[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7143740B2 - 画像検査装置および照明装置 - Google Patents

画像検査装置および照明装置 Download PDF

Info

Publication number
JP7143740B2
JP7143740B2 JP2018222992A JP2018222992A JP7143740B2 JP 7143740 B2 JP7143740 B2 JP 7143740B2 JP 2018222992 A JP2018222992 A JP 2018222992A JP 2018222992 A JP2018222992 A JP 2018222992A JP 7143740 B2 JP7143740 B2 JP 7143740B2
Authority
JP
Japan
Prior art keywords
light
light emitting
microlenses
optical axis
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018222992A
Other languages
English (en)
Other versions
JP2019138893A (ja
Inventor
豊 加藤
伸悟 稲積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to EP19151181.5A priority Critical patent/EP3524967B1/en
Priority to CN201910026273.6A priority patent/CN110118776B/zh
Priority to US16/248,810 priority patent/US11567013B2/en
Publication of JP2019138893A publication Critical patent/JP2019138893A/ja
Application granted granted Critical
Publication of JP7143740B2 publication Critical patent/JP7143740B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本技術は、撮影画像を用いて対象物を検査する画像検査装置および照明装置に関する。
FA(Factory Automation)分野などにおいては、対象物を照明しながら撮影し、得られた撮影画像を用いて対象物の外観を検査することが知られている。
たとえば、特開2017-62120号公報(特許文献1)は、面光源と、面光源と検査対象との間に配置された、レンズ、遮光マスクおよびフィルタとを備えた照明装置を用いる検査システムを開示している。このシステムでは、レンズ、遮光マスクおよびフィルタにより、検査対象の各点に照射される検査光の照射立体角が略均一に形成される。これにより、視野全体を均一に照射することができ、対象物の検査精度が向上する。
特開2017-62120号公報
上述した従来の照明装置では、面光源と検査対象との間に配置されたレンズは、テレセントリック光学系を構成するために、撮影装置の視野よりも大きいサイズを有する必要がある。そのため、照明装置が大型にならざるを得ない。加えて、上述の照明装置は、視野の場所ごとに照射立体角を設定することができない。
本発明は、視野の場所ごとに照射立体角を設定可能であるとともに、小型化が可能な画像検査装置および照明装置を提供することを目的とする。
本開示の一例によれば、撮影画像を用いて対象物を検査する画像検査装置が提供される。画像検査装置は、対象物を撮影する撮影部と、対象物と撮影部との間に配置され、対象物に向かう方向に光を照射するように構成されるとともに透光性を有する照明部とを備える。照明部は、マトリクス状に配列され、選択的に発光可能に構成された複数の発光部と、複数の発光部の各々から発せられる光の照射方向を、各複数の発光部の位置に対応した方向に制御するように構成された光学系とを含む。
この開示によれば、複数の発光部の中から発光させるべき発光部を選択することによって、照射立体角を任意に変更することができる。発光させるべき発光部は、視野の場所に応じて選択可能である。したがって、視野の場所ごとに照射立体角を任意に設定可能な画像検査装置を実現できる。さらに、照射立体角を任意に変更することができるので、たとえばスリットあるいはハーフミラーといった光学部品を不要とすることができる。したがって照明装置を小型化することができる。この結果、視野の場所ごとに照射立体角を設定可能であるとともに、小型化が可能な画像検査装置を実現できる。
上述の開示において、光学系は、複数の発光部にそれぞれ対向して設けられた複数のマイクロレンズを含む。
この開示によれば、小型化が可能な画像検査装置を実現できる。
上述の開示において、複数のマイクロレンズのうちの少なくとも一部のマイクロレンズの光軸が、少なくとも一部のマイクロレンズに対向する発光部の光軸とずれるように、複数のマイクロレンズが配置されている。
この開示によれば、シンプルな構成により、光の照射方向を制御することができる。
上述の開示において、照明部は、複数の照明要素に区画され、複数の照明要素のうちの少なくとも1つの照明要素において、少なくとも一部のマイクロレンズが、発光部のピッチよりも小さいピッチで配置されている。
この開示によれば、シンプルな構成により、光の照射方向を制御することができる。
上述の開示において、少なくとも一部のマイクロレンズは、規則性を乱すように配置される。
この開示によれば、撮影部から見たときの透過特性に関して、意図しない周期性が発生する可能性を低減できる。
上述の開示において、複数のマイクロレンズのうちの少なくとも一部のマイクロレンズの光軸が、少なくとも一部のマイクロレンズに対向する発光部の光軸に対して傾けられるように、複数のマイクロレンズが配置されている。
この開示によれば、シンプルな構成により、光の照射方向を制御することができる。
上述の開示において、照明部は、複数の発光部から出射される光のうち複数のマイクロレンズのそれぞれの周囲から漏れる光を遮るように構成された遮光部をさらに含む。
この開示によれば、発光部からの光が意図しない方向に漏れる可能性を低減することができる。
上述の開示において、照明部は、複数のマイクロレンズのうちの少なくとも一部のマイクロレンズと、少なくとも一部のマイクロレンズに対向する発光部との間に配置された遮光部をさらに含む。遮光部は、少なくとも一部のマイクロレンズの光軸に対してずれた位置に形成されたピンホールを有する。
この開示によれば、ピンホールを通過した光の進行方向をマイクロレンズによって制御することができる。この結果、視野の場所ごとに照射立体角を設定可能であるとともに、小型化が可能な画像検査装置を実現できる。
上述の開示において、照明部は、複数の発光部からの光を拡散させる光拡散部をさらに備える。
この開示によれば、発光部の輝度を均一にすることができる。
本開示の一例によれば、上述の開示において提供される画像検査装置が備える照明部を含む照明装置が提供される。
この開示によれば、視野の場所ごとに照射立体角を設定可能であるとともに、小型化が可能な照明装置を提供することができる。
本発明によれば、視野の場所ごとに照射立体角を設定可能であるとともに、小型化が可能な画像検査装置および照明装置を提供することができる。
