図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的におよび/または構造的に対応する部分および/または関連付けられる部分には同一の参照符号、または百以上の位が異なる参照符号が付される場合がある。対応する部分および/又は関連付けられる部分については、他の実施形態の説明を参照することができる。
本実施形態における回転電機は、例えば車両動力源として用いられるものとなっている。ただし、回転電機は、産業用、車両用、家電用、OA機器用、遊技機用などとして広く用いられることが可能となっている。なお、以下の各実施形態相互において、互いに同一又は均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
(第1実施形態)
本実施形態に係る回転電機10は、同期式多相交流モータであり、アウタロータ構造(外転構造)のものとなっている。回転電機10の概要を図1乃至図5に示す。図1は、回転電機10の縦断面斜視図であり、図2は、回転電機10の回転軸11に沿う方向での縦断面図であり、図3は、回転軸11に直交する方向での回転電機10の横断面図(図2のIII-III線断面図)であり、図4は、図3の一部を拡大して示す断面図であり、図5は、回転電機10の分解図である。なお、図3では、図示の都合上、回転軸11を除き、切断面を示すハッチングを省略している。以下の記載では、回転軸11が延びる方向を軸方向とし、回転軸11の中心から放射状に延びる方向を径方向とし、回転軸11を中心として円周状に延びる方向を周方向としている。
回転電機10は、大別して、軸受ユニット20と、ハウジング30と、回転子40と、固定子50と、インバータユニット60とを備えている。これら各部材は、いずれも回転軸11と共に同軸上に配置され、所定順序で軸方向に組み付けられることで回転電機10が構成されている。本実施形態の回転電機10は、「界磁子」としての回転子40と、「電機子」としての固定子50とを有する構成となっており、回転界磁形の回転電機として具体化されるものとなっている。
軸受ユニット20は、軸方向に互いに離間して配置される2つの軸受21,22と、その軸受21,22を保持する保持部材23とを有している。軸受21,22は、例えばラジアル玉軸受であり、それぞれ外輪25と、内輪26と、それら外輪25及び内輪26の間に配置された複数の玉27とを有している。保持部材23は円筒状をなしており、その径方向内側に軸受21,22が組み付けられている。そして、軸受21,22の径方向内側に、回転軸11及び回転子40が回転自在に支持されている。軸受21,22により、回転軸11を回転可能に支持する一組の軸受が構成されている。
各軸受21,22では、不図示のリテーナにより玉27が保持され、その状態で各玉同士のピッチが保たれている。軸受21,22は、リテーナの軸方向上下部に封止部材を有し、その内部に非導電性グリース(例えば非導電性のウレア系グリース)が充填されている。また、内輪26の位置がスペーサにより機械的に保持され、内側から上下方向に凸となる定圧予圧が施されている。
ハウジング30は、円筒状をなす周壁31を有する。周壁31は、その軸方向に対向する第1端と第2端を有する。周壁31は、第1端に端面32と有するとともに、第2端に開口33を有する。開口33は、第2端の全体において開放されている。端面32には、その中央に円形の孔34が形成されており、その孔34に挿通させた状態で、ネジやリベット等の固定具により軸受ユニット20が固定されている。また、ハウジング30内、すなわち周壁31及び端面32により区画された内部スペースには、中空円筒状の回転子40と中空円筒状の固定子50とが収容されている。本実施形態では回転電機10がアウタロータ式であり、ハウジング30内には、筒状をなす回転子40の径方向内側に固定子50が配置されている。回転子40は、軸方向において端面32の側で回転軸11に片持ち支持されている。
回転子40は、中空筒状に形成された磁石ホルダ41と、その磁石ホルダ41の径方向内側に設けられた環状の磁石ユニット42とを有している。磁石ホルダ41は、略カップ状をなし、磁石保持部材としての機能を有する。磁石ホルダ41は、円筒状をなす円筒部43と、同じく円筒状をなしかつ円筒部43よりも小径の固定部(attachment)44と、それら円筒部43及び固定部44を繋ぐ部位となる中間部45とを有している。円筒部43の内周面に磁石ユニット42が取り付けられている。
なお、磁石ホルダ41は、機械強度が充分な冷間圧延鋼板(SPCC)や、鍛造用鋼、炭素繊維強化プラスチック(CFRP)等により構成されている。
固定部44の貫通孔44aには回転軸11が挿通される。貫通孔44a内に配置された回転軸11に対して固定部44が固定されている。つまり、固定部44により、回転軸11に対して磁石ホルダ41が固定されている。なお、固定部44は、凹凸を利用したスプライン結合やキー結合、溶接、又はかしめ等により回転軸11に対して固定されているとよい。これにより、回転子40が回転軸11と一体に回転する。
また、固定部44の径方向外側には、軸受ユニット20の軸受21,22が組み付けられている。上述のとおり軸受ユニット20はハウジング30の端面32に固定されているため、回転軸11及び回転子40は、ハウジング30に回転可能に支持されるものとなっている。これにより、ハウジング30内において回転子40が回転自在となっている。
回転子40には、その軸方向に対向する二つの端部の一方にのみ固定部44が設けられており、これにより、回転子40が回転軸11に片持ち支持されている。ここで、回転子40の固定部44は、軸受ユニット20の軸受21,22により、軸方向に異なる2位置で回転可能に支持されている。すなわち、回転子40は、磁石ホルダ41の、その軸方向に対向する二つの端部の一方において、その軸方向に離間する二つの軸受21,22により回転可能に支持されている。そのため、回転子40が回転軸11に片持ち支持される構造であっても、回転子40の安定回転が実現されるようになっている。この場合、回転子40の軸方向中心位置に対して片側にずれた位置で、回転子40が軸受21,22により支持されている。
また、軸受ユニット20において回転子40の中心寄り(図の下側)の軸受22と、その逆側(図の上側)の軸受21とは、外輪25及び内輪26と玉27との間の隙間寸法が相違しており、例えば回転子40の中心寄りの軸受22の方が、その逆側の軸受21よりも隙間寸法が大きいものとなっている。この場合、回転子40の中心寄りの側において、回転子40の振れや、部品公差に起因するインバランスによる振動が軸受ユニット20に作用しても、その振れや振動の影響が良好に吸収される。具体的には、回転子40の中心寄り(図の下側)の軸受22において予圧により遊び寸法(隙間寸法)を大きくしていることで、片持ち構造において生じる振動がその遊び部分により吸収される。前記予圧は、定位置予圧、又は定圧予圧のいずれであっても良い。定位置予圧の場合、軸受21と軸受22の外輪25はいずれも保持部材23に対して、圧入、又は接着等の方法を用いて接合されている。また、軸受21と軸受22の内輪26はいずれも回転軸11に対して、圧入、又は接着等の方法を用いて接合されている。ここで軸受21の外輪25を軸受21の内輪26に対して軸方向に異なる位置に配置する事で予圧を発生させることができる。軸受22の外輪25を軸受22の内輪26に対して軸方向に異なる位置に配置する事でも予圧を発生させることができる。
また定圧予圧を採用する場合には、軸方向において、軸受22と軸受21に挟まれた領域から軸受22の外輪25に向けて予圧が発生する様に予圧用バネ、例えばウェーブワッシャ24等を軸受22と軸受21に挟まれた同領域に配置する。この場合も、軸受21と軸受22の内輪26はいずれも回転軸11に対して、圧入、又は接着等の方法を用いて接合されている。軸受21、又は軸受22の外輪25は、保持部材23に対して所定のクリアランスを介して配置される。このような構成とすることで、軸受22の外輪25には軸受21から離れる方向に予圧用バネのバネ力が作用する。そして、この力が回転軸11を伝わることで、軸受21の内輪26を軸受22の方向に押し付ける力が作用する。これにより、軸受21,22ともに、外輪25と内輪26の軸方向の位置がずれ、前述した定位置予圧と同様に2つのベアリングに予圧を掛けることができる。
なお、定圧予圧を発生させる際には、必ずしも図2に示す様に軸受22の外輪25にバネ力を印加する必要は無い。例えば、軸受21の外輪25にバネ力を印加しても良い。また軸受21,22のいずれかの内輪26を回転軸11に対して所定のクリアランスを介して配置し、軸受21,22の外輪25を保持部材23に対して圧入、又は接着等の方法を用いて接合することで、2つのベアリングに予圧を掛けても良い。
更には、軸受21の内輪26が軸受22に対して離れるように力を作用させる場合には、軸受22の内輪26も軸受21に対して離れるように力を作用させる方が良い。逆に、軸受21の内輪26が軸受22に対して近づくように力を作用させる場合には、軸受22の内輪26も軸受21に対して近づくように力を作用させる方が良い。
なお、本回転電機10を車両動力源等の目的で車両に適用する場合には、予圧を発生させる機構に対して予圧の発生方向の成分を持つ振動が加わる可能性や、予圧を印加する対象物に掛る重力の方向が変動してしまう可能性がある。その為、本回転電機10を車両に適用する場合には、定位置予圧を採用することが望ましい。
また、中間部45は、環状の内側肩部49aと環状の外側肩部49bを有する。外側肩部49bは、中間部45の径方向において内側肩部49aの外側に位置している。内側肩部49aと外側肩部49bは、中間部45の軸方向において互いに離間している。これにより、中間部45の径方向において、円筒部43と固定部44とは部分的に重複している。つまり、固定部44の基端部(図の下側の奥側端部)よりも軸方向外側に、円筒部43が突出するものとなっている。本構成では、中間部45が段差無しで平板状に設けられる場合に比べて、回転子40の重心近くの位置で、回転軸11に対して回転子40を支持させることが可能となり、回転子40の安定動作が実現できるものとなっている。
上述した中間部45の構成によれば、回転子40には、径方向において固定部44を囲みかつ中間部45の内寄りとなる位置に、軸受ユニット20の一部を収容する軸受収容凹部46が環状に形成されるとともに、径方向において軸受収容凹部46を囲みかつ中間部45の外寄りとなる位置に、後述する固定子50の固定子巻線51のコイルエンド54を収容するコイル収容凹部47が形成されている。そして、これら各収容凹部46,47が、径方向の内外で隣り合うように配置されるようになっている。つまり、軸受ユニット20の一部と、固定子巻線51のコイルエンド54とが径方向内外に重複するように配置されている。これにより、回転電機10において軸方向の長さ寸法の短縮が可能となっている。
中間部45は、回転軸11側から径方向外側に張り出すように設けられている。そして、その中間部45に、軸方向に延び、固定子50の固定子巻線51のコイルエンド54に対する接触を回避する接触回避部が設けられている。中間部45が張出部に相当する。
コイルエンド54は、径方向の内側又は外側に曲げられることで、そのコイルエンド54の軸方向寸法を小さくすることができ、固定子50の軸長を短縮することが可能である。コイルエンド54の曲げ方向は、回転子40との組み付けを考慮したものであるとよい。回転子40の径方向内側に固定子50を組み付けることを想定すると、その回転子40に対する挿入先端側では、コイルエンド54が径方向内側に曲げられるとよい。コイルエンド54の反対側のコイルエンドの曲げ方向は任意でよいが、空間的に余裕のある外側に曲げた形状が製造上好ましい。
また、磁石部としての磁石ユニット42は、円筒部43の径方向内側において、周方向に沿って極性が交互に変わるように配置された複数の永久磁石により構成されている。これにより、磁石ユニット42は、周方向に複数の磁極を有する。ただし、磁石ユニット42の詳細については後述する。
固定子50は、回転子40の径方向内側に設けられている。固定子50は、略筒状(環状)に巻回形成された固定子巻線51と、その径方向内側に配置されたベース部材としての固定子コア52とを有しており、固定子巻線51が、所定のエアギャップを挟んで円環状の磁石ユニット42に対向するように配置されている。固定子巻線51は複数の相巻線よりなる。それら各相巻線は、周方向に配列された複数の導線が所定ピッチで互いに接続されることで構成されている。本実施形態では、U相、V相及びW相の3相巻線と、X相、Y相及びZ相の3相巻線とを用い、それら3相の巻線を2つ用いることで、固定子巻線51が6相の相巻線として構成されている。
固定子コア52は、軟磁性材である電磁鋼板が積層された積層鋼板により円環状に形成されており、固定子巻線51の径方向内側に組み付けられている。電磁鋼板は、例えば鉄に数%程度(例えば3%)の珪素を添加した珪素鋼板である。固定子巻線51が電機子巻線に相当し、固定子コア52が電機子コアに相当する。
固定子巻線51は、径方向において固定子コア52に重複する部分であり、かつ固定子コア52の径方向外側となるコイルサイド部53と、軸方向において固定子コア52の一端側及び他端側にそれぞれ張り出すコイルエンド54,55とを有している。コイルサイド部53は、径方向において固定子コア52と回転子40の磁石ユニット42にそれぞれ対向している。回転子40の内側に固定子50が配置された状態では、軸方向両側のコイルエンド54,55のうち軸受ユニット20の側(図の上側)となるコイルエンド54が、回転子40の磁石ホルダ41により形成されたコイル収容凹部47に収容されている。ただし、固定子50の詳細については後述する。
インバータユニット60は、ハウジング30に対してボルト等の締結具により固定されるユニットベース61と、そのユニットベース61に組み付けられる複数の電気コンポーネント62とを有している。ユニットベース61は、例えば炭素繊維強化プラスチック(CFRP)により構成されている。ユニットベース61は、ハウジング30の開口33の縁に対して固定されるエンドプレート63と、そのエンドプレート63に一体に設けられ、軸方向に延びるケーシング64とを有している。エンドプレート63は、その中心部に円形の開口65を有しており、開口65の周縁部から起立するようにしてケーシング64が形成されている。
ケーシング64の外周面には固定子50が組み付けられている。つまり、ケーシング64の外径寸法は、固定子コア52の内径寸法と同じか、又は固定子コア52の内径寸法よりも僅かに小さい寸法になっている。ケーシング64の外側に固定子コア52が組み付けられることで、固定子50とユニットベース61とが一体化されている。また、ユニットベース61がハウジング30に固定されることからすると、ケーシング64に固定子コア52が組み付けられた状態では、固定子50がハウジング30に対して一体化された状態となっている。
なお、固定子コア52は、ユニットベース61に対して接着、焼きばめ、圧入等により組み付けられているとよい。これにより、ユニットベース61側に対する固定子コア52の周方向又は軸方向の位置ずれが抑制される。
また、ケーシング64の径方向内側は、電気コンポーネント62を収容する収容空間となっており、その収容空間には、回転軸11を囲むようにして電気コンポーネント62が配置されている。ケーシング64は、収容空間形成部としての役目を有している。電気コンポーネント62は、インバータ回路を構成する半導体モジュール66や、制御基板67、コンデンサモジュール68を具備する構成となっている。
なお、ユニットベース61が、固定子50の径方向内側に設けられ、固定子50を保持する固定子ホルダ(電機子ホルダ)に相当する。ハウジング30及びユニットベース61により、回転電機10のモータハウジングが構成されている。このモータハウジングでは、回転子40を挟んで軸方向の一方側においてハウジング30に対して保持部材23が固定されるとともに、他方側においてハウジング30及びユニットベース61が互いに結合されている。例えば電気自動車である電動車両等においては、その車両等の側にモータハウジングが取り付けられることで、回転電機10が車両等に装着される。
ここで、上記図1~図5に加え、インバータユニット60の分解図である図6を用いて、インバータユニット60の構成をさらに説明する。
ユニットベース61において、ケーシング64は、筒状部71と、その軸方向において対向する両端の一方(軸受ユニット20側の端部)に設けられた端面72とを有している。筒状部71の軸方向両端部のうち端面72の反対側は、エンドプレート63の開口65を通じて全面的に開放されている。端面72には、その中央に円形の孔73が形成されており、その孔73に回転軸11が挿通可能となっている。孔73には、回転軸11の外周面との間の空隙を封鎖するシール材171が設けられている。シール材171は、例えば樹脂材料よりなる摺動シールであるとよい。
ケーシング64の筒状部71は、その径方向外側に配置される回転子40及び固定子50と、その径方向内側に配置される電気コンポーネント62との間を仕切る仕切り部となっており、筒状部71を挟んで径方向内外に、回転子40及び固定子50と電気コンポーネント62とが並ぶようにそれぞれ配置されている。
また、電気コンポーネント62は、インバータ回路を構成する電気部品であり、固定子巻線51の各相巻線に対して所定順序で電流を流して回転子40を回転させる力行機能と、回転軸11の回転に伴い固定子巻線51に流れる3相交流電流を入力し、発電電力として外部に出力する発電機能とを有している。なお、電気コンポーネント62は、力行機能と発電機能とのうちいずれか一方のみを有するものであってもよい。発電機能は、例えば回転電機10が車両用動力源として用いられる場合、回生電力として外部に出力する回生機能である。
電気コンポーネント62の具体的な構成として、図4に示すように、回転軸11の周りには、中空円筒状をなすコンデンサモジュール68が設けられており、そのコンデンサモジュール68の外周面上に、複数の半導体モジュール66が周方向に並べて配置されている。コンデンサモジュール68は、互いに並列接続された平滑用のコンデンサ68aを複数備えている。具体的には、コンデンサ68aは、複数枚のフィルムコンデンサが積層されてなる積層型フィルムコンデンサであり、横断面が台形状をなしている。コンデンサモジュール68は、12個のコンデンサ68aが環状に並べて配置されることで構成されている。
なお、コンデンサ68aの製造過程においては、例えば、複数のフィルムが積層されてなる所定幅の長尺フィルムを用い、フィルム幅方向を台形高さ方向とし、かつ台形の上底と下底とが交互になるように長尺フィルムが等脚台形状に切断されることにより、コンデンサ素子が作られる。そして、そのコンデンサ素子に電極等を取り付けることでコンデンサ68aが作製される。
半導体モジュール66は、例えばMOSFETやIGBT等の半導体スイッチング素子を有し、略板状に形成されている。本実施形態では、回転電機10が2組の3相巻線を備えており、その3相巻線ごとにインバータ回路が設けられていることから、計12個の半導体モジュール66を環状に並べて形成された半導体モジュール群66Aが電気コンポーネント62に設けられている。
半導体モジュール66は、ケーシング64の筒状部71とコンデンサモジュール68との間に挟まれた状態で配置されている。半導体モジュール群66Aの外周面は筒状部71の内周面に当接し、半導体モジュール群66Aの内周面はコンデンサモジュール68の外周面に当接している。この場合、半導体モジュール66で生じた熱は、ケーシング64を介してエンドプレート63に伝わり、エンドプレート63から放出される。
半導体モジュール群66Aは、外周面側、すなわち径方向において半導体モジュール66と筒状部71との間にスペーサ69を有しているとよい。この場合、コンデンサモジュール68では軸方向に直交する横断面の断面形状が正12角形である一方、筒状部71の内周面の横断面形状が円形であるため、スペーサ69は、内周面が平坦面、外周面が曲面となっている。スペーサ69は、半導体モジュール群66Aの径方向外側において円環状に連なるように一体に設けられていてもよい。スペーサ69は、良熱伝導体であり、例えばアルミニウム等の金属、又は放熱ゲルシート等であるとよい。なお、筒状部71の内周面の横断面形状をコンデンサモジュール68と同じ12角形にすることも可能である。この場合、スペーサ69の内周面及び外周面がいずれも平坦面であるとよい。
また、本実施形態では、ケーシング64の筒状部71に、冷却水を流通させる冷却水通路74が形成されており、半導体モジュール66で生じた熱は、冷却水通路74を流れる冷却水に対しても放出される。つまり、ケーシング64は水冷機構を備えている。図3や図4に示すように、冷却水通路74は、電気コンポーネント62(半導体モジュール66及びコンデンサモジュール68)を囲むように環状に形成されている。半導体モジュール66は筒状部71の内周面に沿って配置されており、その半導体モジュール66に対して径方向内外に重なる位置に冷却水通路74が設けられている。
筒状部71の外側には固定子50が配置され、内側には電気コンポーネント62が配置されていることから、筒状部71に対しては、その外側から固定子50の熱が伝わるとともに、内側から電気コンポーネント62の熱(例えば半導体モジュール66の熱)が伝わることになる。この場合、固定子50と半導体モジュール66とを同時に冷やすことが可能となっており、回転電機10における発熱部材の熱を効率良く放出することができる。
更に、固定子巻線51への通電を行うことで回転電機を動作させるインバータ回路の一部、又は全部を構成する半導体モジュール66の少なくとも一部が、ケーシング64の筒状部71の径方向外側に配置された固定子コア52に囲まれた領域内に配置されている。望ましくは、1つの半導体モジュール66の全体が固定子コア52に囲まれた領域内に配置されている。更に、望ましくは、全ての半導体モジュール66の全体が固定子コア52に囲まれた領域内に配置されている。
また、半導体モジュール66の少なくとも一部が、冷却水通路74により囲まれた領域内に配置されている。望ましくは、全ての半導体モジュール66の全体がヨーク141に囲まれた領域内に配置されている。
また、電気コンポーネント62は、軸方向において、コンデンサモジュール68の一方の端面に設けられた絶縁シート75と、他方の端面に設けられた配線モジュール76とを備えている。この場合、コンデンサモジュール68は、その軸方向に対向した二つの端面、すなわち第1端面と第2端面を有している。コンデンサモジュール68の軸受ユニット20に近い第1端面は、ケーシング64の端面72に対向しており、絶縁シート75を挟んだ状態で端面72に重ね合わされている。また、コンデンサモジュール68の開口65に近い第2端面には、配線モジュール76が組み付けられている。
配線モジュール76は、合成樹脂材よりなり円形板状をなす本体部76aと、その内部に埋設された複数のバスバー76b,76cを有しており、そのバスバー76b,76cにより、半導体モジュール66やコンデンサモジュール68と電気的接続がなされている。具体的には、半導体モジュール66は、その軸方向端面から延びる接続ピン66aを有しており、その接続ピン66aが、本体部76aの径方向外側においてバスバー76bに接続されている。また、バスバー76cは、本体部76aの径方向外側においてコンデンサモジュール68とは反対側に延びており、その先端部にて配線部材79に接続されるようになっている(図2参照)。
上記のとおりコンデンサモジュール68の軸方向に対向する第1端面に絶縁シート75が設けられ、かつコンデンサモジュール68の第2端面に配線モジュール76が設けられた構成によれば、コンデンサモジュール68の放熱経路として、コンデンサモジュール68の第1端面および第2端面から端面72及び筒状部71に至る経路が形成される。すなわち、第1端面から端面72への経路と、第2端面から筒状部71へ至る経路が形成される。これにより、コンデンサモジュール68において半導体モジュール66が設けられた外周面以外の端面部からの放熱が可能になっている。つまり、径方向への放熱だけでなく、軸方向への放熱も可能となっている。
また、コンデンサモジュール68は中空円筒状をなし、その内周部には所定の隙間を介在させて回転軸11が配置されることから、コンデンサモジュール68の熱はその中空部からも放出可能となっている。この場合、回転軸11の回転により空気の流れが生じることにより、その冷却効果が高められるようになっている。
配線モジュール76には、円板状の制御基板67が取り付けられている。制御基板67は、所定の配線パターンが形成されたプリントサーキットボード(PCB)を有しており、そのボード上には各種ICや、マイコン等からなる制御部に相当する制御装置77が実装されている。制御基板67は、ネジ等の固定具により配線モジュール76に固定されている。制御基板67は、その中央部に、回転軸11を挿通させる挿通孔67aを有している。
なお、配線モジュール76は、軸方向に互いに対向する、すなわち、その厚み方向において互いに対向する第1面と第2面を有する。第1面は、コンデンサモジュール68に面する。配線モジュール76は、その第2面に、制御基板67を設けている。制御基板67の両面の一方側から他方側に配線モジュール76のバスバー76cが延びる構成となっている。かかる構成において、制御基板67には、バスバー76cとの干渉を回避する切欠が設けられているとよい。例えば、円形状をなす制御基板67の外縁部の一部が切り欠かれているとよい。
上述のとおり、ケーシング64に囲まれた空間内に電気コンポーネント62が収容され、その外側に、ハウジング30、回転子40及び固定子50が層状に設けられている構成によれば、インバータ回路で生じる電磁ノイズが好適にシールドされるようになっている。すなわち、インバータ回路では、所定のキャリア周波数によるPWM制御を利用して各半導体モジュール66でのスイッチング制御が行われ、そのスイッチング制御により電磁ノイズが生じることが考えられるが、その電磁ノイズを、電気コンポーネント62の径方向外側のハウジング30、回転子40、固定子50等により好適にシールドできる。
更に、半導体モジュール66の少なくとも一部が、ケーシング64の筒状部71の径方向外側に配置された固定子コア52に囲まれた領域内に配置することで、半導体モジュール66と固定子巻線51とが固定子コア52を介さずに配置されている構成に比べて、半導体モジュール66から磁束が発生したとしても、固定子巻線51に影響を与えにくい。また、固定子巻線51から磁束が発生したとしても、半導体モジュール66に影響を与えにくい。なお、半導体モジュール66の全体が、ケーシング64の筒状部71の径方向外側に配置された固定子コア52に囲まれた領域内に配置されると更に効果的である。また、半導体モジュール66の少なくとも一部が、冷却水通路74により囲まれている場合、固定子巻線51や磁石ユニット42からの発熱が半導体モジュール66に届きにくいという効果を得ることができる。
筒状部71においてエンドプレート63の付近には、その外側の固定子50と内側の電気コンポーネント62とを電気的に接続する配線部材79(図2参照)を挿通させる貫通孔78が形成されている。図2に示すように、配線部材79は、圧着、溶接などにより、固定子巻線51の端部と配線モジュール76のバスバー76cとにそれぞれ接続されている。配線部材79は、例えばバスバーであり、その接合面は平たく潰されていることが望ましい。貫通孔78は、1カ所又は複数箇所に設けられているとよく、本実施形態では2カ所に貫通孔78が設けられている。2カ所に貫通孔78が設けられる構成では、2組の3相巻線から延びる巻線端子を、それぞれ配線部材79により容易に結線することが可能となり、多相結線を行う上で好適なものとなっている。
上述のとおりハウジング30内には、図4に示すように径方向外側から順に回転子40、固定子50が設けられ、固定子50の径方向内側にインバータユニット60が設けられている。ここで、ハウジング30の内周面の半径をdとした場合に、回転子40の回転中心からd×0.705の距離よりも径方向外側に回転子40と固定子50とが配置されている。この場合、回転子40及び固定子50のうち径方向内側の固定子50の内周面(すなわち固定子コア52の内周面)から径方向内側となる領域を第1領域X1、径方向において固定子50の内周面からハウジング30までの間の領域を第2領域X2とすると、第1領域X1の横断面の面積は、第2領域X2の横断面の面積よりも大きい構成となっている。また、径方向において回転子40の磁石ユニット42及び固定子巻線51が重複する範囲で見て、第1領域X1の容積が第2領域X2の容積よりも大きい構成となっている。
なお、回転子40及び固定子50を磁気回路コンポーネントアッセンブリとすると、ハウジング30内において、その磁気回路コンポーネントアッセンブリの内周面から径方向内側となる第1領域X1が、径方向において磁気回路コンポーネントアッセンブリの内周面からハウジング30までの間の第2領域X2よりも容積が大きい構成となっている。
次いで、回転子40及び固定子50の構成をより詳しく説明する。
一般に、回転電機における固定子の構成として、積層鋼板よりなりかつ円環状をなす固定子コアに周方向に複数のスロットを設け、そのスロット内に固定子巻線を巻装するものが知られている。具体的には、固定子コアは、ヨークから所定間隔で径方向に延びる複数のティースを有しており、周方向に隣り合うティース間にスロットが形成されている。そして、スロット内に、例えば径方向に複数層の導線が収容され、その導線により固定子巻線が構成されている。
ただし、上述した固定子構造では、固定子巻線の通電時において、固定子巻線の起磁力が増加するのに伴い固定子コアのティース部分で磁気飽和が生じ、それに起因して回転電機のトルク密度が制限されることが考えられる。つまり、固定子コアにおいて、固定子巻線の通電により生じた回転磁束がティースに集中することで、磁気飽和が生じると考えられる。
また、一般的に、回転電機におけるIPM(Interior Permanent Magnet)ロータの構成として、永久磁石がd-q座標系におけるd軸に配置され、q軸にロータコアが配置されたものが知られている。このような場合、d軸近傍の固定子巻線が励磁されることで、フレミングの法則により固定子から回転子のq軸に励磁磁束が流入される。そしてこれにより、回転子のq軸コア部分に、広範囲の磁気飽和が生じると考えられる。
図7は、固定子巻線の起磁力を示すアンペアターン[AT]とトルク密度[Nm/L]との関係を示すトルク線図である。破線が一般的なIPMロータ型の回転電機における特性を示す。図7に示すように、一般的な回転電機では、固定子において起磁力を増加させていくことにより、スロット間のティース部分及びq軸コア部分の2カ所で磁気飽和が生じ、それが原因でトルクの増加が制限されてしまう。このように、当該一般的な回転電機では、アンペアターン設計値がA1で制限されることになる。
そこで本実施形態では、磁気飽和に起因する制限を解消すべく、回転電機10において、以下に示す構成を付与するものとしている。すなわち、第1の工夫として、固定子において固定子コアのティースで生じる磁気飽和をなくすべく、固定子50においてスロットレス構造を採用し、かつIPMロータのq軸コア部分で生じる磁気飽和をなくすべく、SPM(Surface Permanent Magnet)ロータを採用している。第1の工夫によれば、磁気飽和が生じる上記2カ所の部分をなくすことができるが、低電流域でのトルクが減少することが考えられる(図7の一点鎖線参照)。そのため、第2の工夫として、SPMロータの磁束増強を図ることでトルク減少を挽回すべく、回転子40の磁石ユニット42において磁石磁路を長くして磁力を高めた極異方構造を採用している。
また、第3の工夫として、固定子巻線51のコイルサイド部53において導線の固定子50における径方向厚さを小さくした扁平導線構造を採用してトルク減少の挽回を図っている。ここで、上述の磁力を高めた極異方構造によって、磁石ユニット42に対向する固定子巻線51には、より大きな渦電流が発生することが考えられる。しかしながら、第3の工夫によれば、径方向に薄い扁平導線構造のため、固定子巻線51における径方向の渦電流の発生を抑制することができる。このように、これら第1~第3の各構成によれば、図7に実線で示すように、磁力の高い磁石を採用してトルク特性の大幅な改善を見込みつつも、磁力の高い磁石ゆえに生じ得る大きい渦電流発生の懸念も改善できるものとなっている。
さらに、第4の工夫として、極異方構造を利用し正弦波に近い磁束密度分布を有する磁石ユニットを採用している。これによれば、後述するパルス制御等によって正弦波整合率を高めてトルク増強を図ることができるとともに、ラジアル磁石と比べ緩やかな磁束変化のため渦電流損(渦電流による銅損:eddy current loss)もまた更に抑制することができるのである。
以下、正弦波整合率について説明する。正弦波整合率は、磁石の表面を磁束プローブでなぞる等して計測した表面磁束密度分布の実測波形と周期及びピーク値が同じ正弦波との比較から求める事ができる。そして、回転電機の基本波である1次波形の振幅が、実測波形の振幅、即ち基本波に他の高調波成分を加えた振幅に対して、占める割合が正弦波整合率に相当する。正弦波整合率が高くなると、表面磁束密度分布の波形が正弦波形状に近づいていく。そして、正弦波整合率を向上させた磁石を備えた回転電機に対して、インバータから1次の正弦波の電流を供給すると、磁石の表面磁束密度分布の波形が正弦波形状に近い事と相まって、大きなトルクを発生させることができる。なお、表面磁束密度分布は実測以外の方法、例えばマクスウェルの方程式を用いた電磁界解析によって推定しても良い。
また、第5の工夫として、固定子巻線51を複数の素線を寄せ集めて束ねた素線導体構造としている。これによれば、素線が並列結線されているため、大電流が流せるとともに、扁平導線構造で固定子50の周方向に広がった導線で発生する渦電流の発生を、素線それぞれの断面積が小さくなるため、第3の工夫による径方向に薄くする以上に効果的に抑制することができる。そして、複数の素線を撚り合わせた構成にすることで、導体からの起磁力に対しては、電流通電方向に対して右ネジの法則で発生する磁束に対する渦電流を相殺することができる。
このように、第4の工夫、第5の工夫をさらに加えると、第2の工夫である磁力の高い磁石を採用しながら、さらにその高い磁力に起因する渦電流損を抑制しながらトルク増強を図ることができる。
以下に、上述した固定子50のスロットレス構造、固定子巻線51の扁平導線構造、及び磁石ユニット42の極異方構造について個別に説明を加える。ここではまずは、固定子50におけるスロットレス構造と固定子巻線51の扁平導線構造とを説明する。図8は、回転子40及び固定子50の横断面図であり、図9は、図8に示す回転子40及び固定子50の一部を拡大して示す図である。図10は、図11のX‐X線に沿った固定子50の横断面を示す断面図であり、図11は、固定子50の縦断面を示す断面図である。また、図12は、固定子巻線51の斜視図である。なお、図8及び図9には、磁石ユニット42における磁石の磁化方向を矢印にて示している。
図8乃至図11に示すように、固定子コア52は、軸方向に複数の電磁鋼板が積層され、かつ径方向に所定の厚さを有する円筒状をなしており、回転子40側となる径方向外側に固定子巻線51が組み付けられるものとなっている。固定子コア52において、回転子40側の外周面が導線設置部(導体エリア)となっている。固定子コア52の外周面は凹凸のない曲面状をなしており、その外周面において周方向に所定間隔で複数の導線群81が配置されている。固定子コア52は、回転子40を回転させるための磁気回路の一部となるバックヨークとして機能する。この場合、周方向に隣り合う各2つの導線群81の間には軟磁性材からなるティース(つまり、鉄心)が設けられていない構成(つまり、スロットレス構造)となっている。本実施形態において、それら各導線群81の間隙56には、封止部材57の樹脂材料が入り込む構造となっている。つまり、固定子50において、周方向における各導線群81の間に設けられる導線間部材が、非磁性材料である封止部材57として構成されている。封止部材57の封止前の状態で言えば、固定子コア52の径方向外側には、それぞれ導線間領域である間隙56を隔てて周方向に所定間隔で導線群81が配置されており、これによりスロットレス構造の固定子50が構築されている。言い換えれば、各導線群81は、後述するように二つの導線(conductor)82からなり、固定子50の周方向に隣り合う各二つの導線群81の間は、非磁性材のみが占有している。この非磁性材とは、封止部材57以外に空気などの非磁性気体や非磁性液体などをも含む。なお、以下において、封止部材57は導線間部材(conductor-to- conductor member)ともいう。
なお、周方向に並ぶ各導線群81の間においてティースが設けられている構成とは、ティースが、径方向に所定厚さを有し、かつ周方向に所定幅を有することで、各導線群81の間に磁気回路の一部、すなわち磁石磁路を形成する構成であると言える。この点において、各導線群81の間にティースが設けられていない構成とは、上記の磁気回路の形成がなされていない構成であると言える。
図10に示すように、固定子巻線(すなわち電機子巻線)51は、所定の厚みT2(以下、第1寸法とも言う)と幅W2(以下、第2寸法とも言う)を有するように形成されている。厚みT2は、固定子巻線51の径方向において互いに対向する外側面と内側面との間の最短距離である。幅W2は、固定子巻線51の多相(実施例では3相:U相、V相及びW相の3相あるいはX相、Y相及びZ相の3相)の一つとして機能する固定子巻線51の一部分の固定子巻線51の周方向の長さである。具体的には、図10において、周方向に隣り合う2つの導線群81が3相の内の一つである例えばU相として機能する場合、周方向において当該2つの導線群81の端から端までの幅W2である。そして、厚みT2は幅W2より小さくなっている。
なお、厚みT2は、幅W2内に存在する2つの導線群81の合計幅寸法より小さいことが好ましい。また、仮に固定子巻線51(より詳しくは導線82)の断面形状が真円形状や楕円形状、又は多角形形状である場合、固定子50の径方向に沿った導線82の断面のうち、その断面において固定子50の径方向の最大の長さをW12、同断面のうち固定子50の周方向の最大の長さをW11としても良い。
図10及び図11に示すように、固定子巻線51は、封止材(モールド材)としての合成樹脂材からなる封止部材57により封止されている。つまり、固定子巻線51は、固定子コア52と共にモールド材によりモールドされている。なお樹脂は、非磁性体、又は非磁性体の均等物としてBs=0と看做すことができる。
図10の横断面で見れば、封止部材57は、各導線群81の間、すなわち間隙56に合成樹脂材が充填されて設けられており、封止部材57により、各導線群81の間に絶縁部材が介在する構成となっている。つまり、間隙56において封止部材57が絶縁部材として機能する。封止部材57は、固定子コア52の径方向外側において、各導線群81を全て含む範囲、すなわち径方向の厚さ寸法が各導線群81の径方向の厚さ寸法よりも大きくなる範囲で設けられている。
また、図11の縦断面で見れば、封止部材57は、固定子巻線51のターン部84を含む範囲で設けられている。固定子巻線51の径方向内側では、固定子コア52の軸方向に対向する端面の少なくとも一部を含む範囲で封止部材57が設けられている。この場合、固定子巻線51は、各相の相巻線の端部、すなわちインバータ回路との接続端子を除く略全体で樹脂封止されている。
封止部材57が固定子コア52の端面を含む範囲で設けられた構成では、封止部材57により、固定子コア52の積層鋼板を軸方向内側に押さえ付けることができる。これにより、封止部材57を用いて、各鋼板の積層状態を保持することができる。なお、本実施形態では、固定子コア52の内周面を樹脂封止していないが、これに代えて、固定子コア52の内周面を含む固定子コア52の全体を樹脂封止する構成であってもよい。
回転電機10が車両動力源として使用される場合には、封止部材57が、高耐熱のフッ素樹脂や、エポキシ樹脂、PPS樹脂、PEEK樹脂、LCP樹脂、シリコン樹脂、PAI樹脂、PI樹脂等により構成されていることが好ましい。また、膨張差による割れ抑制の観点から線膨張係数を考えると、固定子巻線51の導線の外被膜と同じ材質であることが望ましい。すなわち、線膨張係数が、一般的に他樹脂の倍以上であるシリコン樹脂は望ましくは除外される。なお、電気車両の如く、燃焼を利用した機関を持たない電気製品においては、180℃程度の耐熱性を持つPPO樹脂やフェノール樹脂、FRP樹脂も候補となる。回転電機の周囲温度が100℃未満と見做せる分野においては、この限りではない。
回転電機10のトルクは磁束の大きさに比例する。ここで、固定子コアがティースを有している場合には、固定子での最大磁束量がティースでの飽和磁束密度に依存して制限されるが、固定子コアがティースを有していない場合には、固定子での最大磁束量が制限されない。そのため、固定子巻線51に対する通電電流を増加して回転電機10のトルク増加を図る上で、有利な構成となっている。
本実施形態では、固定子50においてティースを無くした構造(スロットレス構造)を用いたことにより、固定子50のインダクタンスが低減される。具体的には、複数のティースにより仕切られた各スロットに導線が収容される一般的な回転電機の固定子ではインダクタンスが例えば1mH前後であるのに対し、本実施形態の固定子50ではインダクタンスが5~60μH程度に低減される。本実施形態では、アウタロータ構造の回転電機10としつつも、固定子50のインダクタンス低減により機械的時定数Tmを下げることが可能となっている。つまり、高トルク化を図りつつ、機械的時定数Tmの低減が可能となっている。なお、イナーシャをJ、インダクタンスをL、トルク定数をKt、逆起電力定数をKeとすると、機械的時定数Tmは、次式により算出される。
Tm=(J×L)/(Kt×Ke)
この場合、インダクタンスLの低減により機械的時定数Tmが低減されることが確認できる。
固定子コア52の径方向外側における各導線群81は、断面が扁平矩形状をなす複数の導線82が固定子コア52の径方向に並べて配置されて構成されている。各導線82は、横断面において「径方向寸法<周方向寸法」となる向きで配置されている。これにより、各導線群81において径方向の薄肉化が図られている。また、径方向の薄肉化を図るとともに、導体領域が、ティースが従来あった領域まで平らに延び、扁平導線領域構造となっている。これにより、薄肉化により断面積が小さくなることで懸念される導線の発熱量の増加を、周方向に扁平化して導体の断面積を稼ぐことで抑えている。なお、複数の導線を周方向に並べ、かつそれらを並列結線とする構成であっても、導体被膜分の導体断面積低下は起こるものの、同じ理屈に依る効果が得られる。なお、以下において、導線群81のそれぞれ、および導線82のそれぞれを、伝導部材(conductive member)とも言う。
スロットがないことから、本実施形態における固定子巻線51では、その周方向の一周における固定子巻線51が占める導体領域を、固定子巻線51が存在しない導体非占有領域より大きく設計することができる。なお、従来の車両用回転電機は、固定子巻線の周方向の一周における導体領域/導体非占有領域は1以下であるのが当然であった。一方、本実施形態では、導体領域が導体非占有領域と同等又は導体領域が導体非占有領域よりも大きくなるようにして、各導線群81が設けられている。ここで、図10に示すように、周方向において導線82(つまり、後述する直線部83)が配置された導線領域をWA、隣り合う導線82の間となる導線間領域をWBとすると、導線領域WAは、導線間領域WBより周方向において大きいものとなっている。
固定子巻線51における導線群81の構成として、その導線群81の径方向の厚さ寸法は、1磁極内における1相分の周方向の幅寸法よりも小さいものとなっている。すなわち、導線群81が径方向に2層の導線82よりなり、かつ1磁極内に1相につき周方向に2つの導線群81が設けられる構成では、各導線82の径方向の厚さ寸法をTc、各導線82の周方向の幅寸法をWcとした場合に、「Tc×2<Wc×2」となるように構成されている。なお、他の構成として、導線群81が2層の導線82よりなり、かつ1磁極内に1相につき周方向に1つの導線群81が設けられる構成では、「Tc×2<Wc」の関係となるように構成されるとよい。要するに、固定子巻線51において周方向に所定間隔で配置される導線部(導線群81)は、その径方向の厚さ寸法が、1磁極内における1相分の周方向の幅寸法よりも小さいものとなっている。
言い換えると、1本1本の各導線82は、径方向の厚さ寸法Tcが周方向の幅寸法Wcよりも小さいとよい。またさらに、径方向に2層の導線82よりなる導線群81の径方向の厚さ寸法(2Tc)、すなわち導線群81の径方向の厚さ寸法(2Tc)が周方向の幅寸法Wcよりも小さいとよい。
回転電機10のトルクは、導線群81の固定子コア52の径方向の厚さに略反比例する。この点、固定子コア52の径方向外側において導線群81の厚さを薄くしたことにより、回転電機10のトルク増加を図る上で有利な構成となっている。その理由としては、回転子40の磁石ユニット42から固定子コア52までの距離(つまり鉄の無い部分の距離)を小さくして磁気抵抗を下げることができるためである。これによれば、永久磁石による固定子コア52の鎖交磁束を大きくすることができ、トルクを増強することができる。
また、導線群81の厚さを薄くしたことにより、導線群81から磁束が漏れても固定子コア52に回収されやすくなり、磁束がトルク向上のために有効に利用されずに外部に漏れることを抑制することができる。つまり、磁束漏れにより磁力が低下することを抑制でき、永久磁石による固定子コア52の鎖交磁束を大きくして、トルクを増強することができる。
