[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7156959B2 - Light irradiation device - Google Patents

Light irradiation device Download PDF

Info

Publication number
JP7156959B2
JP7156959B2 JP2019008543A JP2019008543A JP7156959B2 JP 7156959 B2 JP7156959 B2 JP 7156959B2 JP 2019008543 A JP2019008543 A JP 2019008543A JP 2019008543 A JP2019008543 A JP 2019008543A JP 7156959 B2 JP7156959 B2 JP 7156959B2
Authority
JP
Japan
Prior art keywords
light
irradiated
axis direction
light source
illuminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019008543A
Other languages
Japanese (ja)
Other versions
JP2020118798A (en
Inventor
郷 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2019008543A priority Critical patent/JP7156959B2/en
Publication of JP2020118798A publication Critical patent/JP2020118798A/en
Application granted granted Critical
Publication of JP7156959B2 publication Critical patent/JP7156959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

本発明は、所定の幅を持つ被照射体に対して紫外光を照射する光照射装置に関し、より詳しくは、被照射体の幅方向で照度や光量の均一性よく光を照射できるものに関する。 TECHNICAL FIELD The present invention relates to a light irradiation device for irradiating an object having a predetermined width with ultraviolet light, and more particularly to a device capable of irradiating light with good uniformity of illuminance and light quantity in the width direction of the object to be irradiated.

液晶表示パネルの液晶表示素子が備える液晶配向膜を配向させるために、配向膜や配向層に偏向光を照射することで配向させる光配向と呼ばれる技術が知られている。また、画像表示パネルとタッチパネル部材を貼り合わせるために紫外線硬化型樹脂を主成分とする接着組成物をシート状に成形し、この接着組成物を完全に硬化させる場合と比較して低い照度の紫外光を照射して半硬化状態とし、半硬化状態の接着組成物を介して画像表示パネルとタッチパネル部材を位置合わせしながら貼り合わせ、再度紫外光を照射して接着組成物を完全に硬化させることで、気泡の残存を回避しながら、画像表示パネルとタッチパネル部材を強固に接着することが行われている。 In order to align a liquid crystal alignment film included in a liquid crystal display element of a liquid crystal display panel, a technique called photo-alignment is known in which an alignment film or an alignment layer is aligned by irradiating polarized light. In addition, in order to bond the image display panel and the touch panel member together, an adhesive composition containing an ultraviolet curable resin as a main component is formed into a sheet and the adhesive composition is completely cured. A semi-cured state is obtained by irradiating light, the image display panel and the touch panel member are laminated while being aligned with each other through the semi-cured adhesive composition, and the adhesive composition is completely cured by irradiating ultraviolet light again. Therefore, the image display panel and the touch panel member are firmly adhered while avoiding the remaining air bubbles.

上記配向膜などの被照射体に対して紫外光(光)を照射する光照射装置は例えば特許文献1で知られている。このものは、被照射体の幅方向をX軸方向、同一平面内でX軸方向に直交する方向をY軸方向として、被照射体をY軸方向に搬送する搬送手段と、この搬送手段により搬送される被照射体に対向配置させる棒状光源とを備える。そして、棒状光源から発せられたX軸方向に線状にのびるライン光が被照射体に照射されるようにしている。このとき、光源から発せられる光の波長や光源の強さ(光度)に関係なく、被照射体のX軸方向中央領域でのライン光の照度が高く、中央領域からX軸方向両端領域に向かうのに従い照度が低下していくこと(即ち、X軸方向に照度むらが生じること)が一般に知られている。このような光照射装置を用いる場合、X軸方向の照度むらに起因した上記配向膜の品質への影響を排除するため、上記従来例のものでは、被照射体の中央領域でのライン光の照度を低下させて照度むらを抑制するために、被照射体と棒状光源との間に減光フィルターが固定配置されている。 A light irradiation device for irradiating an object to be irradiated such as the alignment film with ultraviolet light (light) is known, for example, from Japanese Unexamined Patent Application Publication No. 2002-100000. In this apparatus, the X-axis direction is the width direction of the object to be irradiated, and the Y-axis direction is the direction orthogonal to the X-axis direction in the same plane. A rod-shaped light source is provided so as to face the transported object to be irradiated. Then, the line light emitted from the rod-like light source and linearly extending in the X-axis direction is applied to the object to be irradiated. At this time, regardless of the wavelength of the light emitted from the light source and the intensity (luminous intensity) of the light source, the illuminance of the line light is high in the center region of the object to be irradiated in the X-axis direction, and goes from the center region to both end regions in the X-axis direction. It is generally known that the illuminance decreases (that is, the illuminance unevenness occurs in the X-axis direction). When such a light irradiation device is used, in order to eliminate the influence on the quality of the alignment film due to the illuminance unevenness in the X-axis direction, the above-mentioned conventional example does not emit line light in the central region of the object to be irradiated. A neutral density filter is fixedly arranged between the object to be illuminated and the rod-like light source in order to reduce the illuminance and suppress illuminance unevenness.

ところで、ライン光の照度を低下させるX軸方向の幅(言い換えると、減光領域のX軸方向長さ)は、例えば被照射体の種類に応じて変更する必要がある。このような場合、減光領域のX軸方向長さが異なる複数枚の減光フィルターを作製し、被照射体の種類に応じてその都度交換するのでは、その交換作業が面倒であるばかりか、交換作業後の調整作業も必要となって生産性の低下を招来する。そこで、減光領域のX軸方向長さが自動調整できる光照射装置の開発が望まれている。 By the way, the width in the X-axis direction that reduces the illuminance of the line light (in other words, the length in the X-axis direction of the dimming region) needs to be changed according to, for example, the type of object to be irradiated. In such a case, if a plurality of light-attenuating filters having different lengths of the light-attenuating regions in the X-axis direction are prepared and replaced each time according to the type of the object to be irradiated, not only is the replacement work troublesome. In addition, an adjustment work is required after the replacement work, resulting in a decrease in productivity. Therefore, development of a light irradiation device capable of automatically adjusting the length of the dimming region in the X-axis direction is desired.

特開2017-15886号公報JP 2017-15886 A

本発明は、以上の点に鑑み、減光領域のX軸方向長さが自動調整できる光照射装置を提供することをその課題とする。 In view of the above points, an object of the present invention is to provide a light irradiation device capable of automatically adjusting the length of the dimming region in the X-axis direction.

