to the maximum bearing strength, but has the property of being able to increase as desired through a comprehensive study related to other factors such as the ultimate bearing strength. .

また、近年の木構造建築物の施工では、釘打機、ビス打機等の作業工具が多用される傾向があり、面材を柱、梁等に固定するための釘、ビス、ねじ等の固定具、係留具又は留め具(以下、単に「留め具」という。)は、多くの場合、釘打機(ネイルガン、ネイラー)や、ビス打機等の作業工具によって面材に圧入され又は打込まれる。この種の作業工具で留め具を面材に圧入し又は打込むと、留め具の頭部が面材内にめり込み、この結果、水平荷重加力時に留め具が面材から抜け出し又は突き抜ける所謂パンチングシェアの現象が発生し易い。パンチングシェア現象は、耐力壁の耐力を急激に低下させる要因の一つであると考えられる。 In addition, in the construction of wooden structures in recent years, work tools such as nailing machines and screwing machines tend to be used frequently, and nails, screws, screws, etc. for fixing face materials to pillars, beams, etc. Fixtures, anchors or fasteners (hereinafter simply referred to as "fasteners") are often press-fitted or hammered into the face material by work tools such as nailers (nail guns, nailers) and screw drivers. be taken in. When a fastener is pressed into or driven into the face material with this type of work tool, the head of the fastener sinks into the face material, and as a result, the fastener slips out or penetrates the face material when a horizontal load is applied, so-called punching. The phenomenon of sharing is likely to occur. The punching shear phenomenon is considered to be one of the factors that rapidly lower the bearing wall strength.

特許文献2~5(特許第5415156号公報、特開2013-209809号公報、特開2013-238068号公報、特開2012-202112号公報)には、帯状補強材を使用して耐力面材を柱、梁等の木造軸組部材又は木造架構部材の壁下地に固定する木構造耐力壁の面材固定方法が記載されている。この種の面材固定方法は、合成繊維織物等の帯状補強材、或いは、鋼板又は木質繊維板等の帯状補強材を面材の縁に沿って連続的に敷設し、各帯状補強材に対して所定間隔で多数の釘等の留め具を打込み、これにより、面材を壁下地に固定するように構成したものである。このような帯状補強材を使用した木構造耐力壁によれば、留め具の間隔を最適化するとともに、帯状補強材によって留め具の面材保持作用を向上し、これにより、短期水平荷重に対する最大耐力を増大し、耐力壁の壁倍率を比較的大きく増大し得るかもしれない。また、留め具の頭部が面材にめり込むのを防止し得る帯鉄板等の鋼板製帯状補強材を用いた場合には、最大耐力を増大し得るだけではなく、パンチングシェア現象の発生を未然に防止し得ると考えられる。 Patent Documents 2 to 5 (Patent No. 5415156, JP 2013-209809, JP 2013-238068, JP 2012-202112) disclose load-bearing surface materials using belt-shaped reinforcing materials. A method for fixing a face material of a wooden load-bearing wall to a wall base of a wooden framework member such as a column or a beam or a wooden structural member is described. In this type of face material fixing method, a belt-shaped reinforcing material such as a synthetic fiber fabric, or a belt-shaped reinforcing material such as a steel plate or a wood fiber board is continuously laid along the edge of the facing material, and each belt-shaped reinforcing material A large number of fasteners such as nails are driven into the wall at predetermined intervals, thereby fixing the face member to the wall base. A wooden structural load-bearing wall using such strip reinforcements optimizes the spacing of the fasteners, and the strip reinforcements improve the face plate retention of the fasteners, thereby providing a maximum It may be possible to increase the bearing capacity and increase the wall magnification of the bearing wall to a relatively large extent. In addition, when using a steel belt-shaped reinforcing member such as a band iron plate that can prevent the head of the fastener from sinking into the face material, not only can the maximum proof stress be increased, but also the punching shear phenomenon can be prevented. It is thought that it is possible to prevent

特開2001-227086号公報Japanese Patent Application Laid-Open No. 2001-227086 特許第5415156号公報Japanese Patent No. 5415156 特開2013-209809号公報JP 2013-209809 A 特開2013-238068号公報JP 2013-238068 A 特開2012-202112号公報Japanese Patent Application Laid-Open No. 2012-202112

木造軸組工法住宅の許容応力度設計[1](2017年版)、第63頁及び第300頁Allowable Stress Design for Wooden Frame Construction Houses [1] (2017 edition), pp.63 and 300

上記の如く、鋼板製の帯状補強材を耐力面材の縁部に沿って配置し、帯状補強材の上から多数の留め具を作業工具等で圧入し又は打込むことにより、短期水平荷重に対する最大耐力を比較的大きく増大し、しかも、パンチングシェア現象の発生を未然に防止し得る可能性がある。しかしながら、鋼板製の帯状補強材を配置した耐力壁では、帯状補強材を配置した面材の縁部帯域の剛性が全体的に向上する反面、この帯域の剛性と、帯状補強材から離間した非補強域(帯状補強材等の板状補強材が存在せず又は板状補強材によって覆われておらず、板状補強材によって補強されていない領域)の剛性とが比較的大きく相違する。このような極端な剛性の変化に起因して、亀裂又は破損等が面材の非補強域に発生し、この結果、耐力壁の終局耐力が比較的大きく低下する現象があることが本発明者等の実験により判明した。このような現象は、壁倍率の向上を困難にする。 As described above, the belt-shaped reinforcing material made of steel plate is placed along the edge of the load-bearing surface material, and a large number of fasteners are press-fitted or hammered from above the belt-shaped reinforcing material with a work tool or the like to prevent short-term horizontal loads. It is possible to increase the maximum yield strength by a relatively large amount and prevent the occurrence of the punching shear phenomenon. However, in a load-bearing wall with steel strip stiffeners, the overall rigidity of the edge zone of the face plate with the strip stiffeners is improved, but the stiffness of this zone and the non-strength spaced apart from the strip stiffeners are increased. There is a relatively large difference in rigidity from that of the reinforcing region (the region that is not reinforced by a plate-shaped reinforcing member such as a band-shaped reinforcing member or is not covered by a plate-shaped reinforcing member). Due to such an extreme change in rigidity, cracks or breakage occur in the non-reinforced area of the face material, and as a result, the ultimate strength of the load-bearing wall is relatively greatly reduced. It was clarified by experiments such as Such a phenomenon makes it difficult to improve the wall magnification.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、耐力面材を壁下地に留付ける留め具と関連した金属製の補強材を使用して耐力壁にパンチングシェア現象が発生するのを確実に防止するとともに、このような補強材の適切な配設によって耐力壁の靱性を高め、これにより、壁倍率の向上を妨げる阻害要因を解消することができる木構造建築物の耐力壁構造及び耐力壁施工方法を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of these circumstances, and its object is to attach a load-bearing panel to a load-bearing wall using metal reinforcements associated with fasteners that fasten the load-bearing facing to the wall subfloor. A tree that reliably prevents the occurrence of the punching shear phenomenon and enhances the toughness of the load-bearing wall by appropriately arranging such reinforcing members, thereby eliminating the obstacles that hinder the improvement of the wall magnification. To provide a load-bearing wall structure of a structural building and a load-bearing wall construction method.

本発明は、上記目的を達成すべく、木造軸組工法又は木造枠組壁工法の木構造壁下地と、軸部及び頭部を備えた留め具によって前記壁下地に留付けられた耐力面材とから構成され、前記留め具は、所定間隔を隔てて前記面材の外周部及び中間部に配置され、前記軸部は、前記留め具に対する作業工具の打撃力又は圧力により前記面材を貫通して前記壁下地に延入、圧入、貫入又は螺入し、前記頭部は、前記面材の外面と同等の位置に配置され、該面材は、前記留め具の保持力により前記壁下地に一体的に保持される木構造建築物の耐力壁構造において、
前記留め具の間隔と実質的に同一の間隔を隔てて前記面材の両側の縁部帯域に該面材の全高に亘って配列され、裏面を前記面材の外面に密着又は接着し、各留め具の近傍の面材部分を補強する補剛金属板を有し、
該補剛金属板同士は互いに離間し、隣合う補剛金属板の間には、該補剛金属板が存在しない非補強域が前記縁部帯域に形成され、
前記補剛金属板は、前記留め具の打撃時又は圧入時に該留め具に作用する前記作業工具の打撃力又は圧力により前記軸部で穿孔され、該軸部を貫通せしめるが、前記留め具の前記頭部を前記面材の外面と実質的に同一の位置に保持し、支持し又は支承する強度及び板厚を有することを特徴とする耐力壁構造を提供する。
In order to achieve the above object, the present invention provides a wooden structure wall base for a wooden frame construction method or a wooden frame wall construction method, and a load-bearing face member fastened to the wall base by a fastener having a shaft and a head. The fasteners are arranged on the outer peripheral portion and the intermediate portion of the face member at predetermined intervals, and the shaft portion penetrates the face member by the impact force or pressure of the work tool on the fasteners. is extended, press-fitted, penetrated or screwed into the wall base, the head is arranged at a position equivalent to the outer surface of the face member, and the face member is attached to the wall base by the holding force of the fastener. In load-bearing wall structures of wooden structures that are integrally held,
spaced substantially the same as the spacing of the fasteners and arranged in edge zones on both sides of the face plate over the entire height of the face plate, with a back surface in close contact or adhesion to the outer surface of the face plate; Having a stiffening metal plate that reinforces the face material portion near the fastener,
The stiffening metal plates are spaced apart from each other, and between adjacent stiffening metal plates, a non-reinforced area in which the stiffening metal plates do not exist is formed in the edge zone,
The stiffening metal plate is perforated by the shank by the impact force or pressure of the working tool acting on the fastener when striking or press-fitting the fastener, and penetrates the shank. Provided is a load-bearing wall structure characterized by having strength and plate thickness to hold, support or support the head in substantially the same position as the outer surface of the face member.

本発明は又、木造軸組工法又は木造枠組壁工法の木構造壁下地に対して耐力面材を位置決めし、軸部及び頭部を備えた留め具を前記面材の外周部に所定間隔を隔てて打込み、前記留め具に対する作業工具の打撃力又は圧力により前記面材を穿孔して該面材を貫通した軸部を前記壁下地に延入、圧入、貫入又は螺入せしめるとともに、前記頭部を前記面材の外面と同等の位置に配置して該面材を前記留め具の保持力により前記壁下地に構造的に一体的に保持する木構造建築物の耐力壁施工方法において、
裏面を前記面材の外面に密着又は接着して各留め具の近傍の面材部分を補強する補剛金属板を前記留め具の間隔と実質的に同一の間隔を隔てて前記面材の両側の縁部帯域に該面材の全高に亘って配列するとともに、前記補剛金属板同士を互いに離間させることにより、該補剛金属板が存在しない前記面材の非補強域を前記縁部帯域に形成し、
前記留め具の軸部が前記補剛金属板を穿孔して該補剛金属板を貫通するように前記作業工具によって該留め具を前記補剛金属板に打込み、前記留め具の前記頭部を前記面材の外面と実質的に同一の位置において前記補剛金属板によって保持し、支持し又は支承することを特徴とする耐力壁施工方法を提供する。
The present invention also provides a method of positioning a load-bearing panel against a wooden structural wall foundation of a wooden frame construction method or a wooden frame wall construction method, and a fastener having a shaft and a head portion is spaced from the outer periphery of the panel at a predetermined distance. The fasteners are driven apart, and the face member is pierced by the striking force or pressure of the work tool against the fastener, and the shaft penetrating the face member is extended, press-fitted, penetrated or screwed into the wall base, and the head is In a load-bearing wall construction method for a wooden structure building in which a portion is arranged at a position equivalent to the outer surface of the face material and the face material is structurally and integrally held to the wall base by the holding force of the fastener,
Stiffening metal plates, which have their back surfaces adhered or adhered to the outer surface of the face plate to reinforce the portion of the face plate near each fastener, are placed on either side of the face plate at substantially the same spacing as the fastener spacing. By arranging the stiffening metal plates in the edge zone over the entire height of the face material and separating the stiffening metal plates from each other, the non-reinforced area of the face material where the stiffening metal plate does not exist is the edge zone to form
The fastener is driven into the stiffened metal plate by the work tool so that the shank of the fastener penetrates the stiffened metal plate and penetrates the stiffened metal plate, and the head of the fastener is A load-bearing wall construction method is provided, characterized in that the stiffening metal plate holds, supports, or bears at substantially the same position as the outer surface of the face member.

