JP7153309B2 - Measurement method of reflection coefficient using vector network analyzer - Google Patents
Measurement method of reflection coefficient using vector network analyzer Download PDFInfo
- Publication number
- JP7153309B2 JP7153309B2 JP2018107017A JP2018107017A JP7153309B2 JP 7153309 B2 JP7153309 B2 JP 7153309B2 JP 2018107017 A JP2018107017 A JP 2018107017A JP 2018107017 A JP2018107017 A JP 2018107017A JP 7153309 B2 JP7153309 B2 JP 7153309B2
- Authority
- JP
- Japan
- Prior art keywords
- reflection coefficient
- vna
- measuring
- dut
- port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Description
本発明は、ベクトルネットワークアナライザ(以下「VNA」と呼ぶ)を用いた反射係数の測定方法に関し、より具体的には、VNAの校正を含む1ポートでの被対象物(以下「DUT」と呼ぶ)の反射係数の測定方法に関する。 The present invention relates to a reflection coefficient measurement method using a vector network analyzer (hereinafter referred to as "VNA"). ) relates to a method for measuring the reflection coefficient.
高周波分野における研究開発において、設計、製造そして計測のすべてが不可欠な技術である。近年、高周波のデバイスや回路のモデリングを測定結果より行う手法も用いられており、正確な測定への要求が高まっている。特に、高周波分野では、デバイス、回路だけでなく、材料の特性評価においてもVNAが用いられており、VNAは高周波分野の産業活動における重要なツールとなっている。 Design, manufacturing and measurement are all indispensable technologies in research and development in the high frequency field. In recent years, techniques for modeling high-frequency devices and circuits based on measurement results have also been used, increasing the demand for accurate measurements. In particular, in the high-frequency field, VNAs are used not only for devices and circuits, but also for characterization of materials, and VNAs have become an important tool in industrial activities in the high-frequency field.
VNAは、高周波のデバイスや回路の反射係数(反射波/入射波)や伝送係数(伝送波/入射波)を測定することができる。反射係数や伝送係数は、Sパラメータと呼ばれるDUTの入出力特性を表すパラメータで表すことができる。例えば、2つのポートを持つDUTの各ポートにport1及びport2とした場合、port1側の反射係数がS11であり、port2側の反射係数がS22である。また、port1からport2への伝送係数がS21であり、port2からport1への伝送係数がS12である。なお、port1及びport2は、VNAの2つのポートと捉えることができる。また、1つのポートを持つDUTの場合の反射係数はS11またはS22となる。よって、Sパラメータはポートの定義によって呼び方が変わる。 A VNA can measure the reflection coefficient (reflected wave/incident wave) and transmission coefficient (transmitted wave/incident wave) of high frequency devices and circuits. The reflection coefficient and transmission coefficient can be represented by parameters called S-parameters, which represent the input/output characteristics of the DUT. For example, if the ports of a DUT having two ports are port1 and port2, the reflection coefficient on the port1 side is S11 and the reflection coefficient on the port2 side is S22. Also, the transmission coefficient from port1 to port2 is S21, and the transmission coefficient from port2 to port1 is S12. Note that port1 and port2 can be regarded as two ports of the VNA. Also, the reflection coefficient for a DUT with one port is S 11 or S 22 . Therefore, the S-parameters are called differently depending on the definition of the port.
VNAは、電力分配器や方向性結合器等の高周波部品や回路で構成されており、また測定対象のDUTはケーブルやアダプタを介してVNAのポートに接続されるので、DUTの測定結果にはこれらの部品の特性(回路エラー)が混在してしまう。したがって、通常DUTの測定前にこれらの部品の特性(回路エラー)を取得し取り除くためのVNAのキャリブレーション(校正)を行っている。その校正には、2ポートの場合はTRL(thru-reflect-line)と呼ばれるラインを用いた校正、OSLT(open-short-load-thru)のようなopen、short、loadの3つの終端器(基準器)を用いた校正、1ポートの場合はOSL(open-short-load)校正のようなopen、short、loadを用いた校正が行われている。 The VNA consists of high-frequency components and circuits such as power dividers and directional couplers, and the DUT to be measured is connected to the VNA port via a cable or adapter. The characteristics (circuit errors) of these parts are mixed. Therefore, it is customary to calibrate the VNA to obtain and remove the characteristics (circuit errors) of these components before measuring the DUT. For the calibration, calibration using a line called TRL (thru-reflect-line) in the case of 2 ports, open, short, and load terminator such as OSLT (open-short-load-thru) ( In the case of one port, calibration using open, short, and load such as OSL (open-short-load) calibration is performed.