本実施の形態に係る画像検査装置の概要を示す模式図である。 本実施の形態に係る画像検査装置が適用される生産ラインの一例を示す模式図である。 本実施の形態に係る照明装置の一例の一部断面を示す模式図である。 本実施の形態に係る照明装置の一部を拡大した模式平面図である。 照明装置の構成要素である照明要素の構造の一例を模式的に示した平面図である。 図5に示した構造を変形する方法の一例を説明した模式平面図である。 図6に示した方法に従って構成された、照明要素の構造の変形例を模式的に示した平面図である。 レンズの周囲から漏れる光の対策のための構成を示す模式平面図である。 図8に示された構成の模式断面図である。 図8に示された構成の1つの変形例を示した模式平面図である。 図8に示された構成の別の変形例を示した模式断面図である。 本実施の形態に係る画像検査装置によるパターン照明の1つの応用例を模式的に示す図である。 光切断法を実施する際のパターン照明を説明するための図である。 光切断法のための照明装置の照明パターンを説明するための図である。 図14に示した照明パターンの変形例を説明するための図である。 拡散反射面に対して位相シフト法を実施する際のパターン照明を説明するための図である。 図16に示した位相シフト法(拡散反射)のための照明装置の照明パターンの例を説明するための図である。 拡散反射面に対して位相シフト法を実施する際のパターン照明の別の例を説明するための図である。 図18に示した位相シフト法(拡散反射)のための照明装置の照明パターンの別の例を説明するための図である。 拡散反射面に対して位相シフト法を実施する際のパターン照明の変形例を説明するための図である。 図20に示した位相シフト法(拡散反射)のための照明装置の照明パターンの別の例を説明するための図である。 光が正反射するワーク表面に対して位相シフト法を実施する際のパターン照明を説明するための図である。 図22に示した位相シフト法(正反射)のための照明装置の照明パターンの例を説明するための図である。 光の出射方向または発光領域を制限する照明パターンの例を説明するための図である。 照度差ステレオ法を実施する際のパターン照明を説明するための図である。 図25に示した光照射のための照明パターンの例を説明するための図である。 照度差ステレオ法を実施する際の他のパターン照明を説明するための図である。 図27に示した光照射のための照明パターンの例を説明するための図である。 変形例1に係る照明装置の一部断面を示す模式図である。 変形例2に係る照明装置の一部断面を示す模式図である。 変形例3に係る照明装置の一部断面を示す模式図である。 変形例4に係る照明装置の構成要素である照明要素の構造の一例を模式的に示した平面図である。 変形例4に係る照明装置の一部断面を示す模式図である。 変形例4に係る照明装置の追加された構成の一部断面を示す模式図である。
本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。
<A.適用例>
まず、図1を参照して、本発明が適用される場面の一例について説明する。図1は、本実施の形態に係る画像検査装置1の概要を示す模式図である。
本実施の形態に係る画像検査装置1は、工業製品の生産ラインなどにおいて、対象物(以下、「ワークW」とも称す。)を照明しながら撮影し、得られた撮影画像を用いてワークWの外観検査(傷、汚れ、異物などの検査)を行う装置に適用される。画像検査装置1は、ワークWによって反射された光を検出することで検査するものである。そのため、ワークWには、光を反射する表面を有するものが適用可能である。
図1に示すように、画像検査装置1は、撮影部の一例であるカメラ10と、照明部の一例である照明装置20とを備える。
カメラ10は、撮影視野に存在する被写体を撮影して、撮影画像である画像データを生成するものである。カメラ10は、被写体として、外観検査の対象であるワークWを照明装置20越しに撮影する。
照明装置20は、カメラ10がワークWを撮影する度にワークWの表面を照明する。照明装置20は、ワークWとカメラ10との間に配置され、ワークWに向けて光を照射するとともに、透光性を有している。そのため、照明装置20から放射された光は、ワークWで反射し、照明装置20を透過して、カメラ10に到達する。照明装置20は、面光源30と、光学系の一例であるマイクロレンズアレイ40とを含む。
面光源30は、ワークW側の光出射面35からワークWに向けて光を放射する。面光源30の光出射面35のうち、マトリクス状に配置された複数の発光領域から光が放射される。ワークWからの反射光は、面光源30のうち発光領域以外の透光領域を透過する。各発光領域は、発光部31を含む。一例では、発光部31は、有機エレクトロルミネッセンス(以下、有機ELと呼ぶ)により構成された部材を含む。複数の発光部31は、選択的に発光可能に構成されている。一例として面光源30は、有機ELを用いた光源である。しかし、本実施の形態に適用可能な照明装置20は、有機ELを用いた光源に限定されるものではない。透過性を有する照明装置であって、マトリクス状に配列され選択的に発光可能に構成された複数の発光部を有する照明装置であれば、この実施の形態に適用可能である。
マイクロレンズアレイ40は、面光源30の光出射面35に対向して配置される。マイクロレンズアレイ40は、複数の発光部31にそれぞれ対向して設けられた複数のレンズ41を含む。一例では、レンズ41は凸レンズである。レンズ41は、対応する発光部31から発せられる光を所望の方向に導くように構成される。すなわち、マイクロレンズアレイ40は、複数の発光部31の各々から発せられる光の照射方向を、各発光部31の位置に対応した方向に制御するように構成されている。
複数の発光部31の中から発光させるべき発光部を選択することによって、照射立体角を任意に変更することができる。発光させるべき発光部は、視野の場所に応じて選択される。したがって、視野の場所ごとに照射立体角を任意に設定可能な画像検査装置1を実現できる。さらに、照射立体角を任意に変更することができるので、たとえばスリットあるいはハーフミラーといった光学部品を不要とすることができる。したがって照明装置20を小型化することができる。
以上により、視野の場所ごとに照射立体角を設定可能であるとともに、小型化が可能な画像検査装置1を実現できる。
<B.画像検査装置が適用される生産ラインの一例>
次に、図2を参照しながら、画像検査装置1が適用される生産ラインの一例を説明する。図2は、本実施の形態に係る画像検査装置1が適用される生産ラインの一例を示す模式図である。
図2に示すように、本実施の形態に係る画像検査装置1は、連続的に搬入されるワークWを撮影するカメラ10と、ワークWを照明する照明装置20と、照明装置20およびカメラ10を制御する制御装置100とを備える。カメラ10は、主たる構成要素として、レンズや絞りなどの光学系と、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの受光素子とを含む。画像検査装置1は、工業製品の生産ラインなどにおいて、制御装置100の制御によって照明装置20でワークWを照明しながらカメラ10で撮影し、得られた撮影画像を用いてワークWの外観検査を行う装置である。
具体的には、検査対象となるワークWは、移動可能なステージ300によって、カメラ10および照明装置20が固定された検査位置まで移動する。ワークWは、検査位置まで移動すると、画像検査装置1による外観検査が終了するまでその場で停止する。このとき、制御装置100は、照明装置20によってワークWを照明しながらカメラ10でワークWを撮影し、撮影画像をモニタに表示する。これにより、作業者は、モニタ画面に表示された撮影画像の色を見ながらワークWの外観を検査する。もしくは、制御装置100は、撮影画像に対して所定の画像処理を行ない、画像処理結果に基づいてワークWの異常判定を行なってもよい。