上記課題を解決するために、所定の幅を持つ被照射体に対して紫外光を照射する本発明の光照射装置は、幅方向をX軸方向、同一平面内でX軸方向に直交する方向をY軸方向として、X軸方向に線状にのびるライン光を形成する光源と、前記光源と前記被照射体との間に配置されて前記被照射体に向けて照射される前記ライン光の局所的な減光を可能にする減光フィルターと、前記減光フィルターをY軸方向に被照射体に対して相対移動させる移動手段とを備え、減光フィルターは、Y軸方向に対して傾斜した2辺を持つ輪郭を有して、移動手段の起点にてライン光の中央領域を減光し、前記起点からY軸方向一方への相対移動に伴ってライン光の減光領域がX軸方向に拡がるように構成されることを特徴とする。尚、本発明には、減光フィルターをY軸方向に加えてX軸方向にも相対移動させるもの(つまり、X軸とY軸との交点回りのθ方向に回転させるもの)を含むものとする。 In order to solve the above problems, the light irradiation device of the present invention for irradiating an object having a predetermined width with ultraviolet light has a width direction in the X-axis direction and a direction orthogonal to the X-axis direction in the same plane. is the Y-axis direction, and a light source that forms a line of light linearly extending in the X-axis direction; A neutral density filter that enables local light reduction, and a moving means that relatively moves the light density filter in the Y-axis direction with respect to the object to be irradiated, wherein the light density filter is inclined with respect to the Y-axis direction. The central area of the line light is dimmed at the starting point of the moving means, and the dimming area of the line light is shifted to the X axis as the starting point is moved in one direction along the Y axis. It is characterized in that it is configured to expand in the direction. It should be noted that the present invention includes one in which the neutral density filter is relatively moved in the X-axis direction as well as in the Y-axis direction (that is, rotated in the θ direction around the intersection of the X-axis and the Y-axis).

本発明によれば、移動手段により減光フィルターをY軸方向に被照射体に対して相対移動させれば、ライン光の減光領域のX軸方向の幅が変化する、これにより、被照射体に照射する光の照度(または光量)ばらつきを調整することができる。このため、従来例のように被照射体の種類に応じてその都度減光フィルターの交換作業や交換作業後の調整作業を行う必要がなく、生産性を向上させることができる。 According to the present invention, when the light-reducing filter is moved relative to the object to be irradiated in the Y-axis direction by the moving means, the width of the light-reducing region of the line light in the X-axis direction changes. It is possible to adjust the variation in the illuminance (or amount of light) of the light that irradiates the body. Therefore, unlike the conventional example, it is not necessary to replace the light-attenuating filter each time according to the type of the object to be irradiated, and adjustment work after the replacement work is not required, so that productivity can be improved.

本発明においては、前記減光フィルター各辺は、Y軸方向に対して30度以下の傾斜角で傾斜することが好ましい。各辺の傾斜角が30度よりも大きいと、減光フィルターのY軸方向への移動量に対する減光領域の変化量が大きくなり、減光領域ひいてはライン光の照度を精度良く制御できないという不具合が生じる。 In the present invention, each side of the neutral density filter is preferably inclined at an inclination angle of 30 degrees or less with respect to the Y-axis direction. If the angle of inclination of each side is greater than 30 degrees, the amount of change in the dimming region with respect to the amount of movement of the neutral density filter in the Y-axis direction becomes large, making it impossible to accurately control the illuminance of the dimming region and, by extension, the line light. occurs.

本発明においては、前記減光フィルターは、台形の輪郭を有して光源からの光を反射または吸収する減光部がメッシュ状に設けられたものであることが好ましい。 In the present invention, it is preferable that the light-reducing filter has a mesh-like light-reducing portion that has a trapezoidal outline and reflects or absorbs the light from the light source.

本発明においては、被照射体に照射される光の照度を測定する測定手段と、測定手段の測定値に基づいて前記移動手段を制御する制御手段とを更に備えること好ましい。これによれば、被照射体に照射される光の照度を精度よく制御することができる。 In the present invention, it is preferable to further include measuring means for measuring the illuminance of the light irradiated onto the object to be irradiated, and control means for controlling the moving means based on the measured value of the measuring means. According to this, it is possible to accurately control the illuminance of the light with which the object to be irradiated is irradiated.

本発明の実施形態の光照射装置を示す模式図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic diagram which shows the light irradiation apparatus of embodiment of this invention. 図1に示す減光フィルターを示す斜視図。FIG. 2 is a perspective view showing the neutral density filter shown in FIG. 1; (a)は起点位置の減光フィルターを説明図であり、(b)は移動後の減光フィルターを示す説明図。(a) is an explanatory view of the light-reducing filter at the starting position, and (b) is an explanatory view showing the light-reducing filter after movement.

以下、図面を参照して、所定の幅を持つ帯状の基材を被照射体Wbとし、被照射体に対して光を照射する場合を例に、本発明の実施形態の光照射装置について説明する。以下においては、幅方向をX軸方向、同一平面内でX軸方向に直交する方向をY軸方向として説明する。 Hereinafter, a light irradiation apparatus according to an embodiment of the present invention will be described with reference to the drawings, taking as an example a case where a strip-shaped base material having a predetermined width is used as an object to be irradiated Wb and the object to be irradiated is irradiated with light. do. In the following description, the width direction is defined as the X-axis direction, and the direction orthogonal to the X-axis direction within the same plane is defined as the Y-axis direction.

図1を参照して、LMは、本実施形態の光照射装置である。光照射装置LMは、被照射体WbをY軸方向に搬送する搬送手段としての搬送ローラ1a,1bを備える。尚、被照射体Wbとしては、単層あるいは多層のプラスチックフィルムや、プラスチックフィルムに粘着剤を塗布して粘着剤層が形成された粘着フィルムや粘着シート等を用いることができる。プラスチックフィルムとしては、ポリプロピレン樹脂、ポリエチレン樹脂、アクリロニトリルブタジエンスチレン樹脂、ポリエチレンテレフタレート、ポリスチレン、ポリイミド、ポリカーボネート、ポリウレタンなどの熱可塑性樹脂からなるものを好適に例示することができる。被照射体Wbの幅は、特に限定されないが、1400mm以下が好ましく、300mm~1000mmの範囲がより好ましい。 Referring to FIG. 1, LM is the light irradiation device of this embodiment. The light irradiation device LM includes transport rollers 1a and 1b as transport means for transporting the irradiated object Wb in the Y-axis direction. As the object to be irradiated Wb, a single-layer or multi-layer plastic film, or an adhesive film or adhesive sheet in which an adhesive layer is formed by coating an adhesive on a plastic film, or the like can be used. Suitable examples of plastic films include thermoplastic resins such as polypropylene resin, polyethylene resin, acrylonitrile-butadiene-styrene resin, polyethylene terephthalate, polystyrene, polyimide, polycarbonate, and polyurethane. Although the width of the object to be irradiated Wb is not particularly limited, it is preferably 1400 mm or less, more preferably in the range of 300 mm to 1000 mm.