上述した従来のTRL校正では、50Ωの終端抵抗や2つのポートで同一の特性を有する反射デバイスを用いるといった複数の仮定を前提とする必要がある。その仮定はSパラメータの計算を容易にはするが、測定精度がその仮定に依存してしまうという問題がある。 The conventional TRL calibration described above must make several assumptions, such as a 50Ω termination resistor and the use of reflective devices with identical characteristics at the two ports. Although the assumption facilitates the calculation of the S-parameters, there is the problem that the measurement accuracy depends on the assumption.
本発明の目的は、そうした仮定を必要としない1ポートでのVNA校正方法を提供することであり、より具体的には、VNAの1つのポートでのDUTの反射係数の測定と同時にVNAの校正を行ってDUTの真の反射係数を求めることができる測定方法を提供することである。 It is an object of the present invention to provide a one-port VNA calibration method that does not require such assumptions, and more specifically, to calibrate the VNA simultaneously with measurement of the reflection coefficient of the DUT at one port of the VNA. to determine the true reflection coefficient of the DUT.
本発明は、ベクトルネットワークアナライザ(VNA)を用いた反射係数の測定方法を提供する。その測定方法は、(a)VNAの1つのポートに直接接続された被測定物の反射係数Γdmを測定するステップと、(b)その1つのポートにSパラメータSij,X(i、j=1、2、X=A、B、C)が既知の長さが異なる3つのラインA、B、Cを介して接続された被測定物の反射係数ΓXm(X=A、B、C)を測定するステップと、(c)反射係数Γdm、ΓXm及びSパラメータSij,Xを用いて被測定物の真の反射係数Γdを求めるステップと、を含む。 The present invention provides a method of measuring reflection coefficients using a vector network analyzer (VNA). The measurement method includes the steps of ( a ) measuring the reflection coefficient Γ dm of an object under test directly connected to one port of the VNA ; = 1, 2, X = A, B, C) connected via three lines A, B, C of different known lengths, the reflection coefficient Γ Xm (X = A, B, C ) and (c) using the reflection coefficients Γ dm , Γ Xm and the S-parameters S ij,X to determine the true reflection coefficient Γ d of the device under test.
本発明によれば、VNAの1つのポートでのDUTの反射係数の測定においてVNAの回路エラーを全て取り除いた、すなわち回路エラーの校正を含む測定が可能である。高精度の測定結果(真の反射係数)を得ることができる。また、基準器として長さの異なる3つのラインのみを用いるのでその製造や長さを基にした特性評価が容易である。 According to the present invention, it is possible to measure the reflection coefficient of the DUT at one port of the VNA with all the circuit errors of the VNA removed, that is, the measurement including calibration of the circuit errors. A highly accurate measurement result (true reflection coefficient) can be obtained. In addition, since only three lines with different lengths are used as the standard, it is easy to manufacture and evaluate characteristics based on the length.