制御装置100は、たとえば、CPU(Central Processing Unit)やMPU(Micro-Processing Unit)などのプロセッサと、RAM(Random Access Memory)と、表示コントローラと、システムコントローラと、I/O(Input Output)コントローラと、ハードディスクと、カメラインターフェイスと、入力インターフェイスと、発光インターフェイスと、通信インターフェイスと、メモリカードインターフェイスとを含む。これらの各部は、システムコントローラを中心として、互いにデータ通信可能に接続される。
<C.照明装置の構成の一例>
図3および図4を参照して、本実施の形態に係る照明装置の構成の一例を説明する。図3は、本実施の形態に係る照明装置の一例の一部断面を示す模式図である。図4は、本実施の形態に係る照明装置の一部を拡大した模式平面図である。
照明装置20は、透過型のシート照明装置であり、面光源30とマイクロレンズアレイ40とを含む。面光源30は、光出射面35に沿ってマトリクス状に配列された複数の発光部を含む。図3には、発光部31A~31Eが代表的に示されている。
各々の発光部31A~31Eは、対向する一対の電極(図示せず)を有する。一対の電極間に電圧が印加されることにより、これらの発光部は発光する。複数の電極対の中から電圧が印加されるべき電極対を選択することによって、発光すべき発光部を選択することができる。発光部31A~31Eの各々が発する光の色は限定されない。たとえば複数の発光部31は同色の光を発するのでもよい。あるいは、赤色光を発する発光部と、緑色光を発する発光部と、青色光を発する発光部とを組み合わせることにより、光の色を異ならせることができる発光部を実現することができる。
マイクロレンズアレイ40は、複数の発光部31にそれぞれ対向して配置された複数のマイクロレンズである、複数のレンズ41を含む。複数のレンズ41は、光出射面35に沿ってマトリクス状に配置される。図3には、発光部31A~31Eにそれぞれ対向するレンズ41A~41Eが代表的に示されている。一例ではレンズ41A~41Eの各々は、平凸レンズである。平凸レンズの平面は光出射面35に向けられている。たとえば平凸レンズは半球レンズであってもよい。
各々のレンズは、対応する発光部から発せられる光の照射方向を制御するためのものである。一実施形態では、レンズ41A~41Eの間では、発光部の光軸に対するレンズの光軸の相対的な位置が異なっている。発光部の光軸に対するレンズの光軸のずれの方向およびずれ量に従って、レンズから出射される光の方向が決定される。なお、この実施の形態において、発光部の光軸とは、発光領域の中心点を通り発光領域に対して垂直な軸を意味し、レンズの光軸とは、レンズの中心を通り、レンズの主面に対して垂直な軸を意味する。
発光部31Cの光軸32Cと、レンズ41Cの光軸42Cとは実質的に一致している。発光部31Aの光軸32Aに対して、レンズ41Aの光軸42Aは、紙面右方向(+X方向)にずれている。同様に、発光部31Bの光軸32Bに対して、レンズ41Bの光軸42Bも+X方向にずれている。発光部31Aおよびレンズ41Aの対のほうが、発光部31Bおよびレンズ41Bの対よりも、発光部の光軸に対するレンズの光軸のずれの大きさ(以下では「ずれ量」とも呼ぶ)が大きい。
一方、発光部31Dの光軸32Dに対して、レンズ41Dの光軸42Dは、紙面左方向(-X方向)にずれている。同様に、発光部31Eの光軸32Eに対して、レンズ41Eの光軸42Eも-X方向にずれている。発光部31Eおよびレンズ41Eの対のほうが、発光部31Dおよびレンズ41Dの対よりも、ずれ量が大きい。
図3から理解されるように、図3に示す発光部31A~発光部31Eのいずれかを選択的に発光させることにより、照射立体角を異ならせることができる。照射立体角を異ならせることが可能であるので、照明装置20の照明のパターンの制約が小さくなる。言い換えると、任意のパターンに従う照明を照明装置20によって実現することができる。
図4に示すように、照明装置20は、マトリクス状に配置された複数の照明要素21を含む。すなわち照明装置20は、複数の照明要素21に区画される。各々の照明要素21は、複数の発光部31および複数のレンズ41を含む。たとえば各々の照明要素21は、図3に示す発光部31A~発光部31Eおよびレンズ41A~41Eを含むことができる。図示の都合上、図4では、各々の照明要素21に含まれる1つの発光部31および、対応する1つのレンズ41が示される。
各々の照明要素21は、発光領域と透明領域とを含む。発光領域を発光させることによって照明要素21全体を発光させることができる。一方、各照明要素21は、透明領域を備えることによって、透光性を有する。
照明装置20は、複数の照明要素21を互いに独立に点灯させることができる。複数の照明要素21のうち、発光されるべき発光部31を含む照明要素21(すなわち、点灯させるべき照明要素21)によって、照明装置20による光の照射パターンが決定される。各照明要素21から照射される光の波長を変えることができる照明装置20においては、照射パターンは、複数の照明要素21のうちの点灯させる照明要素21と、点灯させる各照明要素21から照射させる光の波長とによって決定されてもよい。
図5は、照明装置20の構成要素である照明要素の構造の一例を模式的に示した平面図である。図5では、撮影部側(照明装置20の上方)からの照明要素の平面視図が示されている。
照明要素21は、マトリクス状に配置された複数のセル22を含む。以下の説明では「行」はX方向を意味し、「列」はY方向を意味する。図5では、5行5列(=5×5)に配置された25個のセル22からなる照明要素21が示されている。しかし、照明要素21を構成するセル22の個数は特に限定されない。たとえば照明要素21は、11行11列(=11×11)に配置された121個のセル22によって構成されてもよい。セル22の個数が多いほど、照明要素21の照射方向の分解能を向上させることができる一方で発光位置の分解能が低下する。照明要素21を構成するセル22の個数は、照射方向の分解能と発光位置の分解能とから決定することができる。
各々のセル22は、発光部31と、レンズ41と、透明領域24とを含む。発光部31の発光面は、セル22において発光領域を構成する。
複数の発光部31は、第1のピッチP1でX方向およびY方向に配置される。複数のレンズ41は、第2のピッチP2でX方向およびY方向に配置される。第2のピッチP2が第1のピッチP1よりも小さい(P2<P1)ので、X方向(行方向)に沿って並べられた複数のセル22について、発光部31の光軸32とレンズ41の光軸42との間のX方向のずれ量が、公差(P1-P2)の等差数列に従う。同様に、Y方向(列方向)に沿って並べられた複数のセル22について、発光部31の光軸32とレンズ41の光軸42との間のY方向のずれ量が公差(P1-P2)の等差数列に従う。
図5において、セル22Cは、照明要素21の中心に位置するセルである。セル22Cは、発光部31Cとレンズ41Cとを含む。発光部31Cの光軸32Cとレンズ41Cの光軸42Cとは平面視において重なる。すなわち、光軸32Cと光軸42Cとの間では、X方向のずれ量およびY方向のずれ量は、ともに0である。
照明要素21内の各セルにおいて、発光部31の光軸32とレンズ41の光軸42との間のX方向のずれ量およびY方向のずれ量は、そのセルと、中央のセル22Cとの間のX方向の距離およびY方向の距離に従って決定される。これにより、セル22ごとに光の照射方向を異ならせることができる。照明要素21は、複数の方向からワークに光を照射することができる。さらに、複数のセルのうち、点灯させるセルを選択することによって、照明要素21からの光の照射方向を制御することができる。
図5に示した構造では、X方向とY方向とで発光部31のピッチおよびレンズ41のピッチが同じである。しかしながら、X方向とY方向とで発光部31のピッチを異ならせてもよい。同様にX方向とY方向とでレンズ41のピッチを異ならせてもよい。
図5に示した構成によれば、照明要素21の設計をシンプルにすることができる。しかしながら、撮影部(カメラ10)から見たときの透過特性に関して、意図しない周期性が発生する可能性がある。このような可能性を低減するために、図5に示した構造を変形してもよい。
図6は、図5に示した構造を変形する方法の一例を説明した模式平面図である。図6に示されるように、図5に示された照明要素21において、ある部分と別の部分とが入れ替えられる。たとえば、ある行に属する複数のセルと、別の行に属する複数のセルとが入れ替えられてもよい。あるいは、ある列に属する複数のセルと別の列に属する複数のセルとを入れ替えられてもよい。あるいは、1つのセルと他のセルとを入れ替えてもよい。行の全体を他の行全体と入れ替えてもよく、行の一部を他の行の一部と入れ替えてもよい。同様に、列の全体を他の列全体と入れ替えてもよく、列の一部を他の列の一部と入れ替えてもよい。図6では、行R1と行R4とを入れ替える例、列C3の一部と、列C5の一部とを入れ替える例、セル22Aとセル22Bとを入れ替える例が示される。
図7は、図6に示した方法に従って構成された、照明要素の構造の変形例を模式的に示した平面図である。図7に示された構造は、図6に示された行R1と行R4とが入れ替えた構造に相当する。各列(たとえば列C3)に含まれる5つのセル22の間では、発光部31の光軸32とレンズ41の光軸42との間のY方向のずれ量の変化が、公差(P1-P2)の等差数列に従わない。このように、図5の構造において成立する規則性を乱すパターンに従って複数のセル22を配置することができる。これにより撮影部(カメラ10)から見たときの透過特性に関して、意図しない周期性が発生する可能性を低減できる。
なお、図6に例示された入れ替えパターンは、すべての照明要素21において一律であるものと限定されない。ある場所に位置する照明要素21での入れ替えパターンと、その隣に位置する照明要素21での入れ替えパターンとが異なるものであってもよい。
発光部31の光軸32に対するレンズ41の光軸42のずれ量(変位量)が大きい場合、発光部31から出射された光の一部がレンズ41の周囲から漏れる可能性がある。図8は、レンズ41の周囲から漏れる光の対策のための構成を示す模式平面図である。図9は、図8に示された構成の模式断面図である。図8および図9に示されるように、レンズ41の周辺を囲むように遮光部44が設けられてもよい。遮光部44は光を通さない部材、あるいは光を減衰させる部材からなる。遮光部44によって、発光部31からの光が意図しない方向に漏れる可能性を低減することができる。
図10は、図8に示された構成の1つの変形例を示した模式平面図である。図10に示された例では、図8に示された構成に比べて、遮光部44の面積が大きい。これにより、発光部31からの光が意図しない方向に漏れる可能性をさらに低減することができる。
図11は、図8に示された構成の別の変形例を示した模式断面図である。図11に示された例では、遮光部44は、図10に示した構成に加えて、レンズ41の高さ(厚み)方向に沿った十分な高さでレンズ41の周囲を囲む構成を有する。図10に示された構成によれば、レンズ41の周囲から漏れる光を低減する効果をさらに高めることができる。
<D.パターン照明の一例>
図12は、本実施の形態に係る画像検査装置によるパターン照明の1つの応用例を模式的に示す図である。図12に示されるように、制御装置100は、照明装置20からワークWに対して、ある照射パターンの光を照射させるとともに、その照射パターンが照射された状態でカメラ10にワークWを撮像させて画像データを取得する。図12には、いずれもリング状のパターンである、第1照射パターンおよび第2照射パターンが例示されている。このようなパターンは、たとえば図3に示された構成において、発光部31A,31Eを点灯させることによって実現可能である。
本実施の形態によれば、たとえば複合材料からなるワーク(鏡、ガラス、樹脂、金属等)に対して、そのワークの部位ごとに最適な原理を適用して、計測および検査を実施することができる。
図13は、光切断法を実施する際のパターン照明を説明するための図である。図14は、光切断法のための照明装置の照明パターンを説明するための図である。光切断法は、たとえば測定対象となるワークの部位が樹脂あるいは金属からなる場合に適用される。図13および図14に示されるように、照明装置20は、ライン状の照射パターンの光LTを所定方向からワークWに照射して、カメラ10は、ワークWの表面を撮像する。当該画像に三角測量を応用することにより、高さ情報を得ることができる。
図14および、以下に説明される図に示した照明要素21の構成は、基本的に図5に示された構成と同じであるので、詳細な説明は繰り返さない。なお、以下に説明する図では、照明装置20において発光している領域および、照明要素において発光している発光部をハッチングによって示す。
図14に示されるように、照明装置20は、Y方向に沿って並ぶ複数の照明要素21を点灯させる。各照明要素21では、特定の列(たとえば列C2)に配置された発光部31が発光する。これにより、照明装置20は、所望方向から、Y方向に沿ったライン状の光を、ワークWの表面の所望の場所に照射することができる。上述の説明において、Y方向をX方向に置き換えてもよい。この場合には、照明装置20は、X方向に沿ったライン状の光を、ワークWの表面の所望の場所に照射することができる。
図15は、図14に示した照明パターンの変形例を説明するための図である。図15に示されるように、照明装置20は、たとえばX方向およびY方向に対して45°の方向に沿って並ぶ複数の照明要素21を点灯させる。各照明要素21において、X方向およびY方向に対して45°の方向に沿って並ぶ複数の発光部31が発光する。これにより、X方向およびY方向に対して45°の方向に傾いたライン状の光を、ワークWに照射することができる。
なお、光が照射されるワーク表面上の位置、および光の照射方向を組み合わせた複数の照射パターンの光をワークWに照射してもよい。これにより、カメラ10の撮像において死角を減らすことができるので、検査のロバスト性を向上させることができる。すなわち検査の精度を向上させることができる。
図16は、拡散反射面に対して位相シフト法を実施する際のパターン照明を説明するための図である。図17は、図16に示した位相シフト法(拡散反射)のための照明装置の照明パターンの例を説明するための図である。位相シフト法は、たとえば測定対象となるワークの部位が樹脂あるいは金属からなる場合に適用される。図16に示されるように、照明装置20は、縞状の照射パターンの光LTを所定方向から照射し、カメラ10は、ワークWの表面を撮像する。照明装置20は、光を照射する際に、縞状のパターンの位相を変化させるように、該当の照明要素を点灯および消灯する。
図17に示されるように、照明装置20は、X方向に沿って明暗が交互に生じるように、複数の列の照明要素21を点灯させる。各照明要素21において、特定の列(図17の例では列C4)に配置された複数の発光部31が発光する。これにより照明装置20は、Y方向に沿った直線状の照射パターンの光を発することができる。
図18は、拡散反射面に対して位相シフト法を実施する際のパターン照明の別の例を説明するための図である。図19は、図18に示した位相シフト法(拡散反射)のための照明装置の照明パターンの別の例を説明するための図である。図18および図19に示された例では、図16および図17に示された照射パターンを90°回転させる。したがって図19に示されるように、特定の行(図19の例では行R4)に配置された発光部31が発光する。これにより照明装置20は、X方向に沿った直線状の照射パターンの光を発することができる。
なお、発光の強度が正弦波に従って変化するように、発光部を制御してもよい。
図20は、拡散反射面に対して位相シフト法を実施する際のパターン照明の変形例を説明するための図である。図21は、図20に示した位相シフト法(拡散反射)のための照明装置の照明パターンの別の例を説明するための図である。図20および図21に示された例では、特定の列(たとえば列C5)に配置された発光部31が発光する。列C5は、図17に示した列C4よりも外側(+Xの方向)に位置する。したがって撮像部(カメラ10)の光軸に対する光の出射角度が大きくなる。言い換えると、図16および図17に示された照射パターンよりも、照明装置20の発光面に対する光の出射角度は小さい。
なお、光切断法と同様に、位相シフト(拡散反射)の場合にも、出射方向を複数組み合わせてもよい。カメラ10の撮像における死角を減らすことができるので、検査のロバスト性を向上させることができる。
図22は、光が正反射するワーク表面に対して位相シフト法を実施する際のパターン照明を説明するための図である。図23は、図22に示した位相シフト法(正反射)のための照明装置の照明パターンの例を説明するための図である。たとえばワークWの表面が鏡面あるいはガラス面である場合に、正反射を利用した位相シフト法が適用される。図22および図23に示すように、照明装置20は、縞状の照射パターンの光を所定方向から照射し、カメラ10は、ワークWの表面を撮像する。図23に示された例では、各照明要素21において、すべての発光部31が発光する。これにより、複数の方向(全ての方向とみなしてもよい)からワークの表面に光を照射することができる。
各照明要素21において、光の出射方向または発光領域を制限してもよい。この場合にはワークWの表面で拡散反射する成分を減少させることができるので、カメラ10の撮像においてS/N比を向上させることができる。図24は、光の出射方向または発光領域を制限する照明パターンの例を説明するための図である。図24に示されるように、25個の発光部のうち、紙面左上に特定された領域23に属する12個(=4×3)の発光部31のみが発光するのでもよい。
図25は、照度差ステレオ法を実施する際のパターン照明を説明するための図である。照度差ステレオ法では、照明方向を切り替えて撮像した複数の画像から、ワークWの表面の法線を推定する。たとえば照明装置20は、ワークWの表面に対して左斜め上からワークWに光LTを照射する。図26は、図25に示した光照射のための照明パターンの例を説明するための図である。図26に示すように、照明装置20のすべての照明要素21を発光させる。各照明要素21において、中央のセル22Cに対して左隣(-X方向に1つ隣のセル)のセル22Lの発光部31が発光する。他の照明要素21において発光するセルについても同じである。したがってワークWの表面に対して左斜め上から光LTが照射される。
図27は、照度差ステレオ法を実施する際の他のパターン照明を説明するための図である。上述したように、照度差ステレオ法では、照明方向を切り替えて撮像する。図27に示した例では、照明装置20は、ワークWの表面に対して右斜め上からワークWに光LTを照射する。
図28は、図27に示した光照射のための照明パターンの例を説明するための図である。図28に示すように、照明装置20のすべての照明要素21を発光させる。各照明要素21において、中央のセル22Cに対して右隣(+X方向に1つ隣のセル)のセル22Rの発光部31が発光する。他の照明要素21において発光するセルについても同じである。したがって、ワークWの表面に対して右斜め上から光LTが照射される。
なお、図25あるいは図27に示した光照射の方向に対して90°回転させた方向からワークWを照射する場合についても上記と同様である。各照明要素21において、中央のセル22Cに対して上側(+Y方向に1つ隣のセル)のセルの発光部31が発光する。あるいは、122Cに対して下側(-Y方向に1つ隣のセル)のセルの発光部31が発光する。
上記方法によれば、理想的な平行光をワークWに照射することが可能となる。これによりワークWの表面の法線の推定の精度を高めることができる。したがってワークWの表面形状の測定精度を高めることができる。
<E.照明装置の構成の変形例>
図29は、変形例1に係る照明装置120の一部断面を示す模式図である。図3に示す照明装置20と比較して、照明装置120は、マイクロレンズアレイ40に替えてマイクロレンズアレイ140を備える。マイクロレンズアレイ140は、複数の発光部31にそれぞれ対向して配置された複数のマイクロレンズである、複数のレンズ141を含む。図29には、発光部31A~31Eにそれぞれ対向するレンズ141A~141Eが代表的に示されている。
レンズ141A~141Eの各々は、ロッドレンズである。レンズ141A~141Eの間では、発光部31の光軸(光軸32A~32E)に対するレンズの光軸(光軸142A~142E)の角度が異なっている。ロッドレンズの入射面に対する光の入射角度を異ならせることによって、ロッドレンズの出射面から出射される光の出射角度(レンズの光軸に対する角度)を異ならせることができる。したがって、照明装置120では、発光部ごとに光の出射方向を異ならせることができる。ロッドレンズを利用することにより、ワークWの形状の検査を実施可能な、ワークWと照明装置120との間の距離を大きくすることができる。
図30は、変形例2に係る照明装置220の一部断面を示す模式図である。図3に示す照明装置20と比較して、照明装置220は、マイクロレンズアレイ40に替えてマイクロレンズアレイ240を備える。マイクロレンズアレイ240は、複数の発光部31にそれぞれ対向して配置された複数のマイクロレンズである、複数のレンズ241を含む。図30には、発光部31A~31Eにそれぞれ対向するレンズ241A~241Eが代表的に示されている。
レンズ241A~241Eの各々は、凹レンズである。図29に示された変形例と同様に、レンズ241A~241Eの間では、発光部31の光軸に対するレンズの光軸の角度が異なっている。発光部の光軸(光軸32A~32E)に対するレンズの光軸(光軸242A~242E)の角度を異ならせることによって、凹レンズから出射される光の出射角度(レンズの光軸に対する角度)を異ならせることができる。
図31は、変形例3に係る照明装置320の一部断面を示す模式図である。図3に示す照明装置20と比較して、照明装置320は、マイクロレンズアレイ40に替えてマイクロレンズアレイ340を備える。マイクロレンズアレイ340は、複数の発光部31にそれぞれ対向して配置された複数のマイクロレンズである、複数のレンズ341を含む。図30には、発光部31A~31Eにそれぞれ対向するレンズ341A~341Eが代表的に示されている。
変形例3では、図3の構成におけるレンズ41A~41Eが、レンズ341A~341Eに置き換えられ、光軸42A~42Eが、光軸342A~342Eに置き換えられている。レンズ341A~341Eの各々は凸レンズである。ただし、レンズ341A~341Eの各々の形状は、レンズ41A~41Eの形状とは異なる。図3に示された例と同じく、発光部の光軸(光軸32A~32E)に対するレンズの光軸(光軸342A~342E)の相対的な位置を異ならせることにより、発光部から発せられる光の照射方向をレンズによって制御することができる。
なお図29および図30に示された照明装置において、照明要素はマトリクス状に配置された複数のセル22を含む(図5を参照)。複数のセル22の間では、そのセルの位置に応じて、発光部の光軸に対するレンズの光軸の傾きの角度を異ならせることができる。さらに、X軸に対するレンズの光軸の角度および、Y軸に対するレンズの光軸の角度がセルごとに異なり得る。
また、図29~図31に示されたマイクロレンズアレイ140,240,340において、レンズの周囲に遮光部44(図8~図11を参照)を配置してもよい。
図32は、変形例4に係る照明装置420の構成要素である照明要素の構造の一例を模式的に示した平面図である。図32に示されるように、複数の発光部31と複数のレンズ441(マイクロレンズ)とは、互いに同じ間隔でX方向およびY方向に配置される。したがって、発光部の光軸の位置とレンズの光軸の位置との間の関係は、複数のセル22の間で互いに等しい。