搬送ローラ1a,1bの間の被照射体Wbの部分に対向させて、被照射体Wbの下方には光源2が配置されている。光源2は、X軸方向に長手の棒状ランプ21と、棒状ランプ21が収納される上面が開口された収納箱22とを備え、X軸方向にのびるライン光を形成できるようになっている。棒状ランプ21としては、UV(紫外線)ランプを用いることができる。光源2から被照射体Wbまでの距離(以下「照射距離」ともいう)d1は、被照射体Wbに照射する光の照度や光量に応じて適宜設定され、例えば200~1200mmの範囲に設定される。光源2のX軸方向の長さ(以下「光源幅」という)は、被照射体Wbの幅に応じて設定されるが、通常、被照射体Wbの幅の1~1.5倍の範囲に設定される。例えば、被照射体Wbの幅が1400mmである場合、光源幅は1400~2100mmの範囲、好ましくは1600~2000mmの範囲、より好ましくは1800~1900mmの範囲に設定される。尚、光源2のY軸方向の長さは、200mm以下が好ましく、100mm~150mmの範囲がより好ましい。 A light source 2 is arranged below the irradiated body Wb so as to face the portion of the irradiated body Wb between the conveying rollers 1a and 1b. The light source 2 is provided with a rod-shaped lamp 21 elongated in the X-axis direction and a housing box 22 with an open upper surface in which the rod-shaped lamp 21 is housed, so that line light extending in the X-axis direction can be formed. A UV (ultraviolet) lamp can be used as the rod-shaped lamp 21 . A distance d1 from the light source 2 to the object to be irradiated Wb (hereinafter also referred to as “irradiation distance”) is appropriately set according to the illuminance and amount of light irradiated to the object to be irradiated Wb, and is set in the range of 200 to 1200 mm, for example. be. The length of the light source 2 in the X-axis direction (hereinafter referred to as “light source width”) is set according to the width of the object to be irradiated Wb, but is usually in the range of 1 to 1.5 times the width of the object to be irradiated Wb. is set to For example, when the width of the object to be irradiated Wb is 1400 mm, the width of the light source is set in the range of 1400 to 2100 mm, preferably in the range of 1600 to 2000 mm, more preferably in the range of 1800 to 1900 mm. The length of the light source 2 in the Y-axis direction is preferably 200 mm or less, more preferably in the range of 100 mm to 150 mm.

光源2と被照射体Wbとの間には減光フィルター3が配置され、光源2からのライン光の局所的な減光を可能としている。減光フィルター3は、移動手段としてのモータ4の駆動軸4aに連結され、Y軸方向に被照射体Wbに対して相対移動できるようになっている。光源2から減光フィルター3までの距離d2は、例えば、100mm~300mmの範囲に設定することが好ましく、150mm~250mmの範囲に設定することがより好ましい。 A light-attenuating filter 3 is arranged between the light source 2 and the object to be irradiated Wb to enable local attenuation of the line light from the light source 2 . The light-reducing filter 3 is connected to a driving shaft 4a of a motor 4 as moving means, so that it can move relative to the irradiated body Wb in the Y-axis direction. The distance d2 from the light source 2 to the neutral density filter 3 is preferably set, for example, within the range of 100 mm to 300 mm, more preferably within the range of 150 mm to 250 mm.

図2も参照して、減光フィルター3としては、例えば、光源2からの光の通過を許容する開口3aが画成されるように金属製の線材3bをメッシュ状に組み付けたものや(図3参照)、パンチングメタルを用いることができる。減光フィルター3の減光率(減光フィルター3全体の面積に対する遮光部(線材3b)の面積の割合)は、20%~80%の範囲に設定することが好ましく、25%~75%の範囲に設定することがより好ましい。20%より低いと、照度むらを抑制するための十分な減光率が得られなくなり、80%より高いと、光の遮断量が大きくなり、減光フィルター3の熱変形や電力のロスを招来する虞がある。減光フィルター3の材質は、遮光できると共に光照射に対して耐性を持つものであればよく、例えば、ステンレス等の金属が好ましい。減光フィルター3の厚み(線材3bの線径)は、例えば、2mm以下が好ましく、0.1mm~1mmの範囲がより好ましい。2mmより大きいと、減光フィルター3に対して垂直に入射した光しか透過できなくなり、その結果として、被照射体Wbに十分な光を照射できなくなり、0.1mmより小さいと、減光フィルター3が変形することがある。減光フィルター3は、Y軸方向に対して傾斜した2辺31a,31bを持つ輪郭を有し、具体的には、台形や三角形の輪郭を有している。各辺31a,31bのY軸方向に対する傾斜角θは、30度以下に設定されることが好ましい。傾斜角θが30度よりも大きいと、減光フィルター3のY軸方向の移動量に対する減光領域の変化量が大きくなり、減光領域ひいてはライン光の照度を精度良く制御できないという不具合がある。減光フィルター3が台形の輪郭を持つ場合、上底の長さは、好ましくは光源幅の0.3倍~0.5倍、より好ましくは光源幅の0.3倍~0.4倍に設定することができ、また、下底の長さは、好ましくは光源幅の0.7倍~0.9倍、より好ましくは光源幅の0.8倍~0.9倍に設定することができる。減光フィルター3のY軸方向の両端は、矩形の枠体32で保持されており、枠体32のX軸方向両端は、Y軸方向に夫々のびる一対のガイド部材33によりガイドされている。枠体32のY軸方向一方の外側面にはモータ4の駆動軸4aが連結されている。このような構成を採用することにより、モータ4を駆動することで枠体32ひいては減光フィルター3をY軸方向に被照射体Wbに対して相対移動できるようになっている。例えば、モータ4の起点位置では、図3(a)に示すように、減光フィルター3によりライン光の中央領域が減光される。そして、この起点からモータ4を作動させて、図3(b)に示す位置まで、減光フィルター3をY軸方向一方へ相対移動させると、これに伴って減光フィルター3によるライン光の減光領域がX軸方向に拡がるようになっている。尚、モータ4として、図示省略するエンコーダを備えるものを用いることで、エンコーダの値と減光フィルター3の位置とを予め対応付けて後述する制御手段Cuに記憶しておけば、減光フィルター3を精度良く移動させることができる。 Referring also to FIG. 2, the neutral density filter 3 is, for example, one in which metal wires 3b are assembled in a mesh shape so as to define an opening 3a that allows the passage of light from the light source 2 (see FIG. 2). 3), and punching metal can be used. The light attenuation rate of the light-attenuating filter 3 (ratio of the area of the light-shielding portion (wire material 3b) to the area of the entire light-attenuating filter 3) is preferably set in the range of 20% to 80%, more preferably 25% to 75%. It is more preferable to set it to a range. If it is lower than 20%, a sufficient light attenuation rate for suppressing uneven illuminance cannot be obtained. there is a risk of Any material can be used for the light-reducing filter 3 as long as it can block light and has resistance to light irradiation. For example, metal such as stainless steel is preferable. The thickness of the neutral density filter 3 (the wire diameter of the wire 3b) is, for example, preferably 2 mm or less, more preferably in the range of 0.1 mm to 1 mm. If it is larger than 2 mm, only the light incident perpendicularly to the light-reducing filter 3 can be transmitted, and as a result, sufficient light cannot be applied to the object to be irradiated Wb. may be deformed. The neutral density filter 3 has a contour with two sides 31a and 31b inclined with respect to the Y-axis direction, and specifically has a trapezoidal or triangular contour. The inclination angle θ of each side 31a, 31b with respect to the Y-axis direction is preferably set to 30 degrees or less. If the tilt angle θ is greater than 30 degrees, the amount of change in the dimming region with respect to the amount of movement of the dimming filter 3 in the Y-axis direction becomes large, and there is a problem that the illuminance of the dimming region and, by extension, the line light cannot be controlled with high accuracy. . When the neutral density filter 3 has a trapezoidal outline, the length of the upper base is preferably 0.3 to 0.5 times the width of the light source, more preferably 0.3 to 0.4 times the width of the light source. The length of the lower base is preferably 0.7 to 0.9 times the width of the light source, more preferably 0.8 to 0.9 times the width of the light source. can. Both ends of the neutral density filter 3 in the Y-axis direction are held by a rectangular frame 32, and both ends of the frame 32 in the X-axis direction are guided by a pair of guide members 33 extending in the Y-axis direction. A drive shaft 4a of the motor 4 is connected to one outer surface of the frame 32 in the Y-axis direction. By adopting such a configuration, by driving the motor 4, the frame 32 and thus the light-reducing filter 3 can be moved in the Y-axis direction relative to the object to be irradiated Wb. For example, at the starting position of the motor 4, the central region of the line light is attenuated by the dimmer filter 3, as shown in FIG. 3(a). Then, when the motor 4 is operated from this starting point to relatively move the light-reducing filter 3 in one direction of the Y-axis to the position shown in FIG. The light area spreads in the X-axis direction. By using a motor 4 having an encoder (not shown), the value of the encoder and the position of the light-reducing filter 3 are associated in advance and stored in the control means Cu, which will be described later, so that the light-reducing filter 3 can be moved with high precision.

被照射体Wbの上方には測定手段としての複数個(本実施形態では5個)の照度計5がX軸方向に並設されており、各照度計5が被照射体Wbの部分を透過した光の照度を測定できるようになっている。各照度計5の測定値は、制御手段Cuに入力される。制御手段Cuは、マイクロコンピュータやシーケンサ等を備えた公知のものであり、制御手段Cuにより、搬送ローラ1a,1bの作動、光源2の作動やモータ4の作動等を統括制御するほか、各照度計5から入力される測定値から照度ばらつきを求めて照度ばらつきに基づいてモータ4をフィードバック制御するようになっている。以下、上記光照射装置LMを用いて、被照射体Wbに対する光の照射方法について説明する。 A plurality of (five in this embodiment) illuminance meters 5 serving as measuring means are arranged in parallel in the X-axis direction above the object Wb to be irradiated. It is designed to measure the illuminance of the light that is applied. The measured value of each illuminance meter 5 is input to the control means Cu. The control means Cu is a known device including a microcomputer, a sequencer, etc. The control means Cu controls the operation of the conveying rollers 1a and 1b, the operation of the light source 2, the operation of the motor 4, and the like. The illuminance variation is obtained from the measured value input from the total 5, and the motor 4 is feedback-controlled based on the illuminance variation. A method of irradiating the object Wb with light using the light irradiation device LM will be described below.

先ず、照度のばらつきが目的とする範囲内に収まるように、被照射体Wbの材質に応じてライン光の減光領域のX軸方向の幅(以下「減光領域幅」ともいう)Rxが決定される。そして、減光領域幅Rxを実現する減光フィルター3のY軸方向の目標位置が求められる。例えば、被照射体Wbの種類と、減光領域幅Rx及び減光フィルター3のY軸方向の目標位置とを対応付けて制御手段Cuに記憶しておけば、被照射体Wbの種類に応じた減光領域幅Rxと目標位置とを取得することができる。モータ4を駆動して、減光フィルター3をY軸方向に相対移動させる。 First, the width of the dimming region of the line light in the X-axis direction (hereinafter also referred to as “dimming region width”) Rx is adjusted according to the material of the object Wb so that the variation in illuminance falls within the target range. It is determined. Then, the target position of the neutral density filter 3 in the Y-axis direction that realizes the light density region width Rx is obtained. For example, if the type of the object to be irradiated Wb is associated with the target position of the dimming region width Rx and the neutral density filter 3 in the Y-axis direction and stored in the control means Cu, The dimming region width Rx and the target position can be acquired. The motor 4 is driven to relatively move the neutral density filter 3 in the Y-axis direction.

減光フィルター3が目標位置まで移動すると、図示省略するモータにより搬送ローラ1a,1bを回転駆動することにより、所定速度で被照射体WbがY軸方向に搬送される。このように被照射体Wbを搬送しながら、光源2から被照射体Wbの部分にUV光が照射される。 When the light-attenuating filter 3 is moved to the target position, a motor (not shown) rotates the conveying rollers 1a and 1b, thereby conveying the irradiated body Wb in the Y-axis direction at a predetermined speed. While the object Wb to be irradiated is being transported in this way, the UV light is irradiated from the light source 2 onto the part of the object Wb to be irradiated.

ここで、被照射体Wbが光透過性を有するため、被照射体Wbを透過したUV光の照度が各照度計5により測定される。照度計5により測定された照度と、上記決定された照度との間に差が予め設定した基準値と異なる場合、その差に基づいてモータ4を駆動して減光フィルター3の位置を補正するようにしてもよい。 Here, since the object Wb to be irradiated has light transmission properties, the illuminance of the UV light transmitted through the object Wb to be irradiated is measured by each illuminometer 5 . If the difference between the illuminance measured by the illuminance meter 5 and the determined illuminance is different from a preset reference value, the motor 4 is driven based on the difference to correct the position of the neutral density filter 3. You may do so.

以上によれば、減光フィルター3をY軸方向に被照射体Wbに対して相対移動させることで、ライン光の減光領域のX軸方向の幅(減光領域幅)Rxを変化させることができ、その結果として、被照射体Wbに照射する光の照度(または光量)を変化させることができる。このため、従来例のように被照射体Wbの種類に応じてその都度減光フィルター3の交換作業や交換作業後の調整作業を行う必要がなく、生産性を向上させることができる。 According to the above, the width of the dimming region of the line light in the X-axis direction (dimming region width) Rx can be changed by moving the dimming filter 3 relative to the irradiated body Wb in the Y-axis direction. As a result, it is possible to change the illuminance (or the amount of light) of the light with which the object to be irradiated Wb is irradiated. Therefore, unlike the conventional example, it is not necessary to replace the light-reducing filter 3 each time according to the type of the object to be irradiated Wb, or to perform adjustment after the replacement, thereby improving productivity.

次に、本発明の実施形態をより具体化した実施例と実施例に対する参考例について説明する。実施例1では、被照射体Wbとして1400mmの幅を持つポリエチレンテレフタレート製フィルム(東レ株式会社製、商品名「PET25 T60」)を用い、この被照射体Wbに対向させて光源2を配置した。光源2から被照射体Wbまでの距離d1は、1000mmに設定した。光源2の棒状ランプ21としては、幅が1850mmである紫外線硬化用ランプ(アイグラフィックス株式会社製、商品名「H296-L41X」)を用いた。被処理体Wbと光源2との間には、減光フィルター3を配置し、光源2から減光フィルター3までの距離d2は、160mmに設定した。減光フィルター3としてはエキスパンドメンタル(奥谷金網株式会社製)を台形の輪郭にカットして用いた。この減光フィルター3は光を反射する減光部(金属)を有し、その減光率は50%であり、台形の2辺31a,31bのY軸に対する傾斜角θは30度とした。モータ4を駆動し、ライン光の減光領域幅(光源2を覆う減光フィルター3のX軸方向の幅)Rxが1200mmとなる位置まで減光フィルター3をY軸方向に移動した。この状態で、光源2からのライン光を被照射体Wbに照射した。被照射体Wbの上方に配置された5つの照度計5により、被照射体Wbを透過したライン光(被照射体Wbに照射されたライン光に相当する)の照度をX軸方向5点(-700mm、-350mm、0mm(中央)、+350mm、+700mm)で測定し、これらの測定値から下式(1)により照度ばらつき(±%)を求めたところ、±2.9%であった。下式(1)中、Imaxは測定した5点の照度の中の最大値、Iminは測定した5点の照度の中の最小値を示す。
照度ばらつき[±%]=(Imax-Imin)/(Imax+Imin)×100・・・(1)
上式(1)から得られる照度ばらつきは、測定された照度の中央値(ImaxとIminの中間の値)からのImaxとIminのばらつきを表す指標である。
Next, an example that embodies the embodiment of the present invention and a reference example for the example will be described. In Example 1, a polyethylene terephthalate film (manufactured by Toray Industries, Inc., trade name “PET25 T60”) having a width of 1400 mm was used as the object to be irradiated Wb, and the light source 2 was arranged to face the object to be irradiated Wb. A distance d1 from the light source 2 to the irradiated object Wb was set to 1000 mm. As the rod-shaped lamp 21 of the light source 2, an ultraviolet curing lamp (trade name “H296-L41X” manufactured by Eye Graphics Co., Ltd.) having a width of 1850 mm was used. A light-attenuating filter 3 was placed between the object Wb to be processed and the light source 2, and the distance d2 from the light source 2 to the light-attenuating filter 3 was set to 160 mm. As the light-attenuating filter 3, Expandmental (manufactured by Okutani Wire Net Co., Ltd.) was used by cutting it into a trapezoidal outline. The light-attenuating filter 3 has a light-attenuating portion (metal) that reflects light, and its light-attenuating rate is 50%. The motor 4 was driven to move the light-reducing filter 3 in the Y-axis direction to a position where the width of the line light attenuating region (the width in the X-axis direction of the light-reducing filter 3 covering the light source 2) Rx was 1200 mm. In this state, the line light from the light source 2 was irradiated to the irradiated object Wb. Five illuminance meters 5 arranged above the object to be irradiated Wb measure the illuminance of line light transmitted through the object to be irradiated Wb (corresponding to the line light irradiated to the object to be irradiated Wb) at five points in the X-axis direction ( −700 mm, −350 mm, 0 mm (center), +350 mm, +700 mm), and the illuminance variation (±%) obtained from these measured values by the following formula (1) was ±2.9%. In the following formula (1), I max indicates the maximum value among the five measured illuminances, and I min indicates the minimum value among the five measured illuminances.
Illuminance variation [±%]=(I max −I min )/(I max +I min )×100 (1)
The illuminance variation obtained from the above equation (1) is an index representing the variation of I max and I min from the measured median value of illuminance (value between I max and I min ).

ここで、本実施例1においてだけでなく、後述する実施例2~29及び参考例1~5においても、照度ばらつきの評価を行った。評価については、求めた照度ばらつきが±3%未満の場合を「○」、±3%以上±5%未満の場合を「△」、±5%以上の場合を「×」とした。このような照度ばらつきの評価結果及び上述した光照射装置の各種条件を、表1に示す。 Here, the illuminance variation was evaluated not only in Example 1 but also in Examples 2 to 29 and Reference Examples 1 to 5, which will be described later. Regarding the evaluation, when the obtained illuminance variation was less than ±3%, it was evaluated as “◯”; when it was ±3% or more and less than ±5%, it was evaluated as “Δ”; Table 1 shows the evaluation result of such illuminance variation and the various conditions of the light irradiation device described above.

Figure 0007156959000001
Figure 0007156959000001

次に、実施例2では、ライン光の減光領域幅Rxが900mmとなる位置まで減光フィルター3をY軸方向に移動した後、実施例1と同様の条件でライン光を照射して照度ばらつきを求めたところ、±3.2%であった。 Next, in Example 2, after moving the light-reducing filter 3 in the Y-axis direction to a position where the line light attenuation region width Rx is 900 mm, the line light is irradiated under the same conditions as in Example 1, and the illuminance is The dispersion was found to be ±3.2%.

これら実施例1,2に対する参考例1,2では、ライン光の減光領域幅Rxが500mm,1500mmとなる位置まで減光フィルター3をY軸方向に移動した後、実施例1と同様の条件でライン光を照射して照度ばらつきを求めたところ、いずれも±5.6%と悪化した。 In Reference Examples 1 and 2 for Examples 1 and 2, after moving the light-reducing filter 3 in the Y-axis direction to positions where the line-light attenuation region width Rx is 500 mm and 1500 mm, the same conditions as in Example 1 were applied. When the illuminance variation was obtained by irradiating the line light at , all of them were deteriorated to ±5.6%.

実施例3では、光源2から被照射体Wbまでの距離d1を500mmとし、減光領域幅Rxを1500mmとした点を除き、実施例1と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.4%であった。また、実施例4では、減光領域幅Rxを1400mmとした点を除き、実施例3と同様の条件でライン光を照射して照度ばらつきを求めたところ、±3.9%であった。 In Example 3, line light was emitted under the same conditions as in Example 1, except that the distance d1 from the light source 2 to the object to be illuminated Wb was 500 mm, and the dimming region width Rx was 1500 mm. It was found to be ±2.4%. In Example 4, the illuminance variation was found to be ±3.9% by irradiating line light under the same conditions as in Example 3, except that the dimming region width Rx was 1400 mm.

これら実施例3,4に対する参考例3では、減光領域幅Rxを1600mmとした点を除き、実施例3と同様の条件でライン光を照射して照度ばらつきを求めたところ、±5.8%と悪化した。 In Reference Example 3 for Examples 3 and 4, line light was irradiated under the same conditions as in Example 3 except that the dimming region width Rx was 1600 mm, and the illuminance variation was determined to be ±5.8. % worsened.

実施例5では、光源2から被照射体Wbまでの距離d1を200mmとし、減光領域幅Rxを1400mmとした点を除き、実施例1と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.5%であった。また、実施例6では、減光領域幅Rxを1500mmとした点を除き、実施例5と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.5%であった。 In Example 5, line light was emitted under the same conditions as in Example 1, except that the distance d1 from the light source 2 to the irradiated object Wb was 200 mm, and the dimming region width Rx was 1400 mm, thereby reducing illuminance variations. It was found to be ±2.5%. In Example 6, the illuminance variation was found to be ±2.5% by irradiating line light under the same conditions as in Example 5, except that the dimming region width Rx was set to 1500 mm.

これら実施例5,6に対する参考例4では、減光領域幅Rxを1300mmとした点を除き、実施例5と同様の条件でライン光を照射して照度ばらつきを求めたところ、±25.2%と悪化した。 In Reference Example 4 for Examples 5 and 6, line light was irradiated under the same conditions as in Example 5 except that the dimming region width Rx was 1300 mm, and the illuminance variation was determined to be ±25.2. % worsened.

実施例7では、光源2から減光フィルター3までの距離d2を150mmとし、減光領域幅Rxを1100mmとした点を除き、実施例1と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.9%であった。また、実施例8では、光源2から被照射体Wbまでの距離d1を500mmとし、減光領域幅Rxを1500mmとした点を除き、実施例7と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.3%であった。また、実施例9では、光源2から被照射体Wbまでの距離d1を200mmとした点を除き、実施例8と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.5%であった。 In Example 7, line light was applied under the same conditions as in Example 1, except that the distance d2 from the light source 2 to the neutral density filter 3 was 150 mm, and the light attenuation region width Rx was 1100 mm. It was found to be ±2.9%. In Example 8, the line light was irradiated under the same conditions as in Example 7, except that the distance d1 from the light source 2 to the object Wb to be irradiated was 500 mm, and the dimming region width Rx was 1500 mm. The dispersion was found to be ±2.3%. In Example 9, line light was irradiated under the same conditions as in Example 8, except that the distance d1 from the light source 2 to the object Wb to be illuminated was set to 200 mm. was 5%.

実施例10では、光源2から減光フィルター3までの距離d2を200mmとした点を除き、実施例1と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.1%であった。また、実施例11では、光源2から被照射体Wbまでの距離d1を500mmとし、減光領域幅Rxを1450mmとした点を除き、実施例10と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.6%であった。また、実施例12では、光源2から被照射体Wbまでの距離d1を200mmとし、減光領域幅Rxを1600mmとした点を除き、実施例8と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.5%であった。 In Example 10, the illuminance variation was determined by irradiating line light under the same conditions as in Example 1, except that the distance d2 from the light source 2 to the neutral density filter 3 was 200 mm. Met. In Example 11, line light was applied under the same conditions as in Example 10, except that the distance d1 from the light source 2 to the object Wb to be irradiated was 500 mm, and the dimming region width Rx was 1450 mm. The dispersion was found to be ±2.6%. In Example 12, line light was applied under the same conditions as in Example 8, except that the distance d1 from the light source 2 to the object Wb to be irradiated was 200 mm, and the dimming region width Rx was 1600 mm. The dispersion was found to be ±2.5%.

実施例13では、光源幅を2000mmとした点を除き、実施例1と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.2%であった。また、実施例14では、光源2から被照射体Wbまでの距離d1を500mmとし、減光領域幅Rxを1600mmとした点を除き、実施例13と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.1%であった。また、実施例15では、光源2から被照射体Wbまでの距離d1を200mmとした点を除き、実施例14と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.1%であった。 In Example 13, line light was irradiated under the same conditions as in Example 1 except that the light source width was 2000 mm, and the illuminance variation was determined to be ±2.2%. In Example 14, line light was applied under the same conditions as in Example 13, except that the distance d1 from the light source 2 to the irradiated object Wb was 500 mm, and the dimming region width Rx was 1600 mm. The dispersion was found to be ±2.1%. In Example 15, line light was irradiated under the same conditions as in Example 14, except that the distance d1 from the light source 2 to the object Wb to be irradiated was 200 mm, and the illuminance variation was found to be ±2. was 1%.

実施例16では、光源幅を1600mmとし、減光領域幅Rxを900mmとした点を除き、実施例1と同様の条件でライン光を照射して照度ばらつきを求めたところ、±3.7%であった。また、実施例17では、光源2から被照射体Wbまでの距離d1を500mmとし、減光領域幅Rxを1200mmとした点を除き、実施例16と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.1%であった。また、実施例18では、光源2から被照射体Wbまでの距離d1を200mmとし、減光領域幅Rxを1300mmとした点を除き、実施例17と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.2%であった。 In Example 16, line light was irradiated under the same conditions as in Example 1 except that the light source width was 1600 mm and the dimming region width Rx was 900 mm. Met. In Example 17, line light was applied under the same conditions as in Example 16, except that the distance d1 from the light source 2 to the object to be irradiated Wb was 500 mm, and the dimming region width Rx was 1200 mm. The dispersion was found to be ±2.1%. Further, in Example 18, the line light was irradiated under the same conditions as in Example 17 except that the distance d1 from the light source 2 to the irradiated object Wb was 200 mm and the dimming region width Rx was 1300 mm. The dispersion was found to be ±2.2%.

実施例19では、光源2から被照射体Wbまでの距離d1を500mmとし、減光フィルター3の減光率を30%とした点を除き、実施例1と同様の条件でライン光を照射して照度ばらつきを求めたところ、±1.1%であった。また、実施例20では、光源2から被照射体Wbまでの距離d1を200mmとし、減光領域幅Rxを1400mmとした点を除き、実施例19と同様の条件でライン光を照射して照度ばらつきを求めたところ、±1.8%であった。 In Example 19, line light was irradiated under the same conditions as in Example 1, except that the distance d1 from the light source 2 to the irradiated object Wb was 500 mm, and the light attenuation rate of the light-attenuating filter 3 was 30%. The illuminance variation was found to be ±1.1%. In Example 20, line light was applied under the same conditions as in Example 19, except that the distance d1 from the light source 2 to the object to be irradiated Wb was 200 mm, and the dimming region width Rx was 1400 mm. The dispersion was found to be ±1.8%.

これら実施例19,20に対する参考例5では、光源2から被照射体Wbまでの距離d1を1000mmとし、減光領域幅Rxを800mmとした点を除き、実施例19と同様の条件でライン光を照射して照度ばらつきを求めたところ、±7.1%と悪化した。 In Reference Example 5 with respect to Examples 19 and 20, line light was emitted under the same conditions as in Example 19 except that the distance d1 from the light source 2 to the irradiated body Wb was 1000 mm and the dimming region width Rx was 800 mm. When the illuminance variation was determined by irradiating with , it deteriorated to ±7.1%.

実施例21では、減光フィルター3の減光率を40%とし、減光領域幅Rxを950mmとした点を除き、実施例1と同様の条件でライン光を照射して照度ばらつきを求めたところ、±4.8%であった。また、実施例22では、光源2から被照射体Wbまでの距離d1を500mmとし、減光領域幅Rxを1400mmとした点を除き、実施例21と同様の条件でライン光を照射して照度ばらつきを求めたところ、±1.3%であった。また、実施例23では、光源2から被照射体Wbまでの距離d1を200mmとした点を除き、実施例22と同様の条件でライン光を照射して照度ばらつきを求めたところ、±1.8%であった。 In Example 21, the illuminance variation was obtained by irradiating line light under the same conditions as in Example 1, except that the light attenuation rate of the light attenuation filter 3 was 40% and the light attenuation region width Rx was 950 mm. By the way, it was ±4.8%. In Example 22, the line light was irradiated under the same conditions as in Example 21, except that the distance d1 from the light source 2 to the irradiated object Wb was 500 mm, and the dimming region width Rx was 1400 mm. The dispersion was found to be ±1.3%. In Example 23, line light was irradiated under the same conditions as in Example 22, except that the distance d1 from the light source 2 to the object Wb to be illuminated was 200 mm, and the illuminance variation was found to be ±1. was 8%.

実施例24では、減光フィルター3の減光率を60%とし、減光領域幅Rxを1300mmとした点を除き、実施例1と同様の条件でライン光を照射して照度ばらつきを求めたところ、±1.3%であった。また、実施例25では、光源2から被照射体Wbまでの距離d1を500mmとし、減光領域幅Rxを1500mmとした点を除き、実施例24と同様の条件でライン光を照射して照度ばらつきを求めたところ、±4.2%であった。また、実施例26では、光源2から被照射体Wbまでの距離d1を200mmとした点を除き、実施例25と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.5%であった。 In Example 24, the illuminance variation was determined by irradiating line light under the same conditions as in Example 1 except that the light attenuation rate of the light attenuation filter 3 was 60% and the light attenuation region width Rx was 1300 mm. By the way, it was ±1.3%. In Example 25, the line light was irradiated under the same conditions as in Example 24, except that the distance d1 from the light source 2 to the object to be irradiated Wb was 500 mm, and the dimming region width Rx was 1500 mm. The dispersion was found to be ±4.2%. In Example 26, line light was applied under the same conditions as in Example 25, except that the distance d1 from the light source 2 to the object Wb to be illuminated was set to 200 mm. was 5%.

実施例27では、減光フィルター3の減光率を70%とし、減光領域幅Rxを1600mmとした点を除き、実施例1と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.0%であった。また、実施例28では、光源2から被照射体Wbまでの距離d1を500mmとした点を除き、実施例27と同様の条件でライン光を照射して照度ばらつきを求めたところ、±4.5%であった。また、実施例29では、光源2から被照射体Wbまでの距離d1を200mmとした点を除き、実施例28と同様の条件でライン光を照射して照度ばらつきを求めたところ、±2.5%であった。 In Example 27, the illuminance variation was determined by irradiating line light under the same conditions as in Example 1, except that the light attenuation rate of the light attenuation filter 3 was set to 70% and the light attenuation region width Rx was set to 1600 mm. By the way, it was ±2.0%. In Example 28, line light was applied under the same conditions as in Example 27, except that the distance d1 from the light source 2 to the object Wb to be illuminated was set to 500 mm. was 5%. In Example 29, line light was irradiated under the same conditions as in Example 28, except that the distance d1 from the light source 2 to the object Wb to be illuminated was 200 mm, and the illuminance variation was found to be ±2. was 5%.

以上の実施例及び参考例によれば、減光フィルター3をY軸方向に移動させることで、減光領域幅Rxを調整できることが判った。さらに、実施例で示されるようにX軸方向の照度ばらつき(照度むら)を低減できることが判った。 According to the above examples and reference examples, it was found that the light attenuation region width Rx can be adjusted by moving the light attenuation filter 3 in the Y-axis direction. Furthermore, it was found that the illuminance variation (illuminance unevenness) in the X-axis direction can be reduced as shown in the examples.

尚、本発明は上記実施形態及び実施例に限定されるものではなく、本発明の趣旨を逸脱しない限り、種々の変形が可能である。例えば、上記実施形態では、減光フィルター3をY軸方向に相対移動させる場合を例に説明したが、減光フィルター3をY軸方向に加えてX軸方向にも相対移動させるように構成してもよい。この場合、減光フィルター3がX軸とY軸との交点回りのθ方向に回転することで、ライン光のX軸方向の幅を変化させるものを含むものとする。 The present invention is not limited to the above embodiments and examples, and various modifications are possible without departing from the scope of the present invention. For example, in the above embodiment, the case in which the light-reducing filter 3 is relatively moved in the Y-axis direction has been described as an example. may In this case, the width of the line light in the X-axis direction is changed by rotating the light-reducing filter 3 in the θ direction around the intersection of the X-axis and the Y-axis.

また、上記実施形態では、被照射体Wbとして光透過性を有するものを用い、この被照射体Wbを透過したライン光の照度を照度計5で測定する場合を例に説明したが、被照射体Wbが光透過性を有しない場合には、被照射体Wbで反射した反射光の照度を測定すればよい。 Further, in the above-described embodiment, a light-transmitting object Wb is used as the object to be irradiated Wb, and the illuminance of the line light transmitted through the object Wb is measured by the illuminance meter 5. If the body Wb does not have light transmittance, the illuminance of the reflected light reflected by the body Wb to be illuminated may be measured.

また、上記実施形態では、搬送ローラ1a,1bにより被照射体Wbを搬送する場合を例に説明したが、被照射体Wbを搬送する手段としては公知のものを用いることができる。 Further, in the above-described embodiment, a case where the object to be irradiated Wb is conveyed by the conveying rollers 1a and 1b has been described as an example, but a known device can be used as means for conveying the object to be irradiated Wb.

また、上記実施形態では、減光フィルター3を構成する金属製の線材3bが光を反射する場合を例に説明したが、光を吸収する線材をメッシュ状に設けて所定の減光率を持つように構成したものを用いることもできる。 Further, in the above-described embodiment, the case where the metal wire rod 3b that constitutes the neutral density filter 3 reflects light has been described as an example. It is also possible to use a device configured as follows.

LM…光照射装置、Wb…被照射体、2…光源、3…減光フィルター、3b…線材(減光部)、31a,31b…Y軸方向に対して傾斜した2辺、θ…Y軸方向に対する傾斜角、4…モータ(移動手段)、5…照度計(測定手段)、Cu…制御手段。 LM... light irradiation device, Wb... object to be irradiated, 2... light source, 3... light-reducing filter, 3b... wire (light-reducing portion), 31a, 31b... two sides inclined with respect to the Y-axis direction, θ... Y-axis Inclination angle with respect to direction, 4 motor (moving means), 5 illuminometer (measuring means), Cu control means.

Claims (3)

所定の幅を持つ被照射体に対して紫外光を照射する光照射装置において、
幅方向をX軸方向、同一平面内でX軸方向に直交する方向をY軸方向として、X軸方向に線状にのびるライン光を形成する光源と、前記光源と前記被照射体との間に配置されて前記被照射体に向けて照射される前記ライン光の局所的な減光を可能にする減光フィルターと、前記減光フィルターをY軸方向に被照射体に対して相対移動させる移動手段とを備え、
減光フィルターは、Y軸方向に対して傾斜した2辺を持つ輪郭を有して、移動手段の起点にてライン光の中央領域を減光し、前記起点からY軸方向一方への相対移動に伴ってライン光の減光領域がX軸方向に拡がるように構成され
前記減光フィルターの各辺が、Y軸方向に対して30度以下の傾斜角で傾斜されていることを特徴とする光照射装置。
In a light irradiation device that irradiates an object having a predetermined width with ultraviolet light,
Between a light source that forms a line of light linearly extending in the X-axis direction, with the width direction as the X-axis direction and the direction perpendicular to the X-axis direction in the same plane as the Y-axis direction, and the light source and the object to be irradiated. a light-reducing filter arranged in the illuminating body to enable local light reduction of the line light irradiated toward the object to be irradiated; and moving the light-reducing filter relative to the object to be irradiated in the Y-axis direction. a means of transportation,
The light-reducing filter has a contour with two sides inclined with respect to the Y-axis direction, and attenuates a central region of the line light at the starting point of the moving means, and relatively moves from the starting point in one Y-axis direction. is configured so that the dimming region of the line light spreads in the X-axis direction along with
A light irradiation device , wherein each side of the neutral density filter is inclined at an inclination angle of 30 degrees or less with respect to the Y-axis direction .
前記減光フィルターは、台形の輪郭を有して光源からの光を反射または吸収する減光部がメッシュ状に設けられたものであることを特徴とする請求項1記載の光照射装置。 2. The light irradiation device according to claim 1 , wherein said light-attenuating filter has a mesh-like light-attenuating portion which has a trapezoidal outline and reflects or absorbs light from a light source. 被照射体に照射される光の照度を測定する測定手段と、測定手段の測定値に基づいて前記移動手段を制御する制御手段とを更に備えることを特徴とする請求項1または請求項2記載の光照射装置。 3. The apparatus according to claim 1, further comprising measuring means for measuring the illuminance of the light irradiated onto the object to be irradiated, and control means for controlling the moving means based on the measured value of the measuring means. light irradiation device.
JP2019008543A 2019-01-22 2019-01-22 Light irradiation device Active JP7156959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019008543A JP7156959B2 (en) 2019-01-22 2019-01-22 Light irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019008543A JP7156959B2 (en) 2019-01-22 2019-01-22 Light irradiation device

Publications (2)

Publication Number Publication Date
JP2020118798A JP2020118798A (en) 2020-08-06
JP7156959B2 true JP7156959B2 (en) 2022-10-19

Family

ID=71890647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019008543A Active JP7156959B2 (en) 2019-01-22 2019-01-22 Light irradiation device

Country Status (1)

Country Link
JP (1) JP7156959B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226458A (en) 2003-01-20 2004-08-12 Yokogawa Electric Corp Dimmer device
JP2007266098A (en) 2006-03-27 2007-10-11 Nikon Corp Neutral density filter, tablet plate and exposure apparatus
CN104656313A (en) 2015-03-10 2015-05-27 京东方科技集团股份有限公司 Device and method for optical alignment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53152626U (en) * 1977-05-07 1978-12-01
JPS54174343U (en) * 1978-05-30 1979-12-08
JPS58144345U (en) * 1982-03-25 1983-09-29 ウシオ電機株式会社 Light source device for copying machines
JPS6356644A (en) * 1986-08-27 1988-03-11 Toshiba Corp Adjusting device for dimming plate of copying machine
JP2502074B2 (en) * 1987-01-23 1996-05-29 株式会社リコー Illumination device for document reading device
KR0133748Y1 (en) * 1993-04-28 1999-03-30 김광호 Image forming device
JPH1138523A (en) * 1997-07-23 1999-02-12 Fuji Photo Film Co Ltd Image reader

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226458A (en) 2003-01-20 2004-08-12 Yokogawa Electric Corp Dimmer device
JP2007266098A (en) 2006-03-27 2007-10-11 Nikon Corp Neutral density filter, tablet plate and exposure apparatus
CN104656313A (en) 2015-03-10 2015-05-27 京东方科技集团股份有限公司 Device and method for optical alignment

Also Published As

Publication number Publication date
JP2020118798A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
US7463418B2 (en) Polarization element unit and polarization light emitting apparatus
TW201721259A (en) Light irradiation device and light irradiation method
US10274760B2 (en) Divisional exposure apparatus and method of manufacturing liquid crystal display using the same
CN112654492A (en) Three-dimensional printing equipment
JP7156959B2 (en) Light irradiation device
CN107615170B (en) Exposure illumination device, exposure device, and exposure method
JP5866028B2 (en) Exposure apparatus, mask, and optical film
TWI468750B (en) Mask and apparatus for manufacturing optical filter including the same
KR101945068B1 (en) Method for producing pattern phase difference film, pattern phase difference film, and image display device
KR102093941B1 (en) Ultraviolet irradiation apparatus
TWI521258B (en) Light alignment illumination device
KR102064875B1 (en) Apparatus for irradiating ultraviolet rays
KR101347552B1 (en) Mask and apparatus for manufacturing optical filter including the same
TWI608459B (en) Manufacturing apparatus and manufacturing method of component for display device
KR100960302B1 (en) Apparatus and Method of cutting a film using a laser
US3548713A (en) Photo-exposure device using annular light beam
JP2005043700A (en) Bonding device of display panel
KR100886552B1 (en) Sticking device for display panel
JP2005301155A5 (en)
KR20130102583A (en) Film exposure device and film exposure method
KR20140004243A (en) Method for producing pattern phase difference film
US9316923B2 (en) Exposure apparatus and exposure method using the same
TWI536115B (en) Film exposure apparatus
JP6727560B2 (en) UV irradiation device
KR100603778B1 (en) Apparatus manufacturing optical film and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221006

R150 Certificate of patent or registration of utility model

Ref document number: 7156959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150