図面を参照しながら本発明の実施の形態を説明する。最初に、本発明の一実施形態の測定方法の特徴をより明らかにするために、図1を参照しながら従来のVNAの1つのポート(以下、「1ポート」と呼ぶ)でのDUTの反射係数の測定方法について説明する。図1は、従来のVNAの反射係数の測定の概念図である。図1では、VNA10の内部回路(部品)として、信号源1と受信器2のみを記載している。実際にはVNA10は他に信号分離器(スプリッタ、カプラ)、検波器、信号処理部(プロセッサ)、表示部等を含む。
An embodiment of the present invention will be described with reference to the drawings. First, in order to clarify the characteristics of the measurement method of one embodiment of the present invention, the reflection of the DUT at one port (hereinafter referred to as "1 port") of the conventional VNA is shown in FIG. A method for measuring the coefficient will be described. FIG. 1 is a conceptual diagram of measuring the reflection coefficient of a conventional VNA. In FIG. 1, only a
図1の四角枠内のδ、μ、τは、順番に方向性、マッチング、トラッキングのVNA内部の回路エラーを意味している。DUTとの接続のためのコネクタやケーブルを接続したVNA10の1つのポートにはDUT3が接続される。破線Pは回路エラーを含む検出面を意味し、この面を基準にした受信器2による反射係数の測定結果をΓdmとする。反射係数Γdmは回路エラーを含んだ測定結果である。破線Qは回路エラーを含まない検出面を意味し、この面を基準にした反射係数がDUT3の真の反射係数Γdとなる。
.delta., .mu., and .tau. in the rectangular frame of FIG. 1 mean circuit errors inside the VNA for directivity, matching, and tracking , respectively. A
図1の従来のVNAの1ポートでのDUTの反射係数の測定では、以下の3段階が必要である。
(a)ケーブルや測定条件の設定等のVNAや周辺回路のセッティング
(b)VNAの校正
(c)VNAによるDUTの反射係数の測定
(b)のVNAの校正は上述した回路エラーの影響を除去するためにDUTの測定を行う前に必要な段階で、VNAの1つのポートにDUT3を接続した際に受信器2で得られる反射係数ΓdmとDUT3の反射係数Γdの間に成り立つ以下の式(1)のδ、μ、τを決める作業である。一般的なVNAの1ポートの校正方法として上述したOSL(open-short-load)がある。OSL校正は、特性が既知のオープン、ショート、ロードの各デバイス(基準器)を用いて式(1)のδ、μ、τを決定する。その後、DUTの反射係数の測定を行なってDUT3の真の反射係数Γdを求める。
(a) VNA and peripheral circuit settings such as setting cables and measurement conditions (b) VNA calibration (c) Measurement of reflection coefficient of DUT by VNA In a necessary step before measuring the DUT to achieve the above, the following equation holds between the reflection coefficient Γ dm obtained at the
図2は、本発明の一実施形態のVNAの1ポートでのDUTの反射係数の測定の概念図である。図2では、図1の場合同様に、VNA20の内部回路(部品)として、信号源11と受信器12のみを記載している。実際にはVNA20は他に信号分離器(スプリッタ、カプラ)、検波器、信号処理部(プロセッサ)、表示部等を含む。図2の四角枠内のδ、μ、τは、順番に方向性、マッチング、トラッキングのVNA内部の回路エラーを意味している。
FIG. 2 is a conceptual diagram of measuring the reflection coefficient of a DUT at one port of a VNA according to one embodiment of the present invention. As in FIG. 1, only the
VNA20の1つのポートには、時系列的に(順番に)、(i)単独のDUT13、(ii)校正用のラインA(15)を介したDUT13、(iii)校正用のラインB(16)を介したDUT13、及び(iv)校正用のラインC(17)を介したDUT13が接続される。破線Pは回路エラーを含む検出面を意味し、この面Pを基準にした受信器12による反射係数の測定結果を上記の(i)~(iv)の順に、Γdm、ΓAm、ΓBm、ΓCmとする。反射係数Γdm、ΓAm、ΓBm、ΓCmは回路エラーを含んだ測定結果である。破線Qは回路エラーを含まない検出面を意味し、この面Qを基準にした反射係数が上記の(i)~(iv)の順に、DUT3の反射係数Γd、ラインAとDUT3の反射係数Γ´A、ラインBとDUT3の反射係数Γ´B、ラインCとDUT3の反射係数Γ´Cとなる。
One port of VNA 20 has, chronologically (sequentially): (i)
図2の発明の一実施形態のVNAの1ポートでのDUTの反射係数の測定では、以下の2段階が必要である。
(A)ケーブルや測定条件の設定等のVNAや周辺回路のセッティング
(B)VNAの校正を含むVNAによるDUTの反射係数の測定
図1の従来の測定方法と違って、本発明の一実施形態の測定方法では、DUTの反射係数の測定と同時にVNAの校正を行う、言い換えれば詳細は下記に示すように、DUTの特性(反射係数)とVNAの回路エラーを同時に算出することが1つの特徴である。
Measuring the reflection coefficient of the DUT at one port of the VNA of the inventive embodiment of FIG. 2 requires the following two steps.