図33は、変形例4に係る照明装置420の一部断面を示す模式図である。図33では、発光部31Aの光軸32Aと、レンズ441Aの光軸442Aとの間の関係を代表的に示す。図33に示された例では、発光部の光軸とレンズの光軸とが一致する。しかし変形例4は、マイクロレンズの光軸が発光部の光軸に一致するように限定するものではない。変形例4では、発光部の光軸の位置とレンズの光軸の位置との間の関係が、複数のセル22の間で互いに等しければよい。
照明装置420は、遮光部45をさらに含む。遮光部45は、複数のレンズ441のうち少なくとも一部のマイクロレンズと、その少なくとも一部のマイクロレンズに対向する発光部との間に配置される。遮光部45は光を通さない部材、あるいは光を減衰させる部材からなる。遮光部45には、ピンホール46が開けられている。したがって、発光部31から発せられた光は、ピンホール46を通り、レンズ441に入射する。
複数のピンホール46は、複数のレンズ441のピッチとは異なるピッチで配置される。これにより、レンズ441の光軸に対する遮光部45のピンホール46の相対的な位置が変化する。したがって少なくとも一部のレンズ441において、レンズ441の光軸に対する遮光部45のピンホール46の位置がずれる。しかし、すべてのピンホール46が、対応するレンズ441の光軸に対してずれている必要はない。
変形例4によれば、実施の形態およびその変形例1~3と同様の効果を得ることができる。ピンホール46を通過した光の進行方向をマイクロレンズによって制御することができる。これにより、ピンホール46を通過した光のレンズへの入射方向をセルごとに異ならせることができる。したがって、照明要素21は、複数の方向からワークに光を照射することができる。さらに、複数のセルのうち、点灯させるセルを選択することによって、照明要素21からの光の照射方向を制御することができる。
遮光部45は、たとえばフィルムにより実現可能である。別の例として、遮光部45は、たとえば必要部分のみ光を透過させる、あるいは、遮光するように形成された一枚板により実現されてもよい。
レンズ441の種類は特に限定されない。したがって、レンズ41を照明装置420に適用してもよく、図29から図31の各々に示されたマイクロレンズを照明装置420に適用してもよい。
照明装置420の構成は図32および図33に示されるように限定されない。図34に示されるように、照明装置420は、発光部31(31A~31E)と遮光部45との間に配置された光拡散部47をさらに有することができる。光拡散部47は、発光部の輝度を均一にするために発光部からの光を拡散させる。発光部と発光部のすき間は光を拡散させずに透過させる必要がある。したがって、光拡散部47は、発光部の前のみに配置される。これによりカメラ10がワークWを撮像することができる。
<F.付記>
以上のように、本実施の形態は以下のような開示を含む。
(構成1)
撮影画像を用いて対象物(W)を検査する画像検査装置(1)であって、
前記対象物(W)を撮影する撮影部(10)と、
前記対象物(W)と前記撮影部(10)との間に配置され、前記対象物(W)に向かう方向に光を照射するように構成されるとともに透光性を有する照明部(20,120,220,320)とを備え、
前記照明部(20,120,220,320)は、
マトリクス状に配列され、選択的に発光可能に構成された複数の発光部(31,31A-31E)と、
前記複数の発光部(31,31A-31E)の各々から発せられる前記光の照射方向を、各前記複数の発光部(31,31A-31E)の位置に対応した方向に制御するように構成された光学系(40,140,240,340)とを含む、画像検査装置。
(構成2)
前記光学系(40,140,240,340)は、
前記複数の発光部(31,31A-31E)にそれぞれ対向して設けられた複数のマイクロレンズ(41,41A-41E,141A-141E,241A-241E,341A-341E)を含む、構成1に記載の画像検査装置(1)。
(構成3)
前記複数のマイクロレンズ(41,41A-41E,341A-341E)のうちの少なくとも一部のマイクロレンズの光軸(42,42A-42E,342A-342E)が、前記少なくとも一部のマイクロレンズに対向する発光部(31,31A-31E)の光軸(32,32A-32E)とずれるように、前記複数のマイクロレンズ(41,41A-41E,341A-341E)が配置されている、構成2に記載の画像検査装置(1)。
(構成4)
前記照明部(20,120,220,320)は、複数の照明要素(21)に区画され、
前記複数の照明要素(21)のうちの少なくとも1つの照明要素において、前記少なくとも一部のマイクロレンズ(41,41A-41E,341A-341E)が、前記発光部(31,31A-31E)のピッチ(P1)よりも小さいピッチ(P2)で配置されている、構成3に記載の画像検査装置(1)。
(構成5)
前記少なくとも一部のマイクロレンズ(41,41A-41E,341A-341E)は、規則性を乱すように配置される、構成4に記載の画像検査装置(1)。
(構成6)
前記複数のマイクロレンズ(141A-141E,241A-241E)のうちの少なくとも一部のマイクロレンズの光軸(142A-142E,242A-242E)が、前記少なくとも一部のマイクロレンズに対向する発光部(32,32A-32E)の光軸に対して傾けられるように、前記複数のマイクロレンズ(141A-141E,241A-241E)が配置されている、構成2に記載の画像検査装置(1)。
(構成7)
前記照明部(20,120,220,320)は、
前記複数の発光部(31,31A-31E)から出射される光のうち前記複数のマイクロレンズ(41,41A-41E,141A-141E,241A-241E,341A-341E)のそれぞれの周囲から漏れる光を遮るように構成された遮光部(44)をさらに含む、構成2から構成6のいずれか1項に記載の画像検査装置(1)。
(構成8)
前記照明部は、
前記複数のマイクロレンズのうちの少なくとも一部のマイクロレンズと、前記少なくとも一部のマイクロレンズに対向する発光部との間に配置された遮光部(45)をさらに含み、
前記遮光部(45)は、前記少なくとも一部のマイクロレンズの光軸に対してずれた位置に形成されたピンホール(46)を有する、構成2に記載の画像検査装置(1)。
(構成9)
前記照明部は、
前記複数の発光部からの光を拡散させる光拡散部(47)をさらに備える、構成8に記載の画像検査装置(1)。
(構成10)
構成1から構成9のいずれか1項に記載の前記照明部を含む、照明装置(20,120,220,320)。
今回開示された各実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。また、実施の形態および各変形例において説明された発明は、可能な限り、単独でも、組み合わせても、実施することが意図される。
1 画像検査装置、10 カメラ、20,120,220,320 照明装置、C2,C3,C4,C5 列、21 照明要素、22,22A,22B,22C,22L,22R セル、23 領域、24 透明領域、30 面光源、31,31A-31E 発光部、32,32A-32E 光軸(発光部)、35 光出射面、40,140,240,340 マイクロレンズアレイ、41,41A-41E,141,141A-141E,241,241A-241E,341,341A-341E,441,441A-441E レンズ、42,42A-42E,142A-142E,242A-242E,342A-342E 光軸(レンズ)、44,45 遮光部、46 ピンホール、47 光拡散部、100 制御装置、300 ステージ、LT 光、P1 第1のピッチ、P2 第2のピッチ、R1,R4 行、W ワーク。

Claims (10)

  1. 撮影画像を用いて対象物を検査する画像検査装置であって、
    前記対象物を撮影する撮影部と、
    前記対象物と前記撮影部との間に配置され、前記対象物に向かう方向に光を照射するように構成されるとともに透光性を有する照明部とを備え、
    前記照明部は、
    マトリクス状に配列され、選択的に発光可能に構成された複数の発光部と、
    前記複数の発光部の各々から発せられる前記光を、各前記複数の発光部の位置ごと予め定められた方向に導くように構成された光学系とを含む、画像検査装置。
  2. 前記光学系は、
    前記複数の発光部にそれぞれ対向して設けられた複数のマイクロレンズを含むマイクロレンズアレイである、請求項1に記載の画像検査装置。
  3. 前記複数のマイクロレンズのうちの少なくとも一部のマイクロレンズの光軸が、前記少なくとも一部のマイクロレンズに対向する発光部の光軸とずれるように、前記複数のマイクロレンズが配置されている、請求項2に記載の画像検査装置。
  4. 前記照明部は、複数の照明要素に区画され、
    前記複数の照明要素のうちの少なくとも1つの照明要素において、前記少なくとも一部のマイクロレンズが、前記発光部のピッチよりも小さいピッチで配置されている、請求項3に記載の画像検査装置。
  5. 前記少なくとも一部のマイクロレンズは、規則性を乱すように配置される、請求項4に記載の画像検査装置。
  6. 前記複数のマイクロレンズのうちの少なくとも一部のマイクロレンズの光軸が、前記少なくとも一部のマイクロレンズに対向する発光部の光軸に対して傾けられるように、前記複数のマイクロレンズが配置されている、請求項2に記載の画像検査装置。
  7. 前記照明部は、
    前記複数の発光部から出射される光のうち前記複数のマイクロレンズのそれぞれの周囲から漏れる光を遮るように構成された遮光部をさらに含む、請求項2から請求項6のいずれか1項に記載の画像検査装置。
  8. 前記照明部は、
    前記複数のマイクロレンズのうちの少なくとも一部のマイクロレンズと、前記少なくとも一部のマイクロレンズに対向する発光部との間に配置された遮光部をさらに含み、
    前記遮光部は、前記少なくとも一部のマイクロレンズの光軸に対してずれた位置に形成されたピンホールを有する、請求項2に記載の画像検査装置。
  9. 前記照明部は、
    前記複数の発光部からの光を拡散させる光拡散部をさらに備える、請求項8に記載の画像検査装置。
  10. 請求項1から請求項9のいずれか1項に記載の前記照明部を含む、照明装置。
JP2018222992A 2018-02-07 2018-11-29 画像検査装置および照明装置 Active JP7143740B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19151181.5A EP3524967B1 (en) 2018-02-07 2019-01-10 Image inspection device and lighting device
CN201910026273.6A CN110118776B (zh) 2018-02-07 2019-01-11 图像检查装置以及照明装置
US16/248,810 US11567013B2 (en) 2018-02-07 2019-01-16 Image inspection device and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018019875 2018-02-07
JP2018019875 2018-02-07

Publications (2)

Publication Number Publication Date
JP2019138893A JP2019138893A (ja) 2019-08-22
JP7143740B2 true JP7143740B2 (ja) 2022-09-29

Family

ID=67693774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018222992A Active JP7143740B2 (ja) 2018-02-07 2018-11-29 画像検査装置および照明装置

Country Status (1)

Country Link
JP (1) JP7143740B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4007333A4 (en) 2019-07-29 2022-09-07 KDDI Corporation CONTROL DEVICE, CONTROL METHOD AND PROGRAM
CN116249934A (zh) 2020-10-02 2023-06-09 日亚化学工业株式会社 光源装置和导光阵列部

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098093A (ja) 2001-09-25 2003-04-03 Ccs Inc 検査用照明装置
JP2004502168A (ja) 2000-06-28 2004-01-22 テラダイン・インコーポレーテッド 自動光学検査システム用の照明装置
WO2007026690A1 (ja) 2005-08-31 2007-03-08 Ccs Inc. 同軸光照射装置
JP2010112735A (ja) 2008-11-04 2010-05-20 Imac Co Ltd 検査用照明装置
US20130169859A1 (en) 2010-09-10 2013-07-04 Canon Kabushiki Kaisha Imaging apparatus
US20150253129A1 (en) 2014-03-06 2015-09-10 Omron Corporation Inspection apparatus
JP2016014632A (ja) 2014-07-03 2016-01-28 日星電気株式会社 照明装置
US20160123892A1 (en) 2014-10-31 2016-05-05 Kla-Tencor Corporation Illumination system, inspection tool with illumination system, and method of operating an illumination system
US20170315273A1 (en) 2014-11-21 2017-11-02 Konica Minolta, Inc. Lens array and light source unit
US20170374244A1 (en) 2016-06-27 2017-12-28 Krishna Swaminathan Compact, low cost vcsel projector for high performance stereodepth camera
US20170374355A1 (en) 2014-12-22 2017-12-28 Google Inc. Integrated Camera System Having Two Dimensional Image Capture and Three Dimensional Time-of-Flight Capture With A Partitioned Field of View

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022124A (en) * 1997-08-19 2000-02-08 Ppt Vision, Inc. Machine-vision ring-reflector illumination system and method
WO1999022224A1 (en) * 1997-10-29 1999-05-06 Vista Computer Vision Ltd. Illumination system for object inspection
JP4584312B2 (ja) * 2005-08-26 2010-11-17 シーシーエス株式会社 光照射装置及び光学部材
JP5703561B2 (ja) * 2009-12-29 2015-04-22 オムロン株式会社 照明装置および照明装置の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502168A (ja) 2000-06-28 2004-01-22 テラダイン・インコーポレーテッド 自動光学検査システム用の照明装置
JP2003098093A (ja) 2001-09-25 2003-04-03 Ccs Inc 検査用照明装置
WO2007026690A1 (ja) 2005-08-31 2007-03-08 Ccs Inc. 同軸光照射装置
JP2010112735A (ja) 2008-11-04 2010-05-20 Imac Co Ltd 検査用照明装置
US20130169859A1 (en) 2010-09-10 2013-07-04 Canon Kabushiki Kaisha Imaging apparatus
US20150253129A1 (en) 2014-03-06 2015-09-10 Omron Corporation Inspection apparatus
JP2016014632A (ja) 2014-07-03 2016-01-28 日星電気株式会社 照明装置
US20160123892A1 (en) 2014-10-31 2016-05-05 Kla-Tencor Corporation Illumination system, inspection tool with illumination system, and method of operating an illumination system
US20170315273A1 (en) 2014-11-21 2017-11-02 Konica Minolta, Inc. Lens array and light source unit
US20170374355A1 (en) 2014-12-22 2017-12-28 Google Inc. Integrated Camera System Having Two Dimensional Image Capture and Three Dimensional Time-of-Flight Capture With A Partitioned Field of View
US20170374244A1 (en) 2016-06-27 2017-12-28 Krishna Swaminathan Compact, low cost vcsel projector for high performance stereodepth camera

Also Published As

Publication number Publication date
JP2019138893A (ja) 2019-08-22

Similar Documents

Publication Publication Date Title
CN110186928B (zh) 图像检查装置以及图像检查方法
JP7187782B2 (ja) 画像検査装置
CN109804238B (zh) 光学检查装置
JP7176600B2 (ja) 画像検査装置および画像検査方法
CN110118776B (zh) 图像检查装置以及照明装置
JP7143740B2 (ja) 画像検査装置および照明装置
JP4281495B2 (ja) 照明装置
TWI470368B (zh) 凸狀圖樣形成方法、曝光裝置及光罩
CN112964635B (zh) 一种芯片检测方法以及系统
CN110118787B (zh) 图像检查装置
JP2006284212A (ja) ムラ検査装置およびムラ検査方法
JP5541646B2 (ja) ライン照明装置
WO2024042933A1 (ja) 検査装置
JP7459525B2 (ja) 三次元形状計測装置、三次元形状計測方法及びプログラム
JP2024054910A (ja) 検査装置および検査システム
JP3661546B2 (ja) レンズアレイの検査装置およびレンズアレイの検査方法
JP2004212202A (ja) 透光体の外観検査方法及び装置
JP2020091132A (ja) 透光性部材の表面欠陥検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R150 Certificate of patent or registration of utility model

Ref document number: 7143740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150