導線82(conductor)は、導体(conductor body)82aの表面が絶縁被膜82bにより被覆された被覆導線よりなり、径方向に互いに重なる導線82同士の間、及び導線82と固定子コア52との間においてそれぞれ絶縁性が確保されている。この絶縁被膜82bは、後述する素線86が自己融着被覆線であるならその被膜、又は、素線86の被膜とは別に重ねられた絶縁部材で構成されている。なお、導線82により構成される各相巻線は、接続のための露出部分を除き、絶縁被膜82bによる絶縁性が保持されるものとなっている。露出部分としては、例えば、入出力端子部や、星形結線とする場合の中性点部分である。導線群81では、樹脂固着や自己融着被覆線を用いて、径方向に隣り合う各導線82が相互に固着されている。これにより、導線82同士が擦れ合うことによる絶縁破壊や、振動、音が抑制される。
本実施形態では、導体82aが複数の素線(wire)86の集合体として構成されている。具体的には、図13に示すように、導体82aは、複数の素線86を撚ることで撚糸状に形成されている。また、図14に示すように、素線86は、細い繊維状の導電材87を束ねた複合体として構成されている。例えば、素線86はCNT(カーボンナノチューブ)繊維の複合体であり、CNT繊維として、炭素の少なくとも一部をホウ素で置換したホウ素含有微細繊維を含む繊維が用いられている。炭素系微細繊維としては、CNT繊維以外に、気相成長法炭素繊維(VGCF)等を用いることができるが、CNT繊維を用いることが好ましい。なお、素線86の表面は、エナメルなどの高分子絶縁層で覆われている。また、素線86の表面は、ポリイミドの被膜やアミドイミドの被膜からなる、いわゆるエナメル被膜で覆われていることが好ましい。
導線82は、固定子巻線51においてn相の巻線を構成する。そして導線82(すなわち、導体82a)の各々の素線86は、互いに接触状態で隣接している。導線82は、巻線導体が、複数の素線86が撚られて形成される部位を、相内の1か所以上に持つとともに、撚られた素線86間の抵抗値が素線86そのものの抵抗値よりも大きい素線集合体となっている。言い換えると、隣接する各2つの素線86はその隣接する方向において第1電気抵抗率を有し、素線86の各々はその長さ方向において第2電気抵抗率を有する場合、第1電気抵抗率は第2電気抵抗率より大きい値になっている。なお、導線82が複数の素線86により形成されるとともに、第1電気抵抗率が極めて高い絶縁部材により複数の素線86を覆う素線集合体となっていても良い。また、導線82の導体82aは、撚り合わされた複数の素線86により構成されている。
上記の導体82aでは、複数の素線86が撚り合わされて構成されているため、各素線86での渦電流の発生が抑えられ、導体82aにおける渦電流の低減を図ることができる。また、各素線86が捻られていることで、1本の素線86において磁界の印加方向が互いに逆になる部位が生じて逆起電圧が相殺される。そのため、やはり渦電流の低減を図ることができる。特に、素線86を繊維状の導電材87により構成することで、細線化することと捻り回数を格段に増やすこととが可能になり、渦電流をより好適に低減することができる。
なお、ここでいう素線86同士の絶縁方法は、前述の高分子絶縁膜に限定されず、接触抵抗を利用し撚られた素線86間で電流を流れにくくする方法であってもよい。すなわち撚られた素線86間の抵抗値が、素線86そのものの抵抗値よりも大きい関係になっていれば、抵抗値の差に起因して発生する電位差により、上記効果を得ることができる。たとえば、素線86を作成する製造設備と、回転電機10の固定子50(電機子)を作成する製造設備とを別の非連続の設備として用いることで、移動時間や作業間隔などから素線86が酸化し、接触抵抗を増やすことができ、好適である。
上述のとおり導線82は、断面が扁平矩形状をなし、径方向に複数並べて配置されるものとなっており、例えば融着層と絶縁層とを備えた自己融着被覆線で被覆された複数の素線86を撚った状態で集合させ、その融着層同士を融着させることで形状を維持している。なお、融着層を備えない素線や自己融着被覆線の素線を撚った状態で合成樹脂等により所望の形状に固めて成形してもよい。導線82における絶縁被膜82bの厚さを例えば80μm~100μmとし、一般に使用される導線の被膜厚さ(5~40μm)よりも厚肉とした場合、導線82と固定子コア52との間に絶縁紙等を介在させることをしなくても、これら両者の間の絶縁性が確保することができる。
また、絶縁被膜82bは、素線86の絶縁層よりも高い絶縁性能を有し、相間を絶縁することができるように構成されていることが望ましい。例えば、素線86の高分子絶縁層の厚さを例えば5μm程度にした場合、導線82の絶縁被膜82bの厚さを80μm~100μm程度にして、相間の絶縁を好適に実施できるようにすることが望ましい。
また、導線82は、複数の素線86が撚られることなく束ねられている構成であってもよい。つまり、導線82は、その全長において複数の素線86が撚られている構成、全長のうち一部で複数の素線86が撚られている構成、全長において複数の素線86が撚られることなく束ねられている構成のいずれかであればよい。まとめると、導線部を構成する各導線82は、複数の素線86が束ねられているとともに、束ねられた素線間の抵抗値が素線86そのものの抵抗値よりも大きい素線集合体となっている。
各導線82は、固定子巻線51の周方向に所定の配置パターンで配置されるように折り曲げ形成されており、これにより、固定子巻線51として相ごとの相巻線が形成されている。図12に示すように、固定子巻線51では、各導線82のうち軸方向に直線状に延びる直線部83によりコイルサイド部53が形成され、軸方向においてコイルサイド部53よりも両外側に突出するターン部84によりコイルエンド54,55が形成されている。各導線82は、直線部83とターン部84とが交互に繰り返されることにより、波巻状の一連の導線として構成されている。直線部83は、磁石ユニット42に対して径方向に対向する位置に配置されており、磁石ユニット42の軸方向外側となる位置において所定間隔を隔てて配置される同相の直線部83同士が、ターン部84により互いに接続されている。なお、直線部83が「磁石対向部」に相当する。
本実施形態では、固定子巻線51が分布巻きにより円環状に巻回形成されている。この場合、コイルサイド部53では、相ごとに、磁石ユニット42の1極対に対応する間隔で周方向に直線部83が配置され、コイルエンド54,55では、相ごとの各直線部83が、略V字状に形成されたターン部84により互いに接続されている。1極対に対応して対となる各直線部83は、それぞれ電流の向きが互いに逆になるものとなっている。また、一方のコイルエンド54と他方のコイルエンド55とでは、ターン部84により接続される一対の直線部83の組み合わせがそれぞれ相違しており、そのコイルエンド54,55での接続が周方向に繰り返されることにより、固定子巻線51が略円筒状に形成されている。
より具体的には、固定子巻線51は、各相2対ずつの導線82を用いて相ごとの巻線を構成しており、固定子巻線51のうち一方の3相巻線(U相、V相、W相)と他方の3相巻線(X相、Y相、Z相)とが径方向内外の2層に設けられるものとなっている。この場合、固定子巻線51の相数をS(実施例の場合は6)、導線82の一相あたりの数をmとすれば、極対ごとに2×S×m=2Sm個の導線82が形成されることになる。本実施形態では、相数Sが6、数mが4であり、8極対(16極)の回転電機であることから、6×4×8=192の導線82が固定子コア52の周方向に配置されている。
図12に示す固定子巻線51では、コイルサイド部53において、径方向に隣接する2層で直線部83が重ねて配置されるとともに、コイルエンド54,55において、径方向に重なる各直線部83から、互いに周方向逆となる向きでターン部84が周方向に延びる構成となっている。つまり、径方向に隣り合う各導線82では、固定子巻線51の端部を除き、ターン部84の向きが互いに逆となっている。
ここで、固定子巻線51における導線82の巻回構造を具体的に説明する。本実施形態では、波巻にて形成された複数の導線82を、径方向に隣接する複数層(例えば2層)に重ねて設ける構成としている。図15(a)、図15(b)は、n層目における各導線82の形態を示す図であり、図15(a)には、固定子巻線51の側方から見た導線82の形状を示し、図15(b)には、固定子巻線51の軸方向一側から見た導線82の形状を示している。なお、図15(a)、図15(b)では、導線群81が配置される位置をそれぞれD1,D2,D3,…と示している。また、説明の便宜上、3本の導線82のみを示しており、それを第1導線82_A、第2導線82_B、第3導線82_Cとしている。
各導線82_A~82_Cでは、直線部83が、いずれもn層目の位置、すなわち径方向において同じ位置に配置され、周方向に6位置(3×m対分)ずつ離れた直線部83同士がターン部84により互いに接続されている。換言すると、各導線82_A~82_Cでは、いずれも回転子40の軸心を中心とする同一の円上において、固定子巻線51の周方向に隣接して並ぶ7個の直線部83の両端の二つが一つのターン部84により互いに接続されている。例えば第1導線82_Aでは、一対の直線部83がD1,D7にそれぞれ配置され、その一対の直線部83同士が、逆V字状のターン部84により接続されている。また、他の導線82_B,82_Cは、同じn層目において周方向の位置を1つずつずらしてそれぞれ配置されている。この場合、各導線82_A~82_Cは、いずれも同じ層に配置されるため、ターン部84が互いに干渉することが考えられる。そのため本実施形態では、各導線82_A~82_Cのターン部84に、その一部を径方向にオフセットした干渉回避部を形成することとしている。
具体的には、各導線82_A~82_Cのターン部84は、同一の円(第1の円)上で周方向に延びる部分である1つの傾斜部84aと、傾斜部84aからその同一の円よりも径方向内側(図15(b)において上側)にシフトし、別の円(第2の円)に達する頂部84b、第2の円上で周方向に延びる傾斜部84c及び第1の円から第2の円に戻る戻り部84dとを有している。頂部84b、傾斜部84c及び戻り部84dが干渉回避部に相当する。なお、傾斜部84cは、傾斜部84aに対して径方向外側にシフトする構成であってもよい。
つまり、各導線82_A~82_Cのターン部84は、周方向の中央位置である頂部84bを挟んでその両側に、一方側の傾斜部84aと他方側の傾斜部84cとを有しており、それら各傾斜部84a,84cの径方向の位置(図15(a)では紙面前後方向の位置、図15(b)では上下方向の位置)が互いに相違するものとなっている。例えば第1導線82_Aのターン部84は、n層のD1位置を始点位置として周方向に沿って延び、周方向の中央位置である頂部84bで径方向(例えば径方向内側)に曲がった後、周方向に再度曲がることで、再び周方向に沿って延び、さらに戻り部84dで再び径方向(例えば径方向外側)に曲がることで、終点位置であるn層のD7位置に達する構成となっている。
上記構成によれば、導線82_A~82_Cでは、一方の各傾斜部84aが、上から第1導線82_A→第2導線82_B→第3導線82_Cの順に上下に並ぶとともに、頂部84bで各導線82_A~82_Cの上下が入れ替わり、他方の各傾斜部84cが、上から第3導線82_C→第2導線82_B→第1導線82_Aの順に上下に並ぶ構成となっている。そのため、各導線82_A~82_Cが互いに干渉することなく周方向に配置できるようになっている。
ここで、複数の導線82を径方向に重ねて導線群81とする構成において、複数層の各直線部83のうち径方向内側の直線部83に接続されたターン部84と、径方向外側の直線部83に接続されたターン部84とが、それら各直線部83同士よりも径方向に離して配置されているとよい。また、ターン部84の端部、すなわち直線部83との境界部付近で、複数層の導線82が径方向の同じ側に曲げられる場合に、その隣り合う層の導線82同士の干渉により絶縁性が損なわれることが生じないようにするとよい。
例えば図15(a)、図15(b)のD7~D9では、径方向に重なる各導線82が、ターン部84の戻り部84dでそれぞれ径方向に曲げられる。この場合、図16に示すように、n層目の導線82とn+1層目の導線82とで、曲がり部の曲率半径を相違させるとよい。具体的には、径方向内側(n層目)の導線82の曲率半径R1を、径方向外側(n+1層目)の導線82の曲率半径R2よりも小さくする。
また、n層目の導線82とn+1層目の導線82とで、径方向のシフト量を相違させるとよい。具体的には、径方向内側(n層目)の導線82のシフト量S1を、径方向外側(n+1層目)の導線82のシフト量S2よりも大きくする。
上記構成により、径方向に重なる各導線82が同じ向きに曲げられる場合であっても、各導線82の相互干渉を好適に回避することができる。これにより、良好な絶縁性が得られることとなる。
次に、回転子40における磁石ユニット42の構造について説明する。本実施形態では、磁石ユニット42が永久磁石からなり、残留磁束密度Br=1.0[T]、固有保磁力Hcj=400[kA/m]以上のものを想定している。要は、本実施形態で用いる永久磁石は、粒状の磁性材料を焼結して成型固化した焼結磁石であり、J-H曲線上の固有保磁力Hcjは400[kA/m]以上であり、かつ残留磁束密度Brは1.0[T]以上である。5000~10000[AT]が相間励磁により掛かる場合、1極対、すなわちN極とS極の磁気的長さ、言い換えれば、N極とS極間の磁束が流れる経路のうち、磁石内を通る長さが25[mm]の永久磁石を使えば、Hcj=10000[A]となり、減磁をしないことが伺える。
また換言すれば、磁石ユニット42は、飽和磁束密度Jsが1.2[T]以上で、かつ結晶粒径が10[μm]以下であり、配向率をαとした場合にJs×αが1.0[T]以上であるものとなっている。
以下に磁石ユニット42について補足する。磁石ユニット42(磁石)は、2.15[T]≧Js≧1.2[T]であることが特徴である。言い換えれば、磁石ユニット42に用いられる磁石として、NdFe11TiN、Nd2Fe14B、Sm2Fe17N3、L10型結晶を有するFeNi磁石などが挙げられる。なお、通例サマコバと言われるSmCo5や、FePt、Dy2Fe14B、CoPtなどの構成は使うことができない。注意としては、同型の化合物、例えばDy2Fe14BとNd2Fe14Bのように、一般的に、重希土類であるディスプロシウムを利用して、ネオジウムの高いJs特性を少しだけ失いながらも、Dyの持つ高い保磁力を持たせた磁石でも2.15[T]≧Js≧1.2[T]を満たす場合があり、この場合も採用可能である。このような場合は、例えば([Nd1-xDyx]2Fe14B)と呼ぶこととする。更に、異なる組成の2種類以上の磁石、例えば、FeNiプラスSm2Fe17N3というように2種類以上の材料からなる磁石でも、達成が可能であるし、例えば、Js=1.6[T]と、Jsに余裕のあるNd2Fe14Bの磁石に、Js<1[T]の、例えばDy2Fe14Bを少量混ぜ、保磁力を増加させた混合磁石などでも達成が可能である。
また、人間の活動範囲外の温度、例えば砂漠の温度を超える60℃以上で動作されるような回転電機、例えば、夏においておけば車中温度が80℃近くなる車両用モータ用途などにおいては、特に温度依存係数の小さい、FeNi、Sm2Fe17N3の成分を含むことが望ましい。これは、人間の活動範囲内である北欧の-40℃近い温度状態から、先述の砂漠温度を超える60℃以上、又はコイルエナメル被膜の耐熱温度180~240℃程度までのモータ動作において温度依存係数によって大きくモータ特性を異ならせるため、同一のモータドライバでの最適制御などが困難となるためである。前記L10型結晶を有するFeNi、又はSm2Fe17N3などを用いれば、Nd2Fe14Bと比べ、半分以下の温度依存係数を所持しているその特性から、モータドライバの負担を好適に減らすことができる。
加えて、磁石ユニット42は、前記磁石配合を用いて、配向以前の微粉体状態の粒子径の大きさが10μm以下、単磁区粒子径以上としていることを特徴としている。磁石では、粉体の粒子を数百nmオーダまで微細化することにより保磁力が大きくなるため、近年では、できるだけ微細化された粉体が使用されている。ただし、細かくしすぎると、酸化などにより磁石のBH積が落ちてしまうため、単磁区粒子径以上が好ましい。単磁区粒子径までの粒子径であれば、微細化により保磁力が上昇することが知られている。なお、ここで述べてきた粒子径の大きさは、磁石の製造工程でいうところの配向工程の際の微粉体状態の粒子径の大きさである。
更に、磁石ユニット42の第1磁石91と第2磁石92の各々は、磁性粉末を高温で焼き固めた、いわゆる焼結により形成された焼結磁石である。この焼結は、磁石ユニット42の飽和磁化Jsが1.2T以上で、第1磁石91および第2磁石92の結晶粒径が10μm以下であり、配向率をαとした場合、Js×αが1.0T(テスラ)以上の条件を満足するよう行われる。また、第1磁石91と第2磁石92の各々は、以下の条件を満足するように焼結されている。そして、その製造過程において配向工程にて配向が行われることにより、等方性磁石の着磁工程による磁力方向の定義とは異なり、配向率(orientation ratio)を持つ。本実施形態の磁石ユニット42の飽和磁化Jsが1.2T以上で、第1磁石91と第2磁石92の配向率αが、Jr≧Js×α≧1.0[T]となるように高い配向率を設定されている。なお、ここで言う配向率αとは、第1磁石91又は第2磁石92の各々において、例えば、磁化容易軸が6つあり、そのうちの5つが同じ方向である方向A10を向き、残りの一つが方向A10に対して90度傾いた方向B10を向いている場合、α=5/6であり、残りの一つが方向A10に対して45度傾いた方向B10を向いている場合には、残りの一つの方向A10を向く成分はcos45°=0.707であるため、α=(5+0.707)/6となる。本実施例では焼結により第1磁石91と第2磁石92を形成しているが、上記条件が満足されれば、第1磁石91と第2磁石92は他の方法により成形してもよい。例えば、MQ3磁石などを形成する方法を採用することができる。
本実施形態においては、配向により磁化容易軸をコントロールした永久磁石を利用しているから、その磁石内部の磁気回路長を、従来1.0[T]以上を出す直線配向磁石の磁気回路長と比べて、長くすることができる。すなわち、1極対あたりの磁気回路長を、少ない磁石量で達成できる他、従来の直線配向磁石を利用した設計と比べ、過酷な高熱条件に曝されても、その可逆減磁範囲を保つことができる。また、本願発明者は、従来技術の磁石を用いても、極異方性磁石と近しい特性を得られる構成を見いだした。
なお、磁化容易軸は、磁石において磁化されやすい結晶方位のことをいう。磁石における磁化容易軸の向きとは、磁化容易軸の方向が揃っている程度を示す配向率が50%以上となる方向、又は、その磁石の配向の平均となる方向である。
図8及び図9に示すように、磁石ユニット42は、円環状をなしており、磁石ホルダ41の内側(詳しくは円筒部43の径方向内側)に設けられている。磁石ユニット42は、それぞれ極異方性磁石でありかつ極性が互いに異なる第1磁石91及び第2磁石92を有している。第1磁石91及び第2磁石92は周方向に交互に配置されている。第1磁石91は、固定子巻線51に近い部分においてN極を形成する磁石であり、第2磁石92は、固定子巻線51に近い部分においてS極を形成する磁石である。第1磁石91及び第2磁石92は、例えばネオジム磁石等の希土類磁石からなる永久磁石である。
各磁石91,92では、図9に示すように、公知のd-q座標系において磁極中心であるd軸(direct-axis)とN極とS極の磁極境界である(言い換えれば、磁束密度が0テスラである)q軸(quadrature-axis)との間において磁化方向が円弧状に延びている。各磁石91,92それぞれにおいて、d軸側では磁化方向が円環状の磁石ユニット42の径方向とされ、q軸側では円環状の磁石ユニット42の磁化方向が周方向とされている。以下、更に詳細に説明する。磁石91,92のそれぞれは、図9に示すように、第1部分250と、磁石ユニット42の周方向において第1部分250の両側に位置する二つの第2部分260とを有する。言い換えれば、第1部分250は、第2部分260よりd軸に近く、第2部分260は、第1部分250よりq軸に近い。そして、第1部分250の磁化容易軸300の方向は、第2部分260の磁化容易軸310の方向よりもd軸に対してより平行となるように磁石ユニット42が構成されている。言い換えれば、第1部分250の磁化容易軸300がd軸となす角度θ11が、第2部分260の磁化容易軸310がq軸となす角度θ12よりも小さくなるように磁石ユニット42が構成されている。
より詳細には、角度θ11は、d軸において固定子50(電機子)から磁石ユニット42に向かう方向を正とした時に、d軸と磁化容易軸300とがなす角度である。角度θ12は、q軸において固定子50(電機子)から磁石ユニット42に向かう方向を正とした時に、q軸と磁化容易軸310とがなす角度である。なお角度θ11及び角度θ12共に、本実施形態では90°以下である。ここでいう、磁化容易軸300,310のそれぞれは、以下の定義による。磁石91,92のそれぞれの部分において、一つの磁化容易軸が方向A11を向き、もう一つの磁化容易軸が方向B11を向いているとした場合、方向A11と方向B11の成す角度θのコサインの絶対値(|cosθ|)を磁化容易軸300或いは磁化容易軸310とする。
すなわち、各磁石91,92のそれぞれは、d軸側(d軸寄りの部分)とq軸側(q軸寄りの部分)とで磁化容易軸の向きが相違しており、d軸側では磁化容易軸の向きがd軸に平行な方向に近い向きとなり、q軸側では磁化容易軸の向きがq軸に直交する方向に近い向きとなっている。そして、この磁化容易軸の向きに応じて円弧状の磁石磁路が形成されている。なお、各磁石91,92において、d軸側では磁化容易軸をd軸に平行な向きとし、q軸側では磁化容易軸をq軸に直交する向きとしてもよい。
また、磁石91,92では、各磁石91,92の周面のうち固定子50側(図9の下側)となる固定子側外面と、周方向においてq軸側の端面とが、磁束の流入流出面である磁束作用面となっており、それらの磁束作用面(固定子側外面及びq軸側の端面)を繋ぐように磁石磁路が形成されている。
磁石ユニット42では、各磁石91,92により、隣接するN,S極間を円弧状に磁束が流れるため、例えばラジアル異方性磁石に比べて磁石磁路が長くなっている。このため、図17に示すように、磁束密度分布が正弦波に近いものとなる。その結果、図18に比較例として示すラジアル異方性磁石の磁束密度分布とは異なり、磁極の中心側に磁束を集中させることができ、回転電機10のトルクを高めることができる。また、本実施形態の磁石ユニット42では、従来のハルバッハ配列の磁石と比べても、磁束密度分布の差異があることが確認できる。なお、図17及び図18において、横軸は電気角を示し、縦軸は磁束密度を示す。また、図17及び図18において、横軸の90°はd軸(すなわち磁極中心)を示し、横軸の0°,180°はq軸を示す。
つまり、上記構成の各磁石91,92によれば、d軸での磁石磁束が強化され、かつq軸付近での磁束変化が抑えられる。これにより、各磁極においてq軸からd軸にかけての表面磁束変化がなだらかになる磁石91,92を好適に実現することができる。
磁束密度分布の正弦波整合率は、例えば40%以上の値とされていればよい。このようにすれば、正弦波整合率が30%程度であるラジアル配向磁石、パラレル配向磁石を用いる場合に比べ、確実に波形中央部分の磁束量を向上させることができる。また、正弦波整合率を60%以上とすれば、ハルバッハ配列のような磁束集中配列と比べ、確実に波形中央部分の磁束量を向上させることができる。
図18に示すラジアル異方性磁石では、q軸付近において磁束密度が急峻に変化する。磁束密度の変化が急峻なほど、固定子巻線51に発生する渦電流が増加してしまう。また、固定子巻線51側での磁束変化も急峻となる。これに対し、本実施形態では、磁束密度分布が正弦波に近い磁束波形となる。このため、q軸付近において、磁束密度の変化が、ラジアル異方性磁石の磁束密度の変化よりも小さい。これにより、渦電流の発生を抑制することができる。
磁石ユニット42では、各磁石91,92のd軸付近(すなわち磁極中心)において、固定子50側の磁束作用面280に直交する向きで磁束が生じ、その磁束は、固定子50側の磁束作用面280から離れるほど、d軸から離れるような円弧状をなす。また、磁束作用面に直交する磁束であるほど、強い磁束となる。この点において、本実施形態の回転電機10では、上述のとおり各導線群81を径方向に薄くしたため、導線群81の径方向の中心位置が磁石ユニット42の磁束作用面に近づくことになり、固定子50において回転子40から強い磁石磁束を受けることができる。
また、固定子50には、固定子巻線51の径方向内側、すなわち固定子巻線51を挟んで回転子40の逆側に円筒状の固定子コア52が設けられている。そのため、各磁石91,92の磁束作用面から延びる磁束は、固定子コア52に引きつけられ、固定子コア52を磁路の一部として用いつつ周回する。この場合、磁石磁束の向き及び経路を適正化することができる。
以下に、回転電機10の製造方法として、図5に示す軸受ユニット20、ハウジング30、回転子40、固定子50及びインバータユニット60についての組み付け手順について説明する。なお、インバータユニット60は、図6に示すようにユニットベース61と電気コンポーネント62とを有しており、それらユニットベース61及び電気コンポーネント62の組み付け工程を含む各作業工程を説明する。以下の説明では、固定子50及びインバータユニット60よりなる組立品を第1ユニット、軸受ユニット20、ハウジング30及び回転子40よりなる組立品を第2ユニットとしている。
本製造工程は、
・ユニットベース61の径方向内側に電気コンポーネント62を装着する第1工程と、
・固定子50の径方向内側にユニットベース61を装着して第1ユニットを製作する第2工程と、
・ハウジング30に組み付けられた軸受ユニット20に、回転子40の固定部44を挿入して第2ユニットを製作する第3工程と、
・第2ユニットの径方向内側に第1ユニットを装着する第4工程と、
・ハウジング30とユニットベース61とを締結固定する第5工程と、
を有している。これら各工程の実施順序は、第1工程→第2工程→第3工程→第4工程→第5工程である。
上記の製造方法によれば、軸受ユニット20、ハウジング30、回転子40、固定子50及びインバータユニット60を複数の組立品(サブアセンブリ)として組み立てた後に、それら組立品同士を組み付けるようにしたため、ハンドリングのし易さやユニット毎の検査完結などを実現でき、合理的な組み立てラインの構築が可能となる。したがって、多品種生産にも容易に対応が可能となる。
第1工程では、ユニットベース61の径方向内側及び電気コンポーネント62の径方向外部の少なくともいずれかに、熱伝導が良好な良熱伝導体を塗布や接着等により付着させておき、その状態で、ユニットベース61に対して電気コンポーネント62を装着するとよい。これにより、半導体モジュール66の発熱をユニットベース61に対して効果的に伝達させることが可能となる。
第3工程では、ハウジング30と回転子40との同軸を維持しながら、回転子40の挿入作業を実施するとよい。具体的には、例えばハウジング30の内周面を基準として回転子40の外周面(磁石ホルダ41の外周面)又は回転子40の内周面(磁石ユニット42の内周面)の位置を定める治具を用い、その治具に沿ってハウジング30及び回転子40のいずれかをスライドさせながら、ハウジング30と回転子40との組み付けを実施する。これにより、軸受ユニット20に偏荷重を掛けることなく重量部品を組み付けることが可能となり、軸受ユニット20の信頼性が向上する。
第4工程では、第1ユニットと第2ユニットとの同軸を維持しながら、それら両ユニットの組み付けを実施するとよい。具体的には、例えば回転子40の固定部44の内周面を基準としてユニットベース61の内周面の位置を定める治具を用い、その治具に沿って第1ユニット及び第2ユニットのいずれかをスライドさせながら、これら各ユニットの組み付けを実施する。これにより、回転子40と固定子50との極少隙間間での互いの干渉を防止しながら組み付けることが可能となるため、固定子巻線51へのダメージや永久磁石の欠け等、組み付け起因の不良品の撲滅が可能となる。
上記各工程の順序を、第2工程→第3工程→第4工程→第5工程→第1工程とすることも可能である。この場合、デリケートな電気コンポーネント62を最後に組み付けることになり、組み付け工程内での電気コンポーネント62へのストレスを最小限にとどめることができる。
次に、回転電機10を制御する制御システムの構成について説明する。図19は、回転電機10の制御システムの電気回路図であり、図20は、制御装置110による制御処理を示す機能ブロック図である。
図19では、固定子巻線51として2組の3相巻線51a,51bが示されており、3相巻線51aはU相巻線、V相巻線及びW相巻線よりなり、3相巻線51bはX相巻線、Y相巻線及びZ相巻線よりなる。3相巻線51a,51bごとに、電力変換器に相当する第1インバータ101と第2インバータ102とがそれぞれ設けられている。インバータ101,102は、相巻線の相数と同数の上下アームを有するフルブリッジ回路により構成されており、各アームに設けられたスイッチ(半導体スイッチング素子)のオンオフにより、固定子巻線51の各相巻線において通電電流が調整される。
各インバータ101,102には、直流電源103と平滑用のコンデンサ104とが並列に接続されている。直流電源103は、例えば複数の単電池が直列接続された組電池により構成されている。なお、インバータ101,102の各スイッチが、図1等に示す半導体モジュール66に相当し、コンデンサ104が、図1等に示すコンデンサモジュール68に相当する。
制御装置110は、CPUや各種メモリからなるマイコンを備えており、回転電機10における各種の検出情報や、力行駆動及び発電の要求に基づいて、インバータ101,102における各スイッチのオンオフにより通電制御を実施する。制御装置110が、図6に示す制御装置77に相当する。回転電機10の検出情報には、例えば、レゾルバ等の角度検出器により検出される回転子40の回転角度(電気角情報)や、電圧センサにより検出される電源電圧(インバータ入力電圧)、電流センサにより検出される各相の通電電流が含まれる。制御装置110は、インバータ101,102の各スイッチを操作する操作信号を生成して出力する。なお、発電の要求は、例えば回転電機10が車両用動力源として用いられる場合、回生駆動の要求である。
第1インバータ101は、U相、V相及びW相からなる3相において上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。各相の上アームスイッチSpの高電位側端子は直流電源103の正極端子に接続され、各相の下アームスイッチSnの低電位側端子は直流電源103の負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、それぞれU相巻線、V相巻線、W相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点にて互いに接続されている。
第2インバータ102は、第1インバータ101と同様の構成を有しており、X相、Y相及びZ相からなる3相において上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。各相の上アームスイッチSpの高電位側端子は直流電源103の正極端子に接続され、各相の下アームスイッチSnの低電位側端子は直流電源103の負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、それぞれX相巻線、Y相巻線、Z相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点で互いに接続されている。
図20には、U,V,W相の各相電流を制御する電流フィードバック制御処理と、X,Y,Z相の各相電流を制御する電流フィードバック制御処理とが示されている。ここではまず、U,V,W相側の制御処理について説明する。
図20において、電流指令値設定部111は、トルク-dqマップを用い、回転電機10に対する力行トルク指令値又は発電トルク指令値や、電気角θを時間微分して得られる電気角速度ωに基づいて、d軸の電流指令値とq軸の電流指令値とを設定する。なお、電流指令値設定部111は、U,V,W相側及びX,Y,Z相側において共通に設けられている。なお、発電トルク指令値は、例えば回転電機10が車両用動力源として用いられる場合、回生トルク指令値である。
dq変換部112は、相ごとに設けられた電流センサによる電流検出値(3つの相電流)を、界磁方向(direction of an axis of a magnetic field,or field direction)をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。
d軸電流フィードバック制御部113は、d軸電流をd軸の電流指令値にフィードバック制御するための操作量としてd軸の指令電圧を算出する。また、q軸電流フィードバック制御部114は、q軸電流をq軸の電流指令値にフィードバック制御するための操作量としてq軸の指令電圧を算出する。これら各フィードバック制御部113,114では、d軸電流及びq軸電流の電流指令値に対する偏差に基づき、PIフィードバック手法を用いて指令電圧が算出される。
3相変換部115は、d軸及びq軸の指令電圧を、U相、V相及びW相の指令電圧に変換する。なお、上記の各部111~115が、dq変換理論による基本波電流のフィードバック制御を実施するフィードバック制御部であり、U相、V相及びW相の指令電圧がフィードバック制御値である。
そして、操作信号生成部116は、周知の三角波キャリア比較方式を用い、3相の指令電圧に基づいて、第1インバータ101の操作信号を生成する。具体的には、操作信号生成部116は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号(デューティ信号)を生成する。
また、X,Y,Z相側においても同様の構成を有しており、dq変換部122は、相ごとに設けられた電流センサによる電流検出値(3つの相電流)を、界磁方向をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。
d軸電流フィードバック制御部123はd軸の指令電圧を算出し、q軸電流フィードバック制御部124はq軸の指令電圧を算出する。3相変換部125は、d軸及びq軸の指令電圧を、X相、Y相及びZ相の指令電圧に変換する。そして、操作信号生成部126は、3相の指令電圧に基づいて、第2インバータ102の操作信号を生成する。具体的には、操作信号生成部126は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号(デューティ信号)を生成する。
ドライバ117は、操作信号生成部116,126にて生成されたスイッチ操作信号に基づいて、各インバータ101,102における各3相のスイッチSp,Snをオンオフさせる。
続いて、トルクフィードバック制御処理について説明する。この処理は、例えば高回転領域及び高出力領域等、各インバータ101,102の出力電圧が大きくなる運転条件において、主に回転電機10の高出力化や損失低減の目的で用いられる。制御装置110は、回転電機10の運転条件に基づいて、トルクフィードバック制御処理及び電流フィードバック制御処理のいずれか一方の処理を選択して実行する。
図21には、U,V,W相に対応するトルクフィードバック制御処理と、X,Y,Z相に対応するトルクフィードバック制御処理とが示されている。なお、図21において、図20と同じ構成については、同じ符号を付して説明を省略する。ここではまず、U,V,W相側の制御処理について説明する。
電圧振幅算出部127は、回転電機10に対する力行トルク指令値又は発電トルク指令値と、電気角θを時間微分して得られる電気角速度ωとに基づいて、電圧ベクトルの大きさの指令値である電圧振幅指令を算出する。
トルク推定部128aは、dq変換部112により変換されたd軸電流とq軸電流とに基づいて、U,V,W相に対応するトルク推定値を算出する。なお、トルク推定部128aは、d軸電流、q軸電流及び電圧振幅指令が関係付けられたマップ情報に基づいて、電圧振幅指令を算出すればよい。
トルクフィードバック制御部129aは、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧ベクトルの位相の指令値である電圧位相指令を算出する。トルクフィードバック制御部129aでは、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。
操作信号生成部130aは、電圧振幅指令、電圧位相指令及び電気角θに基づいて、第1インバータ101の操作信号を生成する。具体的には、操作信号生成部130aは、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。
ちなみに、操作信号生成部130aは、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。
また、X,Y,Z相側においても同様の構成を有しており、トルク推定部128bは、dq変換部122により変換されたd軸電流とq軸電流とに基づいて、X,Y,Z相に対応するトルク推定値を算出する。
トルクフィードバック制御部129bは、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧位相指令を算出する。トルクフィードバック制御部129bでは、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。
操作信号生成部130bは、電圧振幅指令、電圧位相指令及び電気角θに基づいて、第2インバータ102の操作信号を生成する。具体的には、操作信号生成部130bは、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。ドライバ117は、操作信号生成部130a,130bにて生成されたスイッチ操作信号に基づいて、各インバータ101,102における各3相のスイッチSp,Snをオンオフさせる。
ちなみに、操作信号生成部130bは、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。
ところで、回転電機10においては、軸電流の発生に伴い軸受21,22の電食が生じることが懸念されている。例えば固定子巻線51の通電がスイッチングにより切り替えられる際に、スイッチングタイミングの微小なずれ(スイッチングの不均衡)により磁束の歪みが生じ、それに起因して、回転軸11を支持する軸受21,22において電食が生じることが懸念される。磁束の歪みは固定子50のインダクタンスに応じて生じ、その磁束の歪みにより生じる軸方向の起電圧によって、軸受21,22内での絶縁破壊が起こり電食が進行する。
この点本実施形態では、電食対策として、以下に示す3つの対策を講じている。第1の電食対策は、固定子50のコアレス化に伴いインダクタンスを低減したこと、及び磁石ユニット42の磁石磁束をなだらかにしたことによる電食抑制対策である。第2の電食対策は、回転軸を軸受21,22による片持ち構造としたことによる電食抑制対策である。第3の電食対策は、円環状の固定子巻線51を固定子コア52と共にモールド材によりモールドしたことによる電食抑制対策である。以下には、これら各対策の詳細を個々に説明する。
まず第1の電食対策では、固定子50において、周方向における各導線群81の間をティースレスとし、各導線群81の間に、ティース(鉄心)の代わりに非磁性材料よりなる封止部材57を設ける構成としている(図10参照)。これにより、固定子50のインダクタンス低減が可能となっている。固定子50におけるインダクタンス低減を図ることで、仮に固定子巻線51の通電時にスイッチングタイミングのずれが生じても、そのスイッチングタイミングのずれに起因する磁束歪みの発生を抑制し、ひいては軸受21,22の電食抑制が可能になっている。なお、d軸のインダクタンスがq軸のインダクタンス以下になっているとよい。
また、磁石91,92において、d軸側においてq軸側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされた構成とした(図9参照)。これにより、d軸での磁石磁束が強化され、各磁極においてq軸からd軸にかけての表面磁束変化(磁束の増減)がなだらかになる。そのため、スイッチング不均衡に起因する急激な電圧変化が抑制され、ひいては電食抑制に寄与できる構成となっている。
第2の電食対策では、回転電機10において、各軸受21,22を、回転子40の軸方向中央に対して軸方向のいずれか一方側に偏って配置している(図2参照)。これにより、複数の軸受が軸方向において回転子を挟んで両側にそれぞれ設けられる構成と比べて、電食の影響を軽減できる。つまり、回転子を複数の軸受により両持ち支持する構成では、高周波磁束の発生に伴い回転子、固定子及び各軸受(すなわち、回転子を挟んで軸方向両側の各軸受)を通る閉回路が形成され、軸電流により軸受の電食が懸念される。これに対し、回転子40を複数の軸受21,22により片持ち支持する構成では上記閉回路が形成されず、軸受の電食が抑制される。
また、回転電機10は、軸受21,22の片側配置のための構成に絡み、以下の構成を有する。磁石ホルダ41において、回転子40の径方向に張り出す中間部45に、軸方向に延びて固定子50に対する接触を回避する接触回避部が設けられている(図2参照)。この場合、磁石ホルダ41を経由して軸電流の閉回路が形成される場合にあっては、閉回路長を長くしてその回路抵抗を大きくすることが可能となる。これにより、軸受21,22の電食の抑制を図ることができる。
回転子40を挟んで軸方向の一方側においてハウジング30に対して軸受ユニット20の保持部材23が固定されるとともに、他方側においてハウジング30及びユニットベース61(固定子ホルダ)が互いに結合されている(図2参照)。本構成によれば、回転軸11の軸方向においてその軸方向の片側に各軸受21,22を偏って配置する構成を好適に実現することができる。また本構成では、ユニットベース61がハウジング30を介して回転軸11に繋がる構成となるため、ユニットベース61を、回転軸11から電気的に離れた位置に配置することができる。なお、ユニットベース61とハウジング30との間に樹脂等の絶縁部材を介在させれば、ユニットベース61と回転軸11とが電気的に一層離れた構成となる。これにより、軸受21,22の電食を適正に抑制することができる。
本実施形態の回転電機10では、各軸受21,22の片側配置等により、軸受21,22に作用する軸電圧が低減されている。また、回転子40と固定子50との間の電位差が低減されている。そのため、軸受21,22において導電性グリースを用いなくても、軸受21,22に作用する電位差の低減が可能になっている。導電性グリースは、一般的にカーボンなどの細かい粒子を含むため音鳴りが生じることが考えられる。この点、本実施形態では、軸受21,22において非導電性グリースを用いる構成としている。そのため、軸受21,22において音鳴りが生じる不都合を抑制できる。例えば電気自動車などの電動車両への適用時には回転電機10の音鳴り対策が必要になると考えられるが、その音鳴り対策を好適に実施することが可能となる。
第3の電食対策では、固定子巻線51を固定子コア52と共にモールド材によりモールドすることで、固定子50での固定子巻線51の位置ずれを抑制する構成としている(図11参照)。特に本実施形態の回転電機10では、固定子巻線51における周方向の各導線群81の間に導線間部材(ティース)を有していないため、固定子巻線51における位置ずれ生じる懸念が考えられるが、固定子巻線51を固定子コア52と共にモールドすることにより、固定子巻線51の導線位置にずれが抑制される。したがって、固定子巻線51の位置ずれによる磁束の歪みや、それに起因する軸受21,22の電食の発生を抑制することができる。
なお、固定子コア52を固定するハウジング部材としてのユニットベース61を、炭素繊維強化プラスチック(CFRP)により構成したため、例えばアルミ等により構成する場合に比べて、ユニットベース61への放電が抑制され、ひいては好適な電食対策が可能となっている。
その他、軸受21,22の電食対策として、外輪25及び内輪26の少なくともいずれかをセラミックス材により構成する、又は、外輪25の外側に絶縁スリーブを設ける等の構成を用いることも可能である。
以下に、他の実施形態を第1実施形態との相違点を中心に説明する。
(第2実施形態)
本実施形態では、回転子40における磁石ユニット42の極異方構造を変更しており、以下に詳しく説明する。
図22及び図23に示すように、磁石ユニット42は、ハルバッハ配列と称される磁石配列を用いて構成されている。すなわち、磁石ユニット42は、磁化方向(磁化ベクトルの向き)を径方向とする第1磁石131と、磁化方向(磁化ベクトルの向き)を周方向とする第2磁石132とを有しており、周方向に所定間隔で第1磁石131が配置されるとともに、周方向において隣り合う第1磁石131の間となる位置に第2磁石132が配置されている。第1磁石131及び第2磁石132は、例えばネオジム磁石等の希土類磁石からなる永久磁石である。
第1磁石131は、固定子50に対向する側(径方向内側)の極が交互にN極、S極となるように周方向に互いに離間して配置されている。また、第2磁石132は、各第1磁石131の隣において周方向に極性が交互となるように配置されている。これら各磁石131,132を囲うように設けられる円筒部43は、軟磁性材料よりなる軟磁性体コアであるとよく、バックコアとして機能する。なお、この第2実施形態の磁石ユニット42も、d-q座標系において、d軸やq軸に対する磁化容易軸の関係は上記第1実施形態と同じである。
また、第1磁石131の径方向外側、すなわち磁石ホルダ41の円筒部43の側には、軟磁性材料よりなる磁性体133が配置されている。例えば磁性体133は、電磁鋼板や軟鉄、圧粉鉄心材料により構成されているとよい。この場合、磁性体133の周方向の長さは第1磁石131の周方向の長さ(特に第1磁石131の外周部の周方向の長さ)と同じである。また、第1磁石131と磁性体133とを一体化した状態でのその一体物の径方向の厚さは、第2磁石132の径方向の厚さと同じである。換言すれば、第1磁石131は第2磁石132よりも磁性体133の分だけ径方向の厚さが薄くなっている。各磁石131,132と磁性体133とは、例えば接着剤により相互に固着されている。磁石ユニット42において第1磁石131の径方向外側は、固定子50とは反対側であり、磁性体133は、径方向における第1磁石131の両側のうち、固定子50とは反対側(反固定子側)に設けられている。
磁性体133の外周部には、径方向外側、すなわち磁石ホルダ41の円筒部43の側に突出する凸部としてのキー134が形成されている。また、円筒部43の内周面には、磁性体133のキー134を収容する凹部としてのキー溝135が形成されている。キー134の突出形状とキー溝135の溝形状とは同じであり、各磁性体133に形成されたキー134に対応して、キー134と同数のキー溝135が形成されている。キー134及びキー溝135の係合により、第1磁石131及び第2磁石132と磁石ホルダ41との周方向(回転方向)の位置ずれが抑制されている。なお、キー134及びキー溝135(凸部及び凹部)を、磁石ホルダ41の円筒部43及び磁性体133のいずれに設けるかは任意でよく、上記とは逆に、磁性体133の外周部にキー溝135を設けるとともに、磁石ホルダ41の円筒部43の内周部にキー134を設けることも可能である。
ここで、磁石ユニット42では、第1磁石131と第2磁石132とを交互に配列することにより、第1磁石131での磁束密度を大きくすることが可能となっている。そのため、磁石ユニット42において、磁束の片面集中を生じさせ、固定子50寄りの側での磁束強化を図ることができる。
また、第1磁石131の径方向外側、すなわち反固定子側に磁性体133を配置したことにより、第1磁石131の径方向外側での部分的な磁気飽和を抑制でき、ひいては磁気飽和に起因して生じる第1磁石131の減磁を抑制できる。これにより、結果的に磁石ユニット42の磁力を増加させることが可能となっている。本実施形態の磁石ユニット42は、言うなれば、第1磁石131において減磁が生じ易い部分を磁性体133に置き換えた構成となっている。
図24(a)、図24(b)は、磁石ユニット42における磁束の流れを具体的に示す図であり、図24(a)は、磁石ユニット42において磁性体133を有していない従来構成を用いた場合を示し、図24(b)は、磁石ユニット42において磁性体133を有している本実施形態の構成を用いた場合を示している。なお、図24(a)、図24(b)では、磁石ホルダ41の円筒部43及び磁石ユニット42を直線状に展開して示しており、図の下側が固定子側、上側が反固定子側となっている。
図24(a)の構成では、第1磁石131の磁束作用面と第2磁石132の側面とが、それぞれ円筒部43の内周面に接触している。また、第2磁石132の磁束作用面が第1磁石131の側面に接触している。この場合、円筒部43には、第2磁石132の外側経路を通って第1磁石131との接触面に入る磁束F1と、円筒部43と略平行で、かつ第2磁石132の磁束F2を引きつける磁束との合成磁束が生じる。そのため、円筒部43において第1磁石131と第2磁石132との接触面付近において、部分的に磁気飽和が生じることが懸念される。
これに対し、図24(b)の構成では、第1磁石131の固定子50とは反対側において第1磁石131の磁束作用面と円筒部43の内周面との間に磁性体133が設けられているため、その磁性体133で磁束の通過が許容される。したがって、円筒部43での磁気飽和を抑制でき、減磁に対する耐力が向上する。
また、図24(b)の構成では、図24(a)とは異なり、磁気飽和を促すF2を消すことができる。これにより、磁気回路全体のパーミアンスを効果的に向上させることができる。このように構成することで、その磁気回路特性を、過酷な高熱条件下でも保つことができる。
また、従来のSPMロータにおけるラジアル磁石と比べて、磁石内部を通る磁石磁路が長くなる。そのため、磁石パーミアンスが上昇し、磁力を上げ、トルクを増強することができる。さらに、磁束がd軸の中央に集まることにより、正弦波整合率を高くすることができる。特に、PWM制御により、電流波形を正弦波や台形波とする、又は120度通電のスイッチングICを利用すると、より効果的にトルクを増強することができる。
なお、固定子コア52が電磁鋼板により構成される場合において、固定子コア52の径方向厚さは、磁石ユニット42の径方向厚さの1/2、又は1/2よりも大きいとよい。例えば、固定子コア52の径方向厚さは、磁石ユニット42において磁極中心に設けられる第1磁石131の径方向厚さの1/2以上であるとよい。また、固定子コア52の径方向厚さは、磁石ユニット42の径方向厚さより小さいとよい。この場合、磁石磁束は約1[T]であり、固定子コア52の飽和磁束密度は2[T]であるため、固定子コア52の径方向厚さを、磁石ユニット42の径方向厚さの1/2以上にすることで、固定子コア52の内周側への磁束漏洩を防ぐことができる。
ハルバッハ構造や極異方構造の磁石では、磁路が擬似円弧状になっているため、周方向の磁束を扱う磁石厚みに比例して、その磁束を上昇させることができる。こういった構成においては、固定子コア52に流れる磁束は、周方向の磁束を超えることはないと考えられる。すなわち、磁石の磁束1[T]に対して飽和磁束密度2[T]の鉄系金属を利用した場合、固定子コア52の厚みを磁石厚みの半分以上とすれば、磁気飽和せず好適に小型かつ軽量の回転電機を提供することができる。ここで、磁石磁束に対して固定子50からの反磁界が作用するため、磁石磁束は一般的に0.9[T]以下となる。そのため、固定子コアは磁石の半分の厚みを持てば、その透磁率を好適に高く保つことができる。
以下に、上述した構成の一部を変更した変形例について説明する。
(変形例1)
上記実施形態では、固定子コア52の外周面を凹凸のない曲面状とし、その外周面に所定間隔で複数の導線群81を並べて配置する構成としたが、これを変更してもよい。例えば、図25に示すように、固定子コア52は、固定子巻線51の径方向両側のうち回転子40とは反対側(図の下側)に設けられた円環状のヨーク141と、そのヨーク141から、周方向に隣り合う直線部83の間に向かって突出するように延びる突起部142とを有している。突起部142は、ヨーク141の径方向外側、すなわち回転子40側に所定間隔で設けられている。固定子巻線51の各導線群81は、突起部142と周方向において係合しており、突起部142を導線群81の位置決め部として用いつつ周方向に並べて配置されている。なお、突起部142が「導線間部材」に相当する。
突起部142は、ヨーク141からの径方向の厚さ寸法、言い換えれば、図25に示すように、ヨーク141の径方向において、直線部83のヨーク141に隣接する内側面320から突起部142の頂点までの距離Wが、径方向内外の複数層の直線部83のうち、ヨーク141に径方向に隣接する直線部83の径方向の厚さ寸法の1/2(図のH1)よりも小さい構成となっている。言い換えれば、固定子巻線51(固定子コア52)の径方向における導線群81(伝導部材)の寸法(厚み)T1(導線82の厚みの2倍、言い換えれば、導線群81の固定子コア52に接する面320と、導線群81の回転子40に向いた面330との最短距離)の4分の3の範囲は非磁性部材(封止部材57)が占有していればよい。こうした突起部142の厚さ制限により、周方向に隣り合う導線群81(すなわち直線部83)の間において突起部142がティースとして機能せず、ティースによる磁路形成がなされないようになっている。突起部142は、周方向に並ぶ各導線群81の間ごとに全て設けられていなくてもよく、周方向に隣り合う少なくとも1組の導線群81の間に設けられていればよい。例えば、突起部142は、周方向において各導線群81の間の所定数ごとに等間隔で設けられているとよい。突起部142の形状は、矩形状、円弧状など任意の形状でよい。
また、固定子コア52の外周面では、直線部83が一層で設けられていてもよい。したがって、広義には、突起部142におけるヨーク141からの径方向の厚さ寸法は、直線部83における径方向の厚さ寸法の1/2よりも小さいものであればよい。
なお、回転軸11の軸心を中心とし、かつヨーク141に径方向に隣接する直線部83の径方向の中心位置を通る仮想円を想定すると、突起部142は、その仮想円の範囲内においてヨーク141から突出する形状、換言すれば仮想円よりも径方向外側(すなわち回転子40側)に突出しない形状をなしているとよい。
上記構成によれば、突起部142は、径方向の厚さ寸法が制限されており、周方向に隣り合う直線部83の間においてティースとして機能するものでないため、各直線部83の間にティースが設けられている場合に比べて、隣り合う各直線部83を近づけることができる。これにより、導体82aの断面積を大きくすることができ、固定子巻線51の通電に伴い生じる発熱を低減することができる。かかる構成では、ティースがないことで磁気飽和の解消が可能となり、固定子巻線51への通電電流を増大させることが可能となる。この場合において、その通電電流の増大に伴い発熱量が増えることに好適に対処することができる。また、固定子巻線51では、ターン部84が、径方向にシフトされ、他のターン部84との干渉を回避する干渉回避部を有することから、異なるターン部84同士を径方向に離して配置することができる。これにより、ターン部84においても放熱性の向上を図ることができる。以上により、固定子50での放熱性能を適正化することが可能になっている。
また、固定子コア52のヨーク141と、回転子40の磁石ユニット42(すなわち各磁石91,92)とが所定距離以上離れていれば、突起部142の径方向の厚さ寸法は、図25のH1に縛られるものではない。具体的には、ヨーク141と磁石ユニット42とが2mm以上離れていれば、突起部142の径方向の厚さ寸法は、図25のH1以上であってもよい。例えば、直線部83の径方向厚み寸法が2mmを越えており、かつ導線群81が径方向内外の2層の導線82により構成されている場合に、ヨーク141に隣接していない直線部83、すなわちヨーク141から数えて2層目の導線82の半分位置までの範囲で、突起部142が設けられていてもよい。この場合、突起部142の径方向厚さ寸法が「H1×3/2」までになっていれば、導線群81における導体断面積を大きくすることで、前記効果を少なからず得ることはできる。
また、固定子コア52は、図26に示す構成であってもよい。なお、図26では、封止部材57を省略しているが、封止部材57が設けられていてもよい。図26では、便宜上、磁石ユニット42及び固定子コア52を直線状に展開して示している。
図26の構成では、固定子50は、周方向に隣接する導線82(すなわち直線部83)の間に、導線間部材としての突起部142を有している。固定子50は、固定子巻線51が通電されると、磁石ユニット42の磁極の一つ(N極、またはS極)とともに磁気的に機能し、固定子50の周方向に延びる一部分350を有する。この部分350の固定子50の周方向への長さをWnとすると、この長さ範囲Wnに存在する突起部142の合計の幅(すなわち、固定子50の周方向への合計の寸法)をWtとし、突起部142の飽和磁束密度をBs、磁石ユニット42の1極分の周方向の幅寸法をWm、磁石ユニット42の残留磁束密度をBrとする場合、突起部142は、
Wt×Bs≦Wm×Br …(1)
となる磁性材料により構成されている。
なお、範囲Wnは、周方向に隣接する複数の導線群81であって、励磁時期が重複する複数の導線群81を含むように設定される。その際、範囲Wnを設定する際の基準(境界)として、導線群81の間隙56の中心を設定することが好ましい。例えば、図26に例示する構成の場合、周方向においてN極の磁極中心からの距離が最も短いものから順番に、4番目までの導線群81が、当該複数の導線群81に相当する。そして、当該4つの導線群81を含むように範囲Wnが設定される。その際、範囲Wnの端(起点と終点)が間隙56の中心とされている。
図26において、範囲Wnの両端には、それぞれ突起部142が半分ずつ含まれていることから、範囲Wnには、合計4つ分の突起部142が含まれている。したがって、突起部142の幅(すなわち、固定子50の周方向における突起部142の寸法、言い換えれば、隣接する導線群81の間隔)をAとすると、範囲Wnに含まれる突起部142の合計の幅は、Wt=1/2A+A+A+A+1/2A=4Aとなる。
詳しくは、本実施形態では、固定子巻線51の3相巻線が分布巻であり、その固定子巻線51では、磁石ユニット42の1極に対して、突起部142の数、すなわち各導線群81の間となる間隙56の数が「相数×Q」個となっている。ここでQとは、1相の導線82のうち固定子コア52と接する数である。なお、導線82が回転子40の径方向に積層された導線群81である場合には、1相の導線群81の内周側の導線82の数であるともいえる。この場合、固定子巻線51の3相巻線が各相所定順序で通電されると、1極内において2相分の突起部142が励磁される。したがって、磁石ユニット42の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の合計幅寸法Wtは、突起部142(つまり、間隙56)の周方向の幅寸法をAとすると、「励磁される相数×Q×A=2×2×A」となる。
そして、こうして合計幅寸法Wtが規定された上で、固定子コア52において、突起部142が、上記(1)の関係を満たす磁性材料として構成されている。なお、合計幅寸法Wtは、1極内において比透磁率が1よりも大きくなりえる部分の周方向寸法でもある。また、余裕を考えて、合計幅寸法Wtを、1磁極における突起部142の周方向の幅寸法としてもよい。具体的には、磁石ユニット42の1極に対する突起部142の数が「相数×Q」であることから、1磁極における突起部142の周方向の幅寸法(合計幅寸法Wt)を、「相数×Q×A=3×2×A=6A」としてもよい。
なお、ここでいう分布巻とは、磁極の1極対周期(N極とS極)で、固定子巻線51の一極対があるものである。ここでいう固定子巻線51の一極対は、電流が互いに逆方向に流れ、ターン部84で電気的に接続された2つの直線部83とターン部84からなる。上記条件みたすものであれば、短節巻(Short Pitch Winding)であっても、全節巻(Full Pitch Winding)の分布巻の均等物とみなす。
次に、集中巻の場合の例を示す。ここでいう集中巻とは、磁極の1極対の幅と、固定子巻線51の一極対の幅とが異なるものである。集中巻の一例としては、1つの磁極対に対して導線群81が3つ、2つの磁極対に対して導線群81が3つ、4つの磁極対に対して導線群81が9つ、5つの磁極対に対して導線群81が9つのような関係であるものが挙げられる。
ここで、固定子巻線51を集中巻とする場合には、固定子巻線51の3相巻線が所定順序で通電されると、2相分の固定子巻線51が励磁される。その結果、2相分の突起部142が励磁される。したがって、磁石ユニット42の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の幅寸法Wtは、「A×2」となる。そして、こうして幅寸法Wtが規定された上で、突起部142が、上記(1)の関係を満たす磁性材料として構成されている。なお、上記で示した集中巻の場合は、同一相の導線群81に囲まれた領域において、固定子50の周方向にある突起部142の幅の総和をAとする。また、集中巻におけるWmは「磁石ユニット42のエアギャップに対向する面の全周」×「相数」÷「導線群81の分散数」に相当する。
ちなみに、ネオジム磁石やサマリウムコバルト磁石、フェライト磁石といったBH積が20[MGOe(kJ/m^3)]以上の磁石ではBd=1.0強[T]、鉄ではBr=2.0強[T]である。そのため、高出力モータとしては、固定子コア52において、突起部142が、Wt<1/2×Wmの関係を満たす磁性材料であればよい。
また、後述するように導線82が外層被膜182を備える場合には、導線82同士の外層被膜182が接触するように、導線82を固定子コア52の周方向に配置しても良い。この場合は、Wtは、0又は接触する両導線82の外層被膜182の厚さ、と看做すことができる。
図25や図26の構成では、回転子40側の磁石磁束に対して不相応に小さい導線間部材(突起部142)を有する構成となっている。なお、回転子40は、インダクタンスが低くかつ平坦な表面磁石型ロータであり、磁気抵抗的に突極性を有していないものとなっている。かかる構成では、固定子50のインダクタンス低減が可能となっており、固定子巻線51のスイッチングタイミングのずれに起因する磁束歪みの発生が抑制され、ひいては軸受21,22の電食が抑制される。
(変形例2)
上記式(1)の関係を満たす導線間部材を用いる固定子50として、以下の構成を採用することも可能である。図27では、固定子コア52の外周面側(図の上面側)に、導線間部材として歯状部143が設けられている。歯状部143は、ヨーク141から突出するようにして周方向に所定間隔で設けられており、径方向に導線群81と同じ厚み寸法を有している。歯状部143の側面は導線群81の各導線82に接している。ただし、歯状部143と各導線82との間に隙間があってもよい。
歯状部143は、周方向における幅寸法に制限が付与されており、磁石量に対して不相応に細い極歯(ステータティース)を備えるものとなっている。かかる構成により、歯状部143は、1.8T以上で磁石磁束により確実に飽和し、パーミアンスの低下によりインダクタンスを下げることができる。
ここで、磁石ユニット42において、固定子側における磁束作用面の1極あたりの表面積をSm、磁石ユニット42の残留磁束密度をBrとすると、磁石ユニット側の磁束は、例えば「Sm×Br」となる。また、各歯状部143における回転子側の表面積をSt、導線82の一相あたりの数をmとし、固定子巻線51の通電により1極内において2相分の歯状部143が励磁されるとすると、固定子側の磁束は、例えば「St×m×2×Bs」となる。この場合、
St×m×2×Bs<Sm×Br …(2)
の関係が成立するように歯状部143の寸法を制限することで、インダクタンスの低減が図られている。
なお、磁石ユニット42と歯状部143とで軸方向の寸法が同一である場合、磁石ユニット42の1極分の周方向の幅寸法をWm、歯状部143の周方向の幅寸法をWstとすると、上記式(2)は、式(3)のように置き換えられる。
Wst×m×2×Bs<Wm×Br …(3)
より具体的には、例えばBs=2T、Br=1Tであり、m=2であると想定すると、上記式(3)は、「Wst<Wm/8」の関係となる。この場合、歯状部143の幅寸法Wstを、磁石ユニット42の1極分の幅寸法Wmの1/8よりも小さくすることで、インダクタンスの低減が図られている。なお、数mが1であれば、歯状部143の幅寸法Wstを、磁石ユニット42の1極分の幅寸法Wmの1/4よりも小さくするとよい。
なお、上記式(3)において、「Wst×m×2」は、磁石ユニット42の1極分の範囲において固定子巻線51の通電により励磁される歯状部143の周方向の幅寸法に相当する。
図27の構成では、上述した図25,図26の構成と同様に、回転子40側の磁石磁束に対して不相応に小さい導線間部材(歯状部143)を有する構成となっている。かかる構成では、固定子50のインダクタンス低減が可能となっており、固定子巻線51のスイッチングタイミングのずれに起因する磁束歪みの発生が抑制され、ひいては軸受21,22の電食が抑制される。
(変形例3)
上記実施形態では、固定子巻線51を覆う封止部材57を、固定子コア52の径方向外側において各導線群81を全て含む範囲、すなわち径方向の厚さ寸法が各導線群81の径方向の厚さ寸法よりも大きくなる範囲で設ける構成としたが、これを変更してもよい。例えば、図28に示すように、封止部材57を、導線82の一部がはみ出すように設ける構成とする。より具体的には、封止部材57を、導線群81において最も径方向外側となる導線82の一部を径方向外側、すなわち固定子50側に露出させた状態で設ける構成とする。この場合、封止部材57の径方向の厚さ寸法は、各導線群81の径方向の厚さ寸法と同じ、又はその厚さ寸法よりも小さいとよい。
(変形例4)
図29に示すように、固定子50において、各導線群81が封止部材57により封止されていない構成としてもよい。つまり、固定子巻線51を覆う封止部材57を用いない構成とする。この場合、周方向に並ぶ各導線群81の間に導線間部材が設けられず空隙となっている。要するに、周方向に並ぶ各導線群81の間に導線間部材が設けられていない構成となっている。なお、空気を非磁性体、又は非磁性体の均等物としてBs=0と看做し、この空隙に空気を配置しても良い。
(変形例5)
固定子50おける導線間部材を非磁性材料により構成する場合に、その非磁性材料として、樹脂以外の材料を用いることも可能である。例えば、オーステナイト系のステンレス鋼であるSUS304を用いる等、金属系の非磁性材料を用いてもよい。
(変形例6)
固定子50が固定子コア52を具備していない構成としてもよい。この場合、固定子50は、図12に示す固定子巻線51により構成されることになる。なお、固定子コア52を具備していない固定子50において、固定子巻線51を封止材により封止する構成としてもよい。又は、固定子50が、軟磁性材からなる固定子コア52に代えて、合成樹脂等の非磁性材からなる円環状の巻線保持部を備える構成であってもよい。
(変形例7)
上記第1実施形態では、回転子40の磁石ユニット42として周方向に並べた複数の磁石91,92を用いる構成としたが、これを変更し、磁石ユニット42として円環状の永久磁石である環状磁石を用いる構成としてもよい。具体的には、図30に示すように、磁石ホルダ41の円筒部43の径方向内側に、環状磁石95が固定されている。環状磁石95には、周方向に極性が交互となる複数の磁極が設けられており、d軸及びq軸のいずれにおいても一体的に磁石が形成されている。環状磁石95には、各磁極のd軸において配向の向きが径方向となり、各磁極間のq軸において配向の向きが周方向となるような円弧状の磁石磁路が形成されている。
なお、環状磁石95では、d軸寄りの部分において磁化容易軸がd軸に平行又はd軸に平行に近い向きとなり、かつq軸寄りの部分において磁化容易軸がq軸に直交又はq軸に直交に近い向きとなる円弧状の磁石磁路が形成されるように配向がなされていればよい。
(変形例8)
本変形例では、制御装置110の制御手法の一部を変更している。本変形例では、主に、第1実施形態で説明した構成に対する相違部分について説明する。
まず、図31を用いて、図20に示した操作信号生成部116,126及び図21に示した操作信号生成部130a,130b内の処理について説明する。なお、各操作信号生成部116,126,130a,130bにおける処理は基本的には同様である。このため、以下では、操作信号生成部116の処理を例にして説明する。
操作信号生成部116は、キャリア生成部116aと、U,V,W相比較器116bU,116bV,116bWとを備えている。本実施形態において、キャリア生成部116aは、キャリア信号SigCとして三角波信号を生成して出力する。
U,V,W相比較器116bU,116bV,116bWには、キャリア生成部116aより生成されたキャリア信号SigCと、3相変換部115により算出されたU,V,W相指令電圧とが入力される。U,V,W相指令電圧は、例えば正弦波状の波形であり、電気角で位相が120°ずつずれている。
U,V,W相比較器116bU,116bV,116bWは、U,V,W相指令電圧とキャリア信号SigCとの大小比較に基づくPWM(PWM:pulse width modulation)制御により、第1インバータ101におけるU,V,W相の上アーム及び下アームの各スイッチSp,Snの操作信号を生成する。具体的には、操作信号生成部116は、U,V,W相指令電圧を電源電圧で規格化した信号と、キャリア信号との大小比較に基づくPWM制御により、U,V,W相の各スイッチSp,Snの操作信号を生成する。ドライバ117は、操作信号生成部116により生成された操作信号に基づいて、第1インバータ101におけるU,V,W相の各スイッチSp,Snをオンオフさせる。
制御装置110は、キャリア信号SigCのキャリア周波数fc、すなわち各スイッチSp,Snのスイッチング周波数を変更する処理を行う。キャリア周波数fcは、回転電機10の低トルク領域又は高回転領域において高く設定され、回転電機10の高トルク領域において低く設定される。この設定は、各相巻線に流れる電流の制御性の低下を抑制するためになされる。
つまり、固定子50のコアレス化に伴い、固定子50におけるインダクタンスの低減を図ることができる。ここで、インダクタンスが低くなると、回転電機10の電気的時定数が小さくなる。その結果、各相巻線に流れる電流のリップルが増加して巻線に流れる電流の制御性が低下し、電流制御が発散する懸念がある。この制御性低下の影響は、巻線に流れる電流(例えば、電流の実効値)が高電流領域に含まれる場合よりも低電流領域に含まれる場合に顕著となり得る。この問題に対処すべく、本変形例において、制御装置110はキャリア周波数fcを変更する。
図32を用いて、キャリア周波数fcを変更する処理について説明する。この処理は、操作信号生成部116の処理として、制御装置110により、例えば所定の制御周期で繰り返し実行される。
ステップS10では、各相の巻線51aに流れる電流が低電流領域に含まれているか否かを判定する。この処理は、回転電機10の現在のトルクが低トルク領域であることを判定するための処理である。低電流領域に含まれているか否かの判定手法としては、例えば、以下の第1,第2の方法が挙げられる。
<第1の方法>
dq変換部112により変換されたd軸電流とq軸電流とに基づいて、回転電機10のトルク推定値を算出する。そして、算出したトルク推定値がトルク閾値未満であると判定した場合、巻線51aに流れる電流が低電流領域に含まれていると判定し、トルク推定値がトルク閾値以上であると判定した場合、高電流領域に含まれていると判定する。ここで、トルク閾値は、例えば、回転電機10の起動トルク(拘束トルクともいう)の1/2に設定されていればよい。
<第2の方法>
角度検出器により検出された回転子40の回転角度が速度閾値以上であると判定した場合、巻線51aに流れる電流が低電流領域に含まれている、すなわち高回転領域であると判定する。ここで、速度閾値は、例えば、回転電機10の最大トルクがトルク閾値となる場合の回転速度に設定されていればよい。
ステップS10において否定判定した場合には、高電流領域であると判定し、ステップS11に進む。ステップS11では、キャリア周波数fcを第1周波数fLに設定する。
ステップS10において肯定判定した場合には、ステップS12に進み、キャリア周波数fcを、第1周波数fLよりも高い第2周波数fHに設定する。
以上説明した本変形例によれば、各相巻線に流れる電流が高電流領域に含まれる場合よりも低電流領域に含まれる場合においてキャリア周波数fcが高く設定される。このため、低電流領域において、スイッチSp,Snのスイッチング周波数を高くすることができ、電流リップルの増加を抑制することができる。これにより、電流制御性の低下を抑制することができる。
一方、各相巻線に流れる電流が高電流領域に含まれる場合、低電流領域に含まれる場合よりもキャリア周波数fcが低く設定される。高電流領域においては、低電流領域よりも巻線に流れる電流の振幅が大きいため、インダクタンスが低くなったことに起因する電流リップルの増加が、電流制御性に及ぼす影響が小さい。このため、高電流領域においては、低電流領域よりもキャリア周波数fcを低く設定することができ、各インバータ101,102のスイッチング損失を低減することができる。
本変形例においては、以下に示す形態の実施が可能である。
・キャリア周波数fcが第1周波数fLに設定されている場合において、図32のステップS10において肯定判定されたとき、キャリア周波数fcを、第1周波数fLから第2周波数fHに向かって徐変させてもよい。
また、キャリア周波数fcが第2周波数fHに設定されている場合において、ステップS10において否定判定されたとき、キャリア周波数fcを、第2周波数fHから第1周波数fLに向かって徐変させてもよい。
・PWM制御に代えて、空間ベクトル変調(SVM:space vector modulation)制御によりスイッチの操作信号が生成されてもよい。この場合であっても、上述したスイッチング周波数の変更を適用することができる。
(変形例9)
上記各実施形態では、導線群81を構成する各相2対ずつの導線が、図33(a)に示すように並列接続されていた。図33(a)は、2対の導線である第1,第2導線88a,88bの電気的接続を示す図である。ここで、図33(a)に示す構成に代えて、図33(b)に示すように、第1,第2導線88a,88bが直列接続されていてもよい。
また、3対以上の多層導線が径方向に積層配置されていてもよい。図34に、4対の導線である第1~第4導線88a~88dが積層配置されている構成を示す。第1~第4導線88a~88dは、固定子コア52に近い方から、第1,第2,第3,第4導線88a,88b,88c,88dの順に径方向に並んで配置されている。
ここで、図33(c)に示すように、第3,第4導線88c,88dが並列接続されるとともに、この並列接続体の一端に第1導線88aが接続され、他端に第2導線88bが接続されていてもよい。並列接続にすると、その並列接続された導線の電流密度を低下させることができ、通電時の発熱を抑制できる。そのため、冷却水通路74が形成されたハウジング(ユニットベース61)に筒状の固定子巻線を組み付ける構成において、並列接続されていない第1,第2導線88a,88bがユニットベース61に当接する固定子コア52側に配置され、並列接続された第3,第4導線88c,88dが反固定子コア側に配置されている構成とする。これにより、多層導線構造における各導線88a~88dの冷却性能を均等化することができる。
なお、第1~第4導線88a~88dからなる導線群81の径方向の厚さ寸法は、1磁極内における1相分の周方向の幅寸法よりも小さいものとされていればよい。
(変形例10)
回転電機10をインナロータ構造(内転構造)としてもよい。この場合、例えばハウジング30内において、径方向外側に固定子50が設けられ、その径方向内側に回転子40が設けられるとよい。また、固定子50及び回転子40の軸方向両端のうちその一方の側又はその両方の側にインバータユニット60が設けられているとよい。図35は、回転子40及び固定子50の横断面図であり、図36は、図35に示す回転子40及び固定子50の一部を拡大して示す図である。
インナロータ構造を前提とする図35及び図36の構成は、アウタロータ構造を前提とする図8及び図9の構成に対して、回転子40及び固定子50が径方向内外で逆になっていることを除いて、同様の構成となっている。簡単に説明すると、固定子50は、扁平導線構造の固定子巻線51と、ティースを持たない固定子コア52とを有している。固定子巻線51は、固定子コア52の径方向内側に組み付けられている。固定子コア52は、アウタロータ構造の場合と同様に、以下のいずれかの構成を有する。
(A)固定子50において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石ユニットの周方向の幅寸法をWm、磁石ユニットの残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子50において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子50において、周方向における各導線部の間に導線間部材を設けていない構成となっている。
また、磁石ユニット42の各磁石91,92についても同様である。つまり、磁石ユニット42は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされた磁石91,92を用いて構成されている。各磁石91,92における磁化方向等の詳細は既述のとおりである。磁石ユニット42において環状磁石95(図30参照)を用いることも可能である。
図37は、インナロータ型とした場合における回転電機10の縦断面図であり、これは既述の図2に対応する図面である。図2の構成との相違点を簡単に説明する。図37において、ハウジング30の内側には、環状の固定子50が固定され、その固定子50の内側には、所定のエアギャップを挟んで回転子40が回転可能に設けられている。図2と同様に、各軸受21,22は、回転子40の軸方向中央に対して軸方向のいずれか一方側に偏って配置されており、これにより、回転子40が片持ち支持されている。また、回転子40の磁石ホルダ41の内側に、インバータユニット60が設けられている。
図38には、インナロータ構造の回転電機10として別の構成を示す。図38において、ハウジング30には、軸受21,22により回転軸11が回転可能に支持されており、その回転軸11に対して回転子40が固定されている。図2等に示す構成と同様に、各軸受21,22は、回転子40の軸方向中央に対して軸方向のいずれか一方側に偏って配置されている。回転子40は、磁石ホルダ41と磁石ユニット42とを有している。
図38の回転電機10では、図37の回転電機10との相違点として、回転子40の径方向内側にインバータユニット60が設けられていない構成となっている。磁石ホルダ41は、磁石ユニット42の径方向内側となる位置で回転軸11に連結されている。また、固定子50は、固定子巻線51と固定子コア52とを有しており、ハウジング30に対して取り付けられている。
(変形例11)
インナロータ構造の回転電機として別の構成を以下に説明する。図39は、回転電機200の分解斜視図であり、図40は、回転電機200の側面断面図である。なおここでは、図39及び図40の状態を基準に上下方向を示すこととしている。
図39及び図40に示すように、回転電機200は、環状の固定子コア201及び多相の固定子巻線202を有する固定子203と、固定子コア201の内側に回転自在に配設される回転子204とを備えている。固定子203が電機子に相当し、回転子204が界磁子に相当する。固定子コア201は、多数の珪素鋼板が積層されて構成されており、その固定子コア201に対して固定子巻線202が取り付けられている。図示は省略するが、回転子204は、回転子コアと、磁石ユニットとして複数の永久磁石とを有している。回転子コアには、円周方向に等間隔で複数の磁石挿入孔が設けられている。磁石挿入孔のそれぞれには、隣接する磁極毎に交互に磁化方向が変わるように磁化された永久磁石が装着されている。なお、磁石ユニットの永久磁石は、図23で説明したようなハルバッハ配列又はそれに類する構成を有するものであるとよい。又は、磁石ユニットの永久磁石は、図9や図30で説明したような磁極中心であるd軸と磁極境界であるq軸との間において配向方向(磁化方向)が円弧状に延びている極異方性の特性を備えるものであるとよい。
ここで、固定子203は、以下のいずれかの構成であるとよい。
(A)固定子203において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石ユニットの周方向の幅寸法をWm、磁石ユニットの残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子203において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子203において、周方向における各導線部の間に導線間部材を設けていない構成となっている。
また、回転子204において、磁石ユニットは、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされた複数の磁石を用いて構成されている。
回転電機200の軸方向の一端側には、環状のインバータケース211が設けられている。インバータケース211は、ケース下面が固定子コア201の上面に接するように配置されている。インバータケース211内には、インバータ回路を構成する複数のパワーモジュール212と、半導体スイッチング素子のスイッチング動作により生じる電圧・電流の脈動(リップル)を抑制する平滑コンデンサ213と、制御部を有する制御基板214と、相電流を検出する電流センサ215と、回転子204の回転数センサであるレゾルバステータ216とが設けられている。パワーモジュール212は、半導体スイッチング素子であるIGBTやダイオードを有している。
インバータケース211の周縁には、車両に搭載されるバッテリの直流回路と接続されるパワーコネクタ217と、回転電機200側と車両側制御装置との間で各種信号の受け渡しに用いられる信号コネクタ218とが設けられている。インバータケース211はトップカバー219で覆われている。車載バッテリからの直流電力は、パワーコネクタ217を介して入力され、パワーモジュール212のスイッチングにより交流に変換されて各相の固定子巻線202に送られる。
固定子コア201の軸方向両側のうちインバータケース211の反対側には、回転子204の回転軸を回転可能に保持する軸受ユニット221と、その軸受ユニット221を収容する環状のリアケース222とが設けられている。軸受ユニット221は、例えば2つ一組の軸受を有しており、回転子204の軸方向中央に対して軸方向のいずれか一方側に偏って配置されている。ただし、軸受ユニット221における複数の軸受を固定子コア201の軸方向両側に分散させて設け、それら各軸受により回転軸を両持ち支持する構成であってもよい。リアケース222が車両のギアケースや変速機などの取付部にボルト締結して固定されることで、回転電機200が車両側に取り付けられるようになっている。
インバータケース211内には、冷媒を流すための冷却流路211aが形成されている。冷却流路211aは、インバータケース211の下面から環状に凹設された空間を固定子コア201の上面で閉塞して形成されている。冷却流路211aは、固定子巻線202のコイルエンドを囲むように形成されている。冷却流路211a内には、パワーモジュール212のモジュールケース212aが挿入されている。リアケース222にも、固定子巻線202のコイルエンドを囲むように冷却流路222aが形成されている。冷却流路222aは、リアケース222の上面から環状に凹設された空間を固定子コア201の下面で閉塞して形成されている。
(変形例12)
これまでは、回転界磁形の回転電機にて具体化した構成を説明したが、これを変更し、回転電機子形の回転電機にて具体化することも可能である。図41に、回転電機子形の回転電機230の構成を示す。
図41の回転電機230において、ハウジング231a,231bにはそれぞれ軸受232が固定され、その軸受232により回転軸233が回転自在に支持されている。軸受232は、例えば多孔質金属に油を含ませてなる含油軸受である。回転軸233には、電機子としての回転子234が固定されている。回転子234は、回転子コア235とその外周部に固定された多相の回転子巻線236とを有している。回転子234において、回転子コア235はスロットレス構造を有し、回転子巻線236は扁平導線構造を有している。つまり、回転子巻線236は、1相ごとの領域が径方向よりも周方向に長い扁平構造となっている。
また、回転子234の径方向外側には、界磁子としての固定子237が設けられている。固定子237は、ハウジング231aに固定された固定子コア238と、その固定子コア238の内周側に固定された磁石ユニット239とを有している。磁石ユニット239は、周方向に極性が交互となる複数の磁極を含む構成となっており、既述した磁石ユニット42等と同様に、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされて構成されている。磁石ユニット239は、配向が行われた焼結ネオジム磁石を有しており、その固有保磁力は400[kA/m]以上、かつ残留磁束密度は1.0[T]以上となっている。
本例の回転電機230は、2極3コイルのブラシ付コアレスモータであり、回転子巻線236は3つに分割され、磁石ユニット239は2極である。ブラシ付きモータの極数とコイル数は、2:3、4:10、4:21などその用途に応じて様々である。
回転軸233にはコミュテータ241が固定されており、その径方向外側には複数のブラシ242が配置されている。コミュテータ241は、回転軸233に埋め込まれた導線243を介して回転子巻線236に電気接続されている。これらコミュテータ241、ブラシ242、導線243を通じて、回転子巻線236に対する直流電流の流入及び流出が行われる。コミュテータ241は、回転子巻線236の相数に応じて周方向に適宜分割されて構成されている。なお、ブラシ242は、そのまま電気配線を介して蓄電池などの直流電源に接続されていてもよいし、端子台などを介して直流電源に接続されていてもよい。
回転軸233には、軸受232とコミュテータ241との間に、シール材としての樹脂ワッシャ244が設けられている。樹脂ワッシャ244により、含油軸受である軸受232からしみ出た油がコミュテータ241側に流れ出ることが抑制される。
(変形例13)
回転電機10の固定子巻線51において、各導線82を、内外に複数の絶縁被膜を有する構成としてもよい。例えば、絶縁被膜付きの複数の導線(素線)を1本に束ね、それを外層被膜により覆って導線82を構成するとよい。この場合、素線の絶縁被膜が内側の絶縁被膜を構成し、外層被膜が外側の絶縁被膜を構成する。また特に、導線82における複数の絶縁被膜のうち外側の絶縁被膜の絶縁能力を、内側の絶縁被膜の絶縁能力よりも高めておくとよい。具体的には、外側の絶縁被膜の厚さを、内側の絶縁被膜の厚さよりも厚くする。例えば、外側の絶縁被膜の厚さを100μm、内側の絶縁被膜の厚さを40μmとする。又は、外側の絶縁被膜として、内側の絶縁被膜よりも誘電率の低い材料を用いるとよい。これらは少なくともいずれかが適用されればよい。なお、素線が、複数の導電材の集合体として構成されているとよい。
上記のとおり導線82における最外層の絶縁を強くすることにより、高電圧の車両用システムに用いる場合に好適なものとなる。また、気圧の低い高地などでも、回転電機10の適正な駆動が可能となる。
(変形例14)
内外に複数の絶縁被膜を有する導線82において、外側の絶縁被膜と内側の絶縁被膜とで、線膨張率(線膨張係数)及び接着強さの少なくともいずれかが異なる構成としてもよい。本変形例における導線82の構成を図42に示す。
図42において、導線82は、複数(図では4本)の素線181と、その複数の素線181を囲む例えば樹脂製の外層被膜182(外側絶縁被膜)と、外層被膜182内において各素線181の周りに充填された中間層183(中間絶縁被膜)とを有している。素線181は、銅材よりなる導電部181aと、絶縁材料よりなる導体被膜181b(内側絶縁被膜)とを有している。固定子巻線として見れば、外層被膜182により相間が絶縁される。なお、素線181が、複数の導電材の集合体として構成されているとよい。
中間層183は、素線181の導体被膜181bよりも高い線膨張率を有し、かつ外層被膜182よりも低い線膨張率を有している。つまり、導線82では、外側ほど線膨張率が高くなっている。一般的に、外層被膜182では導体被膜181bよりも線膨張係数が高いが、それらの間にその中間の線膨張率を有する中間層183を設けることにより、その中間層183がクッション材として機能し、外層側及び内層側での同時割れを防ぐことができる。
また、導線82では、素線181において導電部181aと導体被膜181bとが接着されるとともに、導体被膜181bと中間層183、中間層183と外層被膜182がそれぞれ接着されており、それら各接着部分では、導線82の外側ほど、接着強さが弱くなっている。つまり、導電部181a及び導体被膜181bの接着強さは、導体被膜181b及び中間層183の接着強さ、中間層183及び外層被膜182の接着強さよりも弱くなっている。また、導体被膜181b及び中間層183の接着強さと、中間層183及び外層被膜182の接着強さとを比較すると、後者の方(外側の方)が弱いか、又は同等であるとよい。なお、各被膜同士の接着強さの大きさは、例えば2層の被膜を引き剥がす際に要する引っ張り強さ等により把握可能である。上記のごとく導線82の接着強さが設定されていることで、発熱又は冷却による内外温度差が生じても、内層側及び外層側で共に割れが生じること(共割れ)を抑制することができる。
ここで、回転電機の発熱、温度変化は、主に素線181の導電部181aから発熱される銅損と、鉄心内から発せられる鉄損として生じるが、それら2種類の損失は、導線82内の導電部181a、又は導線82の外部より伝わるものであり、中間層183に発熱源があるわけではない。この場合、中間層183が両方に対してクッションとなり得る接着力を持つことで、その同時割れを防ぐことができる。したがって、車両用途など、高耐圧又は温度変化の大きい分野での使用に際しても、好適なる使用が可能となる。
以下に補足する。素線181は、例えばエナメル線であってもよく、かかる場合にはPA、PI、PAI等の樹脂被膜層(導体被膜181b)を有する。また、素線181より外側の外層被膜182は、同様のPA、PI、PAI等よりなり、かつ厚みが厚いものであることが望ましい。これにより、線膨張率差による被膜の破壊が抑えられる。なお、外層被膜182としては、PA、PI、PAI等の前記材料を厚くして対応するものとは別に、PPS、PEEK、フッ素、ポリカーボネート、シリコン、エポキシ、ポリエチレンナフタレート、LCPといった、誘電率がPI、PAIよりも小さいものを使うことも回転機の導体密度を高めるためには望ましい。これらの樹脂であれば、導体被膜181b同等のPI,PAI被膜よりも薄いか、導体被膜181bと同等の厚みであっても、その絶縁能力を高くすることができ、これにより導電部の占有率を高めることが可能となる。一般的には、上記樹脂は、誘電率がエナメル線の絶縁被膜より良好な絶縁を有している。当然、成形状態や、混ぜ物によって、その誘電率を悪くする例も存在する。中でも、PPS、PEEKは、その線膨張係数がエナメル被膜より一般的には大きいが、他樹脂よりも小さいため、第2層の外層被膜として適するのである。
また、素線181の外側における2種類の被膜(中間絶縁被膜、外側絶縁被膜)と素線181のエナメル被膜との接着強さは、素線181における銅線とエナメル被膜との間の接着強さよりも弱いことが望ましい。これにより、エナメル被膜と前記2種類の被膜とが一度に破壊される現象が抑制される。
固定子に水冷構造、液冷構造、空冷構造が付加されている場合には、基本的に、外層被膜182から先に熱応力や衝撃応力が掛かると考えられる。しかし、素線181の絶縁層と、前記2種類の被膜とが違う樹脂の場合でも、その被膜を接着しない部位を設けることにより、前記熱応力や衝撃応力を低減することができる。すなわち、素線(エナメル線)と空隙を設け、フッ素、ポリカーボネート、シリコン、エポキシ、ポリエチレンナフタレート、LCPを配置することで前記絶縁構造がなされる。この場合、エポキシなどからなる低誘電率で、かつ低線膨張係数からなる接着材を用いて、外層被膜と内層被膜とを接着することが望ましい。こうすることで、機械的強度だけでなく、導電部の振動による揺れなどによる摩擦による被膜破壊、または線膨張係数差による外層被膜の破壊を抑えることができる。
上記構成の導線82に対しての、機械的強度、固定等を担う、一般的には固定子巻線周りの最終工程となる最外層固定としては、エポキシ、PPS、PEEK、LCPなどの成形性が良く、誘電率、線膨張係数といった性質がエナメル被膜と近い性質をもった樹脂が好ましい。
一般的には、ウレタン、シリコンによる樹脂ポッティングが通例なされるが、前記樹脂においてはその線膨張係数がその他の樹脂と比べて倍近い差があり、樹脂をせん断し得る熱応力を発生する。そのため、厳しい絶縁規定が国際的に用いられる60V以上の用途には不適である。この点、エポキシ、PPS、PEEK、LCPなどにより射出成型等により容易に作られる最終絶縁工程によれば、上述の各要件を達成することが可能である。
上記以外の変形例を以下に列記する。
・磁石ユニット42のうち径方向において電機子側の面と、回転子の軸心との径方向における距離DMが50mm以上とされていてもよい。具体的には、例えば、図4に示す磁石ユニット42(具体的には、第1,第2磁石91,92)のうち径方向内側の面と、回転子40の軸心との径方向における距離DMが50mm以上とされていてもよい。
スロットレス構造の回転電機としては、その出力が数十Wから数百W級の模型用などに使用される小規模なものが知られている。そして、一般的には10kWを超すような工業用の大型の回転電機でスロットレス構造が採用された事例を本願発明者は把握していない。その理由について本願発明者は検討した。
近年主流の回転電機は、次の4種類に大別される。それら回転電機とは、ブラシ付きモータ、カゴ型誘導モータ、永久磁石式同期モータ及びリラクタンスモータである。
ブラシ付きモータには、ブラシを介して励磁電流が供給される。このため、大型機のブラシ付きモータの場合、ブラシが大型化したり、メンテナンスが煩雑になったりしたりする。これにより、半導体技術の目覚ましい発達に伴い、誘導モータ等のブラシレスモータに置換されてきた経緯がある。一方、小型モータの世界では、低い慣性及び経済性の利点から、コアレスモータも多数世の中に供給されている。
カゴ型誘導モータでは、1次側の固定子巻線で発生させる磁界を2次側の回転子の鉄心で受けてカゴ型導体に集中的に誘導電流を流して反作用磁界を形成することにより、トルクを発生させる原理である。このため、機器の小型高効率の観点からすれば、固定子側及び回転子側ともに鉄心をなくすことは必ずしも得策であるとは言えない。
リラクタンスモータは、当に鉄心のリラクタンス変化を活用するモータであり、原理的に鉄心をなくすことは望ましくない。
永久磁石式同期モータでは、近年IPM(つまり埋め込み磁石型回転子)が主流であり、特に大型機においては、特殊事情がない限りIPMである場合が多い。
IPMは、磁石トルク及びリラクタンストルクを併せ持つ特性を有しており、インバータ制御により、それらトルクの割合が適時調整されながら運転される。このため、IPMは小型で制御性に優れるモータである。
本願発明者の分析により、磁石トルク及びリラクタンストルクを発生する回転子表面のトルクを、磁石ユニットのうち径方向において電機子側の面と、回転子の軸心との径方向における距離DM、すなわち、一般的なインナロータの固定子鉄心の半径を横軸にとって描くと図43に示すものとなる。
磁石トルクは、下式(eq1)に示すように、永久磁石の発生する磁界強度によりそのポテンシャルが決定されるのに対し、リラクタンストルクは、下式(eq2)に示すように、インダクタンス、特にq軸インダクタンスの大きさがそのポテンシャルを決定する。
磁石トルク=k・Ψ・Iq ・・・・・・・(eq1)
リラクタンストルク=k・(Lq-Ld)・Iq・Id ・・・・・(eq2)
ここで、永久磁石の磁界強度と巻線のインダクタンスの大きさとをDMで比較してみた。永久磁石の発する磁界強度、すなわち磁束量Ψは、固定子と対向する面の永久磁石の総面積に比例する。円筒型の回転子であれば円筒の表面積になる。厳密には、N極とS極とが存在するので、円筒表面の半分の専有面積に比例する。円筒の表面積は、円筒の半径と、円筒長さとに比例する。つまり、円筒長さが一定であれば、円筒の半径に比例する。
一方、巻線のインダクタンスLqは、鉄心形状に依存はするものの感度は低く、むしろ固定子巻線の巻数の2乗に比例するため、巻数の依存性が高い。なお、μを磁気回路の透磁率、Nを巻数、Sを磁気回路の断面積、δを磁気回路の有効長さとする場合、インダクタンスL=μ・N^2×S/δである。巻線の巻数は、巻線スペースの大きさに依存するため、円筒型モータであれば、固定子の巻線スペース、すなわちスロット面積に依存することになる。図44に示すように、スロット面積は、スロットの形状が略四角形であるため、周方向の長さ寸法a及び径方向の長さ寸法bとの積a×bに比例する。
スロットの周方向の長さ寸法は、円筒の直径が大きいほど大きくなるため、円筒の直径に比例する。スロットの径方向の長さ寸法は、当に円筒の直径に比例する。つまり、スロット面積は、円筒の直径の2乗に比例する。また、上式(eq2)からも分かる通り、リラクタンストルクは、固定子電流の2乗に比例するため、いかに大電流を流せるかで回転電機の性能が決まり、その性能は固定子のスロット面積に依存する。以上より、円筒の長さが一定なら、リラクタンストルクは円筒の直径の2乗に比例する。このことを踏まえ、磁石トルク及びリラクタンストルクとDMとの関係性をプロットした図が図43である。
図43に示すように、磁石トルクはDMに対して直線的に増加し、リラクタンストルクはDMに対して2次関数的に増加する。DMが比較的小さい場合は磁石トルクが支配的であり、固定子鉄心半径が大きくなるに連れてリラクタンストルクが支配的であることがわかる。本願発明者は、図43における磁石トルク及びリラクタンストルクの交点が、所定の条件下において、おおよそ固定子鉄心半径=50mmの近傍であるとの結論に至った。つまり、固定子鉄心半径が50mmを十分に超えるような10kW級のモータでは、リラクタンストルクを活用することが現在の主流であるため鉄心を無くすことは困難であり、このことが大型機の分野においてスロットレス構造が採用されない理由の1つであると推定される。
固定子に鉄心が使用される回転電機の場合、鉄心の磁気飽和が常に課題となる。特にラジアルギャップ型の回転電機では、回転軸の縦断面形状は1磁極当たり扇型となり、機器内周側程磁路幅が狭くなりスロットを形成するティース部分の内周側寸法が回転電機の性能限界を決める。いかに高性能な永久磁石を使おうとも、この部分で磁気飽和が発生すると、永久磁石の性能を十分にひきだすことができない。この部分で磁気飽和を発生させないためには、内周径を大きく設計することになり結果的に機器の大型化に至ってしまうのである。
例えば、分布巻の回転電機では、3相巻線であれば、1磁極あたり3つ乃至6つのティースで分担して磁束を流すのだが、周方向前方のティースに磁束が集中しがちであるため、3つ乃至6つのティースに均等に磁束が流れるわけではない。この場合、一部(例えば1つ又は2つ)のティースに集中的に磁束が流れながら、回転子の回転に伴って磁気飽和するティースも周方向に移動してゆく。これがスロットリップルを生む要因にもなる。
以上から、DMが50mm以上となるスロットレス構造の回転電機において、磁気飽和を解消するために、ティースを廃止したい。しかし、ティースが廃止されると、回転子及び固定子における磁気回路の磁気抵抗が増加し、回転電機のトルクが低下してしまう。磁気抵抗増加の理由としては、例えば、回転子と固定子との間のエアギャップが大きくなることがある。このため、上述したDMが50mm以上となるスロットレス構造の回転電機において、トルクを増強することについて改善の余地がある。したがって、上述したDMが50mm以上となるスロットレス構造の回転電機に、上述したトルクを増強できる構成を適用するメリットが大きい。
なお、アウタロータ構造の回転電機に限らず、インナロータ構造の回転電機についても、磁石ユニットのうち径方向において電機子側の面と、回転子の軸心との径方向における距離DMが50mm以上とされていてもよい。
・回転電機10の固定子巻線51において、導線82の直線部83を径方向に単層で設ける構成としてもよい。また、径方向内外に複数層で直線部83を配置する場合に、その層数は任意でよく、3層、4層、5層、6層等で設けてもよい。
・例えば図2の構成では、回転軸11を、軸方向で回転電機10の一端側及び他端側の両方に突出するように設けたが、これを変更し、一端側にのみ突出する構成としてもよい。この場合、回転軸11は、軸受ユニット20により片持ち支持される部分を端部とし、その軸方向外側に延びるように設けられるとよい。本構成では、インバータユニット60の内部に回転軸11が突出しない構成となるため、インバータユニット60の内部空間、詳しくは筒状部71の内部空間をより広く用いることができることとなる。
・上記構成の回転電機10では、軸受21,22において非導電性グリースを用いる構成としたが、これを変更し、軸受21,22において導電性グリースを用いる構成としてもよい。例えば、金属粒子やカーボン粒子等が含まれた導電性グリースを用いる構成とする。
・回転軸11を回転自在に支持する構成として、回転子40の軸方向一端側及び他端側の2カ所に軸受を設ける構成としてもよい。この場合、図1の構成で言えば、インバータユニット60を挟んで一端側及び他端側の2カ所に軸受が設けられるとよい。
・上記構成の回転電機10では、回転子40において磁石ホルダ41の中間部45が内側肩部49aと感情の外側肩部49bを有する構成としたが、これらの肩部49a,49bを無くし、平坦な面を有する構成としてもよい。
・上記構成の回転電機10では、固定子巻線51の導線82において導体82aを複数の素線86の集合体として構成したが、これを変更し、導線82として断面矩形状の角形導線を用いる構成としてもよい。また、導線82として断面円形状又は断面楕円状の丸形導線を用いる構成としてもよい。
・上記構成の回転電機10では、固定子50の径方向内側にインバータユニット60を設ける構成としたが、これに代えて、固定子50の径方向内側にインバータユニット60を設けない構成としてもよい。この場合、固定子50の径方向内側となる内部領域を空間としておくことが可能である。また、その内部領域に、インバータユニット60とは異なる部品を配することが可能である。
・上記構成の回転電機10において、ハウジング30を具備しない構成としてもよい。この場合、例えばホイールや他の車両部品の一部において、回転子40、固定子50等が保持される構成であってもよい。
(車両用インホイールモータとしての実施形態)
次に、回転電機を、車両の車輪に一体にインホイールモータとして設けた実施形態について説明する。図45は、インホイールモータ構造の車輪400及びその周辺構造を示す斜視図であり、図46は、車輪400及びその周辺構造の縦断面図であり、図47は、車輪400の分解斜視図である。これら各図は、いずれも車輪400を車両内側から見た斜視図である。なお、車両においては、本実施形態のインホイールモータ構造を種々の形態で適用することが可能であり、例えば車両前後にそれぞれ2つの車輪を有する車両では、車両前側の2輪、車両後側の2輪、又は車両前後の4輪に本実施形態のインホイールモータ構造を適用することが可能である。ただし、車両前後の少なくとも一方が1輪である車両への適用も可能である。なお、インホイールモータは、車両用駆動ユニットとしての適用例である。
図45~図47に示すように、車輪400は、例えば周知の空気入りタイヤであるタイヤ401と、タイヤ401の内周側に固定されたホイール402と、ホイール402の内周側に固定された回転電機500とを備えている。回転電機500は、固定子(ステータ)を含む部分である固定部と、回転子(ロータ)を含む部分である回転部とを有し、固定部が車体側に固定されるとともに、回転部がホイール402に固定されており、回転部の回転によりタイヤ401及びホイール402が回転する。なお、回転電機500において固定部及び回転部を含む詳細な構成は後述する。
また、車輪400には、周辺装置として、不図示の車体に対して車輪400を保持するサスペンション装置と、車輪400の向きを可変とするステアリング装置と、車輪400の制動を行うブレーキ装置とが取り付けられている。
サスペンション装置は、独立懸架式サスペンションであり、例えばトレーリングアーム式、ストラット式、ウィッシュボーン式、マルチリンク式など任意の形式の適用が可能である。本実施形態では、サスペンション装置として、車体中央側に延びる向きでロアアーム411が設けられるとともに、上下方向に延びる向きでサスペンションアーム412及びスプリング413が設けられている。サスペンションアーム412は、例えばショックアブソーバとして構成されているとよい。ただしその詳細な図示は省略する。ロアアーム411及びサスペンションアーム412はそれぞれ、車体側に接続されるとともに、回転電機500の固定部に固定された円板状のベースプレート405に接続されている。図46に示すように、回転電機500側(ベースプレート405側)には、ロアアーム411及びサスペンションアーム412が支持軸414,415により互いに同軸の状態で支持されている。
また、ステアリング装置としては、例えばラック&ピニオン式構造、ボール&ナット式構造の適用や、油圧式パワーステアリングシステム、電動式パワーステアリングシステムの適用が可能である。本実施形態では、ステアリング装置として、ラック装置421とタイロッド422とが設けられており、ラック装置421がタイロッド422を介して回転電機500側のベースプレート405に接続されている。この場合、不図示のステアリングシャフトの回転に伴いラック装置421が作動すると、タイロッド422が車両左右方向に移動する。これにより、車輪400が、ロアアーム411及びサスペンションアーム412の支持軸414,415を中心として回転し、車輪方向が変更される。
ブレーキ装置としては、ディスクブレーキやドラムブレーキの適用が好適である。本実施形態では、ブレーキ装置として、回転電機500の回転軸501に固定されたディスクロータ431と、回転電機500側のベースプレート405に固定されたブレーキキャリパ432とが設けられている。ブレーキキャリパ432ではブレーキパッドが油圧等により作動されるようになっており、ブレーキパッドがディスクロータ431に押し付けられることにより、摩擦による制動力を生じさせて車輪400の回転が停止される。
また、車輪400には、回転電機500から延びる電気配線H1や冷却用配管H2を収容する収容ダクト440が取り付けられている。収容ダクト440は、回転電機500の固定部側の端部から回転電機500の端面に沿って延び、かつサスペンションアーム412を避けるように設けられ、その状態でサスペンションアーム412に固定されている。これにより、サスペンションアーム412における収容ダクト440の接続部位は、ベースプレート405との位置関係が固定されたものとなる。そのため、電気配線H1や冷却用配管H2において車両の振動などに起因して生じるストレスを抑制できるようになっている。なお、電気配線H1は、不図示の車載電源部や車載ECUに接続され、冷却用配管H2は、不図示のラジエータに接続される。
次に、インホイールモータとして用いられる回転電機500の構成を詳細に説明する。本実施形態では、回転電機500をインホイールモータに適用した事例を示している。回転電機500は、従来技術のように減速機を擁した車両駆動ユニットのモータと比べて、優れた動作効率、出力を備える。すなわち、回転電機500を従来技術に比べて、コストダウンにより実用的な価格を実現できるような用途に採用すれば、車両駆動ユニット以外の用途のモータとしても使ってもよい。そのような場合であっても、インホイールモータに適用した場合と同様に、優れた性能を発揮する。なお、動作効率とは、車両の燃費を導出する走行モードでの試験時の際に使われる指標を指す。
回転電機500の概要を図48~図51に示す。図48は、回転電機500を回転軸501の突出側(車両内側)から見た側面図であり、図49は、回転電機500の縦断面図(図48の49-49線断面図)であり、図50は、回転電機500の横断面図(図49の50-50線断面図)であり、図51は、回転電機500の構成要素を分解した分解断面図である。以下の記載では、回転軸501が、図51においては車体の外側方向に延びる方向を軸方向とし、回転軸501から放射状に延びる方向を径方向とし、図48においては回転軸501の中央、言い換えれば回転部分の回転中心、を通る断面49を作るために引いた中心線上の、回転部分の回転中心以外の任意の点より、円周状に延びる2つの方向をいずれも周方向としている。言い換えると、周方向は、断面49上の任意の点を起点とした時計回りの方向、又は反時計回りの方向のいずれの方向であってもよい。また、車両搭載状態からすれば、図49において右側が車両外側であり、左側が車両内側である。言い換えると、同車両搭載状態からすれば、後述する回転子510は、回転子カバー670よりも車体の外側方向に配置される。
本実施形態に係る回転電機500は、アウタロータ式の表面磁石型回転電機である。回転電機500は、大別して、回転子510と、固定子520と、インバータユニット530と、軸受560と、回転子カバー670とを備えている。これら各部材は、いずれも回転子510に一体に設けられた回転軸501に対して同軸に配置され、所定順序で軸方向に組み付けられることで回転電機500が構成されている。
回転電機500において、回転子510及び固定子520はそれぞれ円筒状をなしており、エアギャップを挟んで互いに対向配置されている。回転子510が回転軸501と共に一体回転することにより、固定子520の径方向外側にて回転子510が回転する。回転子510が「界磁子」に相当し、固定子520が「電機子」に相当する。
回転子510は、略円筒状の回転子キャリア511と、その回転子キャリア511に固定された環状の磁石ユニット512とを有している。回転子キャリア511に回転軸501が固定されている。
回転子キャリア511は、円筒部513を有している。円筒部513の内周面には磁石ユニット512が固定されている。つまり、磁石ユニット512は、回転子キャリア511の円筒部513に径方向外側から包囲された状態で設けられている。また、円筒部513は、その軸方向に対向する第1端と第2端とを有している。第1端は、車体の外側の方向に位置し、第2端は、ベースプレート405が存在する方向に位置する。回転子キャリア511において、円筒部513の第1端には端板514が連続して設けられている。すなわち円筒部513と端板514とは一体の構造である。円筒部513の第2端は開放されている。回転子キャリア511は、例えば機械強度が充分な冷間圧延鋼板(SPCCやSPCCより板厚が厚いSPHC)、鍛造用鋼、炭素繊維強化プラスチック(CFRP)などにより形成されている。
回転軸501の軸長は、回転子キャリア511の軸方向の寸法よりも長い。言い換えると、回転軸501は、回転子キャリア511の開放端側(車両内側方向)に突出しており、その突出側の端部に、上述のブレーキ装置等が取り付けられるようになっている。
回転子キャリア511の端板514にはその中央部に貫通孔514aが形成されている。回転軸501は、端板514の貫通孔514aに挿通された状態で、回転子キャリア511に固定されている。回転軸501は、回転子キャリア511が固定される部分に、軸方向に交差(直交)する向きに延びるフランジ502を有しており、そのフランジと端板514の車両外側の面とが面接合されている状態で、回転子キャリア511に対して回転軸501が固定されている。なお、車輪400においては、回転軸501のフランジ502から車両外側方向に立設されたボルト等の締結具を用いてホイール402が固定されるようになっている。
また、磁石ユニット512は、回転子510の周方向に沿って極性が交互に変わるように配置された複数の永久磁石により構成されている。これにより、磁石ユニット512は、周方向に複数の磁極を有する。永久磁石は、例えば接着により回転子キャリア511に固定されている。磁石ユニット512は、第1実施形態の図8,図9において磁石ユニット42として説明した構成を有しており、永久磁石として、固有保磁力が400[kA/m]以上であり、かつ残留磁束密度Brが1.0[T]以上である焼結ネオジム磁石を用いて構成されている。
磁石ユニット512は、図9等の磁石ユニット42と同様に、それぞれ極異方性磁石でありかつ極性が互いに異なる第1磁石91及び第2磁石92を有している。図8及び図9で説明したように、各磁石91,92ではそれぞれ、d軸側(d軸寄りの部分)とq軸側(q軸寄りの部分)とで磁化容易軸の向きが相違しており、d軸側では磁化容易軸の向きがd軸に平行な方向に近い向きとなり、q軸側では磁化容易軸の向きがq軸に直交する方向に近い向きとなっている。そして、この磁化容易軸の向きに応じた配向により円弧状の磁石磁路が形成されている。なお、各磁石91,92において、d軸側では磁化容易軸をd軸に平行な向きとし、q軸側では磁化容易軸をq軸に直交する向きとしてもよい。要するに、磁石ユニット512は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされて構成されている。
各磁石91,92によれば、d軸での磁石磁束が強化され、かつq軸付近での磁束変化が抑えられる。これにより、各磁極においてq軸からd軸にかけての表面磁束変化がなだらかになる磁石91,92を好適に実現できるものとなっている。磁石ユニット512として、図22及び図23に示す磁石ユニット42の構成や、図30に示す磁石ユニット42の構成を用いることも可能である。
なお、磁石ユニット512は、回転子キャリア511の円筒部513の側、すなわち外周面側に、複数の電磁鋼板が軸方向に積層されて構成された回転子コア(バックヨーク)を有していてもよい。つまり、回転子キャリア511の円筒部513の径方向内側に回転子コアを設けるとともに、その回転子コアの径方向内側に永久磁石(磁石91,92)を設ける構成とすることも可能である。
図47に示すように、回転子キャリア511の円筒部513には、周方向の所定間隔にて、軸方向に延びる向きで凹部513aが形成されている。この凹部513aは例えばプレス加工により形成されており、図52に示すように、円筒部513の内周面側には、凹部513aの裏側となる位置に凸部513bが形成されている。一方、磁石ユニット512の外周面側には、円筒部513の凸部513bに合わせて凹部512aが形成されており、その凹部512a内に円筒部513の凸部513bが入り込むことで、磁石ユニット512の周方向の位置ずれが抑制されるようになっている。つまり、回転子キャリア511側の凸部513bは、磁石ユニット512の回り止め部として機能する。なお、凸部513bの形成方法は、プレス加工以外であってもよく任意である。
図52には、磁石ユニット512における磁石磁路の方向が矢印により示されている。磁石磁路は、磁極境界であるq軸を跨ぐようにして円弧状に延び、かつ磁極中心であるd軸では、d軸に平行又は平行に近い向きとなっている。磁石ユニット512には、その内周面側に、q軸に相当する位置ごとに凹部512bが形成されている。この場合、磁石ユニット512では、固定子520に近い側(図の下側)と遠い側(図の上側)とで磁石磁路の長さが異なり、固定子520に近い側の方が磁石磁路長が短くなっており、その磁石磁路長が最短となる位置に凹部512bが形成されている。つまり、磁石ユニット512では磁石磁路長が短い場所において十分な磁石磁束を生じさせることが困難になることを考慮して、その磁石磁束の弱い場所で磁石を削除するようにしている。
ここで、磁石の実効磁束密度Bdは、磁石内部を通る磁気回路の長さが長いほど高くなる。また、パーミアンス係数Pcと磁石の実効磁束密度Bdとは、そのうち一方が高くなると他方が高くなる関係にある。上記図52の構成によれば、磁石の実効磁束密度Bdの高さの指標となるパーミアンス係数Pcの低下を抑制しつつ、磁石量の削減を図ることができる。なお、B-H座標において、磁石の形状に応じたパーミアンス直線と減磁曲線との交点が動作点であり、その動作点の磁束密度が磁石の実効磁束密度Bdである。本実施形態の回転電機500では、固定子520の鉄量を少なくした構成としており、かかる構成においてq軸を跨いだ磁気回路を設定する手法は極めて有効である。
また、磁石ユニット512の凹部512bは、軸方向に延びる空気通路として用いることができる。そのため、空冷性能を高めることも可能となる。
次に、固定子520の構成を説明する。固定子520は、固定子巻線521と固定子コア522とを有している。図53は、固定子巻線521と固定子コア522とを分解して示す斜視図である。
固定子巻線521は、略筒状(環状)に巻回形成された複数の相巻線よりなり、その固定子巻線521の径方向内側にベース部材としての固定子コア522が組み付けられている。本実施形態では、U相、V相及びW相の相巻線を用いることで、固定子巻線521が3相の相巻線として構成されている。各相巻線は、径方向に内外2層の導線523により構成されている。固定子520は、既述の固定子50と同様に、スロットレス構造と固定子巻線521の扁平導線構造とを有することを特徴としており、図8~図16に示された固定子50と同様又は類似の構成を有している。
固定子コア522の構成について説明する。固定子コア522は、既述の固定子コア52と同様に、軸方向に複数の電磁鋼板が積層され、かつ径方向に所定の厚さを有する円筒状をなしており、固定子コア522において回転子510側となる径方向外側に固定子巻線521が組み付けられている。固定子コア522の外周面は凹凸のない曲面状をなしており、固定子巻線521が組み付けられた状態では、固定子コア522の外周面に、固定子巻線521を構成する導線523が周方向に並べて配置されている。固定子コア522はバックコアとして機能する。
固定子520は、以下の(A)~(C)のいずれかを用いたものであるとよい。
(A)固定子520において、周方向における各導線523の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石ユニット512の周方向の幅寸法をWm、磁石ユニット512の残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子520において、周方向における各導線523の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子520において、周方向における各導線523の間に導線間部材を設けていない構成となっている。
こうした固定子520の構成によれば、固定子巻線としての各導線部の間に磁気経路を確立するためのティース(鉄心)が設けられる一般的なティース構造の回転電機に比べて、インダクタンスが低減される。具体的には、インダクタンスを1/10以下にすることが可能となっている。この場合、インダクタンスの低下に伴いインピーダンスが低下することから、回転電機500において入力電力に対する出力電力を大きくし、ひいてはトルク増加に貢献できるものとなっている。また、インピーダンス成分の電圧を利用してトルク出力を行う(言い換えればリラクタンストルクを利用する)埋込み磁石型回転子を用いた回転電機に比べて、大出力の回転電機を提供することが可能となっている。
本実施形態では、固定子巻線521が、固定子コア522と共に樹脂等からなるモールド材(絶縁部材)により一体にモールドされており、周方向に並ぶ各導線523の間には、モールド材が介在する構成となっている。かかる構成からすると、本実施形態の固定子520は、上記(A)~(C)のうち(B)の構成に相当する。また、周方向に隣り合う各導線523は、周方向の端面同士が互いに当接するか、又は微小な間隔を隔てて近接配置されており、この構成から言えば上記(C)の構成であってもよい。なお、上記(A)の構成を採用する場合には、軸方向における導線523の向きに合わせて、すなわち例えばスキュー構造の固定子巻線521であればスキュー角度に合わせて、固定子コア522の外周面に突部が設けられているとよい。
次に、固定子巻線521の構成を、図54を用いて説明する。図54は、固定子巻線521を平面状に展開して示す正面図であり、図54(a)には径方向において外層に位置する各導線523を示し、図54(b)には径方向において内層に位置する各導線523を示す。
固定子巻線521は、分布巻きにより円環状に巻回形成されている。固定子巻線521では、径方向内外2層に導線材が巻回され、かつ内層側及び外層側の各導線523にて互いに異なる方向へのスキューが施されている(図54(a)、図54(b)参照)。各導線523は、それぞれ相互に絶縁されている。導線523は、複数の素線86の集合体として構成されているとよい(図13参照)。また、同相でかつ通電方向を同じとする導線523が、周方向に例えば2本ずつ並べて設けられている。固定子巻線521では、径方向に2層かつ周方向に2本(すなわち計4本)の各導線523により同相の1つの導線部が構成され、その導線部が1磁極内で1つずつ設けられている。
導線部では、その径方向の厚さ寸法を、1磁極内における1相分の周方向の幅寸法よりも小さいものとし、これにより固定子巻線521を扁平導線構造とすることが望ましい。具体的には,例えば、固定子巻線521において、径方向に2層かつ周方向に4本(すなわち計8本)の各導線523により同相の1つの導線部を構成するとよい。又は、図50に示す固定子巻線521の導線断面において、周方向の幅寸法が径方向の厚さ寸法よりも大きくなっているとよい。固定子巻線521として、図12に示す固定子巻線51を用いることも可能である。ただしこの場合には、回転子キャリア511内に固定子巻線のコイルエンドを収容するスペースを確保する必要がある。
固定子巻線521では、固定子コア522に対して径方向内外に重なるコイルサイド525において所定角度で傾斜させて導線523が周方向に並べて配置されるとともに、固定子コア522よりも軸方向外側となる両側のコイルエンド526において軸方向内側への反転(折り返し)が行われて連続結線がなされている。図54(a)には、コイルサイド525となる範囲とコイルエンド526となる範囲とがそれぞれ示されている。内層側の導線523と外層側の導線523とはコイルエンド526にて互いに接続されており、これにより、コイルエンド526で導線523が軸方向に反転される都度(折り返される都度)、導線523が内層側と外層側とで交互に切り替わるようになっている。要するに、固定子巻線521では、周方向に連続する各導線523において、電流の向きが反転するのに合わせて内外層の切り替えが行われる構成となっている。
また、固定子巻線521では、軸方向の両端となる端部領域と、その端部領域に挟まれた中央領域とでスキュー角度が異なる2種類のスキューが施されている。すなわち、図55に示すように、導線523において、中央領域のスキュー角度θs1と端部領域のスキュー角度θs2とが異なっており、スキュー角度θs1がスキュー角度θs2よりも小さくなる構成となっている。軸方向において、端部領域は、コイルサイド525を含む範囲で定められている。スキュー角度θs1,スキュー角度θs2は、軸方向に対して各導線523が傾斜している傾斜角度である。中央領域のスキュー角度θs1は、固定子巻線521の通電により生じる磁束の高調波成分を削減するのに適正な角度範囲で定められているとよい。
固定子巻線521における各導線523のスキュー角度を中央領域と端部領域とで相違させ、中央領域のスキュー角度θs1を端部領域のスキュー角度θs2よりも小さくすることで、コイルエンド526の縮小を図りつつも、固定子巻線521の巻線係数を大きくすることができる。言い換えれば、所望の巻線係数を確保しつつも、コイルエンド526の長さ、すなわち固定子コア522から軸方向にはみ出た部分の導線長を短くすることができる。これにより、回転電機500の小型化を図りつつ、トルク向上を実現することができる。
ここで、中央領域のスキュー角度θs1としての適正範囲を説明する。固定子巻線521において1磁極内に導線523がX本配置されている場合には、固定子巻線521の通電によりX次の高調波成分が生じることが考えられる。相数をS、対数をmとする場合、X=2×S×mである。本願発明者は、X次の高調波成分が、X-1次の高調波成分とX+1次の高調波成分との合成波を構成する成分であるため、X-1次の高調波成分又はX+1次の高調波成分の少なくともいずれかを低減することにより、X次の高調波成分を低減できることに着目した。この着目を踏まえ、本願発明者は、電気角で「360°/(X+1)~360°/(X-1)」の角度範囲内にスキュー角度θs1を設定することにより、X次の高調波成分を低減できることを見出した。
例えばS=3、m=2である場合、X=12次の高調波成分を低減すべく、「360°/13~360°/11」の角度範囲内にスキュー角度θs1を設定する。つまり、スキュー角度θs1は、27.7°~32.7°の範囲内の角度で設定されるとよい。
中央領域のスキュー角度θs1が上記のように設定されることにより、その中央領域において、NS交互の磁石磁束を積極的に鎖交させることができ、固定子巻線521の巻線係数を高くすることができる。
端部領域のスキュー角度θs2は、上述した中央領域のスキュー角度θs1よりも大きい角度である。この場合、スキュー角度θs2の角度範囲は、「θs1<θs2<90°」である。
また、固定子巻線521において、内層側の導線523と外層側の導線523とは、各導線523の端部どうしの溶接や接着により繋げられているか、又は折り曲げにより繋げられているとよい。固定子巻線521では、軸方向両側の各コイルエンド526のうち一方側(すなわち軸方向一端側)にて各相巻線の端部が電力変換器(インバータ)にバスバー等を介して電気的に接続される構成となっている。そのためここでは、バスバー接続側のコイルエンド526とその反対側のコイルエンド526とを区別しつつ、コイルエンド526において各導線同士が繋げられている構成を説明する。
第1の構成としては、バスバー接続側のコイルエンド526において各導線523を溶接にて繋げるとともに、その反対側のコイルエンド526において各導線523を溶接以外の手段にて繋げる構成とする。溶接以外の手段とは、例えば導線材の折り曲げによる繋ぎが考えられる。バスバー接続側のコイルエンド526では、各相巻線の端部にバスバーが溶接にて接続されることが想定される。そのため、それと同じコイルエンド526において各導線523を溶接にて繋げる構成とすることで、各溶接部を一連の工程で行わせることができ、作業効率の向上を図ることができる。
第2の構成としては、バスバー接続側のコイルエンド526において各導線523を溶接以外の手段にて繋げるとともに、その反対側のコイルエンド526において各導線523を溶接にて繋げる構成とする。この場合、仮にバスバー接続側のコイルエンド526において各導線523を溶接にて繋げる構成であると、その溶接部とバスバーとの接触を避けるべく、バスバーとコイルエンド526との間の離間距離を十分に取る必要が生じるが、本構成とすることで、バスバーとコイルエンド526との間の離間距離を小さくすることができる。これにより、軸方向における固定子巻線521の長さ又はバスバーに関する規制を緩めることができる。
第3の構成としては、軸方向両側のコイルエンド526において各導線523を溶接にて繋げる構成とする。この場合、溶接前に用意する導線材はいずれも短い線長のものでよく、曲げ工程の削減による作業効率の向上を図ることができる。
第4の構成としては、軸方向両側のコイルエンド526において各導線523を溶接以外の手段にて繋げる構成とする。この場合、固定子巻線521において溶接が行われる部位を極力減らすことができ、溶接工程での絶縁剥離が生じることの懸念を低減できる。
また、円環状の固定子巻線521を製作する工程において、平面状に整列された帯状巻線を製作し、その後にその帯状巻線を環状に成形するとよい。この場合、平面状の帯状巻線となっている状態で、必要に応じてコイルエンド526での導線同士の溶接を行うとよい。平面状の帯状巻線を環状に成形する際には、固定子コア522と同径の円柱治具を用いてその円柱治具に巻き付けるようにして帯状巻線を環状に成形するとよい。又は、帯状巻線を固定子コア522に直接巻き付けるようにしてよい。
なお、固定子巻線521の構成を以下のように変更することも可能である。
例えば、図54(a),(b)に示す固定子巻線521において、中央領域及び端部領域のスキュー角度を同一とする構成であってもよい。
また、図54(a),(b)に示す固定子巻線521において、周方向に隣り合う同相の導線523の端部同士を、軸方向に直交する向きに延びる渡り線部により接続する構成であってもよい。
固定子巻線521の層数は、2×n層(nは自然数)であればよく、固定子巻線521を、2層以外に4層、6層等にすることも可能である。
次に、電力変換ユニットであるインバータユニット530について説明する。ここでは、インバータユニット530の分解断面図である図56及び図57を併せ用いて、インバータユニット530の構成を説明する。なお、図57では、図56に示す各部材を2つのサブアセンブリとして示している。
インバータユニット530は、インバータハウジング531と、そのインバータハウジング531に組み付けられる複数の電気モジュール532と、それら各電気モジュール532を電気的に接続するバスバーモジュール533とを有している。
インバータハウジング531は、円筒状をなす外壁部材541と、外周径が外壁部材541よりも小径の円筒状をなし、外壁部材541の径方向内側に配置される内壁部材542と、内壁部材542の軸方向一端側に固定されるボス形成部材543とを有している。これら各部材541~543は、導電性材料により構成されているとよく、例えば炭素繊維強化プラスチック(CFRP)により構成されている。インバータハウジング531は、外壁部材541と内壁部材542とが径方向内外に重ねて組み合わされ、かつ内壁部材542の軸方向一端側にボス形成部材543が組み付けられることで構成されている。その組み付け状態が図57に示す状態である。
インバータハウジング531の外壁部材541の径方向外側には固定子コア522が固定される。これにより、固定子520とインバータユニット530とが一体化されるようになっている。
図56に示すように、外壁部材541には、その内周面に複数の凹部541a,541b,541cが形成されるとともに、内壁部材542には、その外周面に複数の凹部542a,542b,542cが形成されている。そして、外壁部材541及び内壁部材542が互いに組み付けられることにより、これら両者の間には3つの中空部544a,544b,544cが形成されている(図57参照)。このうち、中央の中空部544bは、冷媒としての冷却水を流通させる冷却水通路545として用いられる。また、中空部544b(冷却水通路545)を挟んで両側の中空部544a,544cにはシール材546が収容されている。このシール材546により、中空部544b(冷却水通路545)が密閉化されている。冷却水通路545については後で詳しく説明する。
また、ボス形成部材543には、円板リング状の端板547と、その端板547からハウジング内部に向けて突出するボス部548とが設けられている。ボス部548は、中空筒状に設けられている。例えば図51に示すように、ボス形成部材543は、軸方向における内壁部材542の第1端とそれに対向する回転軸501の突出側(すなわち車両内側)の第2端とのうち、第2端に固定されている。なお、図45~図47に示す車輪400においては、インバータハウジング531(より詳しくはボス形成部材543の端板547)にベースプレート405が固定されるようになっている。
インバータハウジング531は、軸心を中心として径方向に二重の周壁を有する構成となっており、その二重の周壁のうち外側の周壁が外壁部材541及び内壁部材542により形成され、内側の周壁がボス部548により形成されている。なお、以下の説明では、外壁部材541及び内壁部材542により形成された外側の周壁を「外側周壁WA1」、ボス部548により形成された内側の周壁を「内側周壁WA2」とも言う。
インバータハウジング531には、外側周壁WA1と内側周壁WA2との間に環状空間が形成されており、その環状空間内に、周方向に並べて複数の電気モジュール532が配置されている。電気モジュール532は、接着やビス締め等により内壁部材542の内周面に固定されている。本実施形態では、インバータハウジング531が「ハウジング部材」に相当し、電気モジュール532が「電気部品」に相当する。
内側周壁WA2(ボス部548)の内側には軸受560が収容されており、その軸受560により回転軸501が回転自在に支持されている。軸受560は、車輪中心部において車輪400を回転可能に支えるハブベアリングである。軸受560は、回転子510や固定子520、インバータユニット530に対して軸方向に重複する位置に設けられている。本実施形態の回転電機500では、回転子510において配向に伴い磁石ユニット512の薄型化が可能であること、固定子520においてスロットレス構造や扁平導線構造が採用されていることにより、磁気回路部の径方向の厚み寸法を縮小して、磁気回路部よりも径方向内側の中空空間を拡張することが可能となっている。これにより、径方向に積層された状態での磁気回路部やインバータユニット530、軸受560の配置が可能となっている。ボス部548は、その内側に軸受560を保持する軸受保持部となっている。
軸受560は、例えばラジアル玉軸受であり、筒状をなす内輪561と、その内輪561よりも大径の筒状をなし内輪561の径方向外側に配置された外輪562と、それら内輪561及び外輪562の間に配置された複数の玉563とを有している。軸受560は、外輪562がボス形成部材543に組み付けられることでインバータハウジング531に固定されるとともに、内輪561が回転軸501に固定されている。これら内輪561、外輪562及び玉563は、いずれも炭素鋼等の金属材料よりなる。
また、軸受560の内輪561は、回転軸501を収容する筒部561aと、その筒部561aの軸方向一端部から、軸方向に交差(直交)する向きに延びるフランジ561bとを有している。フランジ561bは、回転子キャリア511の端板514に内側から当接する部位であり、回転軸501に軸受560が組み付けられた状態では、回転軸501のフランジ502と内輪561のフランジ561bとにより挟まれた状態で、回転子キャリア511が保持されるようになっている。この場合、回転軸501のフランジ502及び内輪561のフランジ561bは、軸方向に対する交差の角度が互いに同じであり(本実施形態ではいずれも直角であり)、これら各フランジ502,561bの間に挟まれた状態で、回転子キャリア511が保持されている。
軸受560の内輪561により回転子キャリア511を内側から支える構成によれば、回転軸501に対する回転子キャリア511の角度を適正角度に保持でき、ひいては回転軸501に対する磁石ユニット512の平行度を良好に保つことができる。これにより、回転子キャリア511を径方向に拡張した構成にあっても、振動等に対する耐性を高めることができる。
次に、インバータハウジング531内に収容される電気モジュール532について説明する。
複数の電気モジュール532は、電力変換器を構成する半導体スイッチング素子や平滑用コンデンサといった電気部品を、複数に分割して個々にモジュール化したものであり、その電気モジュール532には、パワー素子である半導体スイッチング素子を有するスイッチモジュール532Aと、平滑用コンデンサを有するコンデンサモジュール532Bとが含まれている。
図49及び図50に示すように、内壁部材542の内周面には、電気モジュール532を取り付けるための平坦面を有する複数のスペーサ549が固定され、そのスペーサ549に電気モジュール532が取り付けられている。つまり、内壁部材542の内周面が曲面であるのに対し、電気モジュール532の取付面が平坦面であることから、スペーサ549により内壁部材542の内周面側に平坦面を形成し、その平坦面に電気モジュール532を固定する構成としている。
なお、内壁部材542と電気モジュール532との間にスペーサ549を介在させる構成は必須ではなく、内壁部材542の内周面を平坦面にする、又は電気モジュール532の取付面を曲面することにより内壁部材542に対して電気モジュール532を直接取り付けることも可能である。また、内壁部材542の内周面に対して非接触の状態で、電気モジュール532をインバータハウジング531に固定することも可能である。例えば、ボス形成部材543の端板547に対して電気モジュール532を固定する。スイッチモジュール532Aを内壁部材542の内周面に接触状態で固定するとともに、コンデンサモジュール532Bを内壁部材542の内周面に非接触状態で固定することも可能である。
なお、内壁部材542の内周面にスペーサ549が設けられる場合、外側周壁WA1及びスペーサ549が「筒状部」に相当する。また、スペーサ549が用いられない場合、外側周壁WA1が「筒状部」に相当する。
上述したとおりインバータハウジング531の外側周壁WA1には、冷媒としての冷却水を流通させる冷却水通路545が形成されており、その冷却水通路545を流れる冷却水により各電気モジュール532が冷却されるようになっている。なお、冷媒として、冷却水に代えて冷却用オイルを用いることも可能である。冷却水通路545は、外側周壁WA1に沿って環状に設けられており、冷却水通路545内を流れる冷却水は、各電気モジュール532を経由しながら上流側から下流側に流通する。本実施形態では、冷却水通路545が、径方向内外に各電気モジュール532に重なり、かつこれら各電気モジュール532を囲むように環状に設けられている。
内壁部材542には、冷却水通路545に冷却水を流入させる入口通路571と、冷却水通路545から冷却水を流出させる出口通路572とが設けられている。上述したように内壁部材542の内周面には複数の電気モジュール532が固定されており、かかる構成において、周方向に隣り合う電気モジュール間の間隔が1カ所だけ他よりも拡張され、その拡張された部分に、内壁部材542の一部が径方向内側に突出されて突出部573が形成されている。そして、その突出部573に、径方向に沿って横並びの状態で入口通路571及び出口通路572が設けられている。
インバータハウジング531での各電気モジュール532の配置の状態を図58に示す。なお、図58は、図50と同一の縦断面図である。
図58に示すように、各電気モジュール532は、周方向における電気モジュール同士の間隔を、第1間隔INT1又は第2間隔INT2として周方向に並べて配置されている。第2間隔INT2は、第1間隔INT1よりも広い間隔である。各間隔INT1,INT2は、例えば周方向に隣り合う2つ電気モジュール532の中心位置同士の間の距離である。この場合、突出部573を挟まずに周方向に隣り合う電気モジュール同士の間隔は第1間隔INT1となり、突出部573を挟んで周方向に隣り合う電気モジュール同士の間隔は第2間隔INT2となっている。つまり、周方向に隣り合う電気モジュール同士の間隔が一部で拡げられており、その拡げられた間隔(第2間隔INT2)の例えば中央となる部分に突出部573が設けられている。
各間隔INT1,INT2は、回転軸501を中心とする同一円上において、周方向に隣り合う2つ電気モジュール532の中心位置同士の間の円弧の距離であってもよい。又は、周方向における電気モジュール同士の間隔は、回転軸501を中心とする角度間隔θi1,θi2で定義されていてもよい(θi1<θi2)。
なお、図58に示す構成では、第1間隔INT1で並ぶ各電気モジュール532が周方向に互いに離間する状態(非接触の状態)で配置されているが、この構成に代えて、それら各電気モジュール532が周方向に互いに接触する状態で配置されていてもよい。
図48に示すように、ボス形成部材543の端板547には、入口通路571及び出口通路572の通路端部が形成された水路ポート574が設けられている。入口通路571及び出口通路572には、冷却水を循環させる循環経路575が接続されるようになっている。循環経路575は冷却水配管よりなる。循環経路575にはポンプ576と放熱装置577とが設けられ、ポンプ576の駆動に伴い冷却水通路545と循環経路575とを通じて冷却水が循環する。ポンプ576は電動ポンプである。放熱装置577は、例えば冷却水の熱を大気放出するラジエータである。
図50に示すように、外側周壁WA1の外側には固定子520が配置され、内側には電気モジュール532が配置されていることから、外側周壁WA1に対しては、その外側から固定子520の熱が伝わるとともに、内側から電気モジュール532の熱が伝わることになる。この場合、冷却水通路545を流れる冷却水により固定子520と電気モジュール532とを同時に冷やすことが可能となっており、回転電機500における発熱部品の熱を効率良く放出することができる。
ここで、電力変換器の電気的構成を図59を用いて説明する。
図59に示すように、固定子巻線521はU相巻線、V相巻線及びW相巻線よりなり、その固定子巻線521にインバータ600が接続されている。インバータ600は、相数と同じ数の上下アームを有するフルブリッジ回路により構成されており、相ごとに上アームスイッチ601及び下アームスイッチ602からなる直列接続体が設けられている。これら各スイッチ601,602は駆動回路603によりそれぞれオンオフされ、そのオンオフにより各相の巻線が通電される。各スイッチ601,602は、例えばMOSFETやIGBT等の半導体スイッチング素子により構成されている。また、各相の上下アームには、スイッチ601,602の直列接続体に並列に、スイッチング時に要する電荷を各スイッチ601,602に供給する電荷供給用のコンデンサ604が接続されている。
制御装置607は、CPUや各種メモリからなるマイコンを備えており、回転電機500における各種の検出情報や、力行駆動及び発電の要求に基づいて、各スイッチ601,602のオンオフにより通電制御を実施する。制御装置607は、例えば所定のスイッチング周波数(キャリア周波数)でのPWM制御や、矩形波制御により各スイッチ601,602のオンオフ制御を実施する。制御装置607は、回転電機500に内蔵された内蔵制御装置であってもよいし、回転電機500の外部に設けられた外部制御装置であってもよい。
ちなみに、本実施形態の回転電機500では、固定子520のインダクタンス低減が図られていることから電気的時定数が小さくなっており、その電気的時定数が小さい状況下では、スイッチング周波数(キャリア周波数)を高くし、かつスイッチング速度を速くすることが望ましい。この点において、各相のスイッチ601,602の直列接続体に並列に電荷供給用のコンデンサ604が接続されていることで配線インダクタンスが低くなり、スイッチング速度を速くした構成であっても適正なサージ対策が可能となる。
インバータ600の高電位側端子は直流電源605の正極端子に接続され、低電位側端子は直流電源605の負極端子(グランド)に接続されている。また、インバータ600の高電位側端子及び低電位側端子には、直流電源605に並列に平滑用のコンデンサ606が接続されている。
スイッチモジュール532Aは、発熱部品として各スイッチ601,602(半導体スイッチング素子)や、駆動回路603(具体的には駆動回路603を構成する電気素子)、電荷供給用のコンデンサ604を有している。また、コンデンサモジュール532Bは、発熱部品として平滑用のコンデンサ606を有している。スイッチモジュール532Aの具体的な構成例を図60に示す。
図60に示すように、スイッチモジュール532Aは、収容ケースとしてのモジュールケース611を有するとともに、そのモジュールケース611内に収容された1相分のスイッチ601,602と、駆動回路603と、電荷供給用のコンデンサ604とを有している。なお、駆動回路603は、専用IC又は回路基板として構成されてスイッチモジュール532Aに設けられている。
モジュールケース611は、例えば樹脂等の絶縁材料よりなり、その側面がインバータユニット530の内壁部材542の内周面に当接した状態で、外側周壁WA1に固定されている。モジュールケース611内には樹脂等のモールド材が充填されている。モジュールケース611内において、スイッチ601,602と駆動回路603、スイッチ601,602とコンデンサ604は、それぞれ配線612により電気的に接続されている。なお詳しくは、スイッチモジュール532Aは、スペーサ549を介して外側周壁WA1に取り付けられるが、スペーサ549の図示を省略している。
スイッチモジュール532Aが外側周壁WA1に固定された状態では、スイッチモジュール532Aにおいて外側周壁WA1に近い側、すなわち冷却水通路545に近い側ほど冷却性が高いため、その冷却性に応じてスイッチ601,602、駆動回路603及びコンデンサ604の配列の順序が定められている。具体的には、発熱量を比べると、大きいものからスイッチ601,602、コンデンサ604、駆動回路603の順序となるため、その発熱量の大きさ順序に合わせて、外側周壁WA1に近い側からスイッチ601,602、コンデンサ604、駆動回路603の順序でこれらが配置されている。なお、スイッチモジュール532Aの接触面は、内壁部材542の内周面における接触可能面より小さいとよい。
なお、コンデンサモジュール532Bについては詳細な図示を省略するが、コンデンサモジュール532Bでは、スイッチモジュール532Aと同じ形状及び大きさのモジュールケース内に、コンデンサ606が収容されて構成されている。コンデンサモジュール532Bは、スイッチモジュール532Aと同様に、モジュールケース611の側面がインバータハウジング531の内壁部材542の内周面に当接した状態で、外側周壁WA1に固定されている。
スイッチモジュール532A及びコンデンサモジュール532Bは、インバータハウジング531の外側周壁WA1の径方向内側において必ずしも同心円上に並んでいなくてもよい。例えばスイッチモジュール532Aがコンデンサモジュール532Bよりも径方向内側に配置される構成、又はその逆となるように配置される構成であってもよい。
回転電機500の駆動時には、スイッチモジュール532A及びコンデンサモジュール532Bと冷却水通路545との間で、外側周壁WA1の内壁部材542を介して熱交換が行われる。これにより、スイッチモジュール532A及びコンデンサモジュール532Bにおける冷却が行われる。
各電気モジュール532は、その内部に冷却水を引き込み、モジュール内部にて冷却水による冷却を行わせる構成であってもよい。ここでは、スイッチモジュール532Aの水冷構造を、図61(a),(b)を用いて説明する。図61(a)は、外側周壁WA1を横切る方向で、スイッチモジュール532Aの断面構造を示す縦断面図であり、図61(b)は、図61(a)の61B-61B線断面図である。
図61(a),(b)に示すように、スイッチモジュール532Aは、図60と同様にモジュールケース611と、1相分のスイッチ601,602と、駆動回路603と、コンデンサ604とを有することに加え、一対の配管部621,622及び冷却器623からなる冷却装置を有している。冷却装置において、一対の配管部621,622は、外側周壁WA1の冷却水通路545から冷却器623へ冷却水を流入させる流入側の配管部621と、冷却器623から冷却水通路545へ冷却水を流出させる流出側の配管部622とからなる。冷却器623は、冷却対象物に応じて設けられ、冷却装置では1段又は複数段の冷却器623が用いられる。図61(a),(b)の構成では、冷却水通路545から離れる方向、すなわちインバータユニット530の径方向に、互いに離間した状態で2段の冷却器623が設けられており、一対の配管部621,622を介してそれら各冷却器623に対して冷却水が供給される。冷却器623は、例えば内部が空洞になっている。ただし、冷却器623の内部にインナフィンが設けられていてもよい。
2段の冷却器623を備える構成では、(1)1段目の冷却器623の外側周壁WA1側、(2)1段目及び2段目の冷却器623の間、(3)2段目の冷却器623の反外側周壁側が、それぞれ冷却対象の電気部品を配置する場所であり、これら各場所は、冷却性能の高いものから順から(2)、(1)、(3)となっている。つまり、2つの冷却器623に挟まれた場所が最も冷却性能が高く、いずれか1つの冷却器623に隣接する場所では、外側周壁WA1(冷却水通路545)に近い方が冷却性能が高くなっている。これを加味し、図61(a),(b)に示す構成では、スイッチ601,602が、(2)1段目及び2段目の冷却器623の間に配置され、コンデンサ604が、(1)1段目の冷却器623の外側周壁WA1側に配置され、駆動回路603が、(3)2段目の冷却器623の反外側周壁側に配置されている。なお、図示しないが、駆動回路603とコンデンサ604とが逆の配置であってもよい。
いずれの場合であってもモジュールケース611内において、スイッチ601,602と駆動回路603、スイッチ601,602とコンデンサ604は、それぞれ配線612により電気的に接続されている。また、スイッチ601,602が駆動回路603とコンデンサ604との間に位置するため、スイッチ601,602から駆動回路603に向かって延びる配線612と、スイッチ601,602からコンデンサ604に向かって延びる配線612は互いに逆方向に延びる関係である。
図61(b)に示すように、一対の配管部621,622は、周方向、すなわち冷却水通路545の上流側及び下流側に並べて配置されており、上流側に位置する流入側の配管部621から冷却器623に冷却水が流入され、その後、下流側に位置する流出側の配管部622から冷却水が流出される。なお、冷却装置への冷却水の流入を促すべく、冷却水通路545には、周方向に見て、流入側の配管部621と流出側の配管部621との間となる位置に、冷却水の流れを規制する規制部624が設けられているとよい。規制部624は、冷却水通路545を遮断する遮断部、又は冷却水通路545の通路面積を小さくする絞り部であるとよい。
図62には、スイッチモジュール532Aの別の冷却構造を示す。図62(a)は、外側周壁WA1を横切る方向で、スイッチモジュール532Aの断面構造を示す縦断面図であり、図62(b)は、図62(a)の62B-62B線断面図である。
図62(a),(b)の構成では、上述した図61(a),(b)の構成との相違点として、冷却装置における一対の配管部621,622の配置が異なっており、一対の配管部621,622が軸方向に並べて配置されている。また、図62(c)に示すように、冷却水通路545は、流入側の配管部621に連通される通路部分と、流出側の配管部622に連通される通路部分とが軸方向に分離して設けられ、それら各通路部分が各配管部621,622及び各冷却器623を通じて連通されている。
その他に、スイッチモジュール532Aとして、次の構成を用いることも可能である。
図63(a)に示す構成では、図61(a)の構成と比べて、冷却器623が2段から1段に変更されている。この場合、モジュールケース611内において冷却性能の最も高い場所が図61(a)とは異なっており、冷却器623の径方向両側(図の左右方向両側)のうち外側周壁WA1側の場所が最も冷却性能が高く、次いで、冷却器623の反外側周壁側の場所、冷却器623から離れた場所の順に冷却性能が低くなっている。これを加味し、図63(a)に示す構成では、スイッチ601,602が、冷却器623の径方向両側(図の左右方向両側)のうち外側周壁WA1側の場所に配置され、コンデンサ604が、冷却器623の反外側周壁側の場所に配置され、駆動回路603が、冷却器623から離れた場所に配置されている。
また、スイッチモジュール532Aにおいて、モジュールケース611内に1相分のスイッチ601,602と、駆動回路603と、コンデンサ604とを収容する構成を変更することも可能である。例えば、モジュールケース611内に1相分のスイッチ601,602と、駆動回路603及びコンデンサ604のいずれ一方とを収容する構成としてもよい。
図63(b)では、モジュールケース611内に、一対の配管部621,622と2段の冷却器623とを設けるとともに、スイッチ601,602を、1段目及び2段目の冷却器623の間に配置し、コンデンサ604又は駆動回路603を、1段目の冷却器623の外側周壁WA1側に配置する構成としている。また、スイッチ601,602と駆動回路603とを一体化して半導体モジュールとし、その半導体モジュールとコンデンサ604とを、モジュールケース611内に収容する構成とすることも可能である。
なお、図63(b)では、スイッチモジュール532Aにおいて、スイッチ601,602を挟んで両側に配置される冷却器623のうち少なくとも一方の冷却器623においてスイッチ601,602とは逆側にコンデンサが配置されているとよい。すなわち、1段目の冷却器623の外側周壁WA1側と、2段目の冷却器623の反周壁側とのうち一方にのみコンデンサ604を配置する構成、又は両方にコンデンサ604を配置する構成が可能である。
本実施形態では、スイッチモジュール532Aとコンデンサモジュール532Bとのうちスイッチモジュール532Aのみについて、冷却水通路545からモジュール内部に冷却水を引き込む構成としている。ただし、その構成を変更し、両方のモジュール532A,532Bに、冷却水通路545から冷却水を引き込む構成としてもよい。
また、各電気モジュール532の外面に冷却水を直接当てる状態にして、各電気モジュール532を冷却する構成とすることも可能である。例えば、図64に示すように、外側周壁WA1に電気モジュール532を埋め込むことで、電気モジュール532の外面に冷却水を当てる構成とする。この場合、電気モジュール532の一部を冷却水通路545内に浸漬させる構成や、冷却水通路545を図58等の構成よりも径方向に拡張して電気モジュール532の全てを冷却水通路545内に浸漬させる構成が考えられる。冷却水通路545内に電気モジュール532を浸漬させる場合、浸漬されるモジュールケース611(モジュールケース611の浸漬部分)にフィンを設けると、冷却性能を更に向上させることができる。
また、電気モジュール532には、スイッチモジュール532Aとコンデンサモジュール532Bとが含まれ、それら両者を比べた場合に発熱量に差異がある。この点を考慮して、インバータハウジング531における各電気モジュール532の配置を工夫することも可能である。
例えば、図65に示すように、複数個のスイッチモジュール532Aを、分散させず周方向に並べ、かつ冷却水通路545の上流側、すなわち入口通路571に近い側に配置する。この場合、入口通路571から流入した冷却水は、先ずは3つのスイッチモジュール532Aの冷却に用いられ、その後に各コンデンサモジュール532Bの冷却に用いられる。なお、図65では、先の図62(a),(b)のように一対の配管部621,622が軸方向に並べて配置されているが、これに限らず、先の図61(a),(b)のように一対の配管部621,622が周方向に並べて配置されていてもよい。
次に、各電気モジュール532及びバスバーモジュール533における電気的な接続に関する構成を説明する。図66は、図49の66-66線断面図であり、図67は、図49の67-67線断面図である。図68は、バスバーモジュール533を単体で示す斜視図である。ここではこれら各図を併せ用いて、各電気モジュール532及びバスバーモジュール533の電気接続に関する構成を説明する。
図66に示すように、インバータハウジング531には、内壁部材542に設けられた突出部573(すなわち、冷却水通路545に通じる入口通路571及び出口通路572が設けられた突出部573)の周方向に隣となる位置に、3つのスイッチモジュール532Aが周方向に並べて配置されるとともに、さらにその隣に、6つのコンデンサモジュール532Bが周方向に並べて配置されている。その概要として、インバータハウジング531では、外側周壁WA1の内側が周方向に10個(すなわち、モジュール数+1)の領域に等分に分けられ、そのうち9つの領域にそれぞれ電気モジュール532が1つずつ配置されるとともに、残り1つの領域に突出部573が設けられている。3つのスイッチモジュール532Aは、U相用モジュール、V相用モジュール、W相用モジュールである。
図66や前述の図56、図57等に示すように、各電気モジュール532(スイッチモジュール532A及びコンデンサモジュール532B)は、モジュールケース611から延びる複数のモジュール端子615を有している。モジュール端子615は、各電気モジュール532における電気的な入出力を行わせるモジュール入出力端子である。モジュール端子615は、軸方向に延びる向きで設けられており、より具体的には、モジュールケース611から回転子キャリア511の奥側(車両外側)に向けて延びるように設けられている(図51参照)。
各電気モジュール532のモジュール端子615は、それぞれバスバーモジュール533に接続されている。モジュール端子615の数は、スイッチモジュール532Aとコンデンサモジュール532Bとで異なっており、スイッチモジュール532Aには4つのモジュール端子615が設けられ、コンデンサモジュール532Bには2つのモジュール端子615が設けられている。
また、図68に示すように、バスバーモジュール533は、円環状をなす環状部631と、その環状部631から延び、電源装置やECU(電子制御装置)等の外部装置との接続を可能とする3本の外部接続端子632と、固定子巻線521における各相の巻線端部に接続される巻線接続端子633とを有している。バスバーモジュール533が「端子モジュール」に相当する。
環状部631は、インバータハウジング531において外側周壁WA1の径方向内側であり、かつ各電気モジュール532の軸方向片側となる位置に配置されている。環状部631は、例えば樹脂等の絶縁部材により成形された円環状の本体部と、その内部に埋設された複数のバスバーとを有する。その複数のバスバーは、各電気モジュール532のモジュール端子615や、各外部接続端子632、固定子巻線521の各相巻線に接続されている。その詳細は後述する。
外部接続端子632は、電源装置に接続される高電位側の電力端子632A及び低電位側の電力端子632Bと、外部ECUに接続される1本の信号端子632Cとからなる。これら各外部接続端子632(632A~632C)は、周方向に一列に並び、かつ環状部631の径方向内側において軸方向に延びるように設けられている。図51に示すように、バスバーモジュール533が各電気モジュール532と共にインバータハウジング531に組み付けられた状態では、外部接続端子632の一端がボス形成部材543の端板547から突出するように構成されている。具体的には、図56、図57に示すように、ボス形成部材543の端板547には挿通孔547aが設けられており、その挿通孔547aに円筒状のグロメット635が取り付けられるとともに、グロメット635を挿通させた状態で外部接続端子632が設けられている。グロメット635は、密閉コネクタとしても機能する。
巻線接続端子633は、固定子巻線521の各相の巻線端部に接続される端子であり、環状部631から径方向外側に延びるように設けられている。巻線接続端子633は、固定子巻線521におけるU相巻線の端部に接続される巻線接続端子633U、V相巻線の端部に接続される巻線接続端子633V、W相巻線の端部にそれぞれ接続に接続される巻線接続端子633Wを有する。これらの各巻線接続端子633、各相巻線に流れる電流(U相電流、V相電流、W相電流)を検出する電流センサ634が設けられているとよい(図70参照)。
なお、電流センサ634は、電気モジュール532の外部であって、各巻線接続端子633の周辺に配置されてもよいし、電気モジュール532の内部に配置されてもよい。
ここで、各電気モジュール532とバスバーモジュール533との接続を、図69及び図70を用いてより具体的に説明する。図69は、各電気モジュール532を平面状に展開して示すとともに、それら各電気モジュール532とバスバーモジュール533との電気的な接続状態を模式的に示す図である。図70は、各電気モジュール532を円環状に配置した状態での各電気モジュール532とバスバーモジュール533との接続を模式的に示す図である。なお、図69には、電力伝送用の経路を実線で示し、信号伝送系の経路を一点鎖線で示している。図70には、電力伝送用の経路のみを示している。
バスバーモジュール533は、電力伝送用のバスバーとして、第1バスバー641と第2バスバー642と第3バスバー643とを有している。このうち第1バスバー641が高電位側の電力端子632Aに接続され、第2バスバー642が低電位側の電力端子632Bに接続されている。また、3つの第3バスバー643が、U相の巻線接続端子633U、V相の巻線接続端子633V、W相の巻線接続端子633Wにそれぞれ接続されている。
また、巻線接続端子633や第3バスバー643は、回転電機10の動作により発熱しやすい部位である。このため、巻線接続端子633と第3バスバー643との間に図示しない端子台を介在させるとともに、この端子台を、冷却水通路545を有するインバータハウジング531に当接させてもよい。又は、巻線接続端子633や第3バスバー643をクランク状に曲げることで、巻線接続端子633や第3バスバー643を冷却水通路545を有するインバータハウジング531に当接させてもよい。
このような構成であれば、巻線接続端子633や第3バスバー643で発生した熱を冷却水通路545内の冷却水に放熱することができる。
なお、図70では、第1バスバー641及び第2バスバー642を、円環形状をなすバスバーとして示すが、これら各バスバー641,642は必ずしも円環形状で繋がっていなくてもよく、周方向の一部が途切れた略C字状をなしていてもよい。また、各巻線接続端子633U,633V,633Wは、各相に対応するスイッチモジュール532Aに個々に接続されればよいため、バスバーモジュール533を介することなく、直接的に各スイッチモジュール532A(実際にはモジュール端子615)に接続される構成であってもよい。
一方、各スイッチモジュール532Aは、正極側端子、負極側端子、巻線用端子及び信号用端子からなる4つのモジュール端子615を有している。このうち正極側端子は第1バスバー641に接続され、負極側端子は第2バスバー642に接続され、巻線用端子は第3バスバー643に接続されている。
また、バスバーモジュール533は、信号伝送系のバスバーとして第4バスバー644を有している。各スイッチモジュール532Aの信号用端子が第4バスバー644に接続されるとともに、その第4バスバー644が信号端子632Cに接続されている。
本実施形態では、各スイッチモジュール532Aに対する制御信号を信号端子632Cを介して外部ECUから入力する構成としている。つまり、各スイッチモジュール532A内の各スイッチ601,602は、信号端子632Cを介して入力される制御信号によりオンオフする。そのため、各スイッチモジュール532Aが、途中で回転電機内蔵の制御装置を経由することなく信号端子632Cに対して接続される構成となっている。ただし、この構成を変更し、回転電機に制御装置を内蔵させ、その制御装置からの制御信号が各スイッチモジュール532Aに入力される構成とすることも可能である。かかる構成を図71に示す。
図71の構成では、制御装置652が実装された制御基板651を有し、その制御装置652が各スイッチモジュール532Aに接続されている。また、制御装置652には信号端子632Cが接続されている。この場合、制御装置652は、例えば上位制御装置である外部ECUから力行又は発電に関する指令信号を入力し、その指令信号に基づいて各スイッチモジュール532Aのスイッチ601,602を適宜オンオフさせる。
インバータユニット530においては、バスバーモジュール533よりも車両外側(回転子キャリア511の奥側)に制御基板651が配置されるとよい。又は、各電気モジュール532とボス形成部材543の端板547との間に制御基板651が配置されるとよい。制御基板651は、各電気モジュール532に対して少なくとも一部が軸方向に重複するように配置されるとよい。
また、各コンデンサモジュール532Bは、正極側端子及び負極側端子からなる2つのモジュール端子615を有しており、正極側端子は第1バスバー641に接続され、負極側端子は第2バスバー642に接続されている。
図49及び図50に示すように、インバータハウジング531内には、周方向に各電気モジュール532と並ぶ位置に、冷却水の入口通路571及び出口通路572を有する突出部573が設けられるとともに、その突出部573に対して径方向に隣り合うようにして外部接続端子632が設けられている。換言すれば、突出部573と外部接続端子632とが、周方向に同じ角度位置に設けられている。本実施形態では、突出部573の径方向内側の位置に外部接続端子632が設けられている。また、インバータハウジング531の車両内側から見れば、ボス形成部材543の端板547に、径方向に並べて水路ポート574と外部接続端子632とが設けられている(図48参照)。
この場合、複数の電気モジュール532と共に突出部573及び外部接続端子632を周方向に並べて配置したことにより、インバータユニット530としての小型化、ひいては回転電機500としての小型化が可能となっている。
車輪400の構造を示す図45及び図47で見ると、水路ポート574に冷却用配管H2が接続されるとともに、外部接続端子632に電気配線H1が接続され、その状態で、電気配線H1及び冷却用配管H2が収容ダクト440に収容されている。
なお、上記構成では、インバータハウジング531内において外部接続端子632の隣に、3つのスイッチモジュール532Aを周方向に並べて配置するととともに、さらにその隣に、6つのコンデンサモジュール532Bを周方向に並べて配置する構成としたが、これを変更してもよい。例えば、外部接続端子632から最も離れた位置、すなわち回転軸501を挟んで反対側となる位置に、3つのスイッチモジュール532Aを並べて配置する構成としてもよい。また、各スイッチモジュール532Aの両隣にコンデンサモジュール532Bが配置されるように、各スイッチモジュール532Aを分散配置することも可能である。
外部接続端子632から最も離れた位置、すなわち回転軸501を挟んで反対側となる位置に各スイッチモジュール532Aを配置する構成とすれば、外部接続端子632と各スイッチモジュール532Aとの間における相互インダクタンスに起因する誤動作等を抑制できる。
次に、回転角度センサとして設けられるレゾルバ660に関する構成を説明する。
図49~図51に示すように、インバータハウジング531には、回転電機500の電気角θを検出するレゾルバ660が設けられている。レゾルバ660は、電磁誘導式センサであり、回転軸501に固定されたレゾルバロータ661と、そのレゾルバロータ661の径方向外側に対向配置されたレゾルバステータ662とを備えている。レゾルバロータ661は、円板リング状をなしており、回転軸501を挿通させた状態で、回転軸501に同軸で設けられている。レゾルバステータ662は、円環状をなすステータコア663と、ステータコア663に形成された複数のティースに巻回されたステータコイル664とを備えている。ステータコイル664には、1相の励磁コイルと2相の出力コイルとが含まれている。
ステータコイル664の励磁コイルは、正弦波状の励磁信号によって励磁され、励磁信号によって励磁コイルに生じた磁束は、一対の出力コイルを鎖交する。この際、励磁コイルと一対の出力コイルとの相対的な配置関係がレゾルバロータ661の回転角(すなわち回転軸501の回転角)に応じて周期的に変化するため、一対の出力コイルを鎖交する磁束数は周期的に変化する。本実施形態では、一対の出力コイルのそれぞれに生じる電圧の位相が互いにπ/2だけずれるように一対の出力コイルと励磁コイルとが配置されている。これにより、一対の出力コイルそれぞれの出力電圧は、励磁信号を変調波sinθ、cosθのそれぞれによって変調した被変調波となる。より具体的には、励磁信号を「sinΩt」とすると、被変調波はそれぞれ「sinθ×sinΩt」,「cosθ×sinΩt」となる。
レゾルバ660はレゾルバデジタルコンバータを有している。レゾルバデジタルコンバータは、生成された被変調波及び励磁信号に基づく検波によって電気角θを算出する。例えばレゾルバ660は信号端子632Cに接続されており、レゾルバデジタルコンバータの算出結果は、信号端子632Cを介して外部装置に出力される。また、回転電機500に制御装置が内蔵されている場合には、その制御装置にレゾルバデジタルコンバータの算出結果が入力される。
ここで、インバータハウジング531におけるレゾルバ660の組み付け構造について説明する。
図49及び図51に示すように、インバータハウジング531を構成するボス形成部材543のボス部548は中空筒状をなしており、そのボス部548の内周側には、軸方向に直交する向きに延びる突出部548aが形成されている。そして、この突出部548aに軸方向に当接した状態で、ネジ等によりレゾルバステータ662が固定されている。ボス部548内には、突出部548aを挟んで軸方向の一方側に軸受560が設けられるとともに、他方側にレゾルバ660が同軸で設けられている。
また、ボス部548の中空部には、軸方向においてレゾルバ660の一方の側に突出部548aが設けられるとともに、他方の側に、レゾルバ660の収容空間を閉鎖する円板リング状のハウジングカバー666が取り付けられている。ハウジングカバー666は、炭素繊維強化プラスチック(CFRP)等の導電性材料により構成されている。ハウジングカバー666の中央部には、回転軸501を挿通させる孔666aが形成されている。孔666a内には、回転軸501の外周面との間の空隙を封鎖するシール材667が設けられている。シール材667により、レゾルバ収容空間が密閉されている。シール材667は、例えば樹脂材料よりなる摺動シールであるとよい。
レゾルバ660が収容される空間は、ボス形成部材543において円環状をなすボス部548に囲まれ、かつ軸方向が軸受560とハウジングカバー666とにより挟まれた空間であり、レゾルバ660の周囲は導電材料により囲まれている。これにより、レゾルバ660に対する電磁ノイズの影響を抑制できるようになっている。
また、上述したとおりインバータハウジング531は、二重となる外側周壁WA1と内側周壁WA2とを有しており(図57参照)、その二重となる周壁の外側(外側周壁WA1の外側)には固定子520が配置され、二重の周壁の間(WA1,WA2の間)には電気モジュール532が配置され、二重の周壁の内側(内側周壁WA2の内側)にはレゾルバ660が配置されている。インバータハウジング531は導電性部材であるため、固定子520とレゾルバ660とは、導電性の隔壁(本実施形態では特に二重の導電性隔壁)を隔てて配置されるようになっており、固定子520側(磁気回路側)とレゾルバ660とについて相互の磁気干渉の発生を好適に抑制できるものとなっている。
次に、回転子キャリア511の開放端部の側に設けられる回転子カバー670について説明する。
図49及び図51に示すように、回転子キャリア511は軸方向の一方側が開放されており、その開放端部に、略円板リング状の回転子カバー670が取り付けられている。回転子カバー670は、溶接や接着、ビス止め等の任意の接合手法により回転子キャリア511に対して固定されているとよい。回転子カバー670が、磁石ユニット512の軸方向への移動を抑制できるように回転子キャリア511の内周よりも小さめに寸法設定されている部位を持つとなおよい。回転子カバー670は、その外径寸法が、回転子キャリア511の外径寸法に一致し、内径寸法が、インバータハウジング531の外径寸法よりも僅かに大きい寸法となっている。なお、インバータハウジング531の外径寸法と固定子520の内径寸法とは同じである。
上述したとおりインバータハウジング531の径方向外側には固定子520が固定されており、それら固定子520及びインバータハウジング531が互いに接合されている接合部分では、固定子520に対してインバータハウジング531が軸方向に突出している。そして、インバータハウジング531の突出部分を囲むように回転子カバー670が取り付けられている。この場合、回転子カバー670の内周側の端面とインバータハウジング531の外周面との間には、それらの間の隙間を封鎖するシール材671が設けられている。シール材671により、磁石ユニット512及び固定子520の収容空間が密閉されている。シール材671は、例えば樹脂材料よりなる摺動シールであるとよい。
以上詳述した本実施形態によれば、以下の優れた効果が得られる。
回転電機500において、磁石ユニット512及び固定子巻線521よりなる磁気回路部の径方向内側に、インバータハウジング531の外側周壁WA1を配置し、その外側周壁WA1に冷却水通路545を形成した。また、外側周壁WA1の径方向内側に、その外側周壁WA1に沿って周方向に複数の電気モジュール532を配置する構成とした。これにより、回転電機500の径方向に積層されるようにして磁気回路部、冷却水通路545、電力変換器を配置でき、軸方向における寸法の縮小化を図りつつ、効率の良い部品配置が可能となる。また、電力変換器を構成する複数の電気モジュール532について効率良く冷却を行わせることができる。その結果、回転電機500において、高効率かつ小型化が実現可能となる。
半導体スイッチング素子やコンデンサ等の発熱部品を有する電気モジュール532(スイッチモジュール532A、コンデンサモジュール532B)を、外側周壁WA1の内周面に接した状態で設ける構成とした。これにより、各電気モジュール532における熱が外側周壁WA1に伝達され、その外側周壁WA1での熱交換により電気モジュール532が好適に冷却される。
スイッチモジュール532Aにおいて、スイッチ601,602を挟んで両側に冷却器623をそれぞれ配置するとともに、スイッチ601,602の両側の冷却器623のうち少なくとも一方の冷却器においてスイッチ601,602とは逆側にコンデンサ604を配置する構成とした。これにより、スイッチ601,602に対する冷却性能を高めることができるとともに、コンデンサ604の冷却性能も高めることができる。
スイッチモジュール532Aにおいて、スイッチ601,602を挟んで両側に冷却器623をそれぞれ配置するとともに、スイッチ601,602の両側の冷却器623のうち一方の冷却器においてスイッチ601,602とは逆側に駆動回路603を配置し、他方の冷却器623においてスイッチ601,602とは逆側にコンデンサ604を配置する構成とした。これにより、スイッチ601,602に対する冷却性能を高めることができるとともに、駆動回路603とコンデンサ604についても冷却性能も高めることができる。
例えばスイッチモジュール532Aにおいて、冷却水通路545からモジュール内部に冷却水を流入させ、その冷却水により半導体スイッチング素子等を冷却する構成とした。この場合、スイッチモジュール532Aは、外側周壁WA1での冷却水による熱交換に加えて、モジュール内部での冷却水による熱交換により冷却される。これにより、スイッチモジュール532Aの冷却効果を高めることができる。
冷却水通路545に対して外部の循環経路575から冷却水を流入させる冷却システムにおいて、スイッチモジュール532Aを冷却水通路545の入口通路571に近い上流側に配置するとともに、コンデンサモジュール532Bをスイッチモジュール532Aよりも下流側に配置する構成とした。この場合、冷却水通路545を流れる冷却水が上流側ほど低温であることを想定すれば、スイッチモジュール532Aを優先的に冷却する構成を実現することが可能になる。
周方向に隣り合う電気モジュール同士の間隔を一部で拡げ、その拡げた間隔(第2間隔INT2)となる部分に、入口通路571及び出口通路572を有する突出部573を設ける構成とした。これにより、外側周壁WA1の径方向内側となる部分に、冷却水通路545の入口通路571及び出口通路572を好適に形成することができる。つまり、冷却性能を高めるには冷媒の流通量を確保する必要があり、そのためには入口通路571及び出口通路572の開口面積を大きくすることが考えられる。この点、上記のとおり電気モジュール同士の間隔を一部で拡げて突出部573を設けることにより、所望とする大きさの入口通路571及び出口通路572を好適に形成することができる。
バスバーモジュール533の外部接続端子632を、外側周壁WA1の径方向内側において突出部573に径方向に並ぶ位置に配置するようにした。つまり、外部接続端子632を、周方向に隣り合う電気モジュール同士の間隔が拡げられた部分(第2間隔INT2に相当する部分)に突出部573と共に配置するようにした。これにより、各電気モジュール532との干渉を避けつつ、外部接続端子632を好適に配置することができる。
アウタロータ式の回転電機500において、外側周壁WA1の径方向外側に固定子520を固定し、かつ径方向内側に複数の電気モジュール532を配置する構成とした。これにより、外側周壁WA1に対して、その径方向外側から固定子520の熱が伝わるとともに、径方向内側から電気モジュール532の熱が伝わることになる。この場合、固定子520と電気モジュール532とを,冷却水通路545を流れる冷却水により同時に冷やすことが可能となり、回転電機500における発熱部材の熱を効率良く放出することができる。
外側周壁WA1を挟んで径方向内側の電気モジュール532と径方向外側の固定子巻線521とを、バスバーモジュール533の巻線接続端子633により電気的に接続する構成とした。またこの場合、巻線接続端子633を、冷却水通路545に対して軸方向に離れた位置に設ける構成とした。これにより、外側周壁WA1において環状に冷却水通路545が形成される構成、すなわち外側周壁WA1の内外が冷却水通路545により分断されている構成であっても、電気モジュール532と固定子巻線521とを好適に接続することができる。
本実施形態の回転電機500では、固定子520において周方向に並ぶ各導線523の間のティース(鉄心)を小さくする又は無くすことで、それら各導線523の間で生じる磁気飽和に起因するトルク制限を抑制するとともに、導線523を扁平薄型にすることでトルク低下を抑制するものとしている。この場合、仮に回転電機500の外径寸法が同じであっても、固定子520の薄型化により磁気回路部の径方向内側の領域を拡張することが可能となり、その内側領域を用いて、冷却水通路545を有する外側周壁WA1や、外側周壁WA1の径方向内側に設けられた複数の電気モジュール532を好適に配置することができる。
本実施形態の回転電機500では、磁石ユニット512において磁石磁束がd軸側に集まることでd軸での磁石磁束が強化され、それに伴うトルク増強が可能となっている。この場合、磁石ユニット512において径方向の厚さ寸法の縮小化(薄型化)が可能になることに伴い、磁気回路部の径方向内側の領域を拡張することが可能となり、その内側領域を用いて、冷却水通路545を有する外側周壁WA1や、外側周壁WA1の径方向内側に設けられた複数の電気モジュール532を好適に配置することができる。
また、磁気回路部、外側周壁WA1、複数の電気モジュール532だけでなく、軸受560やレゾルバ660についても同様に、径方向に好適に配置することができる。
回転電機500をインホイールモータとして用いた車輪400は、インバータハウジング531に固定されたベースプレート405と、サスペンション装置等の装着機構とを介して車体に装着される。ここで、回転電機500では小型化が実現されていることから、車体への組み付けを想定しても省スペース化が可能となる。そのため、車両においてバッテリ等の電源装置の設置領域を拡大したり、車室スペースを拡張したりする上で有利な構成を実現できる。
以下に、インホイールモータに関する変形例を説明する。
(インホイールモータにおける変形例1)
回転電機500では、インバータユニット530の外側周壁WA1の径方向内側に、電気モジュール532及びバスバーモジュール533が配置されるとともに、外側周壁WA1を隔てて径方向の内側及び外側に、電気モジュール532及びバスバーモジュール533と、固定子520とがそれぞれ配置されている。かかる構成において、電気モジュール532に対するバスバーモジュール533の位置は任意に設定可能である。また、外側周壁WA1を径方向に横切って固定子巻線521の各相巻線とバスバーモジュール533とを接続する場合において、その接続に用いられる巻線接続線(例えば巻線接続端子633)を案内する位置は任意に設定可能である。
すなわち、電気モジュール532に対するバスバーモジュール533の位置としては、
(α1)バスバーモジュール533を、軸方向において電気モジュール532よりも車両外側、すなわち回転子キャリア511側の奥側とする構成と、
(α2)バスバーモジュール533を、軸方向において電気モジュール532よりも車両内側、すなわち回転子キャリア511側の手前側とする構成と、
が考えられる。
また、巻線接続線を案内する位置としては、
(β1)巻線接続線を、軸方向において車両外側、すなわち回転子キャリア511側の奥側で案内する構成と、
(β2)巻線接続線を、軸方向において車両内側、すなわち回転子キャリア511側の手前側で案内する構成と、
が考えられる。
以下には、電気モジュール532、バスバーモジュール533及び巻線接続線の配置に関する4つの構成例を、図72(a)~(d)を用いて説明する。図72(a)~(d)は、回転電機500の構成を簡略化して示す縦断面図であり、同図には、既に説明した構成に同じ符号が付されている。巻線接続線637は、固定子巻線521の各相巻線とバスバーモジュール533とを接続する電気配線であり、例えば既述の巻線接続端子633がこれに相当する。
図72(a)の構成では、電気モジュール532に対するバスバーモジュール533の位置として上記(α1)を採用するとともに、巻線接続線637を案内する位置として上記(β1)を採用している。つまり、電気モジュール532及びバスバーモジュール533、固定子巻線521及びバスバーモジュール533がいずれも車両外側(回転子キャリア511の奥側)で接続される構成となっている。なおこれは、図49に示す構成に相当する。
本構成によれば、外側周壁WA1において、巻線接続線637との干渉を懸念することなく冷却水通路545を設けることができる。また、固定子巻線521とバスバーモジュール533とを接続する巻線接続線637を簡易に実現できる。
図72(b)の構成では、電気モジュール532に対するバスバーモジュール533の位置として上記(α1)を採用するとともに、巻線接続線637を案内する位置として上記(β2)を採用している。つまり、電気モジュール532とバスバーモジュール533とが車両外側(回転子キャリア511の奥側)で接続されるとともに、固定子巻線521とバスバーモジュール533とが車両内側(回転子キャリア511の手前側)で接続される構成となっている。
本構成によれば、外側周壁WA1において、巻線接続線637との干渉を懸念することなく冷却水通路545を設けることができる。
図72(c)の構成では、電気モジュール532に対するバスバーモジュール533の位置として上記(α2)を採用するとともに、巻線接続線637を案内する位置として上記(β1)を採用している。つまり、電気モジュール532とバスバーモジュール533とが車両内側(回転子キャリア511の手前側)で接続されるとともに、固定子巻線521とバスバーモジュール533とが車両外側(回転子キャリア511の奥側)で接続される構成となっている。
図72(d)の構成では、電気モジュール532に対するバスバーモジュール533の位置として上記(α2)を採用するとともに、巻線接続線637を案内する位置として上記(β2)を採用している。つまり、電気モジュール532及びバスバーモジュール533、固定子巻線521及びバスバーモジュール533がいずれも車両内側(回転子キャリア511の手前側)で接続される構成となっている。
図72(c)、図72(d)の構成によれば、バスバーモジュール533が車両内側(回転子キャリア511の手前側)に配置されることで、仮にファンモータなどの電気部品を追加しようとする場合に、その配線が容易となることが考えられる。また、軸受よりも車両内側に配置されるレゾルバ660に対してバスバーモジュール533を近づけることが可能になり、レゾルバ660に対する配線が容易になることも考えられる。
(インホイールモータにおける変形例2)
以下に、レゾルバロータ661の取付構造の変形例を説明する。すなわち、回転軸501、回転子キャリア511及び軸受560の内輪561は一体的に回転する回転体であり、その回転体に対するレゾルバロータ661の取付構造の変形例について以下に説明する。
図73(a)~(c)は、上記回転体に対するレゾルバロータ661の取付構造例を示す構成図である。いずれの構成においても、レゾルバ660は、回転子キャリア511及びインバータハウジング531等により囲まれ、外部からの被水や被泥等から防護された密閉空間に設けられている。図73(a)~(c)のうち図73(a)では、軸受560を、図49と同じ構成としている。また、図73(b)、図73(c)では、軸受560を、図49とは異なる構成とし、かつ回転子キャリア511の端板514から離れた位置に配置している。これら各図には、レゾルバロータ661の取付場所としてそれぞれ2カ所を例示している。なお、レゾルバステータ662については図示されていないが、例えばボス形成部材543のボス部548をレゾルバロータ661の外周側又はその付近まで延ばし、そのボス部548にレゾルバステータ662が固定されていればよい。
図73(a)の構成では、軸受560の内輪561にレゾルバロータ661が取り付けられている。具体的には、レゾルバロータ661が、内輪561のフランジ561bの軸方向端面に設けられているか、又は内輪561の筒部561aの軸方向端面に設けられている。
図73(b)の構成では、回転子キャリア511にレゾルバロータ661が取り付けられている。具体的には、レゾルバロータ661が、回転子キャリア511において端板514の内面に設けられている。又は、回転子キャリア511が、端板514の内周縁部から回転軸501に沿って延びる筒部515を有する構成において、レゾルバロータ661が、回転子キャリア511の筒部515の外周面に設けられている。後者の場合、レゾルバロータ661は、回転子キャリア511の端板514と軸受560との間に配置されている。
図73(c)の構成では、回転軸501にレゾルバロータ661が取り付けられている。具体的には、レゾルバロータ661が、回転軸501において回転子キャリア511の端板514と軸受560との間に設けられているか、又は回転軸501において軸受560を挟んで回転子キャリア511の反対側に配置されている。
(インホイールモータにおける変形例3)
以下に、インバータハウジング531及び回転子カバー670の変形例を図74を用いて説明する。図74(a)、図74(b)は、回転電機500の構成を簡略化して示す縦断面図であり、同図には、既に説明した構成に同じ符号が付されている。なお、図74(a)に示す構成は、実質的に図49等で説明した構成に相当し、図74(b)に示す構成は、図74(a)の構成の一部を変更した構成に相当する。
図74(a)に示す構成では、回転子キャリア511の開放端部に固定された回転子カバー670が、インバータハウジング531の外側周壁WA1を囲むように設けられている。つまり、回転子カバー670の内径側の端面が外側周壁WA1の外周面に対向しており、それら両者の間にシール材671が設けられている。また、インバータハウジング531のボス部548の中空部にはハウジングカバー666が取り付けられ、そのハウジングカバー666と回転軸501との間にシール材667が設けられている。バスバーモジュール533を構成する外部接続端子632は、インバータハウジング531を貫通して車両内側(図の下側)に延びている。
また、インバータハウジング531には、冷却水通路545に連通する入口通路571及び出口通路572が形成されるとともに、それら入口通路571及び出口通路572の通路端部を含む水路ポート574が形成されている。
これに対して、図74(b)に示す構成では、インバータハウジング531(詳しくはボス形成部材543)に、回転軸501の突出側(車両内側)に延びる環状の凸部681が形成されており、回転子カバー670が、インバータハウジング531の凸部681を囲むように設けられている。つまり、回転子カバー670の内径側の端面が凸部681の外周面に対向しており、それら両者の間にシール材671が設けられている。また、バスバーモジュール533を構成する外部接続端子632は、インバータハウジング531のボス部548を貫通してボス部548の中空領域に延びるとともに、ハウジングカバー666を貫通して車両内側(図の下側)に延びている。
また、インバータハウジング531には、冷却水通路545に連通する入口通路571及び出口通路572が形成されており、それら入口通路571及び出口通路572は、ボス部548の中空領域に延び、かつ中継配管682を介してハウジングカバー666よりも車両内側(図の下側)に延びている。本構成では、ハウジングカバー666から車両内側に延びる配管部分が水路ポート574となっている。
図74(a)、図74(b)の各構成によれば、回転子キャリア511及び回転子カバー670の内部空間の密閉性を保持しつつ、これら回転子キャリア511及び回転子カバー670をインバータハウジング531に対して好適に回転させることができる。
また特に、図74(b)の構成によれば、図74(a)の構成に比べて、回転子カバー670の内径が小さくなっている。そのため、電気モジュール532よりも車両内側となる位置に、インバータハウジング531と回転子カバー670とが軸方向に二重に設けられるようになり、電気モジュール532にて懸念される電磁ノイズによる不都合を抑制することができる。また、回転子カバー670の内径を小さくすることによりシール材671の摺動径が小さくなり、回転摺動部分における機械的ロスを抑制することができる。
(インホイールモータにおける変形例4)
以下に、固定子巻線521の変形例を説明する。図75に、固定子巻線521に関する変形例を示す。
図75に示すように、固定子巻線521は、横断面が矩形状をなす導線材を用い、その導線材の長辺が周方向に延びる向きにして波巻により巻回されている。この場合、固定子巻線521においてコイルサイドとなる各相の導線523は、相ごとに所定ピッチ間隔で配置されるとともに、コイルエンドで互いに接続されている。コイルサイドにおいて周方向に隣り合う各導線523は、周方向の端面同士が互いに当接するか、又は微小な間隔を隔てて近接配置されている。
また、固定子巻線521では、コイルエンドにおいて相ごとに導線材が径方向に折り曲げられている。より詳しくは、固定子巻線521(導線材)は、軸方向において相ごとに異なる位置にて径方向内側に折り曲げられており、これにより、U相、V相及びW相の各相巻線における互いの干渉が回避されている。図示の構成では、各相巻線で導線材の厚み分だけ異ならせて、相ごとに導線材が径方向内側に直角に折り曲げられている。周方向に並ぶ各導線523において軸方向の両端間の長さ寸法は各導線523で同じであるとよい。
なお、固定子巻線521に固定子コア522を組み付けて固定子520を製作する際には、固定子巻線521において円環状の一部を非接続として切り離しておき(すなわち、固定子巻線521を略C字状にしておき)、固定子巻線521の内周側に固定子コア522を組み付けた後に、切り離し部分を互いに接続させて固定子巻線521を円環状にするとよい。
上記以外に、固定子コア522を周方向にて複数(例えば3つ以上)に分割しておき、円環状に形成された固定子巻線521の内周側に、複数に分割されたコア片を組み付けるようにすることも可能である。
(他の変形例)
・例えば図50に示すように、回転電機500では、冷却水通路545の入口通路571と出口通路572とが一カ所にまとめて設けられているが、この構成を変更し、入口通路571と出口通路572とが周方向に異なる位置にそれぞれ設けられていてもよい。例えば、入口通路571と出口通路572とを周方向に180度異なる位置に設ける構成や、入口通路571及び出口通路572の少なくともいずれかを複数設ける構成であってもよい。
・上記実施形態の車輪400では、回転電機500の軸方向の片側に回転軸501を突出させる構成としたが、これを変更し、軸方向の両方に回転軸501を突出させる構成としてもよい。これにより、例えば車両前後の少なくとも一方が1輪となる車両において好適な構成を実現できる。
・車輪400に用いられる回転電機500として、インナロータ式の回転電機を用いることも可能である。
(変形例15)
次に、本変形例における回転電機700について説明する。回転電機700は、車両の駆動用ユニットとして用いられる。回転電機700の概要を図76~図78に示す。図76は、回転電機700の全体を示す斜視図であり、図77は、回転電機700の縦断面図であり、図78は、回転電機700の構成要素を分解した分解断面図である。
回転電機700は、アウタロータ式の表面磁石型回転電機である。回転電機700は、大別して、回転子710、固定子730、インナユニット770及びバスバーモジュール810を有する回転電機本体と、その回転電機本体を囲むように設けられるハウジング831及びカバー832とを備えている。これら各部材はいずれも、回転子710に一体に設けられた回転軸701に対して同軸に配置されており、所定順序で軸方向に組み付けられることで回転電機700が構成されている。回転子710は、インナユニット770の径方向内側に設けられた一対の軸受791,792に片持ち支持され、その状態で回転可能となっている。回転軸701には、車両の車軸や車輪等に固定される連結軸705が一体に設けられている。
回転電機700において、回転子710及び固定子730はそれぞれ円筒状をなしており、エアギャップを挟んで径方向に対向配置されている。回転子710が回転軸701と共に一体回転することにより、固定子730の径方向外側にて回転子710が回転する。回転子710が「界磁子」に相当し、固定子730が「電機子」に相当する。
図79に示すように、回転子710は、略円筒状の回転子キャリア711と、その回転子キャリア711に固定された環状の磁石ユニット712とを有している。回転子キャリア711は、端板部713と、その端板部713の外周部から軸方向に延びる筒部714とを有している。端板部713には貫通孔713aが形成されており、その貫通孔713aに挿通された状態で、ボルト等の締結具715により端板部713に回転軸701が固定されている。回転軸701は、回転子キャリア711が固定される部分に、軸方向に交差(直交)する向きに延びるフランジ702を有しており、そのフランジ702と端板部713とが面接合されている状態で、回転軸701に対して回転子キャリア711が固定されている。
磁石ユニット712は、円筒状の磁石ホルダ721と、その磁石ホルダ721の内周面に固定された磁石722と、磁石722の軸方向両側において回転子キャリア711とは逆側に固定されたエンドプレート723とを有している。磁石ホルダ721は、軸方向において磁石722と同じ長さ寸法を有している。磁石722は、磁石ホルダ721に径方向外側から包囲された状態で設けられている。また、磁石ホルダ721及び磁石722は、軸方向両端のうち一端側が回転子キャリア711に当接した状態で固定され、他端側がエンドプレート723に当接した状態で固定されている。
回転子キャリア711、磁石ホルダ721及びエンドプレート723はいずれも非磁性体であるアルミニウム又は非磁性ステンレス(例えばSUS304)により構成されている。これら各部材は、アルミニウム等の軽金属により構成されることが望ましいが、これに代えて、合成樹脂により構成されることも可能である。これら各部材は、接着又は溶接により接合されているとよい。
図80は、磁石ユニット712の断面構造を示す部分断面図である。図80には、磁石722の磁化容易軸を矢印にて示している。
磁石ユニット712において、磁石722は、回転子710の周方向に沿って極性が交互に変わるように並べて設けられている。これにより、磁石722は、周方向に複数の磁極を有する。磁石722は、極異方性の永久磁石であり、固有保磁力が400[kA/m]以上であり、かつ残留磁束密度Brが1.0[T]以上である焼結ネオジム磁石を用いて構成されている。
磁石722は、周方向に隣り合う2磁極において各磁極の中心であるd軸間を1磁石として設けられている。つまり、磁石722は、1磁極分を1磁石とし、その周方向の中心がq軸となっている。磁石722において径方向内側の周面が、磁束の授受が行われる磁束授受面724である。磁石722では、d軸側(d軸寄りの部分)とq軸側(q軸寄りの部分)とで磁化容易軸の向きが相違しており、d軸側では磁化容易軸の向きがd軸に平行する向きとなり、q軸側では磁化容易軸の向きがq軸に直交する向きとなっている。この場合、磁化容易軸の向きに沿って円弧状の磁石磁路が形成されている。要するに、磁石722は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされて構成されている。
周方向に並べられた各磁石722によれば、d軸での磁石磁束が強化され、かつq軸付近での磁束変化が抑えられる。これにより、各磁極においてq軸からd軸にかけての表面磁束変化がなだらかになる磁石722を好適に実現できるものとなっている。磁石722は、周方向の中心をq軸とする構成に代えて、周方向の中心をd軸とする構成であってもよい。また、磁石722として、磁極数と同じ数の磁石を用いる構成に代えて、円環状に繋がった磁石を用いる構成としてもよい。
磁石722は以下の構成であることが望ましい。磁石722において、d-q軸間の磁束授受面724の円弧長さは、磁石722の径方向の厚みよりも長くなっている。また、図81に示すように、磁石722においてq軸と磁束授受面724との交点を中心点CPとし、かつ磁石722の径方向の厚み寸法を半径とする円を、磁石722の磁化容易軸を定める配向円Xとする場合に、磁石722が配向円Xの四半円分を包括する構成となっている。つまり、磁石722では、q軸を横切るように円弧状の磁化容易軸が設けられており、その磁化容易軸のうち、径方向において磁束授受面724とは反対側の周面とq軸との交点を通る磁化容易軸、すなわち配向円Xを通る磁化容易軸により最も強い磁石磁束が生じる。この場合、磁石722が配向円Xの四半円分を包括する構成であることにより、d軸を通る磁石磁路の長さを、配向円Xで規定される長さとして確保した上で磁石磁束を生じさせることが可能となっている。
ここで、磁石722においてd-q軸間の磁束授受面724の円弧長さが磁石722の径方向の厚みよりも長くなっていると、磁石722よりも径方向外側、すなわち反固定子側への磁束漏れの懸念が生じる。しかしながら、本例の構成では、磁石ホルダ721を非磁性体にて構成していることにより、磁束漏れの影響を軽減できるものとなっている。
また、磁石722には、径方向外側の外周面に、d軸を含む所定範囲で凹部725が形成されているとともに、径方向内側の内周面に、q軸を含む所定範囲で凹部726が形成されている。この場合、磁石722の磁化容易軸の向きによれば、磁石722の外周面においてd軸付近で磁石磁路が短くなるとともに、磁石722の内周面においてq軸付近で磁石磁路が短くなる。そこで、磁石722において磁石磁路長が短い場所で十分な磁石磁束を生じさせることが困難になることを考慮して、その磁石磁束の弱い場所で磁石が削除されている。
磁石ホルダ721は、周方向に並ぶ各磁石722の径方向外側に設けられている。また、周方向における各磁石722の間と各磁石722の径方向内側とを含む範囲で磁石ホルダ721が設けられていてもよい。つまり、磁石722を囲むようにして磁石ホルダ721が設けられていてもよい。磁石ホルダ721において各磁石722の径方向外側の部分と径方向内側の部分とを有している場合、径方向外側の部分が径方向内側の部分よりも高強度であるとよい。
磁石ホルダ721は、磁石722の凹部725内に入り込む凸部727を有している。この場合、磁石722の凹部725と磁石ホルダ721の凸部727との係合により、磁石722の周方向の位置ずれが抑制されるようになっている。つまり、磁石ホルダ721の凸部727は、磁石722の回り止め部として機能する。また、磁石ホルダ721が、磁石722よりも径方向内側(固定子730側)となる部分を有している場合には、当該部分に、磁石722の凹部726内に入り込む凸部が設けられていてもよい。
次に、固定子730の構成を説明する。
固定子730は、固定子巻線731と固定子コア732とを有している。図82は、固定子730の構成を示す斜視図であり、図83は、固定子巻線731と固定子コア732とを分解して示す斜視図であり、図84は、各相の相巻線のうちU相巻線に相当する構成のみを示す斜視図であり、図85は、固定子730の縦断面図である。
固定子コア732は、磁性体である電磁鋼板からなる複数のコアシート732aを用いその複数のコアシート732aが軸方向に積層されたコアシート積層体として構成されており、径方向に所定の厚さを有する円筒状をなしている。固定子コア732において回転子710側となる径方向外側には固定子巻線731が組み付けられている。固定子コア732の外周面は凹凸のない曲面状をなしている。固定子コア732はバックヨークとして機能する。固定子コア732は、例えば円環板状に打ち抜き形成された複数枚のコアシート732aが軸方向に積層されて構成されている。ただし、固定子コア732としてヘリカルコア構造を有するものを用いてもよい。ヘリカルコア構造の固定子コア732では、帯状のコアシートが用いられ、このコアシートが環状に巻回形成されるとともに軸方向に積層されることで、全体として円筒状の固定子コア732が構成されている。
固定子コア732において、軸方向両側の端面にはエンドリング733が固定されている。エンドリング733は、固定子コア732に固定子巻線731を組み付けた状態で、その固定子巻線731を周方向の所定位置に保持する機能を有する位置決め部材である。固定子コア732及びエンドリング733がベース部材736である。
エンドリング733の外周面には、固定子コア732及びエンドリング733と同心となる同心円上の接線に対して傾斜する向きで係合面734が形成されている。係合面734は、エンドリング733の外周面を複数に等分して設けられている。本例では、固定子巻線731において周方向に並ぶコイルサイドの導線部(後述するコイルモジュール740の直線部744)と同数の係合面734が周方向に設けられている。また、本例では、当該接線に対する傾斜の向きが、周方向に隣り合う各係合面734で互いに逆向きとなっていることにより、エンドリング733の外周面にテーパ状の係合部が形成されている。この場合、テーパ状の凸部の間に凹部735が形成されている。
軸方向両側の各エンドリング733では、軸方向一端側及び他端側で周方向における凹凸の位置が一致している。つまり、軸方向一端側のエンドリング733及び軸方向他端側のエンドリング733は、係合面734による凸頂部の位置が周方向で一致するようにして固定子コア732に対して固定されている。
エンドリング733の内径は固定子コア732の内径と同じである。また、エンドリング733の外径は、最大径となる部分で固定子コア732の外径と同じであり、最小径となる部分で固定子コア732の外径よりも小さくなっている。
エンドリング733は、例えばアルミニウムや銅等の非磁性材料により形成されている。エンドリング733は、固定子コア732に対して溶接により固定されている。これ以外に、エンドリング733が、ピン差しやキー圧入、ボルト締結により機械的に固定されていてもよい。こうした機械的な固定により、固定子コア732に対するエンドリング733の周方向の位置ずれが抑制されるものとなっている。
図85に示すように、固定子730は、軸方向において、回転子710における磁石722に径方向に対向するコイルサイドCSに相当する部分と、そのコイルサイドCSの軸方向外側であるコイルエンドCE1,CE2に相当する部分とを有している。この場合、固定子コア732は、軸方向においてコイルサイドCSに対応する範囲で設けられ、エンドリング733は、軸方向一端側のコイルエンドCE1及び他端側のコイルエンドCE2にそれぞれ設けられている。コイルエンドCE1が第1コイルエンドに相当し、コイルエンドCE2が第2コイルエンドに相当する。なお、エンドリング733が固定子巻線731と係合した状態の構成については後述する。
固定子巻線731は、複数の相巻線を有し、各相の相巻線が周方向に所定順序で配置されることで円筒状(環状)に形成されている。固定子巻線731の径方向内側に固定子コア732が組み付けられている。本例では、U相、V相及びW相の相巻線を用いることで、固定子巻線731が3相の相巻線を有する構成となっている。
固定子巻線731において各相の相巻線は各々複数の部分巻線741を有しており(図86参照)、その部分巻線741が個別にコイルモジュール740として設けられている。つまり、コイルモジュール740は、各相の相巻線における部分巻線741が一体に設けられたものとなっている。各相のコイルモジュール740が周方向に所定順序で並べて配置されることで、固定子巻線731のコイルサイドにおいて各相の導線部が所定順序に並べて配置されるものとなっている。図82には、コイルサイドにおけるU相、V相及びW相の導線部の並び順が示されている。また、図84には、3相の相巻線のうちU相巻線を構成するコイルモジュール740のみが抽出されて示されている。本例では、磁極数を24としているが、その数は任意である。
固定子巻線731では、相ごとに各コイルモジュール740の部分巻線741が並列又は直列に接続されることにより、各相の相巻線が構成されている。図86は、3相の各相巻線における部分巻線741の接続状態を示す回路図である。図86では、各相の相巻線における部分巻線741がそれぞれ並列に接続された状態が示されている。
図85に示すように、コイルモジュール740は固定子コア732の径方向外側に組み付けられている。固定子巻線731は、コイルサイドCSに相当する部分と、コイルエンドCE1,CE2に相当する部分とを有している。この場合、コイルモジュール740は、その軸方向両端部分が固定子コア732よりも軸方向外側(すなわちコイルエンド側)に突出した状態で組み付けられている。
コイルモジュール740は、軸方向両端のうち一方が径方向に折れ曲がることで略L字状に形成されており、その折れ曲がりにより、周方向に隣り合うコイルモジュール740の干渉が抑制されるものとなっている。本例では、コイルモジュール740として、軸方向一端側の部分が径方向外側に向くように配置されるコイルモジュール740Aと、軸方向一端側の部分が径方向内側に向くように配置されるコイルモジュール740Bとを用いる構成としている。つまり、固定子巻線731は、2種類のコイルモジュール740A,740Bを用いて構成されている。これらコイルモジュール740A,740Bは、軸方向の向きを互いに逆向きにして固定子コア732に組み付けられている。
図82に示すように、固定子コア732に対して複数のコイルモジュール740が組み付けられた状態において、そのコイルモジュール740の径方向外側には軸方向の2箇所に拘束リング760が取り付けられている。拘束リング760は、各コイルモジュール740(固定子巻線731)を径方向に拘束する拘束部材である。拘束リング760は、例えば金属製の環状リングである。両端を自由端とするCリング又は多重リングを拘束リング760として用い、その拘束リング760の端部どうしを溶接や接着等により連結する構成であってもよい。この場合、拘束リング760は、弾性を有し、自然状態で固定子巻線731よりも小径となっているものであるとよい。
糸、紐、ワイヤ等の線状部材を拘束部材として用い、その拘束部材を、固定子巻線731の外周側に螺旋状に巻き付ける構成であってもよい。この場合、例えばワニスを染み込ませた紐を用い、ワニスにより紐固定の強化を図る構成としてもよい。
次に、コイルモジュール740の構成を詳しく説明する。
ここではまず、コイルモジュール740Aとコイルモジュール740Bとのうちコイルモジュール740Aについて説明する。なお、コイルモジュール740は、部分巻線741と巻線ホルダ742とを有するサブアセンブリである。以下の説明では、コイルモジュール740Aの部分巻線741を「部分巻線741A」、巻線ホルダ742を「巻線ホルダ742A」とも称し、コイルモジュール740Bの部分巻線741を「部分巻線741B」、巻線ホルダ742を「巻線ホルダ742B」とも称する。部分巻線741Aが第1部分巻線に相当し、部分巻線741Bが第2部分巻線に相当する。
図87(a)は、コイルモジュール740Aの斜視図であり、図87(b)は、コイルモジュール740Aにおける部分巻線741Aのみを示す斜視図であり、図87(c)は、コイルモジュール740Aにおける巻線ホルダ742Aのみを示す斜視図であり、図87(d)は、コイルモジュール740Aの側面図である。また、図88(a),(b)は、コイルモジュール740Aの横断面を示す断面図であり、図88(a)は、図87(d)の88A-88A線断面図、図88(b)は、図87(d)の88B-88B線断面図である。なお、図87(d)では、コイルモジュール740Aの左側が固定子コア732側であり、図88(a),(b)では、コイルモジュール740Aの下側が固定子コア732側である。
コイルモジュール740Aは、導線743を多重巻にして構成された部分巻線741Aと、その部分巻線741Aに一体に設けられた絶縁性の巻線ホルダ742Aとを有している。巻線ホルダ742Aは、部分巻線741Aを周囲から絶縁するために設けられており、特に部分巻線741Aと固定子コア732との間を絶縁すべく設けられている。コイルモジュール740Aは、軸方向が長手となる長尺環状に形成されている。コイルモジュール740Aは、軸方向に互いに平行に延びる一対の直線部744を有するとともに、軸方向両側の一端側に、軸方向に対して直交する向きに延びる曲がり部745を有している。これにより、コイルモジュール740Aは、全体として略L字状に形成された構成となっている。
部分巻線741Aは、互いに平行でかつ直線状に設けられる一対の中間導線部746と、一対の中間導線部746を軸方向一端側で接続する第1渡り部747と、一対の中間導線部746を軸方向他端側で接続する第2渡り部748を有しており、これら一対の中間導線部746、第1渡り部747及び第2渡り部748により環状に形成されている。一対の中間導線部746は、所定のコイルピッチ分を離して設けられており、周方向において一対の中間導線部746の間に、他相の部分巻線741の中間導線部746が配置可能となっている。本例では、一対の中間導線部746は2コイルピッチ分を離して設けられ、一対の中間導線部746の間に、他2相の部分巻線741における中間導線部746が1つずつ配置される構成となっている。
第1渡り部747及び第2渡り部748は、それぞれコイルエンドCE1,CE2(図85参照)に相当する部分として設けられている。すなわち、これら各渡り部747,748は、コイルエンドCE1,CE2において、周方向に異なる2位置の同相の中間導線部746どうしを接続するコイルエンド導線部として設けられている。部分巻線741Aでは、第1渡り部747は、コイルモジュール740Aにおける曲がり部745に対応する部分であり、中間導線部746に対して直交する向き、すなわち軸方向に対して直交する向きに折れ曲がるようにして設けられている。これに対して、第2渡り部748は、それよりも軸方向内側の中間導線部746と同じ向き、すなわち軸方向に直線状に延びるように設けられている。これにより、部分巻線741Aは、全体として略L字状に形成された構成となっている。なお、図87(d)には、コイルサイドCSとコイルエンドCE1,CE2との境界部BDを破線にて示している。
部分巻線741Aでは、第1渡り部747(部分巻線741AにおいてコイルエンドCE1側の第1渡り部747)に、径方向外側に曲がっている外曲がり部Y1が設けられている。部分巻線741Aは、コイルエンドCE1側に外曲がり部Y1が設けられ、かつコイルエンドCE2側では径方向に曲げられていない構成となっている。
図88(a)に示すように、部分巻線741Aは、横断面が四角形になるように導線743が多重に巻回されて形成されている。図88(a)は、中間導線部746でのコイルモジュール740Aの横断面を示しており、その中間導線部746において周方向及び径方向に並ぶように導線743が多重に巻回されている。部分巻線741Aは、その横断面において、外径側における周方向長さと内径側における周方向長さとが同じである。なお、渡り部747,748において部分巻線741Aが周方向に沿う向きとなる部分では、導線743が軸方向及び径方向に並ぶように多重に巻回されている。本例では、導線743を同心巻により巻回することで部分巻線741Aが構成されている。ただし、導線743の巻き方は任意であり、同心巻に代えて、アルファ巻により導線743が多重に巻回されていてもよい。
部分巻線741Aの横断面において、外径側における周方向長さが内径側における周方向長さよりも大きい略台形状をしていてもよい。これにより、外径側と内径側とで円周長さが異なることを考慮しつつ、周方向に並ぶ中間導線部746どうしの離間距離を均等にすることが可能となる。
図87(a)に示すように、部分巻線741Aでは、第1渡り部747の側から、詳しくは曲がり部745の先端から、導線743の端部が軸方向に引き出されており、その端部が巻線端部743a,743bとなっている。巻線端部743a,743bは、それぞれ導線743の巻き始め及び巻き終わりである。このうち巻線端部743aが電流入出力端子に接続され、巻線端部743bが中性点に接続されるようになっている。
部分巻線741Aでは、径方向外側ほど高い電位が印加される構成であるとよい。つまり、部分巻線741Aにおいて、径方向外側と径方向内側とを比べると、径方向外側ほど一対の中間導線部746の間の距離が長くなるため、その点を考慮して、径方向外側ほど高い電位が印加される構成であることが望ましい。図99には、部分巻線741Aにおける導線743の巻回順序を示している。なお、図99では、同一の部分巻線741Aにおける中間導線部746を実線で示し、異なる部分巻線741B(すなわち異相の部分巻線741B)における中間導線部746を破線で示している。
部分巻線741Aでは、径方向外側から径方向内側に移行するようにして導線743が巻回されており、径方向外側の巻き始めが巻線端部743aとなっている。また、径方向内側の巻き終わりが巻線端部743bとなっている。この場合、巻線端部743aが電流入出力端子に接続され、巻線端部743bが中性点に接続されることで、径方向外側ほど高い電位が印加されるようになっている。なお、導線743の巻回順序自体は、径方向外側及び径方向内側において巻き始めと巻き終わりとが逆であってもよい。
また、図99では、周方向に隣り合う異相どうしの各中間導線部746の離間距離が、径方向外側と径方向内側とで異なっている。この場合、径方向外側での離間距離をK1、径方向内側の離間距離をK2とすると、K1>K2となっている。つまり、径方向外側になるほど、周方向に隣り合う異相どうしの各中間導線部746の離間距離が大きくなっている。これにより、周方向に隣り合う中間導線部746どうしの離間距離に関して、電位差に応じた適切な離間距離がそれぞれ確保されるようになっている。
巻線ホルダ742Aは、ボビン状をなし、合成樹脂等の絶縁材料により構成されている。巻線ホルダ742Aは、部分巻線741Aと同様に、全体として略L字状に形成された構成となっており、部分巻線741Aの中間導線部746に沿って設けられる部分と各渡り部747,748に沿って設けられる部分とを有している。
図88(a)に示すように、巻線ホルダ742Aは、部分巻線741Aの横断面において、部分巻線741Aを三方から囲むように設けられており、固定子コア732側となる第1壁部751と、反固定子コア側となる第2壁部752と、それら第1壁部751及び第2壁部752を繋ぐ第3壁部753とを有している。第1壁部751がバックヨーク側絶縁壁に相当し、第2壁部752が反バックヨーク側絶縁壁に相当し、第3壁部753が周方向絶縁壁に相当する。第3壁部753は、周方向に並ぶ一対の直線部744において周方向内側に設けられている。第3壁部753は、固定子コア732の円中心に向かって延びる向きで設けられている。
巻線ホルダ742Aは、第1~第3壁部751~753により形成された収容部754を有しており、その収容部754に収容された状態で部分巻線741Aが設けられている。この場合、部分巻線741Aは、固定子コア732側、反固定子コア側及び周方向片側の三方において各壁部751~753による絶縁がなされている。つまり、第1壁部751により、中間導線部746において固定子コア732との絶縁が図られている。第2壁部752により、中間導線部746が回転子710側(エアギャップ側)に露出しないように被覆されている。第3壁部753により周方向における中間導線部746どうしの絶縁が図られている。
巻線ホルダ742Aにおいて、第1壁部751の壁厚さ方向(径方向)の厚さ寸法をT11、第2壁部752の壁厚さ方向(径方向)の厚さ寸法をT12、第3壁部753の壁厚さ方向(周方向)の厚さ寸法をT13とする場合、第2壁部752の厚さ寸法T12が第1壁部751の厚さ寸法T11よりも小さいことが望ましい(T11>T12)。つまり、第2壁部752は磁石722側(エアギャップ側)の絶縁壁であり、その絶縁壁が薄いことにより磁石722と部分巻線741との距離、詳しくは磁気回路上の距離を縮めることができ、性能向上を期待できる。また、磁石722と部分巻線741との距離が同じものどうしで比べると、第2壁部752の厚さ寸法T12を小さくした分、コイルモジュール740(ホルダ表面)と磁石722との間のエアギャップ(空隙の間隔)を大きくすることができ、回転子710の回転時における接触を抑制できる。なお、図100には、図88(a)の構成に比べて第1壁部751の厚さ寸法T11を厚くし、かつ第2壁部752の厚さ寸法T12を薄くすることでT11>T12とした構成が示されている。
また、第1壁部751の厚さ寸法T11が第2壁部752の厚さ寸法T12よりも大きいことで、固定子コア732との間の絶縁距離が確保され、その絶縁性能を高めることができる。ただし、T11=T12であってもよい。
第3壁部753の厚さ寸法T13については、例えば第1壁部751の厚さ寸法T11と同じであるとよい。ただし、T13>T11であるか、又はT13<T11であってもよい。
図100に示すように、第3壁部753において、径方向内側と径方向外側との各位置で厚さ寸法T13を異ならせ、径方向外側の方が、厚さ寸法T13が大きくなるように構成してもよい。つまり、第3壁部753を、径方向外側ほど幅広のテーパ状断面とする。この場合、第3壁部753の厚さ寸法T13を、径方向内側よりも径方向外側の方が大きくなるようにしたことにより、径方向内側と径方向外側とで円周長さが異なることを加味しつつ、周方向に並ぶ各中間導線部746を適正に配置することができる。つまり、第3壁部753の厚さ寸法T13を径方向で均一にしておくと、部分巻線741Aの横断面を四角形状にする場合において、周方向に隣り合う2つの中間導線部746が、第3壁部753の側では寄りすぎてしまい、その反対側では離れすぎてしまう。そのため、周方向において回転磁束が不均等になることが懸念される。これに対して本例の構成では、周方向において回転磁束の均等化が可能となる。また、周方向における絶縁性能の均一化も可能となる。さらに、径方向外側(外周側)において中間導線部746と第3壁部753との間に余剰な隙間が形成されることが抑制されるため、中間導線部746(部分巻線741A)の位置決めや固定を行う上でも好適である。
コイルモジュール740Aの曲がり部745との関係で言えば、一対の直線部744において、第1壁部751は、曲がり部745とは反対側の壁部(軸方向内側の壁部)であり、第2壁部752は、曲がり部745側の壁部(軸方向外側の壁部)である。
部分巻線741Aは、収容部754において三方の各壁部751~753に当接又は近接した状態で設けられ、かつ周方向において第3壁部753とは逆側で、第1壁部751及び第2壁部752の端部よりも内側となる領域に配置されている。つまり、巻線ホルダ742Aにおいて、第1壁部751及び第2壁部752における中間導線部746の周方向両側のうち一方の側には第3壁部753が設けられ、他方の側には、中間導線部746よりも周方向にはみ出したはみ出し部751a,752aが設けられている。このはみ出し部751a,752aは、部分巻線741Aに対して周方向に余剰となる余剰部分である。これにより、収容部754内には、周方向の片側に、部分巻線741Aが収容されていない空き領域SZが設けられている。この場合、空き領域SZにより、収容部754内の部分巻線741Aが巻線ホルダ742よりも外側にはみ出ることが抑制されるものとなっている。
要するに、第1壁部751及び第2壁部752は、部分巻線741Aの中間導線部746の周方向両側に、その中間導線部746よりも周方向に延びる延長部を有しており、その周方向両側の延長部のうち一方の側に、第1壁部751及び第2壁部752から径方向に延びる第3壁部753が設けられている。また、周方向両側の延長部のうち一方の側に、はみ出し部751a,752aが設けられている。
収容部754内には、絶縁材料として樹脂材料が充填されており、その樹脂材料によりモールドされた状態で部分巻線741Aが収容されている。これにより、収容部754において中間導線部746を挟んで第3壁部753の逆側には樹脂層755が形成されている。この場合、部分巻線741Aの導線743間の隙間にも樹脂材料が入り込むことで、部分巻線741Aにおいて、多重に巻回された導線743の近接するものどうしが、モールド樹脂を接合材として互いに接合されている。本構成では、部分巻線741Aにおいて多重に巻回された導線743の近接するものどうしが接合材により互いに接合されていることにより、部分巻線741Aにおける導線743どうしを所望の近接状態で維持できる。つまり、部分巻線741Aにおける多重巻の状態を所望の状態で維持することができる。樹脂層755は、第3壁部753と同様に、径方向内側と径方向外側との各位置で厚さ寸法(周方向寸法)を異ならせ、径方向外側の方が、周方向寸法が大きくなるように構成されているとよい(図100参照)。つまり、周方向に隣り合う異相どうしの各中間導線部746の離間距離が、径方向外側と径方向内側とで異なっている構成であるとよい。これにより、径方向内側と径方向外側とで円周長さが異なることを加味しつつ、周方向に並ぶ各中間導線部746を適正に配置することができる。なお、図100において、第3壁部753及び樹脂層755が周方向の絶縁部に相当する。
樹脂モールドに代えて、収容部754内においてワニスを含む接着剤が含浸されることで部分巻線741Aが固められていてもよい。また、樹脂モールドとワニスの含浸との両方が行われていてもよい。また、導線743が、絶縁被膜により導体が覆われた被覆導線である場合に、その絶縁被膜の自己溶着により導線743どうしを互いに固着(接合)させる構成としてもよい。ただし、収容部754内に樹脂材料等が充填されていない構成、すなわち空き領域SZが空間領域として設けられている構成であってもよい。
コイルモジュール740Aは、筒状の固定子コア732に対して径方向外側から組み付けられるものであり、固定子コア732側である第1壁部751は、固定子コア732の外周面と同じ曲率で円弧面に形成されている。これにより、固定子コア732に対するコイルモジュール740Aの密着性が高められている。反固定子コア側である第2壁部752については、直線状、円弧状のいずれにすることも任意であるが、本例では、第1壁部751と同心の円弧状に形成されている。
また、コイルモジュール740Aは、曲がり部745を径方向外側にして固定子コア732に組み付けられるものであり、第2壁部752の側(すなわち第1壁部751の反対側)に曲がり部745を有している。またこの場合、一対の直線部744において2つの第2壁部752を含む周方向距離は、2つの第1壁部751を含む周方向距離よりも長くなっており、その長い方の周方向距離と同じ寸法で、径方向外側となる曲がり部745が設けられている。
また、図87(d)に示すように、コイルモジュール740Aの一対の直線部744において、コイルサイドCSとコイルエンドCE1,CE2との境界部BD付近には、曲がり部745とは逆側、すなわち径方向内側(固定子コア732側)に突出する突出部756が上下2箇所に設けられている。巻線ホルダ742Aでは、第1渡り部747側のコイルエンドCE1であって、かつ境界部BDの軸方向外側となる位置に突出部756が設けられるとともに、第2渡り部748側のコイルエンドCE2であって、かつ境界部BDの軸方向外側となる位置に突出部756が設けられている。
換言すれば、コイルモジュール740Aにおいて、第1壁部751は、固定子コア732の軸方向端面よりも軸方向外側に延びる部分(ヨーク外部分)を有しており、その部分に、固定子コア732との周方向の対向面よりも固定子コア732側に突出する突出部756が一体成形されている。突出部756は、例えば樹脂材料の射出成形により第1壁部751と同時に成形される。
コイルモジュール740Aの横断面で見ると、図88(b)に示すように、固定子コア732側である第1壁部751から突出するようにして突出部756が設けられている。突出部756は、第1壁部751の周方向一端から周方向他端までの範囲で片側に傾斜する傾斜面756aを有する構成となっている。本例では、左右一対の直線部744において第1壁部751の内側端部(周方向内側)が高くなるようにして突出部756が形成されている。ただし、図88(b)に示す構成とは異なり、左右一対の直線部744において第1壁部751の外側端部(周方向外側)が高くなるようにして突出部756が形成されていてもよい。
次に、コイルモジュール740Bについて説明する。
コイルモジュール740Bは、曲がり部745の延びる径方向の向きがコイルモジュール740Aとは異なっており、それによる構成の違いがあるものの、基本構成はコイルモジュール740Aと同じであるため、ここでは、コイルモジュール740Aとの相違点を中心に説明する。
図89(a)は、コイルモジュール740Bの斜視図であり、図89(b)は、コイルモジュール740Bの側面図である。また、図90(a),(b)は、コイルモジュール740Bの横断面を示す断面図であり、図90(a)は、図89(b)の90A-90A線断面図、図90(b)は、図89(b)の90B-90B線断面図である。なお、図89(b)では、コイルモジュール740Bの左側が固定子コア732側であり、図90(a),(b)では、コイルモジュール740Bの下側が固定子コア732側である。
コイルモジュール740Bは、導線743を多重巻にして構成された部分巻線741Bと、その部分巻線741Bに一体に設けられた絶縁性の巻線ホルダ742Bとを有している。また、コイルモジュール740Bは、軸方向に互いに平行に延びる一対の直線部744を有するとともに、軸方向両側の一端側に、軸方向に対して直交する向きに延びる曲がり部745を有し、全体として略L字状に形成された構成となっている。
部分巻線741Bの構成は、基本的に部分巻線741Aと同じである。すなわち、部分巻線741Bは、部分巻線741Aと同様に、互いに平行でかつ直線状に設けられる一対の中間導線部746と、一対の中間導線部746を軸方向一端側で接続する第1渡り部747と、一対の中間導線部746を軸方向他端側で接続する第2渡り部748を有しており、これら一対の中間導線部746、第1渡り部747及び第2渡り部748により環状に形成されている。
ただし、コイルモジュール740Aとコイルモジュール740Bとでは、固定子コア732に組み付けられた状態での曲がり部745の延びる向きが異なり、かつ軸方向の向きが互いに逆向きとなっている。これにより、コイルモジュール740A,740Bでは構成の相違が生じている。
部分巻線741Bでは、第1渡り部747(部分巻線741BにおいてコイルエンドCE2側の第1渡り部747)に、径方向内側に曲がっている内曲がり部Y2が設けられている。部分巻線741Bは、コイルエンドCE2側に内曲がり部Y2が設けられ、かつコイルエンドCE1側では径方向に曲げられていない構成となっている。
部分巻線741Bでは、第2渡り部748の側から、詳しくは曲がり部745とは逆側の先端から巻線端部743a,743bが引き出されている。これにより、コイルモジュール740A,740Bが固定子コア732に組み付けられた状態において、軸方向の同じ側(コイルエンドCE1側)に巻線端部743a,743bが引き出されるようになっている。
また、図90(a)に示すように、巻線ホルダ742Bは、巻線ホルダ742Aの構成と同様に、固定子コア732側となる第1壁部751と、反固定子コア側となる第2壁部752と、それら第1壁部751及び第2壁部752を繋ぐ第3壁部753とを有している。また、巻線ホルダ742Bでは、巻線ホルダ742Aの構成とは異なり、一対の直線部744において、第1壁部751が曲がり部745側の壁部(軸方向内側の壁部)となり、第2壁部752が曲がり部745とは反対側の壁部(軸方向外側の壁部)となっている。
コイルモジュール740Bは、曲がり部745を径方向内側にして固定子コア732に組み付けられるものであり、第1壁部751の側に曲がり部745を有している。この場合、一対の直線部744において2つの第1壁部751を含む周方向距離は、2つの第2壁部752を含む周方向距離よりも短くなっており、その短い方の周方向距離と同じ寸法で、径方向内側となる曲がり部745が設けられている。
また、図89(b)に示すように、コイルモジュール740Bの一対の直線部744において、コイルサイドCSとコイルエンドCE1,CE2との境界部BD付近には、曲がり部745側、すなわち径方向内側(固定子コア732側)に突出する突出部756が上下2箇所に設けられている。巻線ホルダ742では、突出部756が、第1渡り部747側のコイルエンドCE2であって、かつ境界部BDの軸方向外側となる位置に設けられるとともに、第2渡り部748側のコイルエンドCE1であって、かつ境界部BDの軸方向外側となる位置に設けられている。突出部756の構成も、巻線ホルダ742Aと同様である(図90(b)参照)。
コイルモジュール740の製造方法を説明する。ここではコイルモジュール740Aの製造方法を説明するが、コイルモジュール740Bについても同様である。まず、部分巻線741Aを空芯巻コイルとして作製する。具体的には、治具を用いて導線743を多重に巻回させ、空芯巻コイルとして、図87(b)に示す形状の部分巻線741Aを作製する。そして、部分巻線741Aの作製後、部分巻線741Aに対して巻線ホルダ742Aを組み付ける。このとき、巻線ホルダ742Aは、複数に分割された状態で個々に部分巻線741Aに対して組み付けられるとよい。巻線ホルダ742Aは、径方向又は軸方向に2つ又は3つに分割可能になっているとよい。
なお、巻線ホルダ742Aに対して導線743を多重に巻回することで、コイルモジュール740Aを作製することも可能である。巻線ホルダ742Aにおいて、部分巻線741Aを収容する収容部754の内周面に、導線743を案内する突起又は溝を設けてもよい。部分巻線741Aがほどけないように外側の導線743で縛る構成であってもよい。
そして、部分巻線741Aを一体化した巻線ホルダ742Aにおいて、収容部754内に樹脂を充填する。これにより、収容部754内に樹脂層755が形成される。
次に、固定子コア732に対してコイルモジュール740A,740Bを組み付けた状態について説明する。
図91は、固定子730の縦断面を示す断面図であり、図92は、固定子730の横断面を示す断面図であり、図93は、固定子コア732及びエンドリング733とコイルモジュール740Aとを互いに分離して示す断面図である。なお、図92は、図91の92-92線断面図である。
図91に示すように、コイルモジュール740A,740Bは、それぞれの曲がり部745が軸方向に互いに逆となり、かつ曲がりの向きが径方向に互いに逆となるようにして、固定子コア732に組み付けられている。この場合、各コイルモジュール740A,740Bにおける曲がり部745の位置及び向きにより、周方向に隣り合うコイルモジュール740A,740Bどうしの干渉が回避されるようになっている。部分巻線741A,741Bで言えば、部分巻線741Aに外曲がり部Y1が設けられるとともに、部分巻線741Bに内曲がり部Y2が設けられていることにより、周方向に隣り合う部分巻線741A,741Bどうしの干渉が回避されるようになっている。外曲がり部Y1及び内曲がり部Y2が干渉回避部に相当する。
図85を併せ用いて補足すると、コイルエンドCE1側では、コイルモジュール740A(部分巻線741Aにおける第1渡り部747)の軸方向外側に、コイルモジュール740B(部分巻線741Bの第2渡り部748が位置する。また、コイルエンドCE2側では、コイルモジュール740B(部分巻線741Bにおける第1渡り部747)の軸方向外側に、コイルモジュール740A(部分巻線741Aの第2渡り部748)が位置するようにしつつ、各部分巻線741A,741Bが周方向に並べて配置されている。これにより、各部分巻線741A,741Bが、互いの干渉を回避しつつ周方向に適正に配置され、体格の小型化が可能となっている。
また、図91に示すように、固定子コア732の軸方向両端にはエンドリング733が設けられており、そのエンドリング733に対して上下2箇所の突出部756がそれぞれ係合した状態で、固定子コア732にコイルモジュール740A,740Bが組み付けられている。ここで、コイルモジュール740A,740Bの突出部756は、固定子コア732の軸方向端面(図の上側端面、下側端面)に軸方向に重なる状態で突出している。これにより、固定子コア732は、各コイルモジュール740A,740Bにおける一対の突出部756により軸方向に挟まれた状態(すなわち軸方向に押圧された状態)となっている。この場合、固定子コア732は複数のコアシート732aが軸方向に積層されて構成されており、そのコアシート732aの積層方向で、一対の突出部756により固定子コア732が挟まれた状態となっている。これにより、コアシート732aどうしの間の隙間が拡がってしまい、固定子コア732の軸長寸法が意図せず大きくなるといった不都合が抑制されるようになっている。一対の突出部756は、固定子コア732の軸方向端面を軸方向外側から軸方向に押圧する押圧部として機能する。
なお、固定子コア732には、径方向内側(すなわち径方向内外のうちコイルモジュール740A,740Bとは逆側)に、突出部756とは別に、複数のコアシート732aの積層状態を保持するための積層保持構造が設けられているとよい。図91では、太破線で示すQ位置に積層保持構造が設けられている。積層保持構造としては、コアシート732aの溶接による接合、コアシート732aのカシメによる接合、接着剤(ワニスを含む)による接合、固定子コア732の径方向内側に圧入により組み付けられる外筒部材772(筒状部材)の摩擦力による積層保持などが考えられる。径方向内側に積層保持構造が設けられることにより、固定子コア732の軸長寸法の縮小化をより一層適正に実現できる。
コイルモジュール740A,740Bの外周側には拘束リング760が取り付けられている。この拘束リング760の拘束により、突出部756がエンドリング733に係合する向きにコイルモジュール740A,740Bが押圧された状態となっている。特に、エンドリング733及び突出部756の係合部分に対して軸方向に重複する位置に拘束リング760が設けられていることで、エンドリング733及び突出部756の係合状態がより確実に保持されるものとなっている。
拘束リング760は、コイルモジュール740A,740Bの径方向外側、すなわち回転子710の磁石722との対向面側に設けられている。そのため、回転子710側との干渉を避けるには、拘束リング760は径方向の厚さが極力薄くなっていることが望ましい。また、軸方向においてコイルサイドCSとなる領域には設けず、コイルエンドCE1,CE2となる領域に設ける構成としてもよい。この場合、コイルエンドCE1,CE2となる範囲であり、かつコイルモジュール740A,740Bの径方向外側となる位置に拘束リング760が設けられるとよい。ただし、拘束リング760が設けられる位置及び拘束リング760の数は任意である。
拘束リング760は、巻線ホルダ742の第2壁部752の外側に取り付けられている。つまり、拘束リング760は、巻線ホルダ742には接触するが、部分巻線741には接触しない構成となっている。これにより、例えば固定強度を高めるべく金属製の拘束リング760を用いた構成にあっても、部分巻線741の絶縁性の低下を抑制できるものとなっている。
また、図92及び図93に示すように、エンドリング733の係合面734には、突出部756の傾斜面756aが当接している。なお、エンドリング733の係合面734が第1係合部に相当し、コイルモジュール740A,740Bの突出部756が第2係合部に相当する。また、傾斜面756aが被係合面に相当する。この場合、エンドリング733には、傾斜方向が互い違いとなるようにして複数の係合面734が周方向に連続して設けられており、周方向に隣り合う2つの係合面734により凹部735が形成されている(図93参照)。そして、この凹部735に、2つのコイルモジュール740A,740Bの1つずつの突出部756が入り込むようになっている。1つの凹部735に入り込む2つの突出部756は、それぞれ突出部756の頂部が凹部735の底に到達している。これにより、各コイルモジュール740A,740Bにおける第3壁部753どうしが周方向に当接した状態となっている。また、周方向に隣り合う2つの係合面734により形成された頂部では、各コイルモジュール740A,740Bの第1壁部751どうし及び第2壁部752どうしがそれぞれ周方向に当接又は近接した状態となっている。
上記構成では、2つのコイルモジュール740A,740Bの各突出部756は、凹部735を形成する2つの係合面734により周方向に互いに近づく方向に案内される。これにより、周方向に隣り合う2つの部分巻線741についてがたつきを抑制し、ひいては振動や電磁力による固定子巻線731の位置ずれを好適に抑制できる。また、中間導線部746どうしの隙間を縮小化することが可能となるため、占積率の向上を期待できる。
また、各コイルモジュール740A,740Bは、周方向に離れた2箇所の第1壁部751にそれぞれ突出部756を有し、その2箇所の突出部756は、エンドリング733において傾斜の向きが互いに逆となる2つの係合面734にそれぞれ当接している。この場合、各コイルモジュール740A,740Bにおいて、各々2つの突出部756がエンドリング733の係合面734側に係合することで、各コイルモジュール740A,740Bの周方向の位置ずれを一層生じにくくすることができる。
また、コイルモジュール740A,740Bの径方向外側に拘束リング760が取り付けられた構成では、エンドリング733の係合面734に対して、突出部756の傾斜面756aが押圧状態で当接することになる。これにより、固定子コア732に対してコイルモジュール740A,740Bをより強固に固定できる。
各コイルモジュール740A,740Bが周方向に並べて配置された状態では、各コイルモジュール740A,740Bの直線部744において、収容部754に収容された部分巻線741が周方向に互いに所定間隔ずつ離れた位置に配置されている。より詳しくは、周方向に隣り合う各部分巻線741は、巻線ホルダ742の第3壁部753により互いに隔離されているか、又は巻線ホルダ742の収容部754内の空き領域SZにより互いに隔離されている。これにより、周方向に隣り合う異相の部分巻線741どうしの絶縁性が確保されている。
周方向に隣り合う異相の部分巻線741の間には、2つの第3壁部753が介在している。この場合、第3壁部753を2枚重ねとすることで、固定子巻線731での絶縁性が一層高められている。又は、周方向に隣り合う異相の部分巻線741の間には、2つの空き領域SZが介在している。この場合、収容部754内の空き領域SZが周方向に連続していること、さらに言えばそれら空き領域SZが樹脂モールドされていることで、固定子巻線731での絶縁性が一層高められている。つまり、図示の構成では、周方向に隣り合う中間導線部746どうしの間に、異なる巻線ホルダ742の第3壁部753が周方向に連続して設けられるか、異なる巻線ホルダ742のはみ出し部751a,752aが周方向に連続して設けられている。
第3壁部753の厚さ寸法T13(図88(a)参照)に関して、第3壁部753の2枚分の厚さ寸法T13(すなわち、2×T13)が第1壁部751の厚さ寸法T11よりも大きいとよい。すなわち、2×T13>T11であるとよい。この場合、周方向に並ぶ中間導線部746どうしの間において、固定子コア732と中間導線部746との間よりも大きい電位差が生じても、適切な相間絶縁が実施となっている。
各コイルモジュール740A,740Bにおける径方向及び周方向の絶縁構造について補足する。コイルモジュール740A,740Bにおいて、第1壁部751及び第2壁部752は、部分巻線741A,741Bの中間導線部746の周方向両側のうち一方側に第3壁部753を有するとともに、他方側にはみ出し部751a,752aを有している。また、第1壁部751及び第2壁部752において、第3壁部753が接続される部分及びはみ出し部751a,752aは、それぞれ中間導線部746よりも周方向に延びる延長部に相当し、周方向に隣り合う中間導線部746どうしの間において、異なるコイルモジュール740A,740Bの延長部が周方向に対向して設けられている。この場合、周方向に隣り合う中間導線部746は、各コイルモジュール740A,740Bにおける第1壁部751の延長部により互いに離間されることで、相互の絶縁性が確保される。これにより、中間導線部746において径方向の固定子コア732との絶縁に加え、周方向の相間絶縁も好適に実現できる。
本例では特に、周方向に並ぶ各中間導線部746の周方向一方側において、異なるコイルモジュール740A,740Bの第3壁部753が周方向に互いに対向させた状態で設けられるとともに、周方向に並ぶ各中間導線部746の周方向他方側において、第3壁部753が無くはみ出し部751a,752aによる離間がなされている。この場合、径方向に並ぶ固定子コア732と中間導線部746との間には、1つの第1壁部751が設けられる一方、周方向に並ぶ中間導線部746の間には、2つの第3壁部753が設けられているため、周方向に並ぶ中間導線部746どうしの間に、固定子コア732と中間導線部746との間よりも大きい電位差が生じることを考慮しつつ適切な相間絶縁を実施できる。
なお、固定子コア732に対してコイルモジュール740A,740Bを組み付けた状態において、コイルモジュール740A,740Bの突出部756とエンドリング733とはワニス等の接着剤により互いに固定されているとよい。また、コイルモジュール740A,740Bの突出部756とエンドリング733との間に合成樹脂やワニスを充填することで、がたつきを抑制するようにしてもよい。
複数の部分巻線741A,741Bは、多重巻された状態の導体断面積と多重巻の巻回数が同じであるとよい。この場合、各相の相巻線において、並列回路を構成する各部分巻線741A,741Bの鎖交磁束を均一化することができる。これにより、各部分巻線741A,741Bにおける相互の電位差を無くすことができ、並列回路内での循環電流の発生を抑制できる。また、循環電流の発生に伴うモータ効率の低下や熱定格性能の低下を抑制できる。
また、複数の部分巻線741A,741Bは、渡り部747,748を含めて同一の形状であるため、コイルエンドCE1,CE2での漏れ磁束まで含めて鎖交磁束を均一化することができる。これにより、やはり各部分巻線741A,741Bでの電位差を無くし、並列回路内の循環電流を抑制できる。
固定子730は、以下の(A)~(C)のいずれかを用いたものであるとよい。
(A)固定子730において、周方向における各導線部(中間導線部746)の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石722の周方向の幅寸法をWm、磁石722の残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子730において、周方向における各導線部(中間導線部746)の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子730において、周方向における各導線部(中間導線部746)の間に導線間部材を設けていない構成となっている。
次に、インナユニット770について説明する。
図94及び図95は、インナユニット770の縦断面図である。なお、図95には、インナユニット770に、回転軸701を支持する軸受791,792を組み付けた状態を示している。便宜上、以下の説明では、軸受791を第1軸受791、軸受792を第2軸受792とも称する。第1軸受791は、回転軸701の軸方向において基端側、すなわち連結軸705側に設けられた軸受であり、第2軸受792は、回転軸701の先端側に設けられた軸受である。
インナユニット770は、インナハウジング771を有している。インナハウジング771は、円筒状をなす外筒部材772と、外周径が外筒部材772よりも小径の円筒状をなし、外筒部材772の径方向内側に配置される内筒部材773と、これら外筒部材772及び内筒部材773の軸方向一端側に固定される略円板状の端板774とを有している。これら各部材772~774は、導電性材料により構成されているとよく、例えば炭素繊維強化プラスチック(CFRP)により構成されている。外筒部材772と端板774とは同一の外形寸法を有しており、これら外筒部材772及び端板774により形成された空間内に内筒部材773が設けられている。内筒部材773は、ボルト等の締結具775により外筒部材772及び端板774に対してそれぞれ固定されている。
インナハウジング771の外筒部材772の径方向外側には固定子コア732が固定される。これにより、固定子730とインナユニット770とが一体化されるようになっている。
外筒部材772及び内筒部材773の間には、冷却水等の冷媒を流通させる冷媒通路777が形成されている。冷媒通路777は、インナハウジング771の周方向に環状に設けられている。図示は省略するが、冷媒通路777には冷媒配管が接続されており、その冷媒配管から流入する冷媒が冷媒通路777内で熱交換した後、再び冷媒配管に流出するようになっている。
内筒部材773の径方向内側には環状空間が形成されており、その環状空間に、例えば電力変換器としてのインバータを構成する電気部品が配置されるとよい。電気部品は、例えば半導体スイッチング素子やコンデンサをパッケージ化した電気モジュールである。内筒部材773に当接した状態で電気モジュールを配置することにより、冷媒通路777を流れる冷媒により電気モジュールが冷却されるようになっている。
外筒部材772は、内筒部材773よりも径方向内側に円筒状のボス部780を有している。ボス部780は、中空筒状に設けられており、その中空部に回転軸701が挿通されるようになっている。ボス部780は、軸受791,792を保持する軸受保持部となっており、その中空部に軸受791,792が固定されている(図95参照)。軸受791,792は、例えば、筒状の内輪と、内輪の径方向外側に配置された筒状の外輪と、それら内輪及び外輪の間に配置された複数の玉とを有するラジアル玉軸受であり、外輪がボス部780に固定されることで、インナユニット770に組み付けられている。
ボス部780の中空部には、第1軸受791を固定する第1固定部781と、第2軸受792を固定する第2固定部782とが設けられている。第1軸受791及び第2軸受792は、回転子710の振動や遠心荷重を考慮して、回転軸701における支持位置に応じて体格が異なっており、回転軸701の基端側を支持する第1軸受791の方が大きいサイズの軸受、すなわち支持荷重の大きい軸受となっている。そのため、第1固定部781は、第2固定部782に比べて大径に形成されている。
また、第1軸受791と第2軸受792とを比べると、第1軸受791は、第2軸受792に比べて径方向の内部隙間、すなわちラジアル隙間が大きいものとなっている。なお、ラジアル隙間は、軸受の内輪と外輪と玉との軸方向の遊び量である。ここで、第1軸受791は、第2軸受792に比べて回転子710の振動や遠心荷重を受けやすい軸受であり、その第1軸受791のラジアル隙間を大きくすることにより、荷重吸収の効果が高められる。これにより、回転軸701の基端部側においてボス部780に作用する荷重が低減され、回転軸701の先端側における振れが抑制されるようになっている。
第1固定部781は、ボス部780において軸方向に平行な平行面781aと、軸方向に直交する直交面781bとにより形成されており、これら各面に当接した状態で第1軸受791が固定されている。また、第2固定部782は、ボス部780において軸方向に平行な平行面782aと、軸方向に直交する直交面782bとにより形成されており、これら各面に当接した状態で第2軸受792が固定されている。
また、ボス部780の中空部には、第1固定部781と第2固定部782とのうち第2固定部782の側に、回転センサとしてのレゾルバ800を固定する第3固定部783が設けられている。第3固定部783は、第2固定部782を段差状に拡径させることで形成されている。
図77に示すように、レゾルバ800は、回転軸701に固定されるレゾルバロータ801と、そのレゾルバロータ801の径方向外側に対向配置されたレゾルバステータ802とを備えている。レゾルバロータ801は、円板リング状をなしており、回転軸701を挿通させた状態で、回転軸701に同軸に設けられている。レゾルバステータ802は、不図示のステータコアとステータコイルとを有し、ボス部780の第3固定部783に固定されている。
図94に示すように、ボス部780の中空部には、軸方向において第1固定部781と第2固定部782との間となる位置に、これら各固定部781,782よりも小径の縮径部784,785が設けられている。縮径部784は第1固定部781よりも径の小さい孔であり、縮径部785は第2固定部782よりも径の小さい孔である。また、レゾルバ800を固定する第3固定部783は、第2固定部782よりも軸方向外側となる位置、換言すれば回転軸701の先端側となる位置に、第2固定部782よりも拡径された部位として設けられている。第2固定部782と第3固定部783とは、軸方向に隣り合う位置に設けられている。
この場合、外筒部材772において中ぐり加工等により孔加工を行う際に、第2固定部782と第3固定部783とを同一方向から同軸で連続加工することが可能となる。そのため、第2固定部782に固定される第2軸受792と第3固定部783に固定されるレゾルバステータ802との同軸度が高められ、ひいてはレゾルバロータ801とレゾルバステータ802との同軸度が高められることとなる。この場合、レゾルバロータ801に対するレゾルバステータ802の振れが低減され、ひいてはレゾルバ800における角度検出誤差が低減される。
次に、バスバーモジュール810について説明する。バスバーモジュール810は、固定子巻線731において各コイルモジュール740の部分巻線741に電気的に接続され、各相の部分巻線741の一端を相ごとに並列接続するとともに、それら各部分巻線741の他端を中性点で接続する巻線接続部材である。図96は、バスバーモジュール810の斜視図であり、図97は、バスバーモジュール810の縦断面の一部を示す断面図である。
バスバーモジュール810は、円環状をなす環状部811と、その環状部811から延びる複数の接続端子812と、相巻線ごとに設けられる3つの入出力端子813と、各相の電流センサに接続される電流検出端子814とを有している。
図97に示すように、環状部811は、例えば樹脂等の絶縁部材により円環状に形成されており、その内部に埋設された状態で複数のバスバー821~824が設けられている。各バスバー821~824は、U相用のバスバー821と、V相用のバスバー822と、W相用のバスバー823と、中性点用のバスバー824とからなり、板面を対向させるようにして軸方向に並べて配置されている。そして、各バスバー821~824に、それぞれ環状部811から径方向外側に突出させるようにして接続端子812が接続されている。図96に示すように、各接続端子812は、環状部811の周方向に並び、かつ径方向外側において軸方向に延びるように設けられている。
図98には、各バスバー821~824に対する接続端子812の接続位置を略図として示している。図98において、左右方向が環状部811の周方向に相当する。また、図98において、UはU相巻線に接続される接続端子812を示し、VはV相巻線に接続される接続端子812を示し、WはW相巻線に接続される接続端子812を示し、NEは中性点に接続される接続端子812を示す。
図98に示すように、中性点に接続される接続端子812(NE)は周方向に1つ置きに配置され、その間に、U相巻線に接続される接続端子812(U)、V相巻線に接続される接続端子812(V)、W相巻線に接続される接続端子812(W)が1つずつ配置されている。これらの接続端子812は、コイルモジュール740における各部分巻線741の巻線端部743a,743bと同数で設けられており、接続端子812と巻線端部743a,743bとが1つずつ接続されるようになっている。なお、接続端子812と巻線端部743a,743bとの少なくともいずれかが、必要に応じて径方向に折り曲げられるか又は湾曲されて互いに接触され、その接触状態で、溶接や接着等による接合が行われるとよい。
また、環状部811は、内周側に複数の被固定部815を有しており、その被固定部815にボルト等の締結具が組み付けられることで、インナハウジング771の端板774にバスバーモジュール810が固定されるようになっている。
入出力端子813は、U相用の入出力端子813U、V相用の入出力端子813V及びW相用の入出力端子813Wであり、これらは、環状部811内において相ごとにバスバー821~823にそれぞれ接続されている。これらの各入出力端子813を通じて、固定子巻線731の各相の相巻線に対して、不図示のインバータから電力の入出力が行われるようになっている。
また、環状部811には、相ごとに電流センサ816が設けられており、電流検出端子814を通じて、電流センサ816の検出結果が不図示の制御装置に対して出力されるようになっている。
上記構成の回転電機700では、固定子730において、周方向に所定間隔で配置される導線部(中間導線部746)の間に導線間部材(いわゆるティース)が設けられていないか、又は導線間部材が設けられていても磁気的に脆弱な構成となっている。そのため、回転子710にて生じる磁石磁束が固定子巻線731の導線部に直接鎖交し、銅渦損の増加に伴うモータ効率の低下や熱定格性能の低下が懸念される。特に、上記のとおり配向による磁束密度の強化が図られている構成においては、銅渦損の影響がより顕著に生じることが懸念される。
この点、上記構成では、固定子巻線731において、部分巻線741を、周方向に離して設けられた同相の導線部間で導線743を多重に巻回して構成した。また、各相の相巻線を、複数の部分巻線741どうしを並列接続することで構成した。これにより、固定子巻線731において導線1本あたりの断面積の細分化が可能となり、銅渦損の発生を抑制でき、ひいては、モータ効率の向上や熱定格性能の向上を図ることができる。
また、磁極の極数をP、1相当たりの部分巻線741Aの数及び部分巻線741Bの数を各々N個とした場合に、極数Pが4×Nであり、相巻線では、相ごとにN個の部分巻線741AとN個の部分巻線741Bとが全て並列接続されている。本例において具体的には、1相当たりの部分巻線741A,741Bの数(N)は、それぞれ6であり、極数Pは24である。例えば図84には、3相のうち1相のコイルモジュール740が示されており、部分巻線741Aを備えるコイルモジュール740Aとして6個のコイルモジュール740Aと、部分巻線741Bを備えるコイルモジュール740Bとして6個のコイルモジュール740Bとが示されている。各相巻線では、相ごとに6個の部分巻線741Aと6個の部分巻線741Bとが全て並列接続されている。
図86で言えば、U、V、Wの各相の相巻線において、部分巻線741の並列数がいずれも12となっている。この場合、相ごとに全ての部分巻線741A,741Bを並列接続することにより、固定子巻線731での各導線の断面積の最小化が可能となり、銅渦損のより一層の低減を図ることができる。
(変形例16)
本変形例では、回転電機700における固定子巻線731の構成を変更している。すなわち、本例では、固定子巻線731において、上述したコイルモジュール740に代えて、図101や図103に示すコイルモジュール850を用いる構成としている。以下においては、変形例15との相違点を主に説明する。なお、変形例15との共通の構成については同じ部材番号を付し、その説明を省略する。
本例のコイルモジュール850は、部分巻線741が巻線ホルダ742に一体化される構成に代えて、部分巻線741が、絶縁材料である合成樹脂により被覆される構成となっている。つまり、コイルモジュール850は、空芯巻コイルである部分巻線741が樹脂モールドされることで成形されている。コイルモジュール850は、コイルモジュール740と同様、固定子コア732に対してその径方向外側に周方向に並べられるようにして組み付けられる。例えば図82において、図中のコイルモジュール740をコイルモジュール850に置き換えたものが、コイルモジュール850を用いた固定子730の構成に相当する。
本例のコイルモジュール850においても、コイルモジュール740と同様に、2種類のコイルモジュール850A,850Bを有しており、ここではまず、コイルモジュール850Aとコイルモジュール850Bとのうちコイルモジュール850Aについて説明する。なお、コイルモジュール850A,850Bでは、部分巻線741として、コイルモジュール740Aに用いられる部分巻線741A、コイルモジュール740Bに用いられる部分巻線741Bをそれぞれ用いることとしており、ここでは、同じ符号を付すとともに説明を適宜割愛する。
図101(a)は、コイルモジュール850Aの斜視図であり、図101(b)は、コイルモジュール850Aの内部を示す縦断面図である。また、図102(a),(b)は、コイルモジュール850Aの横断面を示す断面図であり、図102(a)は、図101(b)の102A-102A線断面図、図102(b)は、図101(b)の102B-102B線断面図である。なお、図101(b)では、コイルモジュール850Aの左側が固定子コア732側であり、図102(a),(b)では、コイルモジュール850Aの下側が固定子コア732側である。
コイルモジュール850Aは、コイルモジュール740Aと略同じ形状を有しており、軸方向が長手となる長尺環状に形成されている。コイルモジュール850Aは、軸方向に互いに平行に延びる一対の直線部851を有するとともに、軸方向両側の一端側に、軸方向に対して直交する向きに延びる曲がり部852を有している。これにより、コイルモジュール850Aは、全体として略L字状に形成された構成となっている。コイルモジュール850Aの一対の直線部851及び曲がり部852に、部分巻線741Aが埋設されている。部分巻線741Aの第1渡り部747及び第2渡り部748のうち第1渡り部747には、コイルモジュール850Aの曲がり部852に対応する部分として、径方向外側に曲がっている外曲がり部Y1が設けられている。
図102(a)に示すように、コイルモジュール850Aは、部分巻線741Aの横断面において、部分巻線741Aを四方から囲むように設けられており、固定子コア732側となる第1壁部861と、反固定子コア側となる第2壁部862と、それら第1壁部861及び第2壁部862を繋ぐ第3壁部863とを有している。第3壁部863は、周方向において部分巻線741Aを両側から挟む2つの壁部よりなる。第1壁部861がバックヨーク側絶縁壁であり、第2壁部862が反バックヨーク側絶縁壁であり、第3壁部863が周方向絶縁壁である。第3壁部863は、固定子コア732の円中心に向かって延びる向きで設けられている。なお、第1壁部861及び第2壁部862は、部分巻線741Aの中間導線部746よりも周方向に延びる部分(延長部に相当)を有しており、その部分から径方向に延びるように第3壁部863が形成されている。
コイルモジュール850Aにおいて部分巻線741Aはその周囲が絶縁材料よりなる被覆部855にて覆われており、被覆部855において固定子コア732側の絶縁層が第1壁部861(バックヨーク側絶縁壁)となっている。
コイルモジュール850Aにおいて、第1壁部861の壁厚さ方向(径方向)の厚さ寸法をT11、第2壁部862の壁厚さ方向(径方向)の厚さ寸法をT12、第3壁部863の壁厚さ方向(周方向)の厚さ寸法をT13とする場合、第2壁部862の厚さ寸法T12が第1壁部861の厚さ寸法T11よりも小さいことが望ましい(T11>T12)。なお、本例の場合、厚さ寸法T11~T13は、部分巻線741Aの外表面からモジュール外表面までの樹脂層の平均厚さであるとよい。つまり、第2壁部862は磁石722側(エアギャップ側)の絶縁壁であり、その絶縁壁が薄いことにより磁石722と部分巻線741との距離、詳しくは磁気回路上の距離を縮めることができ、性能向上を期待できる。また、磁石722と部分巻線741との距離が同じものどうしで比べると、第2壁部862の厚さ寸法T12を小さくした分、コイルモジュール850と磁石722との間のエアギャップ(空隙の間隔)を大きくすることができ、回転子710の回転時における接触を抑制できる。
また、第1壁部861の厚さ寸法T11が第2壁部862の厚さ寸法T12よりも大きいことで、固定子コア732との間の絶縁距離が確保され、その絶縁性能を高めることができる。ただし、T11=T12であってもよい。
第3壁部863の厚さ寸法T13については、例えば第1壁部861の厚さ寸法T11と同じであるとよい。ただし、T13>T11であるか、又はT13<T11であってもよい。
第3壁部863において、径方向内側と径方向外側とで厚さ寸法T13を異ならせ、径方向外側の方が、厚さ寸法T13が大きくなるように構成してもよい。つまり、第3壁部863を、径方向外側ほど幅広のテーパ状断面とする。中間導線部746を挟む周方向に2つの第3壁部753のサイズが同一であるとよい。この場合、第3壁部863の厚さ寸法T13を、径方向内側よりも径方向外側の方が大きくなるようにしたことにより、径方向内側と径方向外側とで円周長さが異なることを加味しつつ、周方向に並ぶ各中間導線部746を適正に配置することができる。つまり、第3壁部863の厚さ寸法T13を径方向で均一にしておくと、部分巻線741Aの横断面を四角形状にする場合において、周方向に隣り合う2つの中間導線部746が、第3壁部863の側では寄りすぎてしまい、その反対側では離れすぎてしまう。そのため、周方向において回転磁束が不均等になることが懸念される。これに対して本例の構成では、周方向において回転磁束の均等化が可能となる。また、周方向における絶縁性能の均一化も可能となる。
コイルモジュール850Aの曲がり部852との関係で言えば、一対の直線部851において、第1壁部861は、曲がり部852とは反対側の壁部(軸方向内側の壁部)であり、第2壁部862は、曲がり部852側の壁部(軸方向外側の壁部)である。
コイルモジュール850Aは、筒状の固定子コア732に対して径方向外側から組み付けられるものであり、固定子コア732側である第1壁部861は、固定子コア732の外周面と同じ曲率で円弧面に形成されている。これにより、固定子コア732に対するコイルモジュール850Aの密着性が高められている。反固定子コア側である第2壁部862については、直線状、円弧状のいずれにすることも任意であるが、本例では、第1壁部861と同心の円弧状に形成されている。
また、コイルモジュール850Aは、曲がり部852を径方向外側にして固定子コア732に組み付けられるものであり、第2壁部862の側(すなわち第1壁部861の反対側)に曲がり部852を有している。またこの場合、一対の直線部851において2つの第2壁部862を含む周方向距離は、2つの第1壁部861を含む周方向距離よりも長くなっており、その長い方の周方向距離と同じ寸法で、径方向外側となる曲がり部852が設けられている。
また、図101(b)に示すように、コイルモジュール850Aの一対の直線部851において、コイルサイドCSとコイルエンドCE1,CE2との境界部BD付近には、曲がり部852とは逆側、すなわち径方向内側(固定子コア732側)に突出する突出部866が上下2箇所に設けられている。
コイルモジュール850Aの横断面で見ると、図102(b)に示すように、固定子コア732側である第1壁部861から突出するようにして突出部866が設けられている。突出部866は、第1壁部861の周方向一端から周方向他端までの範囲で片側に傾斜する傾斜面866aを有する構成となっている。本例では、左右一対の直線部851において第1壁部861の内側端部(周方向内側)が高くなるようにして突出部866が形成されている。ただし、図102(b)に示す構成とは異なり、左右一対の直線部851において第1壁部861の外側端部(周方向外側)が高くなるようにして突出部866が形成されていてもよい。
次に、コイルモジュール850Bについて説明する。
コイルモジュール850Bは、曲がり部852の延びる径方向の向きがコイルモジュール850Aとは異なっており、それによる構成の違いがあるものの、基本構成はコイルモジュール850Aと同じであるため、ここでは、コイルモジュール850Aとの相違点を中心に説明する。
図103(a)は、コイルモジュール850Bの斜視図であり、図103(b)は、コイルモジュール850Bの内部を示す縦断面図である。また、図104(a),(b)は、コイルモジュール850Bの横断面を示す断面図であり、図104(a)は、図103(b)の104A-104A線断面図、図104(b)は、図103(b)の104B-104B線断面図である。なお、図103(b)では、コイルモジュール850Bの左側が固定子コア732側であり、図104(a),(b)では、コイルモジュール850Bの下側が固定子コア732側である。
コイルモジュール850Bは、コイルモジュール740Bと略同じ形状を有しており、軸方向が長手となる長尺環状に形成されている。コイルモジュール850Bは、軸方向に互いに平行に延びる一対の直線部851を有するとともに、軸方向両側の一端側に、軸方向に対して直交する向きに延びる曲がり部852を有している。これにより、コイルモジュール850Bは、全体として略L字状に形成された構成となっている。コイルモジュール850Bの一対の直線部851及び曲がり部852に、部分巻線741Bが埋設されている。部分巻線741Bの第1渡り部747及び第2渡り部748のうち第1渡り部747には、コイルモジュール850Bの曲がり部852に対応する部分として、径方向内側に曲がっている内曲がり部Y2が設けられている。
また、図104(a)に示すように、コイルモジュール850Bは、部分巻線741Bの横断面において、部分巻線741Bを四方から囲むように設けられており、コイルモジュール850Aと同様に、固定子コア732側となる第1壁部861と、反固定子コア側となる第2壁部862と、それら第1壁部861及び第2壁部862を繋ぐ第3壁部863とを有している。第3壁部863は、周方向において部分巻線741Bを両側から挟む2つの壁部よりなる。
コイルモジュール850Bは、曲がり部852を径方向内側にして固定子コア732に組み付けられるものであり、第1壁部861の側に曲がり部852を有している。この場合、一対の直線部851において2つの第1壁部861を含む周方向距離は、2つの第2壁部862を含む周方向距離よりも短くなっており、その短い方の周方向距離と同じ寸法で、径方向内側となる曲がり部852が設けられている。
また、図103(b)に示すように、コイルモジュール850Bの一対の直線部851において、コイルサイドCSとコイルエンドCE1,CE2との境界部BD付近には、曲がり部852側、すなわち径方向内側(固定子コア732側)に突出する突出部866が上下2箇所に設けられている。突出部866の構成も、コイルモジュール850Aと同様である(図104(b)参照)。
次に、固定子コア732に対してコイルモジュール850A,850Bを組み付けた状態について説明する。なお、その組み付け状態において、固定子730の縦断面の構成は、コイルモジュール740A,740Bを用いた構成に準ずるため、詳細は図91を参照されたい。本例の構成においても、図91と同様に、エンドリング733に対して上下2箇所の突出部866がそれぞれ係合した状態で、固定子コア732にコイルモジュール850A,850Bが組み付けられている。また、固定子コア732は、各コイルモジュール850A,850Bにおける一対の突出部866により軸方向に挟まれた状態となっている。以下には、図105を用いて、固定子730の横断面の構成を説明する。
図105に示すように、エンドリング733の係合面734には、コイルモジュール850A,850Bの突出部866の傾斜面866aが当接している。なお、傾斜面866aが被係合面に相当する。そして、エンドリング733において周方向に隣り合う2つの係合面734により凹部735に、2つのコイルモジュール850A,850Bの1つずつの突出部866が入り込むようになっている。これにより、各コイルモジュール850A,850Bにおける第3壁部863どうしが周方向に当接した状態となっている。
各コイルモジュール850A,850Bが周方向に並べて配置された状態では、各コイルモジュール850A,850Bの直線部854において部分巻線741が周方向に互いに所定間隔ずつ離れた位置に配置されている。より詳しくは、周方向に隣り合う各部分巻線741は、各コイルモジュール785A,850Bの第3壁部863により互いに隔離されている。これにより、周方向に隣り合う異相の部分巻線741どうしの絶縁性が確保されている。この場合特に、周方向に隣り合う異相の部分巻線741の間において第3壁部863が2枚重ねになっていることで、固定子巻線731での絶縁性が一層高められている。
(変形例15及び変形例16の別例)
以下に、変形例15及び変形例16に示す回転電機700の一部を変更した構成を説明する。
・コイルモジュール740において突出部756の形状を変更してもよい。ここでは、図92の構成との違いを説明する。例えば、図106(a)に示すように、各第1壁部751において、突出部756を、周方向に同じ向きに傾く1つずつの傾斜面を有する構成としてもよい。また、図106(b)に示すように、各第1壁部751の突出部756を、周方向に傾く2つの傾斜面を有する構成としてもよい。また、図106(c)に示すように、突出部756を台形状に形成してもよい。図106(a)~(c)ではいずれも、突出部756の嵌め込みが可能となるように、その突出部756の形状に合わせてエンドリング733の係合面734が形成されている。なお、周方向に互いに係合する突出部756とエンドリング733との各面は、径方向に平行な角度で設けられているほど、保持強度が高められる。
・図107に示すように、コイルモジュール740とエンドリング733とを直接的でなく間接的に係合させる構成としてもよい。図107(a)は、固定子コア732にコイルモジュール740A,740Bを組み付けた状態での固定子730の横断面図、図107(b)は、固定子コア732及びエンドリング733とコイルモジュール740Aとを互いに分離して示す断面図である。この場合、エンドリング733とコイルモジュール740A,740Bの第1壁部751とにはそれぞれ、凹部841,842が形成されており、それら凹部841,842が形成された面どうしが対向している。そして、それら対向面の間に、合成樹脂等の絶縁材料からなる絶縁層843が設けられている。エンドリング733側の凹部841が第1係合部に相当し、コイルモジュール740A,740B側の凹部842が第2係合部に相当し、絶縁層843が中間部に相当する。なお、第1壁部751の凹部841とエンドリング733側の凹部842とは、互いに異なる位置又は形状で形成されていてもよい。
要するに、エンドリング733側の凹部841と、コイルモジュール740A,740B側の凹部842とは、径方向に離間状態で対向するように設けられ、それら凹部841,842の間に絶縁層843が設けられている。そして、各凹部841,842が絶縁層843に対して周方向に係合した状態で、固定子コア732に対してコイルモジュール740A,740Bが固定されている。
・固定子コア732において、コイルモジュール740に係合可能となる係合部(第1係合部)が、コアシート732aのシート外縁に形成された凹凸形状により形成される構成であってもよい。具体的には、図108(a)に示すように、コアシート732aは、幅方向の一方が波形状(凹凸形状)、他方が直線形状となっており、その波形状の側を径方向外側にして環状に巻回形成されながら軸方向に積層される。これにより、全体として円筒状の固定子コア732が形成されるようになっている。この場合、固定子コア732において、コアシート732aは、径方向外側(すなわち固定子巻線731の組み付け側)が周方向に所定間隔で凹凸が繰り返される凹凸形状となっており、軸方向においてその凹凸の位置が少しずつずらされた状態で積層されている。軸方向において、コアシート732aの凹凸位置が周方向に所定量ずつずらされているとよい。これにより、コギングトルクの発生が抑制されるようになっている。
また、図108(b),(c)に示すように、固定子コア732には、コアシート732aの凹凸により第1係合部として凹部841が形成されている。また、コイルモジュール740の第1壁部751には第2係合部として凹部842が形成されている。そして、固定子コア732側の凹部841とコイルモジュール740A,740B側の凹部842との間に中間部としての絶縁層843を介在させた状態で、固定子コア732に対して各コイルモジュール740A,740Bが組み付けられている。この場合、固定子コア732におけるコアシート積層体の凹凸を第1係合部として利用して、コイルモジュール740側の第2係合部との係合を行わせる構成としたため、コギングトルクの抑制と共に、コイルモジュール740の周方向の位置決めを好適に実施できる。
なお、図108の構成において、固定子コア732は、ヘリカルコア構造のものでなくてもよく、円環板状に打ち抜き形成された複数枚のコアシート732aが軸方向に積層されている構成であってもよい。この場合、各コアシート732aは、その外周側で周方向に所定間隔で凹凸が繰り返される凹凸形状となっており、かつ軸方向においてその凹凸の位置が所定量ずつ周方向にずらされた状態で積層されているとよい。
・コイルモジュール740の巻線ホルダ742において、第1壁部751、第2壁部752及び第3壁部753のうち一部のみを有する構成としてもよい。具体的には、図109(a)に示すように、コイルモジュール740Aの巻線ホルダ742Aにおいて、第1壁部751、第2壁部752及び第3壁部753のうち、第2壁部752を削除し、第1壁部751及び第3壁部753のみを有する構成としてもよい。つまり、巻線ホルダ742Aにおいて反固定子コア側の壁部(第2壁部752)を削除する構成としてもよい。なお、第1壁部751及び第3壁部753のみを有する構成において、第3壁部753を周方向に同じ側にそれぞれ設ける構成としてもよい。
図109(b)に示すように、コイルモジュール740Aの巻線ホルダ742Aにおいて、第1壁部751、第2壁部752及び第3壁部753のうち、第2壁部752を削除するとともに、中間導線部746の周方向の両側に第3壁部753を設ける構成としてもよい。
また、図109(c)に示すように、コイルモジュール740Aの巻線ホルダ742Aにおいて、第1壁部751、第2壁部752及び第3壁部753のうち、第2壁部752及び第3壁部753を削除し、第1壁部751のみを有する構成としてもよい。つまり、巻線ホルダ742Aにおいて反固定子コア側の壁部(第2壁部752)と周方向の隔離壁(第3壁部753)とを削除する構成としてもよい。この場合、固定子コア732に対してコイルモジュール740A,740Bを組み付けた状態において、周方向に隣り合う部分巻線741どうしを互いに絶縁状態とすべく、部分巻線741の周方向の幅寸法よりも第1壁部751の周方向の幅寸法を大きくし、かつ第1壁部751の周方向の延長部を部分巻線741の周方向両側に設けた構成とする。
図109(a)~(c)の構成では、部分巻線741Aが絶縁材料としての樹脂材料によりモールドされ、その樹脂モールドにより、巻線ホルダ742Aの有する壁部と部分巻線741Aとが一体化されているとよい。図109(a)~(c)の構成を用いる場合、コイルモジュール740Aとコイルモジュール740Bとをいずれも同じ構成にするとよい。ただし、コイルモジュール740Aとコイルモジュール740Bとで異なる構成のものを組み合わせて用いることも可能である。
・コイルモジュール740をエンドリング733に係合させる構成として以下の構成を用いてもよい。図110に示す構成では、軸方向両側のエンドリング733に、第1係合部として複数の係合孔871が形成される一方、コイルモジュール740の固定子コア732側の壁部(第1壁部751)において軸方向の2箇所に、第2係合部として係合ピン872が設けられている。係合孔871は、コイルモジュール740ごととなる所定間隔で、径方向外側に開口する向きで設けられている。係合ピン872は、一部がコイルモジュール740(巻線ホルダ742)に埋設された状態で、コイルモジュール740にインサート成形されたインサート部材である。本構成では、エンドリング733の係合孔871にコイルモジュール740の係合ピン872が挿し入れられた状態で、固定子コア732に対して各コイルモジュール740が組み付けられる。この状態では、エンドリング733の係合孔871に対する係合ピン872の係合により、固定子コア732に対する各コイルモジュール740の周方向の位置精度が高められるようになっている。なお、本構成はコイルモジュール850にも適用可能である。
・図111(a)に示す構成では、固定子コア732の軸方向両端において径方向外側となる部位に、第1係合部として複数の凹部873が設けられている。図111(b)には、固定子コア732の正面図において周方向に等間隔で設けられた複数の凹部873が示されている。凹部873は、コイルモジュール740ごとに設けられている。また、コイルモジュール740の固定子コア732側の壁部(第1壁部751)には、軸方向の2箇所に、第2係合部として係合キー874が設けられている。係合キー874は、一部がコイルモジュール740(巻線ホルダ742)に埋設された状態で、コイルモジュール740にインサート成形されたインサート部材である。本構成では、固定子コア732の凹部873にコイルモジュール740の係合キー874が係合された状態で、固定子コア732に対して各コイルモジュール740が組み付けられる。この状態では、固定子コア732の凹部873に対する係合キー874の係合により、固定子コア732に対する各コイルモジュール740の周方向の位置精度が高められるようになっている。
係合キー874は磁性体であるとよい。係合キー874を磁性体とすることで、固定子コア732に対して各コイルモジュール740が組み付けられた状態では、固定子コア732の凹部873が磁性体で埋められることとなる。この場合、固定子コア732に凹部873を形成した構成にあっても、その凹部形成に起因するコギングトルクの発生を抑制できる。なお、本構成はコイルモジュール850にも適用可能である。
・図112(a)に示す構成では、固定子コア732の径方向外側となる外周面に、第1係合部として、軸方向に延びる複数の凹部875が設けられている。図113(a)には、固定子コア732の正面図において周方向に等間隔で設けられた複数の凹部875が示されている。凹部875は、コイルモジュール740ごとに、軸方向に平行となる向きで直線状に設けられている。また、コイルモジュール740の固定子コア732側の壁部(第1壁部751)には、第2係合部として、軸方向に延びる凸状の係合凸部876が設けられている。係合凸部876は、例えば第1壁部751の一部を径方向内側に延ばすようにして形成されている。本構成では、図112(b)に示すように、固定子コア732の凹部875にコイルモジュール740の係合凸部876が係合された状態で、固定子コア732に対して各コイルモジュール740が組み付けられる。この状態では、固定子コア732の凹部875に対する係合凸部876の係合により、固定子コア732に対する各コイルモジュール740の周方向の位置精度が高められるようになっている。
図113(b)に示すように、固定子コア732の凹部875を、軸方向に対して斜めとなる向きで設けてもよい。つまり、凹部875をスキューさせて設けた構成とする。コイルモジュール740側の係合凸部876も同様の向きとする。この場合、固定子コア732に凹部875を形成した構成にあっても、その凹部形成に起因するコギングトルクの発生を抑制できる。なお、本構成はコイルモジュール850にも適用可能である。
・図114に示す構成では、コイルモジュール740の固定子コア732側の壁部(第1壁部751)において軸方向の2箇所に、押圧部として板状の押圧プレート877が設けられている。押圧プレート877は、一部がコイルモジュール740(巻線ホルダ742)に埋設された状態で、コイルモジュール740にインサート成形されている。本構成では、固定子コア732に対して各コイルモジュール740が組み付けられた状態において、固定子コア732の軸方向端面にコイルモジュール740の押圧プレート877が当接することで、固定子コア732におけるコアシート間の微小隙間を極力小さくし、ひいてはバックヨークの軸長寸法の縮小化を図ることができる。なお、本構成はコイルモジュール850にも適用可能である。
・図115(a)に示す構成では、固定子コア732の軸方向端面に当接した状態で円環板状のスペーサ881が固定されている。また、コイルモジュール740には、固定子コア732側の壁部(第1壁部751)において固定子コア732の軸方向端面よりも軸方向外側に延びる部分(ヨーク外部分)に、押圧部としての突出部756が設けられている。突出部756は、固定子コア732の径方向幅(すなわちコアシートの径方向幅)よりも小さい突出寸法を有しているのに対し、スペーサ881は、固定子コア732と同じ径方向幅を有している。すなわち、スペーサ881は、固定子コア732の軸方向端面に対する径方向の重複量が突出部756よりも大きい構成となっている。スペーサ881は、その板厚がコアシートの厚みよりも大きいとよい。なお、図示は省略するが、固定子コア732の軸方向両端で同じ構成となっている。
図115(b)に示すように、固定子コア732に対して各コイルモジュール740が組み付けられた状態では、突出部756によりスペーサ881が軸方向に押圧される。この状態では、スペーサ881により、固定子コア732の軸方向端面の全体が軸方向に均一に押圧される。これにより、突出部756の突出量が比較的小さい構成であっても、固定子コア732でのコアシートの縁部の反り返りが抑制されるようになっている。スペーサ881は、必ずしも固定子コア732と同じ径方向幅を有していなくてもよく、固定子コア732の軸方向端面に対する径方向の重複量が突出部756よりも大きい構成であればよい。なお、本構成はコイルモジュール850にも適用可能である。
・図115(a)の構成の一部を変更し、図116(a)の構成としてもよい。この場合、スペーサ881においてその軸方向端面、すなわち突出部756との対向面には、軸方向に延びる凹部881aが形成されるとともに、径方向外側(コイルモジュール740側)の角部に傾斜面881bが形成されている。傾斜面881bは、直線状又は外側に凸の円弧状に形成されている。これに対して、コイルモジュール740の突出部756は鈎形状となっており、その先端部には、スペーサ881の凹部881aに係合可能な係合部757aが形成されている。また、突出部756にはスペーサ881の傾斜面881bに対向する対向傾斜面757bが形成されている。
図115(b)に示すように、固定子コア732に対して各コイルモジュール740が組み付けられた状態では、突出部756の係合部757aがスペーサ881の凹部881aに入り込んで係合状態となる。これにより、固定子コア732に対するコイルモジュール740の径方向の移動が規制され、コイルモジュール740による固定子コア732の軸方向押圧機能を好適に維持することができる。
また、各コイルモジュール740の組み付け時に、突出部756の対向傾斜面757bによりスペーサ881の傾斜面881bが押圧されることで、スペーサ881に対する押圧力を適正に発揮させることができる。
・固定子コア732に対する各コイルモジュール740A,740B、又は各コイルモジュール850A,850Bの組み付け構造として以下の構成を用いてもよい。ここでは、固定子コア732の軸方向一方側及び軸方向他方側において、各々異なるコイルモジュール740A,740Bの突出部756(押圧部)により、固定子コア732の軸方向端面を押圧する構成としている。
具体的には、図117(a)に示すように、コイルモジュール740Aにおいて、固定子コア732側の壁部(第1壁部751)には、固定子コア732の軸方向両側のうち図の上側にのみ突出部756が設けられている。また、図117(b)に示すように、コイルモジュール740Bにおいて、固定子コア732側の壁部(第1壁部751)には、固定子コア732の軸方向両側のうち図の下側にのみ突出部756が設けられている。図117(a),(b)ではいずれも、コイルモジュール740A,740Bにおいて曲がり部745とは逆側に突出部756が設けられている。
そして、図117(a),(b)に示すように、突出部756の位置が逆になるように、各コイルモジュール740A,740Bの軸方向の向き(曲がり部745の向き)を互い違いにして、固定子コア732に対して、各コイルモジュール740A,740Bが組み付けられている。この構成においても、固定子コア732の軸方向端面が、各コイルモジュール740A,740Bの突出部756により押圧されるようになっている。
この場合、固定子コア732の軸方向一方側から軸方向端面を押圧するコイルモジュール740Aと、固定子コア732の軸方向他方側から軸方向端面を押圧するコイルモジュール740Bとの軸方向の相対位置を調整することで、固定子コア732に対する軸方向の押圧力を適宜調整することが可能となる。例えば、固定子コア732においてコアシートの厚み寸法の誤差や枚数ばらつき等に起因する積厚公差が生じていても、その固定子コア732に対して一定の押圧力を付加することができる。
なお、上記のごとく各々異なるコイルモジュール740A,740Bの突出部756により、固定子コア732の両側の軸方向端面が押圧される構成として、軸方向に2つの突出部756を有するコイルモジュール740A,740Bを用いることも可能である。この場合、軸方向に2つの突出部756のうち一方を固定子コア732の軸方向端面に当接させ、他方を固定子コア732の軸方向端面に当接させない構成とすればよい。
・周方向に隣り合うコイルモジュール740A,740Bどうし、又は各コイルモジュール850A,850Bどうしが軸方向に相対移動不可となるように、各コイルモジュール740A,740B、又は各コイルモジュール850A,850Bどうしが固定される構成としてもよい。具体的には、各コイルモジュール740A,740Bの正面図である図118に示すように、コイルモジュール740Aの直線部744において、周方向の一方の側面に凹部883が形成されるとともに、周方向の他方の側面に凸部884が形成されている。これらの凹部883及び凸部884は、コイルモジュール740A,740Bの第3壁部753(又は各コイルモジュール850A,850Bの第3壁部863)に設けられているとよい。そして、固定子コア732に対して各コイルモジュール740A,740Bが組み付けられた状態では、隣り合うコイルモジュールどうしにおいて凹部883及び凸部884による係合により軸方向の相対移動が規制される。
上記構成では、コイルモジュール740,850の位置が軸方向にずれることで生じるコアシートに対する軸方向の押圧力の低下を抑制できる。これにより、固定子コア732の軸長寸法の縮小化をより一層適正に実現できる。
・図119に示す構成では、固定子コア732に対して各コイルモジュール740A,740Bが組み付けられた状態において、各コイルモジュール740A,740Bが固定子コア732と共に絶縁材料により一体にモールドされている。つまり、固定子コア732及び各コイルモジュール740A,740Bが被覆層886により一体的に被覆されている。
この場合、複数のコイルモジュール740A,740Bを固定子コア732に対して好適に組み付けることができる。また、コイルモジュール740A,740Bを、第1壁部751(バックヨーク側絶縁壁)と被覆層886との間に部分巻線741A,741Bを介在させた状態で配置することができ、部分巻線741における径方向の絶縁を好適に実現できる。
また、図119の構成では、各コイルモジュール740A,740Bの外周側を覆うように被覆層886が設けられることで、その被覆層886により各コイルモジュール740A,740Bの径方向への押圧が可能となる。これにより、固定子コア732に対して複数のコイルモジュール740A,740Bを組み付けた状態を好適に保持することができる。
また、図119の構成において、固定子コア732の軸方向端面(ベース部材において第2係合部に対向する軸方向対向面)と第1壁部751の突出部756(第2係合部)との間に充填材としての樹脂が充填されているとよい。この場合、固定子コア732の軸方向端面と第1壁部751の突出部756との間に隙間が生じていても、充填材の充填によりその隙間が埋められ、固定子コア732に対するコイルモジュール740A,740Bの軸方向の相対変位が抑制される。これにより、コイルモジュール740A,740Bのがたつきを抑制し、固定子コア732に対してコイルモジュール740A,740Bを適正に固定することができる。
・固定子コア732及びコイルモジュール740(部分巻線741)を、それらの軸方向両端部分、及びコイルモジュール740の反固定子コア側の側面部分を含む範囲で一体に樹脂モールドし、樹脂モールドにより形成された被覆部のうち、軸方向両側において固定子コア732の軸方向端面を覆う端面被覆部を、固定子コア732の軸方向端面を軸方向外側から軸方向に押圧する押圧部とする構成としてもよい。
具体的には、図120(a)に示すように、コアシート積層体である固定子コア732の軸方向両端面を加圧治具Jにより圧縮加圧し、その加圧状態で固定子コア732の径方向外側に複数のコイルモジュール740を組み付ける。そして、図120(b)に示すように、加圧状態のまま、固定子コア732及びコイルモジュール740を一体で樹脂モールドして、固定子コア732の軸方向両端部分、及びコイルモジュール740の外周側(反固定子コア側)の側面部分を含む範囲に被覆層888を形成する。モールド樹脂が硬化した後には、加圧治具Jが取り外されて加圧治具Jによる圧縮加圧が解除される。この場合、被覆層888のうち、軸方向両側において固定子コア732の軸方向端面を覆う端面被覆部889が押圧部として機能する。
本構成では、樹脂モールドにより形成された被覆層888が、その軸方向両端部分である端面被覆部889を繋ぐように形成されており、端面被覆部889どうしの距離が拡がることなく維持される。これにより、端面被覆部889において固定子コア732に対する軸方向の押圧機能を発揮させることができる。
・図121に示す固定子730では、固定子コア732の径方向内側(コイルモジュール740の反対側)に、固定子コア732の軸方向一方側から筒状部材891が固定されるようになっている。筒状部材891は、例えば上述したインナハウジング771の外筒部材772に相当する。筒状部材891には、固定子コア732が組み付けられる側の周面(外周面)に、固定子コア732の側に突出させて、固定子コア732の軸方向端面に当接する段差状の当接部892が設けられている。この場合、軸方向において筒状部材891の当接部892が設けられている側で、コイルモジュール740の曲がり部745(部分巻線741の外曲がり部Y1)が、径方向内外のうち筒状部材891とは逆側に曲げられている。
上記構成では、固定子コア732の軸方向端面が筒状部材891の当接部892に対して当接しているため、筒状部材891に対する軸方向の位置決めがなされた状態で、その筒状部材891に対して固定子コア732を好適に固定できる。この場合、軸方向両側のうち筒状部材891の当接部892の側で、コイルモジュール740の曲がり部745が径方向において筒状部材891とは逆側に曲げられているため、その曲がり部745が筒状部材891に当たってしまい固定子コア732の軸方向端面と筒状部材891との当接に支障を来すといった不都合を回避できるものとなっている。
・コイルモジュール740,850は、軸方向両端のうち一方が径方向に折れ曲がることで略L字状に形成される以外の構成であってもよい。具体的には、図122に示すように、2種類のコイルモジュール740X,740Yがいずれも、軸方向両端が径方向に折れ曲がることで略Z字状に形成されるものであってもよい。この場合、各コイルモジュール740X,740Yの軸方向両端は互いに逆向きに曲げ形成されている。そして、コイルモジュール740X,740Yは、軸方向に相対位置をずらした状態で周方向に並べて配置される。各コイルモジュール740X,740Yの周方向の並び状態は既に説明したとおりである。コイルモジュール740X,740Yでは、同一構成の部分巻線を用いることが可能であるが、突出部756の軸方向の位置が互いに相違するものとなっている。
・固定子巻線731において、コイルモジュール740やコイルモジュール850を用いない構成であってもよい。例えば、固定子コア732の径方向外側に、周方向に複数の部分巻線741A,741Bを並べた状態で、その複数の部分巻線741A,741Bを樹脂モールドする構成であってもよい。この場合、図123に示すように、固定子730は、全体が樹脂層で被覆された円筒状をなす構成となっている。その樹脂層内部では、コイルモジュール740やコイルモジュール850を用いた構成と同様に、固定子コア732と部分巻線741との絶縁がなされるとともに、各部分巻線741A,741Bの相間絶縁がなされた状態で、複数の部分巻線741が周方向に並べて配置されている。この場合、複数の部分巻線741A,741Bを覆う樹脂被覆層により、部分巻線741A,741Bの径方向に隣接する径方向絶縁壁が形成されるとともに、部分巻線741A,741Bの周方向に隣接する周方向絶縁壁が形成されている。
なお、周方向に隣り合う各部分巻線741A,741Bの間に、所定の厚みを有する絶縁性の絶縁プレートをそれぞれ配置する構成であってもよい。この場合、固定子コア732の径方向外側において、複数の部分巻線741A,741Bと絶縁プレートとを周方向に交互に並べた状態で、それらを樹脂モールドして固定子730を成形する。本構成では、仮に樹脂モールド工程での射出圧で部分巻線741A,74ABが意図せず動いたとしても、絶縁プレートの厚み分の絶縁距離が残るため、対地/相間の必要絶縁距離を確保できる。
・上述した構成では、固定子巻線731において、相巻線ごとに全ての部分巻線741が並列接続される構成を説明したが、これを変更してもよい。例えば、相巻線ごとの全ての部分巻線741を複数の並列接続群に分け、その複数の並列接続群を直列接続する構成でもよい。つまり、各相巻線における全12個の部分巻線741を、6個2組の並列接続群に分け、それらを直列接続する。又は、固定子巻線731において、相巻線ごとに複数の部分巻線741が全て直列接続される構成であってもよい。
(変形例17)
本変形例では、回転電機700において、固定子730に代えて、図124に示す固定子900を用いる構成としている。本例においても、回転電機700の構成として既述の回転子710やインナユニット770、バスバーモジュール810を備えるが、ここでは説明を割愛する。
固定子900は、固定子巻線901と固定子コア902とを有している。図124は、固定子900の構成を示す斜視図であり、図125は、固定子900の正面図であり、図126は、固定子900の縦断面図であり、図127は、固定子900の横断面図(図125の127-127線断面図)であり、図128は、固定子巻線901と固定子コア902とを分解して示す斜視図である。
固定子コア902は、磁性体である電磁鋼板からなる複数のコアシートが軸方向に積層され、かつ径方向に所定の厚さを有する円筒状をなしており、固定子コア902において回転子710側となる径方向外側に固定子巻線901が組み付けられている。固定子コア902の外周面は凹凸のない曲面状をなしている。固定子コア902はバックヨークとして機能する。固定子コア902は、例えば円環板状に打ち抜き形成された複数のコアシートが軸方向に積層されて構成されている。ただし、固定子コア902としてヘリカルコア構造を有するものを用いてもよい。
固定子コア902において、軸方向両側の端面にはエンドリング903が固定されている。エンドリング903は、固定子コア902に固定子巻線901を組み付けた状態で、その固定子巻線901を周方向の所定位置に保持する機能を有する位置決め部材である。固定子コア902及びエンドリング903がベース部材904である。
エンドリング903の外周面には、周方向に複数の凹部905が形成されている。本例では、固定子巻線901において周方向に並ぶコイルモジュール910と同数の凹部905が周方向に設けられている。軸方向両側の各エンドリング903では、軸方向一端側及び他端側で周方向における凹部905の位置が一致している。
エンドリング903は、例えばアルミニウムや銅等の非磁性材料により形成されている。エンドリング903は、固定子コア902に対して溶接により固定されている。これ以外に、エンドリング903が、ピン差しやキー圧入、ボルト締結により機械的に固定されていてもよい。こうした機械的な固定により、固定子コア902に対するエンドリング903の周方向の位置ずれが抑制されるものとなっている。
図125に示すように、固定子900は、軸方向において、回転子710における磁石722に径方向に対向するコイルサイドCSに相当する部分と、そのコイルサイドCSの軸方向外側であるコイルエンドCE1,CE2に相当する部分とを有している。この場合、固定子コア902は、軸方向においてコイルサイドCSに対応する範囲で設けられ、エンドリング903は、軸方向一端側のコイルエンドCE1及び他端側のコイルエンドCE2にそれぞれ設けられている。
固定子巻線901は、複数の相巻線を有し、各相の相巻線が周方向に所定順序で配置されることで円筒状(環状)に形成されている。固定子巻線901の径方向内側に固定子コア902が組み付けられている。本例では、U相、V相及びW相の相巻線を用いることで、固定子巻線901が3相の相巻線を有する構成となっている。また、図127に示すように、固定子巻線901では、周方向に並ぶ導線部が径方向に2層に並べて配置されており、固定子巻線901は径方向内外2層の巻線となっている。
固定子巻線901において各相の相巻線は各々複数の部分巻線911を有しており、その部分巻線911が個別にコイルモジュール910として設けられている。つまり、コイルモジュール910は、各相の相巻線における部分巻線911が一体に設けられたものとなっている。各相のコイルモジュール910が周方向に所定順序で並べて配置されることで、固定子巻線901のコイルサイドにおいて各相の導線部が所定順序に並べて配置されるものとなっている。図125には、コイルサイドにおけるU相、V相及びW相の導線部の並び順が示されている。
固定子巻線901では、相ごとに各コイルモジュール910の部分巻線911が並列に接続されることにより、各相の相巻線が構成されている。図129は、3相の各相巻線における部分巻線911の接続状態を示す回路図である。図129では、各相の相巻線における複数の部分巻線911がそれぞれ並列に接続された状態が示されている。
固定子巻線901は、周方向に並べて配置された複数のコイルモジュール910により構成されている。図130は、コイルモジュール910の斜視図である。また、図131(a)は、正面視でのコイルモジュール910の縦断面図であり、図131(b)は、コイルモジュール910の側面図である。なお、図131(b)では、コイルモジュール910の左側が固定子コア902側(径方向内側)となっている。
コイルモジュール910は、空芯巻コイルである部分巻線911と、その部分巻線911を覆う被覆層912とを有している。この場合、部分巻線911はその全体が被覆層912で覆われており、その被覆層912により、部分巻線911と固定子コア902との絶縁、及び互いに近接する部分巻線911どうしの絶縁が図られている。部分巻線911は、導線913を多重巻にして構成されている。被覆層912は、例えば絶縁材料である合成樹脂により形成されている。
複数の部分巻線911は、多重巻された状態の導体断面積と多重巻の巻回数が同じであるとよい。この場合、各相の相巻線において、並列回路を構成する各部分巻線911の鎖交磁束を均一化することができる。これにより、各部分巻線911における相互の電位差を無くすことができ、並列回路内での循環電流の発生を抑制できる。また、循環電流の発生に伴うモータ効率の低下や熱定格性能の低下を抑制できる。
コイルモジュール910は、平行でかつ直線状に延びる一対の直線部921と、その一対の直線部921を軸方向一端側及び軸方向他端側で接続する渡り部922,923とを有しており、これら一対の直線部921と軸方向両側の渡り部922,923とにより環状に形成されている。一対の直線部921は、所定のコイルピッチ分を離して設けられており、周方向において一対の直線部921の間に、他相のコイルモジュール910の直線部921が配置可能となっている。本例では、一対の直線部921は2コイルピッチ分を離して設けられ、一対の直線部921の間に、他2相のコイルモジュール910における中間導線部746が1つずつ配置される構成となっている。
また本例では、一対の直線部921が、径方向に1層分オフセットされるように設けられており、そのうち一方は、径方向2層の固定子巻線901において内層側に配置され、他方は径方向2層の固定子巻線901において外層側に配置されるようになっている。そして、径方向内外の異なる層にそれぞれ設けられる一対の直線部921が、渡り部922,923により環状に接続されている。具体的には、一方の渡り部922は、軸方向に対して斜めとなる向きでかつ互いに近づく側に延びる一対の傾斜部922aと、その一対の傾斜部922aを径方向に繋ぐ繋ぎ部922bとを有している。また、他方の渡り部923は、軸方向に対して斜めとなる向きでかつ互いに近づく側に延びる一対の傾斜部923aと、その一対の傾斜部923aを径方向に繋ぐ繋ぎ部923bとを有している。渡り部922,923は、内外層の切り替えを行わせる切替部でもある。
渡り部922,923は、それぞれコイルエンドCE1,CE2(図125参照)に相当する部分として設けられている。すなわち、これら各渡り部922,923は、コイルエンドCE1,CE2において、周方向に異なる2位置の同相の導線部どうしを接続するコイルエンド接続部として設けられている。
固定子コア902に対する固定子巻線901の組み付け状態では、一対の直線部921のうち一方の直線部921とその軸方向両側の各傾斜部922a,923aとが径方向2層のうち外層側に配置され、他方の直線部921とその軸方向両側の各傾斜部922a,923aとが径方向2層のうち内層側に配置される。
図131(b)に示すように、コイルモジュール910の一対の直線部921のうち内層側の直線部921(図の左側の直線部921)において、部分巻線911よりも固定子コア902側(図の左側)の被覆層912が、部分巻線911と固定子コア902との間の絶縁層912aである。この絶縁層912aがバックヨーク側絶縁壁に相当する。
また、コイルモジュール910には、軸方向一端側及び他端側に、エンドリング903の凹部905に係合する突出部925が設けられている。突出部925は、渡り部922,923の繋ぎ部922b,923bから径方向内側に延びるようにして設けられている。
図131(a)に示すように、コイルモジュール910において、部分巻線911は、被覆層912に全体が覆われた状態で設けられている。部分巻線911は、コイルモジュール910の一対の直線部921に沿う部分として一対の中間導線部915を有するとともに、コイルモジュール910の渡り部922,923に沿う部分として渡り部916,917を有している。部分巻線911について補足すると、部分巻線911は、互いに平行でかつ直線状に設けられる一対の中間導線部915と、一対の中間導線部915を軸方向一端側及び軸方向他端側で接続する渡り部916,917を有しており、これら一対の中間導線部915と渡り部916,917とにより環状に形成されている。一対の中間導線部915は、所定のコイルピッチ分を離して設けられており、周方向において一対の中間導線部915の間に、他相の部分巻線911の中間導線部915が配置可能となっている。本例では、一対の中間導線部915は2コイルピッチ分を離して設けられ、一対の中間導線部915の間に、他2相の部分巻線911における中間導線部915が1つずつ配置される構成となっている。
部分巻線911は、横断面が四角形になるように導線913が多重に巻回されて形成されており、その横断面の四方が、被覆層912よりなる絶縁壁で覆われている。本例では、導線913を同心巻により巻回することで部分巻線911が構成されている。ただし、導線913の巻き方は任意であり、同心巻に代えて、アルファ巻により導線913が多重に巻回されていてもよい。
図130に示すように、各コイルモジュール910には、部分巻線911の導線913の端部が軸方向に引き出されており、その端部が巻線端部913a,913bとなっている。巻線端部913a,913bは、それぞれ導線913の巻き始め及び巻き終わりである。このうち巻線端部913aが電流入出力端子に接続され、巻線端部913bが中性点に接続されるようになっている。
次に、固定子コア902に対してコイルモジュール910を組み付けた状態について説明する。
図132は、複数のコイルモジュール910を周方向に並べた状態を示す斜視図であり、図133は、複数のコイルモジュール910を周方向に並べた状態における横断面を示す図である。なお、図133では、同相(例えばU相)のコイルモジュール910についてドットを付している。
図132に示すように、複数のコイルモジュール910はいずれも同一形状をしており、渡り部922,923の繋ぎ部922b,923bが径方向に延びる向きにして、周方向に並べて配置されている。この場合、径方向に延びる渡り部922,923により、周方向に隣り合うコイルモジュール910どうしの干渉が回避されるようになっている。コイルモジュール910の渡り部922,923(部分巻線911の渡り部916,917)が干渉回避部に相当する。
固定子コア902に対するコイルモジュール910の組み付けた状態では、固定子コア902の軸方向両端のエンドリング903に設けられた凹部905(図128参照)に対して、コイルモジュール910の突出部925が係合状態となっている。これにより、固定子コア902に対して、周方向の位置精度を高めつつコイルモジュール910を組み付けることが可能となっている。エンドリング903の凹部905とコイルモジュール910の突出部925とは、互いに対向する係合面どうしがそれぞれ傾斜面(固定子コア902と同心となる同心円上の接線に対して傾斜する傾斜面)となっていてもよい。なお、エンドリング903の凹部905が第1係合部に相当し、コイルモジュール910の突出部925が第2係合部に相当する。
軸方向両側において、エンドリング903の凹部905に対してコイルモジュール910の突出部925が軸方向に対向し、突出部925によりエンドリング903が軸方向に押圧される構成であるとよい。この場合、突出部925によりエンドリング903が軸方向に押圧されることにより、固定子コア902において、各コアシートに対する軸方向の押圧力、換言すればコアシートが軸方向に互いに離間しようとすることに抗する付勢力を付与できる。これにより、コアシート間の微小隙間を極力小さくし、ひいては固定子コア902の軸長寸法の縮小化を図ることができる。突出部925が押圧部に相当する。
複数のコイルモジュール910は、周方向に接触することなく互いに離間した状態で配置されている。この状態において、全てのコイルモジュール910を覆うように樹脂モールドが行われるとよい。これにより、各コイルモジュール910の脱落等の不都合が抑制できる。なお、コイルモジュール910の外周側に拘束リング等の拘束部材を設け、その拘束部材の拘束により径方向への押圧力を付与する構成としてもよい。
図133に示すように、各相のコイルモジュール910は所定順序で周方向に並べて配置されている。各コイルモジュール910では、一対の直線部921が2コイルピッチ分を離して設けられ、その一対の直線部921の間に、他2相のコイルモジュール910の直線部921が1つずつ配置されているため、径方向内外で同相の直線部921が並ぶようになっている。
部分巻線911は、要するに以下の構成となっている。部分巻線911は、一対の中間導線部915として、径方向2層のうち内側に位置する内側導線部と、径方向2層のうち外側に位置する外側導線部とを有し、内側導線部と外側導線部とが、軸方向一端側及び他端側において渡り部916,917によりそれぞれ接続されている。そして、各相の相巻線は、同一形状の部分巻線911を有しており、軸方向一端側及び他端側において渡り部916,917が周方向に同じ向きで並べられた状態で、各部分巻線911が周方向に並べて配置されている。この場合、周方向に隣り合う各部分巻線911が、互いの干渉を回避しつつ周方向に適正に配置される。また、同一形状の部分巻線911を用いることで生産性が高められるものとなっている。
固定子900は、以下の(A)~(C)のいずれかを用いたものであるとよい。
(A)固定子900において、周方向における各導線部(中間導線部915)の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石722の周方向の幅寸法をWm、磁石722の残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子900において、周方向における各導線部(中間導線部915)の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子900において、周方向における各導線部(中間導線部915)の間に導線間部材を設けていない構成となっている。
本例の回転電機700では、固定子900において、周方向に所定間隔で配置される導線部(中間導線部915)の間に導線間部材(いわゆるティース)が設けられていないか、又は導線間部材が設けられていても磁気的に脆弱な構成となっている。そのため、回転子710にて生じる磁石磁束が固定子巻線901の導線部に直接鎖交し、銅渦損の増加に伴うモータ効率の低下や熱定格性能の低下が懸念される。特に、上記のとおり配向による磁束密度の強化が図られている構成においては、銅渦損の影響がより顕著に生じることが懸念される。
この点、上記構成では、固定子巻線901において、部分巻線911を、周方向に離して設けられた同相の導線部間で導線913を多重に巻回して構成した。また、各相の相巻線を、複数の部分巻線911どうしを並列接続することで構成した。これにより、固定子巻線901において導線1本あたりの断面積の細分化が可能となり、銅渦損の発生を抑制でき、ひいては、モータ効率の向上や熱定格性能の向上を図ることができる。
また、磁極の極数をP、1相当たりの部分巻線911の数をN個とした場合に、極数PがNであり、相巻線では、相ごとにN個の部分巻線911が全て並列接続されている。本例において具体的には、1相当たりの部分巻線911の数(N)は、それぞれ48であり、極数Pは48である。図129で言えば、U、V、Wの各相の相巻線において、部分巻線911の並列数がいずれも48となっている。この場合、相ごとに全ての部分巻線911を並列接続することにより、固定子巻線901での各導線の断面積の最小化が可能となり、銅渦損のより一層の低減を図ることができる。
部分巻線911として、以下の構成を用いることも可能である。図134に示すように、部分巻線911は、複数本の細線931が並列接続されてなる複合導線930を用い、その複合導線930を多重に巻回することで構成されている。図134において、複合導線930は、例えば3本の細線931a,931b,931cを有する束線として構成されている。説明の便宜上、図134では、同一となる細線931に同じ断面表記を付し、異なる細線931に異なる断面表記を付している。なお、複合導線930における細線931の数は2以上であればよく任意である。
そして、部分巻線911の中間導線部915において、複合導線930は各細線931a~931cの並びが周方向に同じになるように配置されている。具体的には、図134に示すように、中間導線部915では、各細線931a~931cが径方向に一列に並んだ状態で、複合導線930が周方向に4列に、径方向に2段に巻回されている。この場合、周方向に見ていずれの列においても各細線931の並びが同じになっている。
上記構成では、複数本の細線931が並列接続されてなる複合導線930を用いその複合導線930を多重巻にすることで、換言すれば1本の導線内において導体の更なる細分化を図ることで、固定子巻線901における導体断面積の更なる低減が可能となり、銅渦損の低減効果が高められる。また、部分巻線911の導線部において、複合導線930を複数本の細線931の並びが周方向に同じになるように配置すること(すなわち周方向に均等配置すること)で、その複合導線930での循環電流の発生を抑制し、銅渦損や循環電流損の低減を図ることができる。
並列接続される各細線931は、互いに電気抵抗が略等しくなるように導線の長さ又は断面積が設定されている。これにより、並列回路内の電流の偏りとこれに伴う損失の悪化とを抑制することができる。
なお、部分巻線911の導線部において、複数本の細線931の並びが周方向に同じになるように複合導線930が配置される構成としては、各細線931が径方向に1列に並ぶ構成以外であってもよい。要は、径方向に比べて、周方向において電流の偏りが生じないようにした構成であればよい。
複合導線930は、複数本の細線931が互いに撚られて構成されているとよい。これにより、複合導線930における複数本の細線931での互いの電位差を無くし、複合導線930での循環電流の抑制を図ることができる。
具体的には、図135(a)に示すように、複合導線930は、複数本の細線931を周方向に捩ることで形成される撚り線であるとよい。又は、図135(b)に示すように、複合導線930は、複数本の細線931を互いに編み込むことで形成される撚り線であるとよい。なお、全ての細線931が互いに編み込まれる構成であるとよい。この場合、複数に並列化された各細線931間の電位差を無くし、複合導線930内の循環電流を抑制することができる。
(変形例17の別例)
・コイルモジュール910の構成として、部分巻線911をボビン状の巻線ホルダに一体的に設けた構成を採用してもよい。この場合、巻線ホルダは、部分巻線911を囲む四方のうち少なくとも固定子コア902側の絶縁壁を有するもの、又は、固定子コア902側の絶縁壁及び反固定子コア側の絶縁壁を有するものであればよい。この場合、部分巻線911を囲む四方において全てを絶縁壁で囲わなくても、その一部が露出していてもよい。
・固定子コア902に固定されたエンドリング903の凹部905に対してコイルモジュール910の突出部925が係合する構成に代えて、固定子コア902に形成された凹部に対してコイルモジュール910の突出部925が係合する構成であってもよい。
・コイルモジュール910の一対の直線部921(部分巻線911の一対の中間導線部915)が軸方向に平行でなく、軸方向に傾斜していてもよい。この場合、固定子巻線901のスキュー構造が実現できる。
(変形例15~17における他の別例)
・回転電機700における固定子巻線731や固定子巻線901は2相の相巻線(U相巻線及びV相巻線)を有する構成であってもよい。この場合、例えば部分巻線741では、一対の中間導線部746が1コイルピッチ分を離して設けられ、一対の中間導線部746の間に、他1相の部分巻線741における中間導線部746が1つ配置される構成となっていればよい。
・ここまでは、変形例15~17の回転電機700としてアウタロータ式の表面磁石型回転電機を説明してきたが、これに代えてインナロータ式の表面磁石型回転電機として具体化することも可能である。インナロータ式とする場合、固定子730において、固定子コア732の径方向内側に複数のコイルモジュール740やコイルモジュール850を並べて配置するとよい。又は、固定子900において、固定子コア902の径方向内側に複数のコイルモジュール910を並べて配置するとよい。
・回転電機700に用いられる固定子730,900は、バックヨークから延びる突起部(例えばティース)を有するものであってもよい。この場合にも、固定子コアに対するコイルモジュール740等の組み付けがバックヨークに対して行われるものであればよい。
・回転電機としては、星形結線のものに限らず、Δ結線のものであってもよい。
・回転電機700として、界磁子を回転子とする回転界磁形の回転電機に代えて、電機子を回転子とする回転電機子形の回転電機を採用することも可能である。
この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。