(A) Setting of VNA and peripheral circuits such as setting of cables and measurement conditions (B) Measurement of reflection coefficient of DUT by VNA including VNA calibration An embodiment of the present invention, unlike the conventional measurement method shown in FIG. One feature of this measurement method is that the VNA is calibrated at the same time as the measurement of the reflection coefficient of the DUT. is.
(B)のDUTの反射係数の測定の際に同時に実行されるVNAの校正では、特性が既知である3本のラインA、B、Cを用いて上記の式(1)のδ、μ、τを決定する。校正のモデル式は、上記の式(1)と下記の式(2)~(4)の4個の式である。式(2)~(4)は、順番に上記した(ii)校正用のラインA(15)を介したDUT13、(iii)校正用のラインB(16)を介したDUT13、(iv)校正用のラインC(17)を介したDUT13の各反射係数の測定に対応した式である。ここで、各式中の反射係数Γdm、ΓAm、ΓBm、ΓCm、Γd、Γ´A、Γ´B、Γ´Cは、図2の説明において上述した通りである。また、Sij,X(i,j=1,2、X=A,B,C)はラインXのSパラメータである。ラインXの特性が既知というのは、SパラメータSij,Xが既知という意味である。
各パラメータの意味を表1にまとめる。未知の4個のパラメータに対して、連立方程式は4個があるので、式(1)から(4)を解いてDUT3の反射係数Γd、回路エラーδ、μ、τを得ることができる。具体的には、反復収束計算(例えばモンテカルロ法を用いる)により式(1)から(4)を同時に満たす各値を求める。
ラインX(X=A、B、C)は、同一の材料、例えば銅や銅合金からなる中空の同軸線(エアーライン)または導波管、あるいは平面回路(基板上のパターン化された銅配線)等によって構成される。ラインX(X=A、B、C)は長さが異なり、ラインXのSパラメータSij,Xは、各ラインの長さによって調整される。具体的には、図3の本発明の一実施形態の反射係数のベクトル表示図(反射係数面図)に示すように、反射係数Γdm、ΓAm、ΓBm、ΓCmを表す各ベクトルが(π/4)の位相差を有するように各ラインの長さが決定される。なお、3本のラインの位相差はπ/4であることが好ましいが、これからずれている(一致しない)場合も実施可能である。また、VNAでの測定周波数が大きくなる程各ラインの長さは短くなる。 Lines X (X=A, B, C) are hollow coaxial lines (air lines) or waveguides made of the same material, e.g. copper or copper alloy, or planar circuits (patterned copper wiring on a substrate). ), etc. The lines X (X=A, B, C) have different lengths, and the S-parameters S ij,X of the lines X are adjusted according to the length of each line. Specifically, as shown in the vector display diagram (reflection coefficient surface diagram) of the reflection coefficient of one embodiment of the present invention in FIG. The length of each line is determined to have a phase difference of (π/4). Although it is preferable that the phase difference between the three lines is π/4, it is possible to implement a case where the phase difference is shifted (not matched) from this. Also, the length of each line becomes shorter as the measurement frequency in the VNA increases.
本発明の実施形態について、図を参照しながら説明をした。しかし、本発明はこれらの実施形態に限られるものではない。さらに、本発明はその趣旨を逸脱しない範囲で当業者の知識に基づき種々なる改良、修正、変形を加えた態様で実施できるものである。 Embodiments of the present invention have been described with reference to the drawings. However, the invention is not limited to these embodiments. Furthermore, the present invention can be implemented with various improvements, modifications, and variations based on the knowledge of those skilled in the art without departing from the scope of the invention.