なお、「木構造壁下地」は、木造建築物の外壁及び内壁に関し、内装側及び外装側の各壁下地を含む概念であり、面材の「外周部」は、面材の外周部分を意味し、面材の両側の縁部帯域と、面材の上端部及び下端部の縁部帯域とを包含する概念である。また、面材の「中間部」は、一般に間柱等に固定又は係止される面材の部分であって、上下の縁部帯域の間において上下方向又は鉛直方向に延びる帯域を意味する。更に、「支承」は、「理論上の支点を工学的に実用化したもの。」(「建築大辞典 第2版」(彰国社発行))を意味し、「支承する」は、このような「支承」を構成し又は形成することを意味する。また、留め具の頭部と面材の外面とに関し、「実質的に同一の位置」とは、留め具の頭部の外面と、面材の外面とが概ね同一の面内に位置することを意味する。 "Wooden structure wall base" refers to the outer wall and inner wall of a wooden building, and is a concept that includes each wall base on the interior side and the exterior side. However, it is a concept that includes edge zones on both sides of the face plate and edge zones at the upper and lower ends of the face plate. Also, the "intermediate portion" of the face plate generally means a portion of the face plate that is fixed or locked to a stud or the like, and means a band that extends vertically or vertically between upper and lower edge bands. Furthermore, "supporting" means "an engineering practical application of a theoretical fulcrum." means constituting or forming a "bearing" In addition, with respect to the head of the fastener and the outer surface of the face material, "substantially the same position" means that the outer surface of the head of the fastener and the outer surface of the face material are generally located in the same plane. means

本発明の上記構成によれば、補剛金属板は、留め具の頭部が面材内にめり込むのを阻止し、これにより、水平荷重加力時に留め具が面材から抜け出し又は突き抜けるパンチングシェア現象の発生を効果的に防止する。また、補剛金属板は、縁部帯域全体の剛性を補強するのではなく、留め具近傍の面材部分の剛性を局所的に増大する補強手段を構成する。このため、縁部帯域を含む面材全域の剛性は、全体的に平準化した状態を維持し、面材は、帯状補強材を縁部帯域に連続的に敷設した従来の構成(特許文献2~5)に比べ、全体的に一様又は均等な剛性を発揮する。従って、上記構成の耐力壁構造によれば、面材の補強域と面材の非補強域との間で剛性が変化し又は相違することに起因して非補強域、或いは、補強域と非補強域との境界部分等に応力集中状態等が局部的に発生するのを防止し、これにより、面材に亀裂又は破損等が発生する事態を未然に防止することができる。 According to the above-described configuration of the present invention, the stiffening metal plate prevents the head of the fastener from sinking into the face material. Effectively prevent the occurrence of the phenomenon. Also, the stiffening metal plate constitutes a stiffening means which locally increases the stiffness of the face plate portion near the fastener, rather than reinforcing the stiffness of the entire edge zone. For this reason, the rigidity of the entire face material including the edge zone is maintained in a state of being leveled as a whole, and the face material has a conventional configuration in which a band-shaped reinforcing material is continuously laid in the edge zone (Patent Document 2 Compared to 5), uniform or uniform rigidity is exhibited as a whole. Therefore, according to the load-bearing wall structure configured as described above, the non-reinforced area, or the reinforced area and the non-reinforced area due to the change or difference in rigidity between the reinforced area of the face material and the non-reinforced area of the face material. It is possible to prevent a stress concentration state from being locally generated at a boundary portion with a reinforcing region or the like, thereby preventing a situation in which a face member is cracked or damaged.

本発明者等の耐力検証試験(面内せん断試験)によれば、本発明に係る耐力壁は、縁部帯域において連続的に延びる帯状補強材を有する従来構成の耐力壁(特許文献2~5に記載される如く、細長い帯状補強材を面材の縁部に沿って配置した耐力壁)に比べ、面材に亀裂又は破損等が発生し難く、この結果、靱性に富み、比較的高い壁倍率を発揮する傾向を有する。これは、本発明に係る耐力壁では、面材全域の剛性が均等又は平準な状態を維持するので、せん断変形時に発生する応力が比較的良好に分散するとともに、面材が素材本来の靱性及び変形追随性を有効且つ十分に発揮したことを意味する。即ち、本発明によれば、従来構成の耐力壁(特許文献2~5)に比べて最大耐力相当値が若干劣ったとしても、靱性及び変形追随性と関連して得られる終局耐力(補正値)が比較的高く、結果的に、高い壁倍率を発揮する耐力壁が得られる。 According to the load-bearing verification test (in-plane shear test) conducted by the present inventors, the load-bearing wall according to the present invention is a load-bearing wall of a conventional configuration having strip-shaped reinforcing members continuously extending in the edge zone (Patent Documents 2 to 5 As described in , compared to a load-bearing wall in which an elongated strip-shaped reinforcing material is arranged along the edge of the face plate, the face plate is less likely to crack or break, and as a result, the wall is rich in toughness and relatively high. It has a tendency to demonstrate magnification. This is because, in the load-bearing wall according to the present invention, since the rigidity of the entire surface material is maintained in a uniform or even state, the stress generated during shear deformation is relatively well distributed, and the surface material has the inherent toughness and toughness of the material. It means that the deformation followability was effectively and sufficiently exhibited. That is, according to the present invention, even if the maximum strength equivalent value is slightly inferior to the bearing wall of the conventional structure (Patent Documents 2 to 5), the ultimate strength (correction value ) is relatively high, resulting in a bearing wall exhibiting a high wall magnification.

他の観点より、本発明は、上記構成の耐力壁構造を有する木構造建築物の耐力壁を提供する。更に他の観点より、本発明は、このような耐力壁を有する木構造建築物を提供する。本発明は又、上記構成の耐力壁構造において使用可能な無機系の面材であって、少なくとも面材の縁部帯域において上記補剛金属板の本体を面材の外面に一体的に配設してなる無機系面材を提供する。 From another aspect, the present invention provides a load-bearing wall for a wooden structure building having the load-bearing wall structure of the above configuration. From yet another aspect, the present invention provides a wooden structure having such load-bearing walls. The present invention also provides an inorganic facing material that can be used in the load-bearing wall structure having the above configuration, wherein the main body of the stiffening metal plate is integrally disposed on the outer surface of the facing material at least in the edge zone of the facing material. To provide an inorganic facing material formed by

本発明に係る木構造建築物の耐力壁構造及び耐力壁施工方法によれば、耐力面材を壁下地に留付ける留め具と関連した金属製の補強材を使用して耐力壁にパンチングシェア現象が発生するのを確実に防止するとともに、該補強材の適切な配設によって耐力壁の靱性を高め、これにより、壁倍率の向上を妨げる阻害要因を解消することができる。 According to the load-bearing wall structure and load-bearing wall construction method for a wooden structure building according to the present invention, the punching shear phenomenon is prevented in the load-bearing wall by using metal reinforcements associated with the fasteners that fasten the load-bearing panel to the wall base. It is possible to reliably prevent the occurrence of this, and to increase the toughness of the load-bearing wall by appropriately disposing the reinforcing material, thereby eliminating the obstacles that hinder the improvement of the wall magnification.

図1は、木構造建築物の耐力壁構造を示す正面図である。FIG. 1 is a front view showing a load-bearing wall structure of a wooden building. 図2(A)は、釘及び補剛金属板によって面材を柱に留付けてなる耐力壁の面材留付部分の構成を示す面材留付部分の正面図であり、図2(B)は、図2(A)のI-I線における断面図であり、図2(C)及び図2(D)は、補剛金属板に対して釘を打込む態様を示す面材留付部分の斜視図である。FIG. 2(A) is a front view of the face material fastening portion showing the configuration of the face material fastening portion of the bearing wall formed by fastening the face material to the pillar with a nail and a stiffening metal plate, and FIG. ) is a cross-sectional view taken along the II line of FIG. Fig. 3 is a partial perspective view; 図3(A)及び図3(B)は、面材に取付けられた補剛金属板に釘を打込む態様を示す耐力壁構造の部分斜視図である。FIGS. 3(A) and 3(B) are partial perspective views of the load-bearing wall structure showing how nails are driven into stiffening metal plates attached to face members. 図4は、補剛金属板の変形例を示す耐力壁の面材留付部分の正面図である。FIG. 4 is a front view of a face material fastening portion of a load-bearing wall showing a modification of the stiffening metal plate. 図5は、面材に取付けられた円形輪郭の補剛金属板に釘を打込む態様を示す耐力壁構造の部分斜視図である。FIG. 5 is a partial perspective view of a load-bearing wall structure showing how a nail is driven into a stiffening metal plate of circular profile attached to a face plate. 図6は、円形輪郭の補剛金属板を使用した木構造建築物の耐力壁構造を示す正面図である。FIG. 6 is a front view showing a load-bearing wall structure of a wooden building using a stiffening metal plate with a circular profile. 図7は、図6に示す耐力壁構造の変形例を示す正面図である。7 is a front view showing a modification of the bearing wall structure shown in FIG. 6. FIG. 図8は、本発明の実施例に係る耐力壁構造の面内せん断試験において使用された試験体の構成を示す正面図である。FIG. 8 is a front view showing the configuration of a specimen used in the in-plane shear test of the load-bearing wall structure according to the example of the present invention. 図9は、比較例に係る耐力壁構造の面内せん断試験において使用された試験体の構成を示す正面図である。FIG. 9 is a front view showing the configuration of a specimen used in an in-plane shear test of a load-bearing wall structure according to a comparative example. 図10は、汎用の石膏ボードを耐力面材として備えた試験体の面内せん断試験に関し、その試験結果を示す線図であり、図10には、耐力(荷重)及び変位(せん断変形角)の相関関係が示されている。FIG. 10 is a diagram showing the test results of the in-plane shear test of a specimen having a general-purpose gypsum board as a load-bearing face material. are shown. 図11は、ガラス繊維を混入した石膏系面材を耐力面材として備えた試験体の面内せん断試験に関し、その試験結果を示す線図であり、図11には、耐力(荷重)及び変位(せん断変形角)の相関関係が示されている。FIG. 11 is a diagram showing the test results of an in-plane shear test of a specimen having a gypsum-based face material mixed with glass fiber as a load-bearing face material. (shear deformation angle) correlation is shown.

本発明の好ましい実施形態によれば、上記面材として無機質系の面材が使用され、上記留め具として釘、ビス又はねじが使用され、各々の上記補剛金属板は、単一の留め具によって面材に留付けられる。釘、ビス又はねじは、釘打機、ビス打機又はねじ打機等の作業工具によって補剛金属板に打込まれる。作業工具の打撃力又は圧力が、釘、ビス又はねじの頭部に作用し、釘、ビス又はねじの軸部は、その先端部によって補剛金属板を穿孔するとともに、面材及び壁下地(柱、梁又は横架材)に貫入又は圧入し、壁下地と一体化する。 According to a preferred embodiment of the present invention, an inorganic face material is used as the face material, nails, screws or screws are used as the fasteners, and each of the stiffening metal plates is a single fastener. It is fastened to the face plate by Nails, screws or screws are driven into stiffened metal plates by work tools such as nailers, screwers or screw drivers. The striking force or pressure of the work tool acts on the head of the nail, screw or screw, and the shank of the nail, screw or screw pierces the stiffening metal plate with its tip, and the face material and wall base ( column, beam or horizontal member) and integrates with the wall base.

本発明の好適な実施形態において、補剛金属板は更に、面材の上端部及び下端部の縁部帯域において面材の全幅に亘って配列され、補剛金属板同士は互いに離間し、補剛金属板が存在しない非補強域が、上端部及び下端部の縁部帯域において、隣合う補剛金属板の間に形成される。本発明の他の好適な実施形態において、補剛金属板は更に、面材の中間部において該面材の全高に亘って配列され、補剛金属板同士は互いに離間し、補剛金属板が存在しない非補強域が、中間部おいて、隣合う補剛金属板の間に形成される。好ましくは、補剛金属板は、実質的に均等な間隔で面材の縁部帯域(及び中間部)に配列され又は整列配置される。所望により、補剛金属板と係合せずに耐力面材を壁下地に留付ける留め具が、列をなす補剛金属板の一部を省略することにより補剛金属板の間に配設され、或いは、補剛金属板の間の非補強域に付加的に配設される。 In a preferred embodiment of the invention, the stiffening metal plates are further arranged over the entire width of the face in the edge zones of the top and bottom ends of the face, the stiffening metal plates being spaced apart from each other and providing support. Non-reinforced areas, in which no rigid metal plates are present, are formed between adjacent stiffened metal plates in the edge zones of the upper and lower ends. In another preferred embodiment of the present invention, the stiffening metal plates are further arranged in the middle of the facing over the entire height of the facing, the stiffening metal plates being spaced apart from each other and the stiffening metal plates A non-existent non-reinforced area is formed between adjacent stiffening metal plates in the intermediate portion. Preferably, the stiffening metal plates are arranged or aligned in the edge zone (and middle section) of the facing at substantially even intervals. Optionally, fasteners that fasten the load-bearing facings to the wall subfloor without engaging the stiffening metal plates are disposed between the stiffening metal plates by omitting portions of the rows of stiffening metal plates, or , are additionally arranged in the non-reinforced areas between the stiffening metal plates.

好ましくは、補剛金属板は、留め具の施工前に金属板の本体を面材の外面に保持するための粘着手段、接着手段、係留手段又は係止手段を有し、面材の外面に取付けられ又は仮留めされる。補剛金属板は、面材の製造時、工場出荷時、保管時等に面材の縁部帯域に予め取付けられ又は仮留めされ、或いは、建設現場又は施工現場において面材の縁部帯域に取付けられ又は仮留めされる。粘着手段又は接着手段として、補剛金属板の裏面に塗布された粘着剤(材)又は接着剤(材)、或いは、補剛金属板及び面材の間に介挿される粘着テープ又は両面テープ等が挙げられる。また、係留手段又は係止手段として、ステープル、ピン等が挙げられる。所望により、留め具の打込み位置を示す指標が補剛金属板の中心部に設けられる。指標は、ケガキ、塗料、インク、印刷、隆起、窪み、凹凸、突起等の手段により補剛金属板上に刻設、形成、塗着又は配設される。指標として、留め具の軸部の直径よりも小さい直径を有する小径の貫通孔を補剛金属板に穿設しても良い。 Preferably, the stiffened metal plate has adhesive means, adhesive means, anchoring means or locking means for holding the body of the metal plate to the outer surface of the facing prior to application of the fasteners, and is attached to the outer surface of the facing. Attached or temporarily fastened. The stiffening metal plate is pre-attached or temporarily fastened to the edge zone of the face plate during manufacturing, factory shipment, storage, etc., or is attached to the edge zone of the face plate at the construction site or construction site. Attached or temporarily fastened. Adhesive means or adhesive means applied to the back surface of the stiffening metal plate or adhesive (material), or adhesive tape or double-sided tape interposed between the stiffening metal plate and face material, etc. is mentioned. Moreover, a staple, a pin, etc. are mentioned as an anchoring means or a locking means. If desired, an index indicating the driving position of the fastener is provided in the central portion of the stiffening metal plate. The indicators are engraved, formed, applied or disposed on the stiffened metal plate by means of scribe, paint, ink, printing, ridges, depressions, unevenness, protrusions, or the like. As an index, a small diameter through hole having a diameter smaller than the diameter of the shank of the fastener may be drilled in the stiffening metal plate.

好適には、上記補剛金属板は、正面視円形、多角形又は方形の輪郭を有し、補剛金属板の正面視最大寸法は、留め具の軸芯と面材の縁部との間の距離に対し、該距離の2倍以下の寸法に設定され、金属板の正面視最小寸法は、頭部の直径又は外寸(外形最大寸法)の2倍以上の寸法に設定される。好ましくは、金属板の板厚は、0.05~2.0mmの範囲内の寸法に設定される。更に好適には、金属板は、0.2~0.8mmの範囲内の板厚を有し、直径又は一辺が20~30mmの範囲内の寸法を有する正面視真円形又は正方形の鋼板からなり、鋼板の中心部又は重心位置は、留め具の打込み位置に配置される。 Preferably, the stiffening metal plate has a circular, polygonal or square profile when viewed from the front, and the maximum dimension of the stiffening metal plate when viewed from the front is between the axis of the fastener and the edge of the face material. , and the minimum size of the metal plate in front view is set to be at least twice the diameter or outer size (maximum outer size) of the head. Preferably, the thickness of the metal plate is set within the range of 0.05 to 2.0 mm. More preferably, the metal plate is made of a perfectly circular or square steel plate having a plate thickness within the range of 0.2 to 0.8 mm and a diameter or one side within the range of 20 to 30 mm when viewed from the front. , the central part or the center of gravity of the steel plate is located at the driving position of the fastener.

本発明の好適な実施形態において、上記留め具及び補剛金属板は、特定の留め具の軸心もしくは特定の補剛金属板の中心点を起点に200mm以下且つ50mm以上の間隔で縁部帯域に配置され、上記面材は、比重0.85以下、好ましくは、0.8以下の石膏系面材(石膏ボード又は石膏板)からなる。前述のとおり、補剛金属板は、地震時等の短期水平荷重作用時又は加振時に、石膏系面材に亀裂又は破損等が発生する事態を未然に防止し、壁倍率の向上に寄与する。 In a preferred embodiment of the present invention, the fastener and the stiffening metal plate have edge bands at intervals of 200 mm or less and 50 mm or more starting from the axis of the particular fastener or the center point of the particular stiffening metal plate. The face material is a gypsum-based face material (gypsum board or gypsum plate) having a specific gravity of 0.85 or less, preferably 0.8 or less. As mentioned above, the stiffening metal plate prevents the gypsum-based face material from cracking or breaking when a short-term horizontal load or vibration is applied during an earthquake, etc., and contributes to the improvement of the wall magnification. .

以下、添付図面を参照して、本発明の好適な実施例に係る耐力壁構造の構成について詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the configuration of a load-bearing wall structure according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、木構造建築物の耐力壁構造を示す正面図である。 FIG. 1 is a front view showing a load-bearing wall structure of a wooden building.

図1に示す耐力壁は、厚さ9.5mm、幅910mm、高さ約2800~3030mm(例えば、2900mm)の石膏系面材10をコンクリート(RC)基礎1上の木造軸組に固定した構造を有する。例えば、石膏系面材10として、平板状の石膏コアの両面を石膏ボード用原紙で被覆してなる石膏ボード(JIS A 6901)、或いは、ガラス繊維を混入した平板状コアの両面を石膏ボード用原紙で被覆してなる石膏ボード又は石膏板(以下、「ガラス繊維補強石膏ボード」という。)を好適に使用し得る。後述する本発明の実施例では、前者の石膏系面材として、比重0.67の石膏ボード(JIS A 6901)が使用され、後者の石膏ボード又は石膏板として、製品名「タイガーEXボード」(登録商標、吉野石膏株式会社製品)を改良した比重0.79のガラス繊維補強石膏ボードが使用される。 The load-bearing wall shown in FIG. 1 has a structure in which a gypsum-based face member 10 having a thickness of 9.5 mm, a width of 910 mm, and a height of approximately 2800 to 3030 mm (for example, 2900 mm) is fixed to a wooden frame on a concrete (RC) foundation 1. have For example, as the gypsum-based face material 10, a gypsum board (JIS A 6901) in which both sides of a flat gypsum core are coated with base paper for gypsum board, or both sides of a flat core mixed with glass fiber are used for gypsum board. Gypsum board or gypsum board coated with base paper (hereinafter referred to as "glass fiber reinforced gypsum board") can be preferably used. In the examples of the present invention described later, gypsum board (JIS A 6901) having a specific gravity of 0.67 is used as the former gypsum-based face material, and the product name "Tiger EX Board" ( A glass fiber reinforced gypsum board having a specific gravity of 0.79 is used.

図1に示す如く、石膏系面材10(以下、「面材10」という。)は、土台2、柱3、間柱4及び横架材(胴差)5に対し、釘20によって固定される。釘20は、例えば、めっき鉄丸くぎ(NZくぎ:JIS A 5508)である。本例では、釘20として、例えば、NZ50くぎ(長さ50mm、頭部径約6.6mm、軸部径約2.75mm)が使用される。釘20は、面材10の四周外周帯域において間隔S1を隔てて配置され、鉛直方向に延びる面材10の中央帯域において間隔S2を隔てて配置される。好ましくは、間隔S1は、50mm~200mmの範囲内の寸法に設定され、間隔S2は、50mm~300mmの範囲内の寸法に設定される。面材10の外周帯域には、補剛金属板30が、面材10の外縁に沿って釘20と同一の間隔S1で配列される。釘20は、面材10の外周部において、釘打機等によって補剛金属板30の中心部に打込まれ、面材10の鉛直中央帯域において、釘打機等によって面材10に直に打込まれる。外周部の釘20は、補剛金属板30の中心部を穿孔して補剛金属板30を貫通するとともに、面材10の外周部に貫入して壁下地材2、3、5(土台2、柱3、横架材5)に圧入する。他方、中央帯域の釘20は、鉛直方向に延びる面材10の中央帯域に貫入して間柱4に圧入する。 As shown in FIG. 1, a gypsum-based face material 10 (hereinafter referred to as "face material 10") is fixed by nails 20 to a base 2, a pillar 3, a stud 4, and a horizontal member 5. . The nail 20 is, for example, a plated iron round nail (NZ nail: JIS A 5508). In this example, as the nail 20, for example, an NZ50 nail (length 50 mm, head diameter approximately 6.6 mm, shaft diameter approximately 2.75 mm) is used. The nails 20 are arranged at intervals S1 in the four peripheral bands of the face member 10, and are arranged at intervals S2 in the center band of the face member 10 extending in the vertical direction. Preferably, the distance S1 is set within the range of 50 mm to 200 mm, and the distance S2 is set within the range of 50 mm to 300 mm. In the outer peripheral zone of the face plate 10, stiffening metal plates 30 are arranged along the outer edge of the face plate 10 at the same intervals S1 as the nails 20. As shown in FIG. The nail 20 is driven into the central portion of the stiffening metal plate 30 by a nailing machine or the like at the outer peripheral portion of the face material 10, and directly into the face material 10 by a nailing machine or the like in the vertical center zone of the face material 10. be hammered. The nails 20 on the outer peripheral portion perforate the central portion of the stiffening metal plate 30 and pass through the stiffening metal plate 30, and penetrate the outer peripheral portion of the face material 10 to attach the wall base materials 2, 3, 5 (base 2). , pillar 3 and horizontal member 5). On the other hand, the nail 20 of the central zone penetrates the central zone of the vertically extending panel 10 and presses into the stud 4 .

かくして、図1に示す耐力壁構造は、釘20及び補剛金属板30を使用して面材10の四周外周部を土台2、柱3、横架材5に一体的に留付けるとともに、釘20によって面材中央の縦方向帯域(鉛直中央帯域)を間柱4に一体的に留付けた構成を有する。後述する本発明者等の耐力検証試験によれば、このような木構造耐力壁の構成は、壁倍率を向上する上で有利である。 Thus, the load-bearing wall structure shown in FIG. It has a configuration in which the longitudinal band (vertical central band) at the center of the face plate is integrally fastened to the stud 4 by 20 . According to the load-bearing verification test conducted by the present inventors, which will be described later, such a wooden structural load-bearing wall configuration is advantageous in improving the wall magnification.

図2(A)は、釘20及び補剛金属板30によって面材10を柱3に留付けてなる耐力壁の面材留付部分の構成を示す面材留付部分の正面図であり、図2(B)は、図2(A)のI-I線における断面図であり、図2(C)、図2(D)は、補剛金属板30に対して釘20を打込む態様を示す面材留付部分の斜視図である。図3(A)及び図3(B)は、面材に取付けられた補剛金属板30に釘20を打込む態様を示す耐力壁構造の部分斜視図である。 FIG. 2(A) is a front view of the face material fastening portion showing the configuration of the face material fastening portion of the bearing wall formed by fastening the face material 10 to the pillar 3 with the nail 20 and the stiffening metal plate 30, FIG. 2(B) is a cross-sectional view taken along line II of FIG. 2(A), and FIGS. It is a perspective view of the face material fastening portion showing the. FIGS. 3(A) and 3(B) are partial perspective views of the load-bearing wall structure showing how a nail 20 is driven into a stiffening metal plate 30 attached to a face plate.

図2(A)及び図2(B)には、補剛金属板30と、釘20、面材10及び柱3との位置関係等が示されている。補剛金属板30は、幅W及び高さHの寸法を有する方形の薄い無開孔又は無開口の金属製盲板であり、本例においては、幅W及び高さHを約25mmに設定した正面視正方形輪郭の金属板である。補剛金属板30は、好ましくは、厚さ0.05~2.0mm、更に好ましくは、厚さ0.2~0.8mm(例えば、厚さ0.4mm)の亜鉛めっき鋼板からなる。この種の鋼板は、耐腐蝕性、耐蟻性、経済性等の点で比較的優れているので、金属板の素材として好適に使用し得るが、他の種類の鋼板や、アルミニウム・亜鉛合金めっき鋼板(例えば、ガルバリウム鋼板(登録商標))、アルミニウム合金板、ステレンス合金板、銅板、鉛板等の汎用的な金属材料の板体を補剛金属板30として使用しても良い。また、樹脂被覆した金属板や、異種金属板の積層体等を補剛金属板30として使用しても良い。 2(A) and 2(B) show the positional relationship among the stiffening metal plate 30, the nail 20, the face member 10 and the column 3, and the like. The stiffening metal plate 30 is a rectangular thin solid or imperforate metal blind plate having dimensions of width W and height H, and in this example the width W and height H are set to about 25 mm. It is a metal plate with a square contour when viewed from the front. The stiffening metal plate 30 is preferably made of a galvanized steel plate with a thickness of 0.05-2.0 mm, more preferably 0.2-0.8 mm (for example, 0.4 mm). Since this type of steel plate is relatively excellent in terms of corrosion resistance, termite resistance, economy, etc., it can be suitably used as a material for metal plates. As the stiffening metal plate 30, a plate made of a general-purpose metal material such as a plated steel plate (for example, Galvalume steel plate (registered trademark)), an aluminum alloy plate, a stainless alloy plate, a copper plate, or a lead plate may be used. Alternatively, a resin-coated metal plate, a laminate of dissimilar metal plates, or the like may be used as the stiffening metal plate 30 .

一般に、釘20は、面材10の縁から距離S3を隔てた位置に配置され、補剛金属板30の中心は、面材10の縁から距離S3を隔てた位置に位置決めされる。距離S3は、約5~20mmの範囲内の寸法、好ましくは、10~15mm(本例では12mm)に設定される。 In general, the nail 20 is positioned a distance S3 from the edge of the facing 10 and the center of the stiffening metal plate 30 is positioned a distance S3 from the edge of the facing 10 . The distance S3 is set to a dimension within the range of about 5-20 mm, preferably 10-15 mm (12 mm in this example).

図2(C)、図2(D)及び図3(A)には、面材10に取付けられた補剛金属板30に対して釘20を打込む態様が示されている。釘20は、釘打機等の打撃力又は圧力により面材10を貫通して壁下地に貫入又は圧入する軸部21と、面材10の外面と同等の位置において面材10によって保持、支持又は支承すべき頭部22とを有する。 FIGS. 2(C), 2(D) and 3(A) show how the nail 20 is driven into the stiffening metal plate 30 attached to the face member 10. FIG. The nail 20 is held and supported by the shaft portion 21 that penetrates or presses into the wall base by the striking force or pressure of a nailing machine or the like, and the face member 10 at a position equivalent to the outer surface of the face member 10. or a head 22 to be supported.

補剛金属板30は、面材10の製造時、工場出荷時、保管時等に取付け手段33によって面材10の縁部帯域に予め取付けられ、或いは、建設現場又は施工現場において取付け手段33によって面材10の縁部帯域に取付けられる。補剛金属板30は、必ずしも堅固に面材10に固定する必要はなく、仮留め又は仮固定の態様で補剛金属板30を面材10に取付けても良い。補剛金属板30の取付け手段33として、補剛金属板30の裏面に塗布された粘着剤(材)又は接着剤(材)、或いは、補剛金属板30及び面材10の間に介挿される粘着テープ又は両面テープ等が挙げられる。補剛金属板30には、釘20の打込み位置を示す十字形の指標31が設けられる。指標31は、好ましくは、補剛金属板30の中心部又は重心位置に設けられる。ケガキ、塗料、インク、印刷、隆起、窪み、凹凸、突起等の手段により任意の表示を指標31として補剛金属板30に刻設し、塗着し、形成し又は配設しても良い。 The stiffening metal plate 30 is pre-attached to the edge zone of the panel 10 by attachment means 33 when the panel 10 is manufactured, shipped from the factory, stored, etc., or is attached by the attachment means 33 at the construction site or construction site. It is attached to the edge zone of the panel 10 . The stiffening metal plate 30 does not necessarily need to be firmly fixed to the face material 10, and the stiffening metal plate 30 may be attached to the face material 10 in a manner of temporary fixing or temporary fixing. As the mounting means 33 for the stiffening metal plate 30 , an adhesive (material) or adhesive (material) applied to the back surface of the stiffening metal plate 30 , or an adhesive (material) interposed between the stiffening metal plate 30 and the face material 10 . Adhesive tape or double-sided tape that can be used. A stiffening metal plate 30 is provided with a cross-shaped index 31 indicating the driving position of the nail 20 . The index 31 is preferably provided at the center or center of gravity of the stiffening metal plate 30 . An arbitrary indication may be engraved, applied, formed or arranged on the stiffening metal plate 30 as the index 31 by means of marking, paint, ink, printing, bumps, depressions, unevenness, protrusions, or the like.

図2(C)及び図3(A)に示す如く、釘20の先端部を指標31の中心に圧入するように釘打機(図示せず)を位置決めし、釘打機の打込み圧力Prにより釘20を補剛金属板30に打込むと、軸部21の先端部は、補剛金属板30を穿孔して補剛金属板30を貫通する。釘打ち後の釘20において、頭部22の外面は、図2(D)に示す如く、補剛金属板30の外面と概ね面一である。かくして、頭部22は、面材10の外面と実質的に同一の位置において補剛金属板30によって保持され、支持され又は支承され、釘20は、図2(D)及び図3(A)に示す如く、面材10及び柱3に貫入又は圧入し、この結果、面材10は、柱3に一体的に留付けられる。なお、図3(A)に示す如く、面材10は、間柱4に対応する位置において釘打機等によって面材10に直に打込まれた釘20によって、間柱4に更に留付けられる。 As shown in FIGS. 2(C) and 3(A), a nailing machine (not shown) is positioned so that the tip of the nail 20 is press-fitted into the center of the indicator 31, and the driving pressure Pr of the nailing machine is applied. When the nail 20 is driven into the stiffening metal plate 30 , the tip of the shaft portion 21 pierces the stiffening metal plate 30 and penetrates the stiffening metal plate 30 . In the nail 20 after nailing, the outer surface of the head 22 is substantially flush with the outer surface of the stiffening metal plate 30, as shown in FIG. 2(D). Thus, the head 22 is held, supported or borne by the stiffening metal plate 30 in substantially the same position as the outer surface of the face plate 10, and the nail 20 is shown in Figures 2D and 3A. , the face plate 10 and the post 3 are penetrated or press-fitted, so that the face plate 10 is integrally fastened to the post 3 . As shown in FIG. 3A, the face member 10 is further fastened to the stud 4 with a nail 20 driven directly into the face member 10 by a nailing machine or the like at a position corresponding to the stud 4 .

図3(B)に示す如く、補剛金属板30を予め面材10に取付けず、釘打機(図示せず)によって釘20を補剛金属板30に打込む際に補剛金属板30を作業工具、治具又は手指等で面材10の縁部に位置決めし、釘20の圧力のみによって補剛金属板30を面材10に固定することも可能である。所望により、ハンマー等の手動式作業工具によって釘20を補剛金属板30に打ち付けることにより、釘20を面材10及び柱3に貫入又は圧入させても良い。 As shown in FIG. 3(B), the stiffened metal plate 30 is not attached to the face material 10 in advance, and the stiffened metal plate 30 is removed when the nails 20 are driven into the stiffened metal plate 30 by a nailing machine (not shown). is positioned at the edge of the panel 10 with a work tool, a jig, fingers, or the like, and the stiffening metal plate 30 can be fixed to the panel 10 only by the pressure of the nail 20. If desired, the nail 20 may be penetrated or pressed into the face member 10 and the column 3 by driving the nail 20 into the stiffening metal plate 30 with a manual work tool such as a hammer.

図4は、補剛金属板30の変形例を示す耐力壁の面材留付部分の正面図である。図4(A)には、直径Dの真円形輪郭を有する補剛金属板35が示され、図4(B)には、幅W、高さH(=W)の六角形輪郭を有する補剛金属板36が示され、図4(C)には、幅W、高さHの寸法を有する縦長の長方形輪郭の補剛金属板37が示され、図4(D)には、幅W’の正三角形輪郭を有する補剛金属板38が示されている。各金属板35~38の重心位置には、釘20の打込み位置を示す指標(図示せず)が配置され、釘20は、各金属板35~38の重心位置に打込まれる。 FIG. 4 is a front view of a surface material fastening portion of a load-bearing wall showing a modification of the stiffening metal plate 30. As shown in FIG. FIG. 4(A) shows a stiffening metal plate 35 having a circular contour with a diameter D, and FIG. A rigid metal plate 36 is shown, in FIG. 4(C) a stiffened metal plate 37 of oblong rectangular profile having dimensions of width W and height H, and in FIG. ' is shown with a stiffening metal plate 38 having an equilateral triangular profile. An index (not shown) indicating the driving position of the nail 20 is arranged at the center of gravity of each of the metal plates 35-38, and the nail 20 is driven into the center of gravity of each of the metal plates 35-38.

図5は、円形輪郭の補剛金属板35に釘を打込む態様を示す耐力壁構造の部分斜視図であり、図6は、補剛金属板35を使用した木構造建築物の耐力壁構造を示す正面図である。図7は、図6に示す耐力壁構造の変形例を示す正面図である。 FIG. 5 is a partial perspective view of a load-bearing wall structure showing a manner in which a nail is driven into a stiffening metal plate 35 having a circular outline, and FIG. It is a front view showing. 7 is a front view showing a modification of the bearing wall structure shown in FIG. 6. FIG.

図5に示す如く、円形輪郭の補剛金属板35は、正方形輪郭の補剛金属板30と全く同じ態様で面材10の縁部帯域に取付けられる。前述の如く、釘20は、釘打機(図示せず)の打込み圧力Prにより補剛金属板35に打込まれ、面材10及び柱3に貫入又は圧入し、面材10は、柱3に一体的に留付けられる。また、面材10は、前述のとおり、釘打機等によって面材10に直に打込まれた釘20によって間柱4に更に留付けられる。 As shown in FIG. 5, the circular profile stiffening metal plate 35 is attached to the edge zone of the facing 10 in exactly the same manner as the square profile stiffening metal plate 30 . As described above, the nail 20 is driven into the stiffening metal plate 35 by the driving pressure Pr of a nailing machine (not shown) and penetrates or presses into the face member 10 and the column 3. integrally fastened to the The panel 10 is further secured to the studs 4 by nails 20 driven directly into the panel 10 by a nailer or the like, as described above.

かくして施工された耐力壁構造の正面図が図6に示されている。図6に示す耐力壁構造は、面材10の外周部全周(四周)に間隔S1で等間隔に釘20及び補剛金属板35を配列した構成を有する。 A front view of the bearing wall structure thus constructed is shown in FIG. The load-bearing wall structure shown in FIG. 6 has a configuration in which nails 20 and stiffening metal plates 35 are arranged at equal intervals at intervals S1 around the entire circumference (four circumferences) of the face member 10 .

図7には、面材10の上縁及び下縁の補剛金属板35を省略した構成を有する耐力壁構造の正面図が示されている。補剛金属板35は、必ずしも面材10の外周部全周(四周)に亘って配列しなくとも良く、図7に示す如く、鉛直方向に延びる両側の縁部帯域のみに補剛金属板35を配列すること可能である。 FIG. 7 shows a front view of a load-bearing wall structure having a configuration in which the stiffening metal plates 35 on the upper and lower edges of the face member 10 are omitted. The stiffening metal plates 35 do not necessarily have to be arranged over the entire circumference (four circumferences) of the face member 10. As shown in FIG. can be arranged.

図8は、図6に示す耐力壁構造の面内せん断試験において使用された試験体(実施例1、2)の構成を示す正面図である。図9は、後述する比較例1-2、2-2の試験体の構成を示す正面図である。図8及び図9において、前述の各実施例の構成要素又は構成部材に相当又は相応する構成要素又は構成部材については、同一の参照符号が付されている。また、図10及び図11は、面内せん断試験の試験結果を示す線図である。 8 is a front view showing the configuration of test specimens (Examples 1 and 2) used in the in-plane shear test of the load-bearing wall structure shown in FIG. 6. FIG. FIG. 9 is a front view showing the configuration of test pieces of Comparative Examples 1-2 and 2-2, which will be described later. In FIGS. 8 and 9, the same reference numerals are given to components or members corresponding to or corresponding to the components or members of the above-described embodiments. Moreover, FIG.10 and FIG.11 is a diagram which shows the test result of an in-plane shear test.

本発明者等は、「木造の耐力壁及びその倍率 性能試験・評価業務方法書」に記載された試験体仕様に従って、図8に示す耐力壁構造を有する壁幅1820mm、高さ2730mmの試験体を製作し、無載苛式試験装置を用いた面内せん断試験を実施した。図8に示す試験体は、図6に示す耐力壁構造の試験体であり、面材10(10a:10b)の外周部全周(四周)に間隔S1で等間隔に釘20及び補剛金属板35を配列した構成を有する。 The present inventors, in accordance with the test body specifications described in "Wooden load-bearing wall and its magnification performance test and evaluation business method manual", have a load-bearing wall structure shown in FIG. was manufactured, and an in-plane shear test was performed using a non-mounted caustic tester. The specimen shown in FIG. 8 is a specimen of the load-bearing wall structure shown in FIG. It has a configuration in which plates 35 are arranged.

図8に示す試験体は、断面105×105mmのスギ製材の土台2及び柱3と、柱3によって支持された断面180×105mmのベイマツ製材の横架材5とからなる木造軸組の主要構造部を有する。柱3間の中央部には、断面45×105mmのスギ製材の継手間柱4’が立設され、柱3と継手間柱4’との間には、断面30×105mmのスギ製材の間柱4が立設される。スギ製材又はベイマツ製材の胴つなぎ5’が、柱3と間柱4との間に架設されるとともに、間柱4と継手間柱4’との間に架設される。試験用治具として、引き寄せ金物40が、土台2及び柱3の接合部に配設されるとともに、横架材5及び柱3の接合部に配設される。土台2、柱3、継手間柱4’、間柱4、横架材5、胴つなぎ5’は、耐力壁構造の軸材を構成しており、これら部材によって矩形状の軸組が形成される。 The test body shown in FIG. 8 is a main structure of a wooden framework consisting of a base 2 and columns 3 made of Japanese cedar with a cross section of 105×105 mm, and horizontal members 5 made of Douglas fir with a cross section of 180×105 mm supported by the columns 3. have a part. Joint studs 4' made of cedar wood with a cross section of 45 x 105 mm are erected in the central part between the pillars 3, and between the pillars 3 and the joint studs 4', cedar wood studs 4 with a cross section of 30 x 105 mm are installed. be erected. A trunk joint 5' made of lumber of Japanese cedar or Douglas fir is constructed between the pillar 3 and the stud 4, and constructed between the stud 4 and the joint stud 4'. As a test jig, a pulling hardware 40 is arranged at the joint between the base 2 and the pillar 3 and at the joint between the horizontal member 5 and the pillar 3 . The base 2, the pillar 3, the joint stud 4', the stud 4, the horizontal member 5, and the joint 5' constitute the shaft members of the load-bearing wall structure, and these members form a rectangular framework.

図8に示す試験体において、土台2及び横架材5の鉛直離間距離h1、胴つなぎ5’の高さh2、胴つなぎ5’に対する横架材5の相対高さh3は夫々、h1=2625mm、h2=1790mm、h3=835mmに設定され、柱3及び継手間柱4’の間隔(柱芯間隔)w1は、w1=910mmに設定され、壁の長さLは、1.82mに設定された。面材10は、胴つなぎ5’によって上下に分割され、下側の面材10aは、幅910mm、高さ1820mmの寸法を有し、上側に配置された面材10bは、幅910mm、高さ865mmの寸法を有する。面材10a、10bのかかり代寸法h4、h5は、30mmに設定された。 In the test piece shown in FIG. 8, the vertical separation distance h1 between the base 2 and the horizontal member 5 , the height h2 of the trunk joint 5', and the relative height h3 of the horizontal member 5 to the trunk joint 5' are h1=2625 mm. , h2 = 1790 mm, h3 = 835 mm, the spacing (column center spacing) w1 between the column 3 and joint stud 4' was set to w1 = 910 mm, and the wall length L was set to 1.82 m. . The face material 10 is divided into upper and lower parts by a tether 5'. It has a dimension of 865 mm. The hanging allowance dimensions h4 and h5 of the face materials 10a and 10b were set to 30 mm.

図8に示す試験体において、面材10a、10bを土台2、柱3、継手間柱4’、横架材5及び胴つなぎ5’に留付けるための釘20及び補剛金属板35は、面材10a、10bの縁部帯域全周に亘って等間隔(間隔S1=75mm)に配列された。面材10a、10bを間柱4に留付けるための釘20は、面材10a、10bの鉛直中央帯域に等間隔(間隔S2=150mm)に配列された。釘20として、NZ50くぎ(長さ50mm、頭部径約6.6mm、軸部径約2.75mm)が使用され、補剛金属板35として、直径24mm、板厚0.4mmの亜鉛めっき鋼板(真円形盲板)が使用された。 In the test body shown in FIG. 8, the nails 20 and stiffening metal plates 35 for fastening the face materials 10a and 10b to the base 2, the pillar 3, the joint stud 4', the horizontal member 5 and the dorsal joint 5' They were arranged at equal intervals (spacing S1=75 mm) over the entire circumference of the edge zones of the members 10a, 10b. Nails 20 for fastening the face materials 10a and 10b to the studs 4 were arranged at regular intervals (interval S2=150 mm) in the vertical center zones of the face materials 10a and 10b. As the nail 20, a NZ50 nail (50 mm in length, about 6.6 mm in head diameter, about 2.75 mm in shaft diameter) is used, and as the stiffening metal plate 35, a galvanized steel plate with a diameter of 24 mm and a thickness of 0.4 mm is used. (perfect circular blind plate) was used.

本発明者等は、以下の2種類の試験体を製作し、無載苛式試験装置を用いた面内せん断試験を実施した。
(1)図8に示す構成において、厚さ9.5mm、幅910mm、比重0.67の石膏ボード(JIS A 6901)を面材10a、10bとして用いた実施例(以下、「実施例1」という。)の試験体
(2)図8に示す構成において、厚さ9.5mm、幅910mm、比重0.79のガラス繊維補強石膏ボードを面材10a、10bとして用いた実施例(以下、「実施例2」という。)の試験体
実施例1及び2の各試験体の試験結果が図10及び図11に示されている。各図に示された試験結果の評価については、後述する。
The present inventors manufactured the following two types of specimens and conducted in-plane shear tests using a non-loading caustic tester.
(1) In the configuration shown in FIG. 8, an example using a gypsum board (JIS A 6901) having a thickness of 9.5 mm, a width of 910 mm, and a specific gravity of 0.67 as the face materials 10a and 10b (hereinafter referred to as "Example 1") ) test specimen
(2) In the configuration shown in FIG. 8, an example using glass fiber reinforced gypsum boards having a thickness of 9.5 mm, a width of 910 mm and a specific gravity of 0.79 as the face members 10a and 10b (hereinafter referred to as "Example 2"). ) Specimens The test results of the specimens of Examples 1 and 2 are shown in FIGS. 10 and 11 . Evaluation of the test results shown in each figure will be described later.

本発明者等は更に、比較例1-1、1-2、2-1及び2-2として、以下の構成を有する試験体を製作し、無載苛式試験装置を用いた面内せん断試験を実施した。 The present inventors further produced test specimens having the following configurations as Comparative Examples 1-1, 1-2, 2-1 and 2-2, and performed an in-plane shear test using a non-mounted caustic test apparatus. carried out.

(1)比較例1-1
図8に示す構成の試験体において、補剛金属板35を全く使用せず、釘20だけを使用して面材10a、10bを図8の壁下地に留付けた試験体が、比較例1-1として用意された。釘20の間隔S1、S2は、図8に示す試験体と同じく、S1=75mm、S2=150mmである。面材10a、10bは、実施例1の試験体と同じく、厚さ9.5mm、幅910mm、比重0.67の石膏ボード(JIS A 6901)である。
(1) Comparative Example 1-1
In the test body having the configuration shown in FIG. prepared as -1 . Intervals S1 and S2 between the nails 20 are S1=75 mm and S2=150 mm, as in the specimen shown in FIG. The face materials 10a and 10b are gypsum boards (JIS A 6901) having a thickness of 9.5 mm, a width of 910 mm, and a specific gravity of 0.67, like the specimen of Example 1.

(2)比較例1-2
図8に示す構成の試験体において、図9に示す如く補剛金属板35を従来の帯鉄板(帯状補強材)50に置換し、釘20を帯鉄板50に打ち込んで面材10a、10bを図8の壁下地に留付けてなる試験体が、比較例1-2として用意された。面材10a、10bは、実施例1の試験体と同じく、厚さ9.5mm、幅910mm、比重0.67の石膏ボード(JIS A 6901)である。図9に示す帯鉄板50の寸法は、長さ約800~900mm、幅60mm、厚さ0.4mmである。釘20の間隔S1、S2は、図8に示す試験体と同じく、S1=75mm、S2=150mmである。帯鉄板50と同様の帯鉄板は、前述の特許文献2~5(特許第5415156号公報、特開2013-209809号公報、特開2013-238068号公報、特開2012-202112号公報)に記載されているので、更なる詳細な説明は、省略する。
(2) Comparative Example 1-2
8, the stiffening metal plate 35 is replaced with a conventional band iron plate (belt-shaped reinforcing material) 50 as shown in FIG. A test piece fastened to the wall base shown in FIG. 8 was prepared as Comparative Example 1-2. The face materials 10a and 10b are gypsum boards (JIS A 6901) having a thickness of 9.5 mm, a width of 910 mm, and a specific gravity of 0.67, like the specimen of Example 1. The dimensions of the band iron plate 50 shown in FIG. 9 are about 800-900 mm long, 60 mm wide and 0.4 mm thick. Intervals S1 and S2 between the nails 20 are S1=75 mm and S2=150 mm, as in the specimen shown in FIG. The band iron plate similar to the band iron plate 50 is described in the above-mentioned Patent Documents 2 to 5 (Patent No. 5415156, JP 2013-209809, JP 2013-238068, JP 2012-202112). Therefore, further detailed description is omitted.

(3)比較例2-1
比較例1-1の試験体と同様、補剛金属板35を全く使用せず、釘20だけを使用して面材10a、10bを図8の試験体の壁下地に留付けた試験体であるが、厚さ9.5mm、幅910mm、比重0.79のガラス繊維補強石膏ボードを面材10a、10bとして用いた試験体が、比較例2-1として用意された。
(3) Comparative Example 2-1
Similar to the test piece of Comparative Example 1-1, a test piece in which the face materials 10a and 10b were fastened to the wall base of the test piece in FIG. However, a test body was prepared as Comparative Example 2-1 using glass fiber reinforced gypsum boards having a thickness of 9.5 mm, a width of 910 mm and a specific gravity of 0.79 as the face materials 10a and 10b.

(4)比較例2-2
比較例1-2の試験体と同様、釘20を帯鉄板50に打ち込んで面材10a、10bを図8の壁下地に留付けてなる試験体であるが、厚さ9.5mm、幅910mm、比重0.79のガラス繊維補強石膏ボードを面材10a、10bとして用いた試験体が、比較例2-2として用意された。
(4) Comparative Example 2-2
Similar to the test piece of Comparative Example 1-2, this test piece is made by driving a nail 20 into a band iron plate 50 and fixing the face members 10a and 10b to the wall base shown in FIG. , a test body using glass fiber reinforced gypsum boards having a specific gravity of 0.79 as the face materials 10a and 10b was prepared as Comparative Example 2-2.

図10及び図11は、本発明に係る耐力壁構造(実施例1、2)及び比較例1-1、1-2、2-1、2-2の耐力壁構造における耐力(荷重)及び変位(せん断変形角)の特性を示す線図である。図10及び図11において、各包絡線上の黒塗り丸印は、最大耐力(最大荷重)Pmax後の0.8Pmax荷重低下域を示す。図10及び図11には、各実施例及び各比較例の最大耐力が、Pmax1~Pmax6として示され、0.8Pmax荷重低下域の包絡線上のせん断変形角、即ち、終局変位δuが、各実施例及び各比較例に関し、δu1~δu6として示されている。 10 and 11 show the bearing wall structure (Examples 1 and 2) according to the present invention and the bearing wall structures of Comparative Examples 1-1, 1-2, 2-1 and 2-2. It is a diagram showing the characteristics of (shear deformation angle). 10 and 11, the black circles on each envelope indicate the 0.8Pmax load drop region after the maximum proof stress (maximum load) Pmax. 10 and 11 show the maximum yield strength of each example and each comparative example as Pmax1 to Pmax6, and the shear deformation angle on the envelope curve of the 0.8Pmax load decrease region, that is, the ultimate displacement δu It is indicated as δu1 to δu6 for the example and each comparative example.

本書の冒頭において説明したとおり、壁倍率は、短期許容せん断耐力Paを所定の基準値(L×1.96)で除した値であり、短期許容せん断耐力Paは、図10及び図11の数式より理解し得るとおり、短期基準耐力P0に所定の低減係数αを乗じた値であり、短期基準耐力P0の値に比例する。本発明者等が実施した実施例1、2及び比較例1-1、1-2、2-1、2-2の試験結果においては、いずれも、前述の終局耐力(補正値)が最も小さい値を示し、従って、終局耐力(補正値)が短期基準耐力P0として採用された。終局耐力(補正値)の値は、図10及び図11の数式より理解し得るとおり、終局耐力Puを塑性率μに基づいて補正した値である。なお、図10及び図11の各図に示す耐力及び変位の特性や、短期許容せん断耐力Pa及び壁倍率の値は、同一面材に関する実施例及び比較例の相対的な性能比較のためのものであるので、説明を簡略化すべく、低減係数α=1.0と仮定した。As explained at the beginning of this document, the wall ratio is the value obtained by dividing the short-term allowable shear strength Pa by a predetermined reference value (L x 1.96), and the short-term allowable shear strength Pa can be understood from the formulas in Figures 10 and 11. As is possible, it is a value obtained by multiplying the short-term reference strength P0 by a predetermined reduction coefficient α, and is proportional to the value of the short-term reference strength P0. In the test results of Examples 1 and 2 and Comparative Examples 1-1, 1-2, 2-1, and 2-2 conducted by the present inventors, the above-mentioned ultimate yield strength (correction value) is the smallest values and therefore the ultimate strength (corrected value) was taken as the short-term reference strength P 0 . The value of the ultimate yield strength (correction value) is a value obtained by correcting the ultimate yield strength Pu based on the plasticity ratio μ, as can be understood from the formulas of FIGS. 10 and 11 . 10 and 11, the characteristics of yield strength and displacement, short-term allowable shear strength Pa, and wall magnification values are for relative performance comparison between examples and comparative examples for the same face material. Therefore, in order to simplify the explanation, it is assumed that the reduction factor α=1.0.

殊に、石膏系面材等の無機系面材を用いた耐力壁において短期許容せん断耐力Pa(従って、壁倍率)を増大するには、短期基準耐力P0を増大させる必要があり、短期基準耐力P0を増大するには、短期基準耐力P0を構成する因子、即ち、終局耐力Pu及び塑性率μの双方を増大させ、或いは、終局耐力Pu及び塑性率μの一方を大きく低下させることなく、他方を増大させる必要がある。最大耐力Pmaxを増大し得たとしても、塑性率μが比較的大きく低下した場合、短期許容せん断耐力Pa及び壁倍率を所望の如く増大させることはできない。なお、塑性率μは、終局変位δuの値に比例し、荷重を加え続けると弾性変形域を超えて(破壊又は崩壊せずに)変形し続ける性質を客観的に示す数値であり、従って、塑性率μは、靱性及び変形追随性の指標と見做すことができる。In particular, in order to increase the short-term allowable shear strength Pa (hence, the wall magnification) in load-bearing walls using inorganic face materials such as gypsum-based face materials, it is necessary to increase the short-term standard strength P 0 , and the short-term standard In order to increase the yield strength P 0 , both the factors that make up the short-term basic yield strength P 0 , that is, the ultimate yield strength Pu and the plasticity ratio μ, must be increased, or one of the ultimate yield strength Pu and the plasticity ratio μ must be greatly reduced. need to increase the other. Even if the maximum strength Pmax can be increased, the short-term allowable shear strength Pa and the wall magnification cannot be increased as desired when the plasticity ratio μ decreases relatively greatly. The plasticity factor μ is proportional to the value of the ultimate displacement Δu, and is a numerical value that objectively indicates the property of continuing to deform beyond the elastic deformation range (without breaking or collapsing) when a load is continuously applied. The plasticity factor μ can be regarded as an index of toughness and deformation followability.

図10に示す試験結果より、以下の傾向又は性質を理解し得る。
(1)帯鉄板50で補強した耐力壁構造(比較例1-2)の場合、帯鉄板50も補剛金属板35も有しない耐力壁構造(比較例1-1)に比べ、最大耐力Pmaxが大きく増大するが、終局変位δuが大きく低下(この結果、塑性率μが大きく低下)するので、短期基準耐力P0が大きく増大することはなく、従って、短期許容せん断耐力Pa及び壁倍率を所望の如く増大させることはできない。
(2)補剛金属板35で補強した耐力壁構造(実施例1)の場合、帯鉄板50も補剛金属板35も有しない耐力壁構造(比較例1-1)に比べ、終局変位δuが大きく低下することなく(従って、塑性率μが大きく低下することなく)、最大耐力Pmaxが大きく増大するので、短期基準耐力P0が顕著に増大し、従って、短期許容せん断耐力Pa及び壁倍率が比較的大きく増大する。
From the test results shown in FIG. 10, the following tendencies or properties can be understood.
(1) In the case of the load-bearing wall structure (comparative example 1-2) reinforced with the steel band plate 50, the maximum load Pmax However, the ultimate displacement δu is greatly reduced (as a result, the plasticity factor μ is greatly reduced), so the short-term basic strength P 0 does not increase greatly, so the short-term allowable shear strength Pa and the wall magnification are It cannot be increased as desired.
(2) In the case of the load-bearing wall structure (Example 1) reinforced with the stiffening metal plate 35, the ultimate displacement δu (Therefore, without a large decrease in the plasticity ratio μ), the maximum yield strength Pmax increases significantly, so the short-term basic yield strength P 0 increases significantly, so that the short-term allowable shear strength Pa increases relatively large.

図11に示す試験結果より、以下の傾向又は性質を理解し得る。
(1)補剛金属板35で補強した耐力壁構造(実施例2)及び帯鉄板50で補強した耐力壁構造(比較例2-2)の場合、帯鉄板50も補剛金属板35も有しない耐力壁構造(比較例2-1)に比べ、最大耐力Pmax及び塑性率μの双方が増大するので、短期基準耐力P0が大きく増大し、従って、短期許容せん断耐力Pa及び壁倍率が大きく増大する。
(2)補剛金属板35で補強した耐力壁構造(実施例2)と、帯鉄板50で補強した耐力壁構造(比較例2-2)とを対比すると、実施例2の耐力壁構造は、最大耐力Pmaxにおいて比較例2-2の耐力壁構造よりも若干劣るが、塑性率μにおいて比較例2-2の耐力壁構造よりも優れる。この結果、実施例2の耐力壁構造は、比較例2-2の耐力壁構造よりも更に大きい短期許容せん断耐力Pa及び壁倍率を発揮する。
From the test results shown in FIG. 11, the following tendencies or properties can be understood.
(1) In the case of a load-bearing wall structure reinforced with a stiffening metal plate 35 (Example 2) and a load-bearing wall structure reinforced with a steel band plate 50 (Comparative Example 2-2), both the steel band plate 50 and the stiffening metal plate 35 are provided. Compared to the load-bearing wall structure (Comparative Example 2-1), both the maximum strength Pmax and the plasticity ratio μ are increased, so the short-term basic strength P0 is greatly increased, and therefore the short-term allowable shear strength Pa and the wall magnification are increased. increase.
(2) Comparing the load-bearing wall structure (Example 2) reinforced with the stiffening metal plate 35 and the load-bearing wall structure (Comparative Example 2-2) reinforced with the band iron plate 50, the load-bearing wall structure of Example 2 is , is slightly inferior to the load-bearing wall structure of Comparative Example 2-2 in terms of the maximum bearing strength Pmax, but is superior to the load-bearing wall structure of Comparative Example 2-2 in terms of plasticity factor μ. As a result, the load-bearing wall structure of Example 2 exhibits even greater short-term allowable shear strength Pa and wall magnification than the load-bearing wall structure of Comparative Example 2-2.

このような試験結果より、耐力壁の短期許容せん断耐力及び壁倍率を確実に向上させるには、隣り合う釘20を帯鉄板50で架橋せず、各釘20毎に独立させた本発明の補剛金属板30、35-38を使用することが有効な対策又は改良であることが判る。以下、この点について、面内せん断試験において実際に観られた現象に基づいて更に説明する。 Based on these test results, in order to reliably improve the short-term allowable shear strength and wall magnification of the load-bearing wall, the supplementary method of the present invention, in which each nail 20 is independent without bridging the adjacent nails 20 with the steel strips 50, is used. It has been found that the use of rigid metal plates 30 , 35-38 is an effective remedy or improvement. This point will be further explained below based on the phenomenon actually observed in the in-plane shear test.

図10及び図11に示す如く、比較例1-2、2-2の試験体の最大耐力Pmax3、 Pmax6は、比較1-1、2-1の試験体の最大耐力Pmax2、Pmax5に比べ、かなり増大しており、この値は、実施例1、2の試験体の最大耐力Pmax1、Pmax4と概ね同等の値である。しかしながら、比較例1-2、2-2の試験体の耐力は、図10に示す如く、最大耐力Pmax3が比較的早期に顕れ、しかも、図11に示す如く、最大耐力Pmax6の後にせん断変形角δが増大すると、その耐力が比較的急激に低下する傾向がある。これは、縁部帯域に連続敷設した帯鉄板50が多数の釘20を架橋し、縁部帯域の剛性を全体的に高めていることから、帯鉄板50によって覆われた領域である補強域と、この補強域に囲まれた面材10の内側の非補強域(帯鉄板50が存在せず又は帯鉄板50によって覆われておらず、帯鉄板50によって補強されていない領域)との間に比較的大きな剛性の相違が生じ、剛性の変化又は相違に起因して面材の非補強域、或いは、補強域と非補強域との境界部分等に過大な歪み、応力の集中、或いは、過大な応力等が局所的に発生し、面材に亀裂又は破損等が発生することに起因すると考えられる。 As shown in FIGS. 10 and 11, the maximum yield strengths Pmax3 and Pmax6 of the specimens of Comparative Examples 1-2 and 2-2 are, compared to the maximum yield strengths Pmax2 and Pmax5 of the specimens of Comparative Examples 1-1 and 2-1, This value is substantially equivalent to the maximum yield strengths Pmax1 and Pmax4 of the specimens of Examples 1 and 2. However, as shown in FIG. 10, the proof stress of the specimens of Comparative Examples 1-2 and 2-2 shows the maximum proof stress Pmax3 relatively early, and furthermore, as shown in FIG. As δ increases, the yield strength tends to decrease relatively sharply. Since the band iron plates 50 laid continuously in the edge zone bridge a large number of nails 20 and increase the rigidity of the edge zone as a whole, the area covered by the band iron plates 50 and the reinforced zone. , and the non-reinforced area inside the face plate 10 surrounded by this reinforced area (the area where the steel band plate 50 does not exist or is not covered by the steel band plate 50 and is not reinforced by the steel band plate 50) A relatively large difference in rigidity occurs, and due to the change or difference in rigidity, excessive strain, stress concentration, or excessive stress is generated in the non-reinforced area of the face material, or the boundary portion between the reinforced area and the non-reinforced area. It is thought that this is caused by the occurrence of localized stress, etc., and the occurrence of cracks or breakage in the face material.

即ち、帯鉄板50によって補強した耐力壁(比較例1-2、2-2)の場合、面材10の縁部帯域の剛性が全体的に向上する反面、この帯域の剛性と、帯状補強材から離間した非補強域の剛性とが比較的大きく相違し、このような極端な剛性の変化に起因して、面材10の非補強域に亀裂又は破損等が発生し易い。このため、降伏点変位δvに対して終局変位δuが比較的小さく、この結果、塑性率μが低下し、壁倍率及び短期許容せん断耐力を所望の如く向上し難い。 That is, in the case of the load-bearing walls reinforced with the steel strips 50 (Comparative Examples 1-2 and 2-2), the rigidity of the edge zone of the face plate 10 is improved as a whole, but the rigidity of this zone and the band-shaped reinforcing material The rigidity of the non-reinforced area away from the surface material 10 is relatively large, and due to such an extreme change in rigidity, the non-reinforced area of the face material 10 is likely to crack or break. For this reason, the ultimate displacement Δu is relatively small with respect to the yield point displacement Δv, and as a result, the plasticity factor μ is lowered, and it is difficult to improve the wall ratio and the short-term allowable shear strength as desired.

これに対し、実施例1、2の試験体の耐力は、図10及び11に示す如く、最大耐力Pmaxが得られた後、せん断変形角δが増大しても、比較的高い耐力を持続する傾向がある。施例1、2の試験体では、面材全域の剛性が均等又は平準な状態を維持しており、従って、せん断変形時に発生する応力が比較的良好に分散するとともに、面材10が素材本来の靱性及び変形追随性を有効且つ十分に発揮する。この結果、実施例1、2においては、最大耐力Pmax1、4が、比較例1-の最大耐力Pmax3と同等、或いは、比較例2-の最大耐力Pmax6よりも若干低下しているにもかかわらず、短期基準耐力P0が相対的に高い値を示す。これは、実施例1、2の耐力壁構造を採用することにより、壁体の靱性が向上して短期基準耐力P0が増大し、これにより、壁倍率及び短期許容せん断耐力が効果的に向上し得たことを意味する。 On the other hand, as shown in FIGS. 10 and 11, the test specimens of Examples 1 and 2 maintain a relatively high yield strength even after the maximum yield strength Pmax is obtained, even if the shear deformation angle δ increases. Tend. In the test specimens of Examples 1 and 2, the rigidity of the entire surface material is maintained in a uniform or even state. Effectively and fully exhibiting the original toughness and deformation followability. As a result, in Examples 1 and 2 , the maximum yield strengths Pmax1 and 4 were equivalent to the maximum yield strength Pmax3 of Comparative Example 1-2 , or slightly lower than the maximum yield strength Pmax6 of Comparative Example 2-2. Nevertheless, the short-term reference strength P 0 shows a relatively high value. This is because by adopting the load-bearing wall structures of Examples 1 and 2, the toughness of the wall is improved and the short-term basic strength P0 is increased, thereby effectively improving the wall ratio and the short-term allowable shear strength. It means what you can do.

以上説明したとおり、本実施例に係る耐力壁構造によれば、耐力壁は、裏面を面材10の外面に密着又は接着して面材10を部分的にのみ補強する補剛金属板30、35-38を有し、補剛金属板30、35-38は、釘20の間隔と実質的に同一の間隔S1を隔てて面材10の外周部に配置される。補剛金属板30、35-38同士は互いに離間し、補剛金属板30、35-38が存在しない面材の非補強域が外周部に形成される。釘20は、釘打機等の作業工具によって金属板に打込まれ、釘の軸部21は、補剛金属板を穿孔し且つ貫通して壁下地材(土台2、柱3、横架材5)に嵌入又は圧入する。補剛金属板30、35-38は、釘20の頭部22を面材の外面と実質的に同一の位置に保持し、支持し又は支承する。頭部22は、通常時又は平常時には、面材10に対して実質的な固定状態を維持し、地震時等の短期水平荷重作用時又は加振時には、構造体の変形に追随するように相対変位し得るが、釘20及び面材10の間で荷重又は応力伝達可能な状態を維持するように面材10を支持し続ける。 As described above, according to the load-bearing wall structure according to the present embodiment, the load-bearing wall includes the stiffening metal plate 30 that only partially reinforces the face material 10 by closely contacting or adhering the back surface thereof to the outer surface of the face material 10 , 35-38 , the stiffening metal plates 30 , 35-38 are positioned around the perimeter of the facing 10 at a spacing S1 substantially the same as the spacing of the nails 20. As shown in FIG. The stiffening metal plates 30 1 , 35 - 38 are spaced apart from each other, and a non-reinforced area of the face material in which the stiffening metal plates 30 1 , 35 - 38 do not exist is formed on the outer periphery. The nail 20 is driven into the metal plate by a work tool such as a nailer, and the shaft portion 21 of the nail pierces and penetrates the stiffened metal plate to penetrate the wall base material (base 2, pillar 3, horizontal member). 5) is fitted or press-fitted. The stiffening metal plates 30 , 35-38 hold, support or bear on the head 22 of the nail 20 in substantially the same position as the outer surface of the faceplate. The head 22 maintains a substantially fixed state with respect to the face member 10 in normal or ordinary times, and moves relatively to follow the deformation of the structure when short-term horizontal loads such as earthquakes are applied or when vibrations are applied. It may be displaced, but continues to support the facing 10 so as to maintain load or stress transferability between the nail 20 and the facing 10 .

このような耐力壁構造によれば、面材10を壁下地材(土台2、柱3、横架材5)に留付ける釘20と関連した補剛金属板30、35-38により、パンチングシェア現象の発生を確実に防止するとともに、壁体の靱性を向上して終局耐力(補正値)を増大し、これにより、壁体の壁倍率を向上することが可能となる。 According to such a load-bearing wall structure, punching shear is achieved by the stiffening metal plates 30 , 35-38 associated with the nails 20 that fasten the facing 10 to the wall substrate (base 2, pillar 3, cross member 5). It is possible to reliably prevent the occurrence of the phenomenon, improve the toughness of the wall body, increase the ultimate strength (correction value), and thereby improve the wall magnification of the wall body.

以上、本発明の好適な実施形態及び実施例について詳細に説明したが、本発明は上記実施形態及び実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能であることはいうまでもない。 Although the preferred embodiments and examples of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments and examples, and is within the scope of the present invention described in the claims. It goes without saying that various modifications or changes are possible.

例えば、上記実施形態及び実施例は、木構造建築物の1階レベルの耐力壁に関するものであるが、本発明は、2階又は3階レベルの耐力壁についても同様に適用し得るものである。2階又は3階レベルの耐力壁の場合、耐力面材の下端部は、2階床又は3階床レベルの横架材等に留付けられる。 For example, the above-described embodiments and examples relate to first-story load-bearing walls of wooden structures, but the present invention is equally applicable to second- or third-story load-bearing walls. . In the case of 2nd or 3rd floor load-bearing walls, the lower end of the load-bearing panel is fastened to the 2nd or 3rd floor level horizontal member or the like.

また、上記実施形態及び実施例は、木造軸組工法の耐力壁構造に関するものであるが、本発明は、木造枠組壁工法の耐力壁構造に対して同様に適用することができる。この場合、耐力面材は、土台、柱及び横架材に換えて、縦枠、下枠、上枠等に留付けられる。 Moreover, although the above embodiments and examples relate to load-bearing wall structures constructed using the wooden frame construction method, the present invention can be similarly applied to load-bearing wall structures constructed using the wooden frame wall construction method. In this case, the load-bearing face members are fastened to vertical frames, lower frames, upper frames, etc., instead of foundations, columns, and horizontal members.

更に、本発明に係る耐力壁構造を面材の種別により分類すると、(1)無機質系耐力壁と、(2)木質系耐力壁とに大別される。上記実施形態及び実施例では、耐力面材として石膏系面材が使用されているが、石膏系面材を使用した耐力壁は、無機質系耐力壁に属する。無機質系耐力壁において使用可能な他の面材として、各種石膏ボード、各種石膏板、火山性ガラス質複層板、珪酸カルシウム板、セメント板、バーミキュライト板等の無機質系面材が挙げられる。また、木質系耐力壁において使用可能な面材として、例えば、合板材料(構造用合板)、パーティクルボード、OSB(配向性ストランドボード)、MDF(中密度繊維板)等の木質系面材が挙げられる。 Furthermore, when the load-bearing wall structure according to the present invention is classified according to the type of face material, it is roughly divided into (1) inorganic load-bearing walls and (2) wooden load-bearing walls. In the above embodiments and examples, a gypsum-based face material is used as a load-bearing face material, but a load-bearing wall using a gypsum-based face material belongs to inorganic load-bearing walls. Other face materials that can be used for inorganic load-bearing walls include inorganic face materials such as various gypsum boards, various gypsum plates, volcanic vitreous double-layer plates, calcium silicate plates, cement plates, and vermiculite plates. In addition, examples of face materials that can be used in wooden load-bearing walls include wood-based face materials such as plywood materials (structural plywood), particle boards, OSB (oriented strand board), and MDF (medium density fiberboard). be done.

また、上記実施形態では、厚さ9.5mm、幅910mm、高さ約2800~3030mmの石膏系面材を使用しているが、面材の寸法又は比重や、面材原料の配合・組成等は、上記実施形態における特定事項に限定されるものではなく(例えば、910mm~3030mmの寸法範囲の石膏系面材が市販されている。)、また、図8に示す試験体の如く、桟、胴つなぎ等の部材を高さ方向中間位置(任意の高さ位置に配設することも可能である。 In the above embodiment, a gypsum-based face material having a thickness of 9.5 mm, a width of 910 mm, and a height of about 2800 to 3030 mm is used. is not limited to the specific items in the above embodiment (for example, gypsum-based face materials with a size range of 910 mm to 3030 mm are commercially available), and, like the test specimen shown in FIG. It is also possible to dispose a member such as a torso tie at an intermediate position in the height direction ( an arbitrary height position ) .

本発明は、木造軸組工法又は木造枠組壁工法の木構造壁下地に対して耐力面材を留付け、耐力面材を壁下地に構造的に一体的に保持するように構成された木構造建築物の耐力壁構造に適用される。本発明は又、木造軸組工法又は木造枠組壁工法の木構造壁下地に対して耐力面材を留付け、耐力面材を壁下地に構造的に一体的に保持する工程を有する木構造建築物の耐力壁施工方法に適用される。本発明によれば、木構造建築物の耐力壁構造において、パンチングシェア現象の発生を確実に防止するとともに、壁倍率の向上を図ることができる。 The present invention relates to a wooden structure constructed such that a load-bearing face member is fastened to a wooden structural wall base of a wooden framework construction method or a wooden frame wall construction method, and the load-bearing face member is structurally and integrally held on the wall base. Applied to building bearing wall structure. The present invention also provides a wooden structure building having a step of fastening load-bearing face materials to a wooden structure wall foundation of a wooden frame construction method or a wooden frame wall construction method, and structurally holding the load-bearing face materials integrally with the wall foundation. Applied to load- bearing wall construction method. According to the present invention, it is possible to reliably prevent the occurrence of the punching shear phenomenon and improve the wall magnification in the load-bearing wall structure of a wooden building.

1 基礎
2 土台
3 柱
4 間柱
4’ 継手間柱
5 横架材(胴差、軒桁、妻桁)
5’ 胴つなぎ
10、10a、10b 石膏系面材
20 釘(留め具)
21 軸部
22 頭部
30、35、36、37、38 補剛金属板
31 指標
33 取付け手段
W、W’ 幅
H 高さ
D 直径
S1、S2 釘の間隔
S3 距離
Pr 釘打機(図示せず)の打込み圧力
1 Foundation 2 Foundation 3 Column 4 Stud 4' Joint stud 5 Horizontal member (trunk, eaves girder, girder)
5' body joints 10, 10a, 10b gypsum-based face material 20 nails (fasteners)
21 shank 22 head 30, 35, 36, 37, 38 stiffening metal plate 31 index 33 mounting means W, W' width H height D diameter S1, S2 nail spacing S3 distance Pr nailer (not shown) ) implantation pressure

Claims (25)

木造軸組工法又は木造枠組壁工法の木構造壁下地と、軸部及び頭部を備えた留め具によって前記壁下地に留付けられた耐力面材とから構成され、前記留め具は、所定間隔を隔てて前記面材の外周部および中間部に配置され、前記軸部は、前記留め具に対する作業工具の打撃力又は圧力により前記面材を貫通して前記壁下地に延入、圧入、貫入又は螺入し、前記頭部は、前記面材の外面と同等の位置に配置され、該面材は、前記留め具の保持力により前記壁下地に一体的に保持される木構造建築物の耐力壁構造において、
前記留め具の間隔と実質的に同一の間隔を隔てて前記面材の両側の縁部帯域に該面材の全高に亘って配列され、裏面を前記面材の外面に密着又は接着し、各留め具の近傍の面材部分を補強する補剛金属板を有し、
該補剛金属板同士は互いに離間し、隣合う補剛金属板の間には、該補剛金属板が存在しない非補強域が前記縁部帯域に形成され、
前記補剛金属板は、前記留め具の打撃時又は圧入時に該留め具に作用する前記作業工具の打撃力又は圧力により前記軸部で穿孔され、該軸部を貫通せしめるが、前記留め具の前記頭部を前記面材の外面と実質的に同一の位置に保持し、支持し又は支承する強度及び板厚を有することを特徴とする耐力壁構造。
It is composed of a wooden structure wall base for a wooden frame construction method or a wooden frame wall construction method, and a load-bearing surface material fastened to the wall base by fasteners having shafts and heads, and the fasteners are spaced at predetermined intervals. and the shaft penetrates the face material and extends, press-fits, or penetrates into the wall base by the impact force or pressure of the work tool on the fastener. Alternatively, the head is placed at a position equivalent to the outer surface of the face plate, and the face plate is integrally held on the wall base by the holding force of the fastener. In the bearing wall structure,
spaced substantially the same as the spacing of the fasteners and arranged in edge zones on both sides of the face plate over the entire height of the face plate, with a back surface in close contact or adhesion to the outer surface of the face plate; Having a stiffening metal plate that reinforces the face material portion near the fastener,
The stiffening metal plates are spaced apart from each other, and between adjacent stiffening metal plates, a non-reinforced area in which the stiffening metal plates do not exist is formed in the edge zone,
The stiffening metal plate is perforated by the shank by the impact force or pressure of the working tool acting on the fastener when striking or press-fitting the fastener, and penetrates the shank. A load-bearing wall structure having strength and plate thickness to hold, support, or support the head in substantially the same position as the outer surface of the face member.
前記補剛金属板は更に、前記面材の上端部及び下端部の縁部帯域に該面材の全幅に亘って配列されており、該補剛金属板同士は上端部及び下端部の縁部帯域において互いに離間し、補剛金属板が存在しない非補強域が、上端部及び下端部の縁部帯域において、隣合う補剛金属板の間に形成されていることを特徴とする請求項1に記載の耐力壁構造。 The stiffening metal plates are further arranged in the edge zones of the top and bottom ends of the face plate over the entire width of the face plate, and the stiffening metal plates are spaced apart from each other at the top and bottom edges of the face plate. 2. The method according to claim 1, characterized in that non-reinforced zones, which are spaced from one another in the zones and in which no stiffening metal plates are present, are formed between adjacent stiffening metal plates in the edge zones of the upper and lower ends. bearing wall construction. 前記補剛金属板は更に、前記面材の中間部に該面材の全高に亘って配列されており、該補剛金属板同士は該中間部において互いに離間し、前記補剛金属板が存在しない非補強域が、前記中間部おいて、隣合う補剛金属板の間に形成されていることを特徴とする請求項1又は2に記載の耐力壁構造。 The stiffening metal plates are further arranged in an intermediate portion of the facing member over the entire height of the facing member, the stiffening metal plates being spaced apart from each other in the intermediate portion, and the stiffening metal plates are present. 3. The load-bearing wall structure according to claim 1, wherein a non-reinforced area is formed between adjacent stiffening metal plates in the intermediate portion. 各々の前記補剛金属板は、単一の留め具によって留付けられていることを特徴とする請求項1乃至3のいずれか1項に記載の耐力壁構造。 4. A load-bearing wall structure according to any one of claims 1 to 3, wherein each said stiffening metal plate is fastened by a single fastener. 前記補剛金属板は、前記留め具の施工前に前記補剛金属板の本体を前記面材の外面に保持するための粘着手段、接着手段、係留手段又は係止手段を有することを特徴とする請求項1乃至4のいずれか1項に記載の耐力壁構造。 The stiffening metal plate has adhesive means, bonding means, anchoring means or locking means for holding the main body of the stiffening metal plate to the outer surface of the face member before the fasteners are installed. A load-bearing wall structure according to any one of claims 1 to 4. 前記面材は、無機質系の面材であり、前記留め具は、釘、ビス又はねじであることを特徴とする請求項1乃至5のいずれか1項に記載の耐力壁構造。 6. A load-bearing wall structure according to any one of claims 1 to 5, wherein said face material is an inorganic face material, and said fasteners are nails, screws or screws. 前記補剛金属板は、正面視円形、多角形又は方形の輪郭を有することを特徴とする請求項1乃至6のいずれか1項に記載の耐力壁構造。 A load-bearing wall structure according to any one of claims 1 to 6, wherein said stiffening metal plate has a circular, polygonal or square profile when viewed from the front. 前記補剛金属板の正面視最大寸法は、前記留め具の軸芯と前記面材の縁部との間の距離に対し、該距離の2倍以下の寸法に設定され、前記補剛金属板の正面視最小寸法は、前記頭部の直径又は外寸の2倍以上の寸法に設定され、前記補剛金属板の板厚は、0.05~2.0mmの範囲内の寸法に設定されることを特徴とする請求項1乃至7のいずれか1項に記載の耐力壁構造。 The maximum dimension of the stiffening metal plate in a front view is set to a dimension not more than twice the distance between the axial center of the fastener and the edge of the face member, and the stiffening metal plate The minimum dimension in front view is set to be at least twice the diameter or outer dimension of the head, and the thickness of the stiffening metal plate is set to a dimension within the range of 0.05 to 2.0 mm. A load-bearing wall structure according to any one of claims 1 to 7, characterized in that: 前記補剛金属板は、0.2~0.8mmの範囲内の板厚を有し、直径又は一辺が20~30mmの範囲内の寸法を有する正面視真円形又は正方形の鋼板からなり、該鋼板の中心部は、前記留め具の打込み位置に配置されることを特徴とする請求項8に記載の耐力壁構造。 The stiffening metal plate is made of a perfectly circular or square steel plate having a plate thickness within the range of 0.2 to 0.8 mm and a diameter or one side within the range of 20 to 30 mm when viewed from the front, 9. The bearing wall structure according to claim 8, wherein the central portion of the steel plate is located at the driving position of the fastener. 前記面材として無機系面材を使用し、前記留め具及び前記補剛金属板を特定の該留め具の軸心もしくは特定の補剛金属板の中心部又は重心位置を起点に200mm以下且つ50mm以上の間隔で前記縁部帯域に配置した構造を有し、前記補剛金属板の外側面中心部又は重心位置には、前記留め具の打込み位置を示す指標が設けられることを特徴とする請求項1乃至9のいずれか1項に記載の耐力壁構造。 An inorganic face material is used as the face material, and the fastener and the stiffening metal plate are 200 mm or less and 50 mm from the center of the specified fastener or the center of the specified stiffening metal plate or the center of gravity of the specified stiffening metal plate. It has a structure arranged in the edge zone at intervals of the above, and an index indicating the driving position of the fastener is provided at the center of the outer surface of the stiffening metal plate or at the center of gravity of the stiffening metal plate. Item 10. The load-bearing wall structure according to any one of Items 1 to 9. 前記補剛金属板と係合せずに前記耐力面材を前記壁下地に留付ける留め具が、列をなす前記補剛金属板の一部を省略することにより前記補剛金属板の間に配設され、或いは、該補剛金属板の間の非補強域に付加的に配設されることを特徴する請求項1乃至10のいずれか1項に記載の耐力壁構造。 A fastener for fastening the load-bearing face member to the wall base without engaging the stiffening metal plate is disposed between the stiffening metal plates by omitting a portion of the stiffening metal plates in a row. 11. A bearing wall structure according to any one of the preceding claims, or additionally arranged in non-reinforced areas between said stiffening metal plates. 請求項1乃至11のいずれか1項に記載された耐力壁構造を有する木構造建築物の耐力壁。 A load-bearing wall of a wooden structure building comprising the load-bearing wall structure according to any one of claims 1 to 11. 請求項1乃至11のいずれか1項に記載された耐力壁構造の耐力壁を有する木構造建築物。 A wooden structure building having a load-bearing wall of the load-bearing wall structure according to any one of claims 1 to 11. 請求項1乃至11のいずれか1項に記載された耐力壁構造において使用可能な無機系の面材であって、少なくとも前記縁部帯域において前記補剛金属板の本体を前記面材の外面に一体的に配設したことを特徴とする無機系面材。 12. An inorganic facing usable in a load-bearing wall structure according to any one of claims 1 to 11, characterized in that, at least in said edge zone, the main body of said stiffening metal plate is attached to the outer surface of said facing. An inorganic face material characterized by being integrally arranged. 木造軸組工法又は木造枠組壁工法の木構造壁下地に対して耐力面材を位置決めし、軸部及び頭部を備えた留め具を前記面材の外周部および中間部に所定間隔を隔てて打込み、前記留め具に対する作業工具の打撃力又は圧力により前記面材を穿孔して該面材を貫通した軸部を前記壁下地に延入、圧入、貫入又は螺入せしめるとともに、前記頭部を前記面材の外面と同等の位置に配置して該面材を前記留め具の保持力により前記壁下地に構造的に一体的に保持する木構造建築物の耐力壁施工方法において、
裏面を前記面材の外面に密着又は接着して各留め具の近傍の面材部分を補強する補剛金属板を前記留め具の間隔と実質的に同一の間隔を隔てて前記面材の両側の縁部帯域に該面材の全高に亘って配列するとともに、前記補剛金属板同士を互いに離間させることにより、該補剛金属板が存在しない前記面材の非補強域を前記縁部帯域に形成し、
前記留め具の軸部が前記補剛金属板を穿孔して該補剛金属板を貫通するように前記作業工具によって該留め具を前記補剛金属板に打込み、前記留め具の前記頭部を前記面材の外面と実質的に同一の位置において前記補剛金属板によって保持し、支持し又は支承することを特徴とする耐力壁施工方法。
A load-bearing face member is positioned against a wooden structural wall foundation of a wooden frame construction method or a wooden frame wall construction method, and fasteners having a shaft portion and a head portion are placed on the outer peripheral portion and intermediate portion of the face member at predetermined intervals. The face member is pierced by hammering, the impact force or pressure of the work tool against the fastener, and the shaft portion penetrating the face member is extended, press-fitted, penetrated or screwed into the wall base, and the head is inserted. In a load-bearing wall construction method for a wooden structure building, the face member is arranged at a position equivalent to the outer surface of the face member and is structurally and integrally held to the wall base by the holding force of the fastener,
Stiffening metal plates, which have their back surfaces adhered or adhered to the outer surface of the face plate to reinforce the portion of the face plate near each fastener, are placed on either side of the face plate at substantially the same spacing as the fastener spacing. By arranging the stiffening metal plates in the edge zone over the entire height of the face material and separating the stiffening metal plates from each other, the non-reinforced area of the face material where the stiffening metal plate does not exist is the edge zone to form
The fastener is driven into the stiffened metal plate by the work tool so that the shank of the fastener penetrates the stiffened metal plate and penetrates the stiffened metal plate, and the head of the fastener is A method of constructing a load-bearing wall, comprising holding, supporting, or supporting the stiffening metal plate at a position substantially identical to the outer surface of the face member.
前記補剛金属板を前記面材の上端部及び下端部の縁部帯域に該面材の全幅に亘って更に配列するとともに、該補剛金属板同士を互いに離間させて、補剛金属板が存在しない前記面材の非補強域を上端部及び下端部の縁部帯域に形成することを特徴とする請求項15に記載の耐力壁施工方法。 The stiffening metal plates are further arranged in the edge zones of the upper end and the lower end of the face member over the entire width of the face member, and the stiffening metal plates are spaced apart from each other so that the stiffening metal plates are 16. A method of constructing a load-bearing wall according to claim 15, wherein non-existing non-reinforced areas of said facing material are formed in edge zones of upper and lower ends. 前記補剛金属板を前記面材の中間部に該面材の全高に亘って更に配列するとともに、該補剛金属板同士を互いに離間させて、補剛金属板が存在しない前記面材の非補強域を前記中間部に形成することを特徴とする請求項15又は16に記載の耐力壁施工方法。 The stiffening metal plates are further arranged in the middle portion of the face member over the entire height of the face member, and the stiffening metal plates are spaced apart from each other so that the face member without the stiffening metal plate is non-existent. 17. A load-bearing wall construction method according to claim 15 or 16, wherein a reinforcing zone is formed in said intermediate portion. 前記留め具の施工前に粘着手段、接着手段、係留手段又は係止手段によって前記補剛金属板を前記面材の外面に保持することを特徴とする請求項15乃至17のいずれか1項に記載の耐力壁施工方法。 18. The stiffening metal plate according to any one of claims 15 to 17, characterized in that the stiffening metal plate is held on the outer surface of the face member by adhesive means, adhesive means, anchoring means or locking means before the fastener is installed. The load-bearing wall construction method described. 前記面材として無機質系の面材を使用し、前記留め具として釘、ビス又はねじを使用し、各々の前記補剛金属板を単一の留め具によって前記面材に留付けることを特徴とする請求項15乃至18のいずれか1項に記載の耐力壁施工方法。 An inorganic face material is used as the face material, nails, screws or screws are used as the fasteners, and each stiffening metal plate is fastened to the face material with a single fastener. The bearing wall construction method according to any one of claims 15 to 18. 前記補剛金属板は、正面視円形、多角形又は方形の輪郭を有することを特徴とする請求項15乃至19のいずれか1項に記載の耐力壁施工方法。 20. The load-bearing wall construction method according to any one of claims 15 to 19, wherein the stiffening metal plate has a circular, polygonal or square profile when viewed from the front. 前記補剛金属板の板厚を0.05~2.0mmの範囲内の寸法に設定した鋼板を前記補剛金属板として使用し、前記補剛金属板の正面視最大寸法を前記留め具の軸芯と前記面材の縁部との間の距離の2倍以下の寸法に設定し、前記補剛金属板の正面視最小寸法を前記頭部の直径又は外寸の2倍以上の寸法に設定したことを特徴とする請求項15乃至20のいずれか1項に記載の耐力壁施工方法。 A steel plate having a thickness within the range of 0.05 to 2.0 mm is used as the stiffening metal plate, and the maximum dimension of the stiffening metal plate in a front view is the size of the fastener. The minimum dimension of the stiffening metal plate in front view is set to be at least twice the diameter or outer dimension of the head. 21. The load-bearing wall construction method according to any one of claims 15 to 20, wherein the load-bearing wall is set. 板厚を0.2~0.8mmの範囲内の寸法に設定し且つ直径又は一辺の寸法を20~30mmの範囲内に設定した正面視真円形又は正方形の鋼板を前記補剛金属板として使用し、該鋼板の中心部を前記留め具の打込み位置に位置決めすることを特徴とする請求項21に記載の耐力壁施工方法。 A perfectly circular or square steel plate in front view with a thickness within the range of 0.2 to 0.8 mm and a diameter or one side within the range of 20 to 30 mm is used as the stiffening metal plate. 22. The method of constructing a load-bearing wall according to claim 21, wherein the center portion of the steel plate is positioned at the driving position of the fastener. 前記留め具の打込み位置を示す指標を前記補剛金属板の中心部又は重心位置に設けることを特徴とする請求項15乃至22のいずれか1項に記載の耐力壁施工方法。 23. The load-bearing wall construction method according to any one of claims 15 to 22, wherein an index indicating the driving position of the fastener is provided at the center or the center of gravity of the stiffening metal plate. 前記面材として無機系の面材を使用し、前記留め具及び前記補剛金属板を200mm以下且つ50mm以上の間隔で前記縁部帯域に配置することを特徴とする請求項15乃至23のいずれか1項に記載の耐力壁施工方法。 24. Any one of claims 15 to 23, wherein an inorganic face material is used as said face material, and said fasteners and said stiffening metal plates are arranged in said edge zone at intervals of 200 mm or less and 50 mm or more. 1. The load-bearing wall construction method according to 1. 前記補剛金属板と係合せずに前記耐力面材を前記壁下地に留付ける留め具が、列をなす前記補剛金属板の一部を省略することにより前記補剛金属板の間に配設され、或いは、該補剛金属板の間の非補強域に付加的に配設されることを特徴する請求項15乃至24のいずれか1項に記載の耐力壁施工方法。 A fastener for fastening the load-bearing face member to the wall base without engaging the stiffening metal plate is disposed between the stiffening metal plates by omitting a portion of the stiffening metal plates in a row. 25. A load-bearing wall construction method according to any one of claims 15 to 24, or additionally disposed in a non-reinforced area between said stiffening metal plates.
JP2020514132A 2018-04-18 2019-04-12 Load-bearing wall structure of wooden structure building and load-bearing wall construction method Active JP7157475B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018079506 2018-04-18
JP2018079506 2018-04-18
PCT/JP2019/015954 WO2019203148A1 (en) 2018-04-18 2019-04-12 Wooden building load-bearing wall structure and load-bearing wall construction method

Publications (3)

Publication Number Publication Date
JPWO2019203148A1 JPWO2019203148A1 (en) 2021-04-30
JPWO2019203148A5 JPWO2019203148A5 (en) 2022-05-02
JP7157475B2 true JP7157475B2 (en) 2022-10-20

Family

ID=68240025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020514132A Active JP7157475B2 (en) 2018-04-18 2019-04-12 Load-bearing wall structure of wooden structure building and load-bearing wall construction method

Country Status (3)

Country Link
JP (1) JP7157475B2 (en)
TW (1) TWI776044B (en)
WO (1) WO2019203148A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3174161A1 (en) * 2020-04-06 2021-10-14 Ushio SUDO Gypsum-based load-bearing board, load-bearing wall structure, and load-bearing wall construction method for wooden construction building
KR20240089367A (en) 2021-10-05 2024-06-20 요시노 셋고 가부시키가이샤 Wooden structure load-bearing wall, wooden structure load-bearing wall construction method, method of increasing wall magnification of wooden structure load-bearing wall, and gypsum-based load-bearing face material.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173126A (en) 1999-12-21 2001-06-26 Ibiden Co Ltd Plate and method for construction of bearing wall using the same
JP2007297845A (en) 2006-04-28 2007-11-15 Sumitomo Forestry Co Ltd Vibration control proof stress wall structure
JP2008231889A (en) 2007-03-23 2008-10-02 Porasu Kurashi Kagaku Kenkyusho:Kk Reinforcement structure of bearing wall
JP2012202112A (en) 2011-03-25 2012-10-22 Nichiha Corp Structure for constructing exterior wall substrate
JP2013209811A (en) 2012-03-30 2013-10-10 Daiken Corp Bearing wall structure
JP2018021306A (en) 2016-08-01 2018-02-08 住友林業株式会社 Vibration control bearing wall structure for reinforcement

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162060A (en) * 1997-08-11 1999-03-05 Ig Tech Res Inc Structure of face bar bearing wall
CN100464043C (en) * 2006-03-24 2009-02-25 吴淑环 Bound-type composite heat-insulation wall with support body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173126A (en) 1999-12-21 2001-06-26 Ibiden Co Ltd Plate and method for construction of bearing wall using the same
JP2007297845A (en) 2006-04-28 2007-11-15 Sumitomo Forestry Co Ltd Vibration control proof stress wall structure
JP2008231889A (en) 2007-03-23 2008-10-02 Porasu Kurashi Kagaku Kenkyusho:Kk Reinforcement structure of bearing wall
JP2012202112A (en) 2011-03-25 2012-10-22 Nichiha Corp Structure for constructing exterior wall substrate
JP2013209811A (en) 2012-03-30 2013-10-10 Daiken Corp Bearing wall structure
JP2018021306A (en) 2016-08-01 2018-02-08 住友林業株式会社 Vibration control bearing wall structure for reinforcement

Also Published As

Publication number Publication date
TWI776044B (en) 2022-09-01
WO2019203148A1 (en) 2019-10-24
JPWO2019203148A1 (en) 2021-04-30
TW202003976A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
US7251920B2 (en) Lateral force resisting system
WO2021205993A1 (en) Gypsum-based bearing surface material for wooden building, bearing wall structure, and bearing wall construction method
JP2010519433A (en) Insulated and soundproof modular building frame
US7712282B2 (en) Brace assembly having ductile anchor
US20110005163A1 (en) Lateral Force Resisting System
US8056301B2 (en) Method of framing a building shear wall structure compatible with conventional interior or exterior finishing materials and subsurface panel for use therewith
US20190376278A1 (en) Compression and tension reinforced wall
JP7157475B2 (en) Load-bearing wall structure of wooden structure building and load-bearing wall construction method
JP5856646B2 (en) Wooden truss beam unit and its installation method
JP3122159U (en) Seismic reinforcement structure for buildings
JP2016169565A (en) In-plane shear bearing force structure, and roof structure, wall structure and floor structure having in-plane shear bearing force structure
JP5603530B2 (en) Renovation structure of existing outer wall
JPWO2019203148A5 (en)
JP6892991B2 (en) Joint structure of wall member and foundation
WO2024029210A1 (en) Wooden structure load-bearing wall, construction method for wooden structure load-bearing wall, method for increasing wall magnification of wooden structure load-bearing wall, and gypsum-based load-bearing surface material
JP7359506B1 (en) Wooden load-bearing walls, construction methods for wooden load-bearing walls, methods for increasing the wall magnification of wooden load-bearing walls, and gypsum load-bearing facing materials
JP2020122268A (en) Structure with vibration control device
JP3962647B2 (en) Wall structure
JP3151125U (en) Seismic retrofit structure for existing exterior walls
JP3193167U (en) Load-bearing panel mounting hardware
JP3146648U (en) Load-bearing wall panels
JPS6340579Y2 (en)
JP4374075B1 (en) Wall fixtures and building wall structures
JP2021113435A (en) Bearing wall structure
JP2000001935A (en) Slab structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220930

R150 Certificate of patent or registration of utility model

Ref document number: 7157475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150