本発明のVNAの1ポートでのDUTの反射係数の測定方法は、基準器が最も単純な線路(ライン)のみであり、様々な形状の高周波デバイスの反射係数の計測に適用可能である。また、誘電率等の材料定数の精密計測への適用も可能である。 The method of measuring the reflection coefficient of a DUT at one port of a VNA according to the present invention uses only the simplest line as a reference device, and is applicable to measurement of the reflection coefficients of high-frequency devices of various shapes. Also, application to precise measurement of material constants such as permittivity is possible.
1、11:信号源
2、12:受信器
3、13:被測定物(DUT)
10、20:ベクトルネットワークアナライザ(VNA)
15、16、17:ラインA、B、C
1, 11: signal
10, 20: vector network analyzer (VNA)
15, 16, 17: lines A, B, C
Claims (3)
VNAの1つのポートに直接接続された被測定物の反射係数Γdmを測定するステップと、
前記1つのポートにSパラメータSij,X(i、j=1、2、X=A、B、C)が既知の長さが異なる3つのラインA、B、Cを介して前記被測定物を接続した場合の反射係数ΓXm(X=A、B、C)を測定するステップと、
前記反射係数Γdm、ΓXm及び前記SパラメータSij,Xを用いて前記被測定物の真の反射係数Γdを求めるステップと、を含み、
前記3つのラインA、B、Cの長さは、測定周波数での前記反射係数Γ dm 、Γ Xm の位相がπ/4ずつずれるように設定され、
δが方向性の回路エラー、μがマッチングの回路エラー、τがトラッキングの回路エラーを表すものとすると、
前記被測定物の真の反射係数Γ d を求めるステップは、
measuring the reflection coefficient Γ dm of a device under test directly connected to one port of the VNA;
S-parameters S ij,X (i, j=1, 2, X=A, B, C) are known to the one port and the DUT through three lines A, B, C with different lengths measuring the reflection coefficient Γ Xm (X=A, B, C) when connecting
determining a true reflection coefficient Γ d of the device under test using the reflection coefficients Γ dm , Γ Xm and the S-parameters S ij,X ;
the lengths of the three lines A, B, and C are set such that the phases of the reflection coefficients Γ dm and Γ Xm at the measurement frequency are shifted by π/4;
Let δ be the directional circuit error, μ be the matching circuit error, and τ be the tracking circuit error.
The step of determining the true reflection coefficient Γ d of the object under test includes:
前記1つのポートに前記ラインAを介して前記被測定物を接続した場合の反射係数ΓAmを測定するステップと、
前記1つのポートに前記ラインBを介して前記被測定物を接続した場合の反射係数ΓBmを測定するステップと、
前記1つのポートに前記ラインCを介して前記被測定物を接続した場合の反射係数ΓCmを測定するステップと、を含む請求項1に記載の測定方法。 The step of measuring the reflection coefficient Γ Xm of the object under test includes:
measuring the reflection coefficient Γ Am when the device under test is connected to the one port via the line A;
measuring the reflection coefficient Γ Bm when the device under test is connected to the one port through the line B;
2. The measuring method according to claim 1 , further comprising the step of measuring the reflection coefficient .GAMMA.Cm when the device under test is connected to the one port via the line C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018107017A JP7153309B2 (en) | 2018-06-04 | 2018-06-04 | Measurement method of reflection coefficient using vector network analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018107017A JP7153309B2 (en) | 2018-06-04 | 2018-06-04 | Measurement method of reflection coefficient using vector network analyzer |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2019211314A JP2019211314A (en) | 2019-12-12 |
JP2019211314A5 JP2019211314A5 (en) | 2020-12-10 |
JP7153309B2 true JP7153309B2 (en) | 2022-10-14 |
Family
ID=68845123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018107017A Active JP7153309B2 (en) | 2018-06-04 | 2018-06-04 | Measurement method of reflection coefficient using vector network analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7153309B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111983431B (en) * | 2020-08-31 | 2022-11-15 | 中电科思仪科技股份有限公司 | Method for improving simulation precision of port reflection coefficient of vector network analyzer |
KR20220105531A (en) * | 2021-01-20 | 2022-07-27 | 삼성전자주식회사 | Method and apparatus for detecting reflection coeffiectient |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040199350A1 (en) | 2003-04-04 | 2004-10-07 | Blackham David V. | System and method for determining measurement errors of a testing device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4853613A (en) * | 1987-10-27 | 1989-08-01 | Martin Marietta Corporation | Calibration method for apparatus evaluating microwave/millimeter wave circuits |
WO2005101037A1 (en) * | 2004-04-02 | 2005-10-27 | Murata Manufacturing Co., Ltd. | High frequency electric characteristics measuring method and equipment for electronic component |
JP4650487B2 (en) * | 2005-02-22 | 2011-03-16 | 株式会社村田製作所 | Method for measuring dielectric constant of transmission line material and method for measuring electrical characteristics of electronic component using this dielectric constant measuring method |
KR100956503B1 (en) * | 2005-09-01 | 2010-05-07 | 가부시키가이샤 무라타 세이사쿠쇼 | Method and device for measuring scattering coefficient of subject |
-
2018
- 2018-06-04 JP JP2018107017A patent/JP7153309B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040199350A1 (en) | 2003-04-04 | 2004-10-07 | Blackham David V. | System and method for determining measurement errors of a testing device |
Non-Patent Citations (1)
Title |
---|
堀部雅弘, 信太正明, 小見山耕司,PC-7 高周波同軸インピーダンスの標準供給,電子情報通信学会2005年通信ソサイエティ大会講演論文集1 |
Also Published As
Publication number | Publication date |
---|---|
JP2019211314A (en) | 2019-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109444721B (en) | Method for detecting S parameter and terminal equipment | |
KR102054874B1 (en) | Method for calibrating a test rig | |
CN111142057B (en) | Terahertz frequency band on-chip S parameter calibration method and terminal equipment | |
US20040174172A1 (en) | Method of correcting measurement error and electronic component characteristic measurement apparatus | |
US20040201383A1 (en) | Balanced device characterization including test system calibration | |
JP2004301839A (en) | Calibration method for performing multiport measurements on semiconductor wafers | |
CN106405462A (en) | On-chip scattering parameter source tracing and uncertainty assessment method | |
US5734268A (en) | Calibration and measurment technique and apparatus for same | |
US7768271B2 (en) | Method for calibration of a vectorial network analyzer having more than two ports | |
US20130317767A1 (en) | Measurement error correction method and electronic component characteristic measurement apparatus | |
US20080195344A1 (en) | Method for determining measurement errors in scattering parameter measurements | |
US7113891B2 (en) | Multi-port scattering parameter calibration system and method | |
JP7153309B2 (en) | Measurement method of reflection coefficient using vector network analyzer | |
CN111983538B (en) | On-chip S parameter measurement system calibration method and device | |
CN114137389A (en) | Method and device for determining S parameter phase of microwave probe, terminal and storage medium | |
Adamian et al. | A novel procedure for characterization of multiport high-speed balanced devices | |
WO2023277447A1 (en) | Scattering coefficient measurement error correction method | |
CN115219816A (en) | A method and device for calibrating S-parameters of waveguide ports based on circumscribed circle centers | |
WO2010090173A1 (en) | Method for measuring system parameter of linear multiport and measuring method using vector network analyzer | |
Stenarson et al. | A Reformulation and Stability Study of TRL and LRM Using $ S $-Parameters | |
TWI426289B (en) | Radio frequency scattering parameter correction method with three correctors | |
JP3912428B2 (en) | Method and apparatus for measuring high-frequency electrical characteristics of electronic components, and calibration method for high-frequency electrical characteristics measuring apparatus | |
Singh et al. | Comparison of Vector Network Analyser (VNA) calibration techniques at microwave frequencies | |
US11558129B1 (en) | System and method for calibrating vector network analyzer modules | |
Malay et al. | Residual Systematic Error Terms Estimation Method by Digital Processing the Measurements Results of Complex Reflection Coefficient in Time Domain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201026 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211109 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20211215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220405 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220526 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220920 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220926 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7153309 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |