[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7036432B2 - Direction estimation system and method for planar exploration target using dipole array antenna - Google Patents

Direction estimation system and method for planar exploration target using dipole array antenna Download PDF

Info

Publication number
JP7036432B2
JP7036432B2 JP2018112724A JP2018112724A JP7036432B2 JP 7036432 B2 JP7036432 B2 JP 7036432B2 JP 2018112724 A JP2018112724 A JP 2018112724A JP 2018112724 A JP2018112724 A JP 2018112724A JP 7036432 B2 JP7036432 B2 JP 7036432B2
Authority
JP
Japan
Prior art keywords
incident
well
elevation angle
incident elevation
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018112724A
Other languages
Japanese (ja)
Other versions
JP2019215261A (en
Inventor
聡 海老原
Original Assignee
学校法人 大阪電気通信大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 大阪電気通信大学 filed Critical 学校法人 大阪電気通信大学
Priority to JP2018112724A priority Critical patent/JP7036432B2/en
Publication of JP2019215261A publication Critical patent/JP2019215261A/en
Application granted granted Critical
Publication of JP7036432B2 publication Critical patent/JP7036432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、地中に存在するき裂、断層、境界面等の平面的な広がりを有する探査対象面が地中に掘削された円筒状の坑井の軸心に対して対向する方向を推定する方向推定システム及び方法に関する。 The present invention estimates the direction in which an exploration target surface having a planar spread such as a crack, a fault, or a boundary surface existing in the ground faces the axis of a cylindrical well excavated in the ground. Regarding the direction estimation system and method to be performed.

地中に掘削された円筒状の坑井内に電磁波を送受信するためのアンテナを配置し、地中内の亀裂、断層、地下水等の探査対象の位置及び形状を計測可能なボアホールレーダが1970年代以降、国際的に研究開発されている。送受信に使用する電磁波の周波数は10~400MHz程度で、地中での波長は20cm~数m程度である。水を含まない岩石、砂や土は電磁気学的には空気に近く、亀裂や断層中へ水が流入すると含水率が高くなり、電磁気学的なコントラストが生じる。即ち、ボアホールレーダでは地中の含水率の空間分布を推定することで、亀裂や断層の位置を推定できることになる。ボアホールレーダでは坑井の形状による制約から、通常、ダイポールアンテナを用いるが、この場合、坑井の周方向で無指向性となる。このため、一本の坑井に送信アンテナ及び受信アンテナを挿入した場合、物体が存在する深度や距離に対する推定に限定されていた。 Since the 1970s, a borehole radar that can measure the position and shape of exploration targets such as cracks, faults, and groundwater in the ground by placing an antenna for transmitting and receiving electromagnetic waves in a cylindrical well excavated in the ground. , Is being researched and developed internationally. The frequency of electromagnetic waves used for transmission and reception is about 10 to 400 MHz, and the wavelength in the ground is about 20 cm to several m. Rocks, sand and soil that do not contain water are electromagnetically close to air, and when water flows into cracks or faults, the water content increases and electromagnetic contrast occurs. That is, the borehole radar can estimate the positions of cracks and faults by estimating the spatial distribution of water content in the ground. In the borehole radar, a dipole antenna is usually used due to the limitation of the shape of the well, but in this case, it becomes omnidirectional in the circumferential direction of the well. Therefore, when the transmitting antenna and the receiving antenna are inserted into one well, the estimation is limited to the depth and distance at which the object exists.

そこで、複数のダイポールアンテナ素子を、各アンテナ素子の軸が互いに平行になるように、且つ、アンテナ素子の軸に直交する平面上において円環状に配列させたダイポールアレイアンテナが提案されている(下記の非特許文献1及び2参照)。具体的には、地中内に放射され探査対象で反射された電磁波を、ダイポールアレイアンテナで受信すると、電磁波は、ダイポールアレイアンテナの各アンテナ素子において、アンテナ素子の位置に依存した到達時間差をもって受信される。この到達時間差を利用することで、探査対象で反射した電磁波の到来方向の推定が可能になる。 Therefore, a dipole array antenna has been proposed in which a plurality of dipole antenna elements are arranged in an annular shape on a plane orthogonal to the axes of the antenna elements so that the axes of the antenna elements are parallel to each other (the following). (See Non-Patent Documents 1 and 2). Specifically, when an electromagnetic wave radiated into the ground and reflected by an exploration target is received by a dipole array antenna, the electromagnetic wave is received by each antenna element of the dipole array antenna with an arrival time difference depending on the position of the antenna element. Will be done. By using this arrival time difference, it is possible to estimate the arrival direction of the electromagnetic wave reflected by the exploration target.

ダイポールアレイアンテナの各アンテナ素子への給電方法としては、同軸給電線とアンテナ素子間の電磁界的な干渉を避けるため光変調器を用いて光給電する方法(下記の非特許文献1参照)と、同軸給電線を適切な長さの導体円柱で覆うことで干渉を避けて同軸給電する方法(下記の特許文献1参照)がある。 As a method of feeding power to each antenna element of the dipole array antenna, a method of light feeding using an optical modulator to avoid electromagnetic interference between the coaxial feeder and the antenna element (see Non-Patent Document 1 below). , There is a method of coaxial feeding by covering the coaxial feeder with a conductor cylinder of an appropriate length to avoid interference (see Patent Document 1 below).

電磁波の到来方向の推定に用いる信号処理法としては、各アンテナ素子が均質媒質中にあると仮定して、アンテナ素子が存在する方位角に対し電磁波の到達時刻が周期360°で正弦的に変化することを利用する(下記の特許文献1及び非特許文献3参照)。 As a signal processing method used for estimating the arrival direction of an electromagnetic wave, assuming that each antenna element is in a homogeneous medium, the arrival time of the electromagnetic wave changes sinusically with a period of 360 ° with respect to the azimuth angle in which the antenna element exists. (See Patent Document 1 and Non-Patent Document 3 below).

特許第5568237号公報Japanese Patent No. 5568237

S.Ebihara,“Directional borehole radar with dipole antenna array using optical modulators”,IEEE Trans.Geoscience and Remote Sensing,2004年1月,Vol.42,No.1,p.45-58.S. Ebihara, "Directional borehole radar with dipole antenna array using optical modulators", IEEE Trans. Geoscience and Remote Sensing, January 2004, Vol. 42, No. 1, p. 45-58. M.Sato,外1名,“a Novel Directional Borehole Radar System Using Optical Electric Field Sensors”,IEEE Trans.Geoscience and Remote Sensing,2007年8月,Vol.45,No.8,p.2529-2535.M. Sato, 1 outside, "a Novel Directional Borehole Radar System Using Optical Electrical Field Sensors", IEEE Trans. Geoscience and Remote Sensing, August 2007, Vol. 45, No. 8, p. 2529-2535. S.Ebihara,Y.Kimura,T.Shimomura,R.Uchimura,and H.Choshi,“Coaxial‐fed Circular Dipole Array Antenna with Ferrite Loading for Thin Directional Borehole Radar Sonde,”IEEE Trans.Geoscience and Remote Sensing,2015年,vol.53, no.4,pp.1842-1854.S. Ebihara, Y. et al. Kimura, T.M. Shimamura, R.M. Uchimura, and H. Choshi, "Coaxial-fed Circular Dipole Array Antenna with Ferrite Loading for Thin Directional Borehole Radar Sonde," IEEE Trans. Geoscience and Remote Sensing, 2015, vol.53, no. 4, pp. 1842-1854.

到来する電磁波の波数ベクトル(電磁波の伝搬方向を向くベクトル)が坑井の軸心に対し直交またはほぼ直交する場合、坑井内に挿入したダイポールアレイアンテナを用いて電磁波の到来方向を推定するための技術は確立していると考えてよい。 When the wave vector of the incoming electromagnetic wave (vector pointing in the propagation direction of the electromagnetic wave) is orthogonal or almost orthogonal to the axis of the well, the dipole array antenna inserted in the well is used to estimate the arrival direction of the electromagnetic wave. It can be considered that the technology is established.

しかしながら、本願発明者の鋭意研究により、波数ベクトルと坑井の軸心の成す角度が90°またはその近傍の場合の推定に利用する信号処理法では、探査対象が地中に存在する平面的な広がりを有する探査対象面である場合において、波数ベクトルと坑井の軸心の成す角度が0°から180°までの全範囲に亘って、電磁波の到来方向を正確に推定できない場合があり得ることを見出した。 However, according to the diligent research of the inventor of the present application, in the signal processing method used for estimation when the angle formed by the wave vector and the axis of the well is 90 ° or its vicinity, the exploration target is planar and exists in the ground. In the case of an exploration target plane with an expanse, it may not be possible to accurately estimate the direction of arrival of electromagnetic waves over the entire range from 0 ° to 180 ° where the angle between the wave vector and the axis of the well is formed. I found.

具体的には、上述のように、探査対象面からダイポールアレイアンテナの中心に向けて入射する入射電磁波は、ダイポールアレイアンテナの各アンテナ素子において、アンテナ素子の位置に依存した到達時間差をもって受信されるが、各アンテナ素子間の到達時間差が、電磁波の到来方向を正確に推定できる程度に大きく表れない場合が、入射電磁波の到来方向と坑井の軸心の成す角度として定義される入射仰角θが、特定の入射仰角(θまたは180°-θ:以下、「臨界入射仰角」と称する)に漸近すると生じる。尚、入射仰角θは、波数ベクトルと坑井の軸心の成す角度と同義である。 Specifically, as described above, the incident electromagnetic wave incident from the exploration target surface toward the center of the dipole array antenna is received at each antenna element of the dipole array antenna with an arrival time difference depending on the position of the antenna element. However, when the arrival time difference between each antenna element does not appear large enough to accurately estimate the arrival direction of the electromagnetic wave, the incident elevation angle θ defined as the angle between the arrival direction of the incident electromagnetic wave and the axis of the well is , Occurs when approaching a specific incident elevation angle (θ 0 or 180 ° −θ 0 : hereinafter referred to as “critical incident elevation angle”). The incident elevation angle θ is synonymous with the angle formed by the wave vector and the axis of the well.

本発明は、上述の問題点に鑑みてなされたものであり、その目的は、入射電磁波の入射仰角(波数ベクトルと坑井の軸心の成す角度)を考慮して、平面的な広がりを有する探査対象面が坑井の軸心に対して対向する方向を正確に推定可能な方向推定システム及び方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object thereof has a planar spread in consideration of the incident elevation angle (angle formed by the wave vector and the axis of the well) of the incident electromagnetic wave. It is an object of the present invention to provide a direction estimation system and a method capable of accurately estimating the direction in which the exploration target surface faces the axis of the well.

本発明では、上記課題を解決するために、地中に存在する平面的な広がりを有する探査対象面が前記地中に掘削された円筒状の坑井の軸心に対して対向する方向を推定する方向推定システムであって、
前記坑井内に挿入して使用するダイポールアレイアンテナと、前記探査対象面から前記坑井内に挿入された前記ダイポールアレイアンテナに入射する入射電磁波の前記軸心周りの入射方位角を、前記探査対象面が対向する方向として導出する入射方位角導出部とを備えてなり、前記ダイポールアレイアンテナが、互いに平行に延伸する3以上の受信用のダイポールアンテナ素子を管状の容器内に備え、前記ダイポールアンテナ素子が、前記容器と同軸の仮想円柱面上に、前記仮想円柱面の周方向に分散して配置され、
前記入射方位角導出部は、
前記坑井内に挿入された前記ダイポールアレイアンテナが、前記探査対象面に向けて放射された電磁波であって、前記探査対象面で反射されて入射した前記入射電磁波を受信すると、前記ダイポールアンテナ素子別に受信された前記入射電磁波の信号波形を解析し、前記入射電磁波の前記ダイポールアンテナ素子毎の到達時刻を求め、
前記ダイポールアンテナ素子毎の到達時刻に基づいて、前記仮想円柱面の周方向の位置と当該位置で前記入射電磁波を受信したときの到達時刻の関係を正弦関数で近似した場合における最も早い到達時刻または最も遅い到達時刻を示す前記仮想円柱面の周方向の位置を特定し、
前記入射電磁波の到来方向と前記坑井の軸心とが成す入射仰角が、0°から90°の間に存在する第1臨界入射仰角と90°から180°の間に存在する第2臨界入射仰角の間の第1入射仰角範囲内にある場合は、前記最も早い到達時刻を示す前記仮想円柱面の周方向の位置を、前記入射方位角として導出し、前記入射仰角が、0°から180°の範囲内の前記第1入射仰角範囲外の第2入射仰角範囲内にある場合は、前記最も遅い到達時刻を示す前記仮想円柱面の周方向の位置を、前記入射方位角として導出し、
前記第1及び第2臨界入射仰角は、前記入射仰角を0°から180°の範囲内で変化させた場合に、前記入射電磁波の前記容器の軸心方向と平行な電界成分において前記周方向に変化する電界の大きさを前記周方向に変化しない電界の大きさで除した比で表される電界周方向依存性指数が、-20dB以下で極小値となる前記入射仰角として与えられ、前記第1及び第2臨界入射仰角の和が180°であることを第1の特徴とする方向推定システムを提供する。
In the present invention, in order to solve the above-mentioned problems, the direction in which the exploration target surface having a planar spread existing in the ground faces the axis of the cylindrical well excavated in the ground is estimated. It is a direction estimation system that
The dipole array antenna used by being inserted into the well and the incident azimuth angle around the axis of the incident electromagnetic wave incident on the dipole array antenna inserted into the well from the exploration target surface are determined by the exploration target surface. The dipole array antenna is provided with three or more receiving dipole antenna elements extending in parallel with each other in a tubular container, and the dipole antenna element is provided. Are dispersed and arranged in the circumferential direction of the virtual cylindrical surface on the virtual cylindrical surface coaxial with the container.
The incident azimuth derivation unit is
When the dipole array antenna inserted into the well is an electromagnetic wave radiated toward the exploration target surface and receives the incident electromagnetic wave reflected and incident on the exploration target surface, the dipole antenna element is divided. The signal waveform of the received electromagnetic wave is analyzed, and the arrival time of the incident electromagnetic wave for each dipole antenna element is obtained.
Based on the arrival time of each dipole antenna element, the earliest arrival time or the earliest arrival time when the relationship between the position in the circumferential direction of the virtual cylindrical surface and the arrival time when the incident electromagnetic wave is received at the position is approximated by a sine function. The position in the circumferential direction of the virtual cylindrical surface indicating the latest arrival time is specified.
The incident elevation angle formed by the direction of arrival of the incident electromagnetic wave and the axis of the well is the first critical incident elevation angle existing between 0 ° and 90 ° and the second critical incident existing between 90 ° and 180 °. When it is within the range of the first incident elevation angle between the elevation angles, the position in the circumferential direction of the virtual cylindrical surface indicating the earliest arrival time is derived as the incident azimuth angle, and the incident elevation angle is from 0 ° to 180. When it is within the range of the second incident elevation angle outside the range of the first incident elevation angle within the range of °, the position in the circumferential direction of the virtual cylindrical surface indicating the latest arrival time is derived as the incident azimuth angle.
The first and second critical incident elevation angles are the circumferential direction in the electric field component parallel to the axial direction of the container of the incident electromagnetic wave when the incident elevation angle is changed within the range of 0 ° to 180 °. The electric field circumferential dependence index expressed by the ratio obtained by dividing the magnitude of the changing electric field by the magnitude of the electric field that does not change in the circumferential direction is given as the incident elevation angle that becomes the minimum value at -20 dB or less, and the first Provided is a direction estimation system whose first feature is that the sum of the first and second critical incident elevation angles is 180 °.

更に、本発明では、上記課題を解決するために、地中に存在する平面的な広がりを有する探査対象面が前記地中に掘削された円筒状の坑井の軸心に対して対向する方向を推定する方向推定方法であって、
互いに平行に延伸する3以上の受信用のダイポールアンテナ素子を管状の容器内に備え、前記ダイポールアンテナ素子が、前記容器と同軸の仮想円柱面上に、前記仮想円柱面の周方向に分散して配置されてなるダイポールアレイアンテナを、前記坑井内に挿入する第1の工程と、
前記探査対象面に向けて放射された電磁波であって、前記探査対象面で反射され、前記坑井内に挿入された前記ダイポールアレイアンテナに入射する入射電磁波を受信する第2の工程と、
前記ダイポールアンテナ素子別に受信された前記入射電磁波の信号波形を解析し、前記入射電磁波の前記ダイポールアンテナ素子毎の到達時刻を求める第3の工程と、
前記ダイポールアンテナ素子毎の到達時刻に基づいて、前記仮想円柱面の周方向の位置と当該位置で前記入射電磁波を受信したときの到達時刻の関係を正弦関数で近似した場合における最も早い到達時刻または最も遅い到達時刻を示す前記仮想円柱面の周方向の位置を特定し、前記探査対象面から前記ダイポールアレイアンテナに入射する前記入射電磁波の前記軸心周りの入射方位角とする第4の工程と、を備え、
前記第4の工程において、前記入射電磁波の到来方向と前記坑井の軸心とが成す入射仰角が、0°から180°の間に存在する第1及び第2臨界入射仰角の間の第1入射仰角範囲内にある場合は、前記最も早い到達時刻を示す前記仮想円柱面の周方向の位置に対応する前記入射方位角を、前記探査対象面が前記坑井の軸心に対して対向する方向として導出し、前記入射仰角が0°から180°の範囲内の前記第1入射仰角範囲外の第2入射仰角範囲内にある場合は、前記最も遅い到達時刻を示す前記仮想円柱面の周方向の位置に対応する前記入射方位角を、前記探査対象面が前記坑井の軸心に対して対向する方向として導出し、
前記第1及び第2臨界入射仰角は、前記入射仰角を0°から180°の範囲内で変化させた場合に、前記入射電磁波の前記容器の軸心方向と平行な電界成分において前記周方向に変化する電界の大きさを前記周方向に変化しない電界の大きさで除した比で表される電界周方向依存性指数が、-20dB以下で極小値となる前記入射仰角として与えられることを第1の特徴とする方向推定方法を提供する。
Further, in the present invention, in order to solve the above-mentioned problems, the direction in which the exploration target surface having a planar spread existing in the ground faces the axis of the cylindrical well excavated in the ground. It is a direction estimation method to estimate
Three or more dipole antenna elements for reception extending in parallel with each other are provided in a tubular container, and the dipole antenna elements are dispersed on a virtual cylindrical surface coaxial with the container in the circumferential direction of the virtual cylindrical surface. The first step of inserting the arranged dipole array antenna into the well, and
A second step of receiving an electromagnetic wave radiated toward the exploration target surface, which is reflected by the exploration target surface and is incident on the dipole array antenna inserted into the well.
A third step of analyzing the signal waveform of the incident electromagnetic wave received for each dipole antenna element and obtaining the arrival time of the incident electromagnetic wave for each dipole antenna element.
Based on the arrival time of each dipole antenna element, the earliest arrival time or the earliest arrival time when the relationship between the position in the circumferential direction of the virtual cylindrical surface and the arrival time when the incident electromagnetic wave is received at the position is approximated by a sine function. A fourth step of specifying the position in the circumferential direction of the virtual cylindrical surface indicating the latest arrival time and setting the incident directional angle of the incident electromagnetic wave incident on the dipole array antenna from the exploration target surface around the axis. , Equipped with
In the fourth step, the incident elevation angle formed by the arrival direction of the incident electromagnetic wave and the axis of the well is the first between the first and second critical incident elevation angles existing between 0 ° and 180 °. When it is within the incident elevation range, the exploration target surface faces the axis of the well with the incident azimuth corresponding to the position in the circumferential direction of the virtual cylindrical surface indicating the earliest arrival time. Derived as a direction, when the incident elevation angle is within the range of 0 ° to 180 ° and is within the second incident elevation angle range outside the first incident elevation angle range, the circumference of the virtual cylindrical surface indicating the latest arrival time. The incident azimuth corresponding to the position in the direction is derived as the direction in which the exploration target surface faces the axis of the well.
The first and second critical incident elevation angles are the circumferential direction in the electric field component parallel to the axial direction of the container of the incident electromagnetic wave when the incident elevation angle is changed within the range of 0 ° to 180 °. It is the first aspect that the electric field circumferential dependence index expressed by the ratio obtained by dividing the magnitude of the changing electric field by the magnitude of the electric field that does not change in the circumferential direction is given as the incident elevation angle which becomes the minimum value at -20 dB or less. The direction estimation method characterized by 1 is provided.

更に好ましくは、上記第1の特徴の方向推定システムは、前記坑井内に前記ダイポールアレイアンテナと共に挿入された状態で前記探査対象面に向けて電磁波を放射する送信用ダイポールアンテナ素子を備え、前記送信用ダイポールアンテナ素子が、前記ダイポールアレイアンテナから前記坑井の軸心方向に所定距離離間して配置されていることを第2の特徴とする。 More preferably, the direction estimation system of the first feature includes a transmission dipole antenna element that emits electromagnetic waves toward the exploration target surface while being inserted together with the dipole array antenna in the well, and the transmission The second feature is that the credit dipole antenna element is arranged at a predetermined distance from the dipole array antenna in the axial direction of the well.

更に好ましくは、上記第1の特徴の方向推定方法は、前記第1の工程において、送信用ダイポールアンテナ素子を、前記ダイポールアレイアンテナから前記坑井の軸心方向に所定距離離間させて前記坑井内に挿入し、前記送信用ダイポールアンテナ素子から前記探査対象面に向けて前記電磁波を放射することを第2の特徴とする。 More preferably, in the method of estimating the direction of the first feature, in the first step, the transmission dipole antenna element is separated from the dipole array antenna by a predetermined distance in the axial direction of the well, and the inside of the well is separated. The second feature is that the electromagnetic wave is emitted from the transmission dipole antenna element toward the search target surface.

更に好ましくは、上記第2の特徴の方向推定システムは、前記入射方位角導出部が、前記ダイポールアレイアンテナと前記送信用ダイポールアンテナ素子からなる送受信アンテナ部が前記坑井内を前記坑井の軸心方向に順次移動した場合の各位置での前記最も早い到達時刻と前記最も遅い到達時刻の時間差を導出し、
前記坑井の軸心方向の位置の変化に対して前記時間差が所定値以下の極小値となる当該位置を特異位置として特定した場合、その特定した前記特異位置において前記入射仰角が前記第1及び第2臨界入射仰角の何れか一方に一致すると近似的に推定し、前記坑井の軸心方向の前記特異位置を基準として一方側において、前記入射仰角が前記第1入射仰角範囲内にあり、前記特異位置を基準として他方側において、前記入射仰角が第2入射仰角範囲内にあると判定して、前記入射方位角を導出することを第3の特徴とする。
More preferably, in the direction estimation system of the second feature, the incident azimuth derivation unit has the transmission / reception antenna unit composed of the dipole array antenna and the transmission dipole antenna element, and the inside of the well is the axis of the well. The time difference between the earliest arrival time and the latest arrival time at each position when moving sequentially in the direction is derived.
When the position where the time difference is the minimum value of a predetermined value or less with respect to the change in the position in the axial direction of the well is specified as the singular position, the incident elevation angle is the first and the singular position at the specified singular position. It is approximately estimated that it coincides with any one of the second critical incident elevation angles, and the incident elevation angle is within the range of the first incident elevation angle on one side with respect to the singular position in the axial direction of the well. The third feature is to determine that the incident elevation angle is within the second incident elevation angle range on the other side with the singular position as a reference, and to derive the incident azimuth angle.

更に好ましくは、上記第2の特徴の方向推定方法は、前記第1の工程において、前記ダイポールアレイアンテナと前記送信用ダイポールアンテナ素子からなる送受信アンテナ部を、前記坑井内において前記坑井の軸心方向に順次移動させ、
前記第1の工程において、前記送受信アンテナ部が、前記坑井内を前記坑井の軸心方向に順次移動する毎に、前記第2の工程乃至前記第4の工程を順次実行するか、或いは、
前記第1の工程において、前記送受信アンテナ部が、前記坑井内を前記坑井の軸心方向に順次移動する毎に、前記第2の工程と前記第3の工程を順次実行し、前記第1の工程乃至前記第3の工程が終了した後に前記第4の工程を実行し、
前記第4の工程において、前記送受信アンテナ部が、前記坑井内を前記坑井の軸心方向に順次移動した各位置での前記最も早い到達時刻と前記最も遅い到達時刻の時間差を導出し、前記坑井の軸心方向の位置の変化に対して前記時間差が所定値以下の極小値となる当該位置を特異位置として特定した場合、その特定した前記特異位置において前記入射仰角が前記第1及び第2臨界入射仰角の何れか一方に一致すると近似的に推定し、前記坑井の軸心方向の前記特異位置を基準として一方側において、前記入射仰角が前記第1入射仰角範囲内にあり、前記特異位置を基準として他方側において、前記入射仰角が第2入射仰角範囲内にあると判定して、前記入射方位角を導出することを第3の特徴とする。
More preferably, in the method of estimating the direction of the second feature, in the first step, the transmission / reception antenna portion including the dipole array antenna and the transmission dipole antenna element is placed in the well with the axial center of the well. Move sequentially in the direction,
In the first step, each time the transmission / reception antenna unit sequentially moves in the well in the axial direction of the well, the second step to the fourth step are sequentially executed, or the fourth step is sequentially executed.
In the first step, each time the transmission / reception antenna unit sequentially moves in the well in the axial direction of the well, the second step and the third step are sequentially executed, and the first step is performed. After the step 1 to the third step is completed, the fourth step is executed.
In the fourth step, the transmission / reception antenna unit derives a time difference between the earliest arrival time and the latest arrival time at each position in which the well is sequentially moved in the axial direction of the well. When the position where the time difference is the minimum value of a predetermined value or less with respect to the change in the position in the axial direction of the well is specified as the singular position, the incident elevation angles are the first and the first at the specified singular position. It is estimated approximately that it coincides with any one of the two critical incident elevation angles, and the incident elevation angle is within the first incident elevation angle range on one side with respect to the singular position in the axial direction of the well. The third feature is to determine that the incident elevation angle is within the second incident elevation angle range on the other side with respect to the singular position and derive the incident azimuth angle.

更に、上記第3の特徴の方向推定システムは、前記入射方位角導出部が、前記送受信アンテナ部が前記坑井内を前記坑井の軸心方向に順次移動した場合の各位置における、前記送信用ダイポールアンテナ素子から前記ダイポールアレイアンテナまでの前記電磁波の伝搬時間を計測し、前記坑井の軸心方向の位置と前記伝搬時間の関係に基づいて、前記探査対象面を含む平面の前記坑井の軸心と直交する平面に対する傾斜角を導出し、
前記傾斜角が前記第1臨界入射仰角より大きい場合において、
前記入射方位角導出部が、
前記送受信アンテナ部の前記坑井の軸心方向の移動範囲内において前記特異位置が特定された場合、前記移動範囲内の前記特異位置を基準として、前記探査対象面を含む平面が前記坑井の軸心と交差する交点側において、前記入射仰角が前記第2入射仰角範囲内にあると判定し、前記交点側と反対側において、前記入射仰角が前記第1入射仰角範囲内にあると判定し、前記送受信アンテナ部の前記坑井の軸心方向の移動範囲内において前記特異位置が特定されない場合、前記移動範囲内の全域において、前記入射仰角が前記第1入射仰角範囲内にあると判定することを第4の特徴とする。
Further, in the direction estimation system of the third feature, the incident azimuth derivation unit is used for transmission at each position when the transmission / reception antenna unit sequentially moves in the well in the axial direction of the well. The propagation time of the electromagnetic wave from the dipole antenna element to the dipole array antenna is measured, and based on the relationship between the position in the axial direction of the well and the propagation time, the well has a plane including the exploration target surface. Derived the tilt angle for the plane perpendicular to the axis,
When the inclination angle is larger than the first critical incident elevation angle,
The incident azimuth derivation unit
When the singular position is specified within the movement range of the transmission / reception antenna unit in the axial direction of the well, the plane including the search target surface is the well with reference to the singular position within the movement range. It is determined that the incident elevation angle is within the second incident elevation range on the intersection side intersecting the axis, and it is determined that the incident elevation angle is within the first incident elevation range on the side opposite to the intersection side. When the singular position is not specified within the movement range of the transmission / reception antenna unit in the axial direction of the well, it is determined that the incident elevation angle is within the first incident elevation angle range in the entire range of the movement range. This is the fourth feature.

更に、上記第3の特徴の方向推定方法は、前記第3の工程において、前記送受信アンテナ部が、前記坑井内を前記坑井の軸心方向に順次移動した各位置において前記送信用ダイポールアンテナ素子から前記ダイポールアレイアンテナまでの前記電磁波の伝搬時間を計測し、前記第4の工程の前処理工程として、前記坑井の軸心方向の位置と前記伝搬時間の関係に基づいて、前記探査対象面を含む平面の前記坑井の軸心と直交する平面に対する傾斜角を導出し、
前記傾斜角が前記第1臨界入射仰角より大きい場合、
前記第4の工程において、
前記送受信アンテナ部の前記坑井の軸心方向の移動範囲内において前記特異位置が特定された場合、前記移動範囲内の前記特異位置を基準として、前記探査対象面を含む平面が前記坑井の軸心と交差する交点側において、前記入射仰角が前記第2入射仰角範囲内にあると判定し、前記交点側と反対側において、前記入射仰角が前記第1入射仰角範囲内にあると判定し、前記送受信アンテナ部の前記坑井の軸心方向の移動範囲内において前記特異位置が特定されない場合、前記移動範囲内の全域において、前記入射仰角が前記第1入射仰角範囲内にあると判定することを第4の特徴とする。
Further, in the method of estimating the direction of the third feature, in the third step, the transmission dipole antenna element at each position where the transmission / reception antenna unit sequentially moves in the well in the axial direction of the well. The propagation time of the electromagnetic wave from the dipole array antenna to the dipole array antenna is measured, and as a pretreatment step of the fourth step, the exploration target surface is based on the relationship between the position in the axial direction of the well and the propagation time. Derived the tilt angle of the plane containing the above-mentioned well with respect to the plane orthogonal to the axis of the well.
When the inclination angle is larger than the first critical incident elevation angle,
In the fourth step,
When the singular position is specified within the movement range of the transmission / reception antenna unit in the axial direction of the well, the plane including the search target surface is the well with reference to the singular position within the movement range. It is determined that the incident elevation angle is within the second incident elevation range on the intersection side intersecting the axis, and it is determined that the incident elevation angle is within the first incident elevation range on the side opposite to the intersection side. When the singular position is not specified within the movement range of the transmission / reception antenna unit in the axial direction of the well, it is determined that the incident elevation angle is within the first incident elevation angle range in the entire range of the movement range. This is the fourth feature.

更に、上記第4の特徴の方向推定システムは、前記ダイポールアレイアンテナが、前記坑井内において、前記送信用ダイポールアンテナ素子より前記探査対象面を含む平面が前記坑井の軸心と交差する交点側に位置していることを第5の特徴とする。 Further, in the direction estimation system of the fourth feature, in the dipole array antenna, the plane including the exploration target surface intersects the axis of the well from the transmission dipole antenna element in the well. The fifth feature is that it is located in.

更に、上記第4の特徴の方向推定方法は、前記第1の工程において、前記ダイポールアレイアンテナを、前記坑井内において、前記送信用ダイポールアンテナ素子より前記探査対象面を含む平面が前記坑井の軸心と交差する交点側に配置することを第5の特徴とする。 Further, in the method of estimating the direction of the fourth feature, in the first step, the dipole array antenna is placed in the well, and the plane including the search target surface from the transmission dipole antenna element is the well. The fifth feature is to arrange it on the side of the intersection that intersects the axis.

本発明に係る方向推定システムまたは方法によれば、ダイポールアレイアンテナに入射する入射電磁波の到来方向と坑井の軸心とが成す入射仰角が、第1入射仰角範囲内にあるか、或いは、第2入射仰角範囲内にあるかを判定することで、入射仰角に応じた適切な入射方位角の導出が可能となり、入射仰角が0°から180°までの全範囲に亘って、第1及び第2臨界入射仰角の何れか一方と一致またはその近傍にある場合を除き、入射電磁波の坑井の軸心周りの入射方位角を、探査対象面が坑井の軸心に対して対向する方向として、正確に推定できる。 According to the direction estimation system or method according to the present invention, the incident elevation angle formed by the arrival direction of the incident electromagnetic wave incident on the dipole array antenna and the axis of the well is within the first incident elevation angle range, or the first. 2 By determining whether it is within the incident elevation range, it is possible to derive an appropriate incident azimuth according to the incident elevation angle, and the incident elevation angle is the first and first over the entire range from 0 ° to 180 °. The incident azimuth around the axis of the well of the incident electromagnetic wave is set as the direction in which the surface to be explored faces the axis of the well, except when it coincides with or is near one of the two critical incident elevation angles. , Can be estimated accurately.

ここで、入射方位角の推定が困難となる第1及び第2臨界入射仰角が生じる原因について、図1及び図2を参照して詳細に説明する。 Here, the causes of the first and second critical incident elevation angles that make it difficult to estimate the incident azimuth will be described in detail with reference to FIGS. 1 and 2.

先ず、図1及び図2について説明する。図1は、4本のダイポールアンテナ素子D1~D4を備えて構成されたダイポールアレイアンテナが坑井内に挿入されている状態、並びに、ダイポールアンテナ素子D1~D4、ダイポールアンテナ素子D1~D4を収容する管状の容器(ベッセル)V、円筒状の坑井B、及び、探査対象面(図示せず)で反射してダイポールアレイアンテナの中心Oに向かって入射する入射電磁波Winの間の位置関係を模式的に示す斜視図であり、図2は、同位置関係を示す、坑井Bの軸心Zに直交し、ダイポールアレイアンテナの中心Oを通過する断面(xy平面)における断面図である。 First, FIGS. 1 and 2 will be described. FIG. 1 shows a state in which a dipole array antenna configured with four dipole antenna elements D1 to D4 is inserted into a well, and accommodates the dipole antenna elements D1 to D4 and the dipole antenna elements D1 to D4. Schematic representation of the positional relationship between a tubular container (vessel) V, a cylindrical well B, and an incident electromagnetic wave Win that is reflected by an exploration target surface (not shown) and incident toward the center O of a dipole array antenna. FIG. 2 is a cross-sectional view (xy plane) which is orthogonal to the axis Z of the well B and passes through the center O of the dipole array antenna, showing the same positional relationship.

4本のダイポールアンテナ素子D1~D4は、夫々の軸心が、坑井の軸心Zから所定距離bだけ離間して軸心Zと平行に、且つ、軸心Zの周方向に90°ずつ離間して配置され、夫々の給電点は、軸心Zに直交する同じxy平面上に位置する。容器Vは円筒状で内径及び外径が2a及び2aであり、坑井Bの内径は2aであり(a<a<a)、容器Vと坑井Bの各軸心は同軸でダイポールアレイアンテナの中心Oを通過している。従って、ダイポールアンテナ素子D1~D4は、容器Vと同軸の半径bの仮想円柱面上に、該仮想円柱面の周方向に均等に分散して配置されている。 In each of the four dipole antenna elements D1 to D4, the axial centers of the dipole antenna elements D1 to D4 are separated from the axial center Z of the well by a predetermined distance b, parallel to the axial center Z, and 90 ° in the circumferential direction of the axial center Z. They are spaced apart and their respective feeding points are located on the same xy plane orthogonal to the axis Z. The container V is cylindrical and has inner and outer diameters of 2a 1 and 2a 2 , and the inner diameter of the well B is 2a 3 (a 1 <a 2 <a 3 ). Is coaxial and passes through the center O of the dipole array antenna. Therefore, the dipole antenna elements D1 to D4 are arranged on a virtual cylindrical surface having a radius b coaxial with the container V so as to be evenly dispersed in the circumferential direction of the virtual cylindrical surface.

xyz直交座標系を用いて、ダイポールアレイアンテナを含む周囲の空間を表す。ダイポールアレイアンテナの中心Oとダイポールアンテナ素子D1,D3の各給電点を結ぶ直線がx軸(中心Oから素子D1側が+x方向)、ダイポールアレイアンテナの中心Oとダイポールアンテナ素子D2,D4の各給電点を結ぶ直線がy軸(中心Oから素子D2側が+y方向)、坑井Bの軸心Zがz軸となっており、xyz直交座標系の原点は、ダイポールアレイアンテナの中心Oとなっている。以下、xy平面上の原点Oを中心とする任意の半径の円周上の1点と原点Oを結ぶ線分とx軸(+x方向)の成す角度を「方位角φ」と規定する。よって、+x方向の方位角φは0°であり、+y方向の方位角φは90°である。また、「軸心Zの周方向」の位置及び「仮想円柱面の周方向」の位置は、何れも「方位角φ」で特定される。 The xyz Cartesian coordinate system is used to represent the surrounding space containing the dipole array antenna. The straight line connecting the center O of the dipole array antenna and the feeding points of the dipole antenna elements D1 and D3 is the x-axis (the element D1 side is in the + x direction from the center O), and the feeding points of the center O of the dipole array antenna and the dipole antenna elements D2 and D4. The straight line connecting the points is the y-axis (from the center O to the element D2 side in the + y direction), the axis Z of the well B is the z-axis, and the origin of the xyz orthogonal coordinate system is the center O of the dipole array antenna. There is. Hereinafter, the angle formed by the line segment connecting the origin O and a point on the circumference having an arbitrary radius centered on the origin O on the xy plane and the x-axis (+ x direction) is defined as "azimuth angle φ". Therefore, the azimuth angle φ in the + x direction is 0 °, and the azimuth angle φ in the + y direction is 90 °. Further, both the position of the "circumferential direction of the axis Z" and the position of the "circumferential direction of the virtual cylindrical surface" are specified by the "azimuth angle φ".

入射電磁波Winは、平面波であって、電界ベクトルEが、入射電磁波Winの波数ベクトルkと坑井Bの軸心Zを含む平面に含まれ、磁界ベクトルHが、当該平面に垂直な成分のみを有するTM波(Transverse Magnetic Wave)を想定する。図1において、入射電磁波Winの入射仰角θは、入射電磁波Winの到来方向(波数ベクトルkの方向)と坑井Bの軸心Zが成す角度として定義される。入射電磁波Winの坑井Bの軸心Z周りの入射方位角φは、図1及び図2において、入射電磁波Winの波数ベクトルkのxy平面と平行な成分とx軸の成す角度(方位角φ)として定義される。原点Oを通り探査対象面に向くρ軸をxy平面に設定すると、ρ軸とx軸の成す角度(方位角φ)が本発明の推定対象であり、入射方位角φと一致する。図2に、便宜的に探査対象面Fとxy平面の交線Lを破線で付記すると、ρ軸と交線Lは直交する。 The incident electromagnetic wave Win is a plane wave, and the electric field vector E is included in the plane including the wave vector k of the incident electromagnetic wave Win and the axis Z of the well B, and the magnetic field vector H contains only the components perpendicular to the plane. It is assumed that the TM wave (Transverse Magic Wave) is possessed. In FIG. 1, the incident elevation angle θ of the incident electromagnetic wave Win is defined as an angle formed by the arrival direction of the incident electromagnetic wave Win (direction of the wave vector k) and the axis Z of the well B. In FIGS. 1 and 2, the incident azimuth angle φ 0 around the axis Z of the well B of the incident electromagnetic wave Win is the angle (azimuth angle) formed by the component parallel to the xy plane of the wave vector k of the incident electromagnetic wave Win and the x-axis. Defined as φ). When the ρ-axis passing through the origin O and facing the exploration target plane is set in the xy plane, the angle (azimuth φ) formed by the ρ-axis and the x -axis is the estimation target of the present invention and coincides with the incident azimuth angle φ0. If the line of intersection LF of the exploration target plane F and the line of intersection xy plane is added with a broken line in FIG. 2, the ρ axis and the line of intersection LF are orthogonal to each other.

次に、第1及び第2臨界入射仰角の定義に用いる電界周方向依存性指数c(θ)(以下、適宜、単に「指数c(θ)」と称す)について説明する。 Next, the electric field circumferential dependence index c (θ) (hereinafter, appropriately simply referred to as “exponent c (θ)”) used for defining the first and second critical incident elevation angles will be described.

容器Vの内側に設定したxy平面上の原点Oを中心とする半径ρの円周上における電界Eのz成分E1z(φ)は、以下の数1に示すように、フェーザ表示により級数展開される。数1右辺の電界E1z(φ)のnの成分は、上記円周上で周方向に電界の観測位置を変化させたときに、電界がn回振動する成分を示している。 The z component E 1z (φ) of the electric field E on the circumference of the radius ρ centered on the origin O on the xy plane set inside the container V is series-expanded by phasor display as shown in the following equation 1. Will be done. The n component of the electric field E 1z (φ) on the right side of the equation 1 indicates a component in which the electric field oscillates n times when the observed position of the electric field is changed in the circumferential direction on the circumference.

Figure 0007036432000001
Figure 0007036432000001

数1の右辺のn=0の項E1z (0)は、上記円周上で電界強度が入射方位角φに関係なく一定となる成分であり、数1の右辺のn≠0の項exp(-jn(φ-φ))E1z (n)は、上記円周上で電界強度が一定でなく入射方位角φに応じて変動する成分である。指数c(θ)は、下記の数2に示すように、電界E1z(φ)のn≠0の項exp(-jn(φ-φ))E1z (n)でφ=φとしたものの合計の絶対値(電界の大きさ)をn=0の項E1z (0)の絶対値(電界の大きさ)で除した比として定義される。 The term E 1z (0) of n = 0 on the right side of Equation 1 is a component in which the electric field strength is constant on the circumference regardless of the incident azimuth angle φ 0 , and the term n ≠ 0 on the right side of Equation 1. exp (−jn (φ−φ 0 )) E 1z (n) is a component in which the electric field strength is not constant on the circumference and fluctuates according to the incident azimuth angle φ 0 . As shown in Equation 2 below, the exponent c (θ) is φ = φ 0 in the term exp (-jn (φ-φ 0 )) E 1z (n) of n ≠ 0 of the electric field E 1z (φ). It is defined as the ratio obtained by dividing the absolute value (magnitude of electric field) of the sum of the above by the absolute value (magnitude of electric field) of the term E 1z (0) of n = 0.

Figure 0007036432000002
Figure 0007036432000002

TM入射する入射電磁波Winの坑井Bの内壁面である円柱境界面上の電磁界のうち、z方向成分の電界E、φ方向成分の電界Eφ、及び、φ方向成分の磁界Hφが坑井B内の電磁界に寄与する。入射電磁波Winは、該円柱境界面上の境界条件(電界E、電界Eφ、磁界Hφ)を介して坑井B内に入り込み、坑井内電界のz成分E1zが発生する。z成分E1zは、数3に示すように、電界E由来のE1z Ezと、電界Eφ由来のE1z Eφと、磁界Hφ由来のE1z Hφに分解できる。 Of the electromagnetic fields on the cylindrical interface, which is the inner wall surface of the well B of the incident electromagnetic wave Win that is incident on TM, the electric field E z of the z-direction component, the electric field E φ of the φ-direction component, and the magnetic field H φ of the φ-direction component. Contributes to the electromagnetic field in the well B. The incident electromagnetic wave Win enters the well B through the boundary conditions (electric field E z , electric field E φ , magnetic field H φ ) on the cylindrical boundary surface, and the z component E 1 z of the electric field in the well is generated. As shown in Equation 3, the z component E 1z can be decomposed into E 1z Ez derived from the electric field E z , E 1 z E φ derived from the electric field E φ, and E 1 z H φ derived from the magnetic field H φ.

Figure 0007036432000003
Figure 0007036432000003

ここで、E1z EzとE1z Eφは相互に逆相である。また、E1z Ezは、θ=90°付近で最大となり、数2の右辺の分子(n≠0)及び分母(n=0)の両成分を有する。一方、E1z Eφは、θ=0°及び180°付近で最大となり、数2の右辺の分子(n≠0)の成分を有する。従って、入射仰角θが0°~90°の間に、n≠0の成分のE1z EzとE1z Eφが相互に逆相であるため相殺され、E1z EzとE1z Eφの和が0またはほぼ0となる臨界入射仰角θが存在する。更に、θ=θにおいて、n≠0成分のE1z Hφは0またはほぼ0となる。一方、θ=θにおいて、n=0成分のE1z Ezは存在し、|E1z Ez|>0であり、n=0成分のE1z HφはE1z Ezと比較して無視できる程度に小さい。従って、θ=θにおいて、n≠0成分の電界がほぼ無くなり、上記円周上の電界Eのz成分E1z(φ)においてφ方向に変化する電界がほぼ無くなるため、E1z(φ)は上記円周上で殆ど変化せずほぼ一定値となる。 Here, E 1z Ez and E 1z are in opposite phase to each other. Further, E 1z Ez becomes maximum near θ = 90 ° and has both components of the numerator (n ≠ 0) and the denominator (n = 0) on the right side of Equation 2. On the other hand, E 1z becomes maximum near θ = 0 ° and 180 °, and has a component of the molecule (n ≠ 0) on the right side of Equation 2. Therefore, while the incident elevation angle θ is between 0 ° and 90 °, E 1z Ez and E 1z , which are components of n ≠ 0, are offset from each other because they are in opposite phase, and the sum of E 1z Ez and E 1z is 0. Alternatively, there is a critical incident elevation angle θ 0 that is almost zero. Further, when θ = θ 0 , E 1z Hφ of the n ≠ 0 component becomes 0 or almost 0. On the other hand, when θ = θ 0 , E 1z Ez of n = 0 component exists and | E 1z Ez |> 0, and E 1z Hφ of n = 0 component is negligible as compared with E 1z Ez . small. Therefore, when θ = θ 0 , the electric field of the n ≠ 0 component is almost eliminated, and the electric field changing in the φ direction at the z component E 1z (φ) of the electric field E on the circumference is almost eliminated, so that E 1z (φ). Does not change much on the circumference and becomes an almost constant value.

入射仰角θが90°~180°の間においても、原点Oを通過するxy平面を挟んで上下対称の現象が生じるため、n≠0の成分のE1z EzとE1z Eφが相互に逆相であるため相殺され、E1z EzとE1z Eφの和が0またはほぼ0となる臨界入射仰角(180°-θ)が存在する。更に、θ=180°-θにおいて、n≠0成分のE1z Hφは0またはほぼ0となる。一方、θ=180°-θにおいて、n=0成分のE1z Ezは存在し、|E1z Ez|>0であり、n=0成分のE1z HφはE1z Ezと比較して無視できる程度に小さい。従って、θ=180°-θにおいて、n≠0成分の電界がほぼ無くなり、上記円周上の電界Eのz成分E1z(φ)においてφ方向に変化する電界がほぼ無くなるため、E1z(φ)は上記円周上で殆ど変化せずほぼ一定値となる。以下において、便宜的に、θを第1臨界入射仰角、(180°-θ)を第2臨界入射仰角と称して両者を区別する場合がある。 Even when the incident elevation angle θ is between 90 ° and 180 °, a phenomenon of vertical symmetry occurs across the xy plane passing through the origin O, so that the components E 1z Ez and E 1z of n ≠ 0 are in opposite phase to each other. Therefore, there is a critical incident elevation angle (180 ° −θ 0 ) that is offset and the sum of E 1z Ez and E 1z is 0 or almost 0. Further, when θ = 180 ° −θ 0 , E 1z Hφ of the n ≠ 0 component becomes 0 or almost 0. On the other hand, at θ = 180 ° −θ 0 , E 1z Ez of the n = 0 component exists, | E 1z Ez |> 0, and E 1z Hφ of the n = 0 component is ignored as compared with E 1z Ez . As small as possible. Therefore, at θ = 180 ° −θ 0 , the electric field of the n ≠ 0 component is almost eliminated, and the electric field that changes in the φ direction at the z component E 1z (φ) of the electric field E on the circumference is almost eliminated . (Φ) hardly changes on the circumference and becomes a substantially constant value. In the following, for convenience, θ 0 may be referred to as a first critical incident elevation angle, and (180 ° −θ 0 ) may be referred to as a second critical incident elevation angle to distinguish between the two.

また、入射仰角θが臨界入射仰角θまたは180°-θに近づくに従い、n≠0の成分のE1z EzとE1z Eφの相殺度合いが大きくなり、n≠0成分の電界は漸近的に0に近づき、数2に示す指数c(θ)も漸近的に0に近づく。従って、臨界入射仰角θ及び180°-θは、指数c(θ)が-20dB以下で極小値となる入射仰角θとして定義することができる。ここで、「-20dB以下」は、n≠0成分の電界が0またはほぼ0ではない場合に、指数c(θ)が極小値となる場合を排除するためのものである。 Further, as the incident elevation angle θ approaches the critical incident elevation angle θ 0 or 180 ° −θ 0 , the degree of cancellation of E 1z Ez and E 1z of the n ≠ 0 component increases, and the electric field of the n ≠ 0 component is asymptotic. It approaches 0, and the index c (θ) shown in Equation 2 also asymptotically approaches 0. Therefore, the critical incident elevation angles θ 0 and 180 ° −θ 0 can be defined as the incident elevation angles θ having the minimum value when the index c (θ) is −20 dB or less. Here, "-20 dB or less" is for excluding the case where the exponent c (θ) becomes a minimum value when the electric field of the n ≠ 0 component is 0 or almost 0.

電界E1z(φ)は、半径ρの円周上のある位置における電界をフェーザ表示したもので、複数周波数で観測された電界E1z(φ)を逆フーリエ変換することで、その位置における電界の時間領域波形が得られる。入射仰角θが臨界入射仰角θまたは180°-θの場合、E1z(φ)は上記円周上で観測位置を変えても振動せずほぼ一定値であるので、これらを逆フーリエ変換して得られる時間領域波形は、上記円周上のどの位置でも同じになる。このことは、半径ρの円周上に分散して配置されたダイポールアンテナ素子で受信される各電磁波の時間領域波形を重ね合わせたときに、時間軸方向にずれがなく、各アンテナ素子間の到達時間差が、電磁波の到来方向を正確に推定できる程度に大きく表れない状態となる。 The electric field E 1z (φ) is a phasor display of the electric field at a certain position on the circumference of the radius ρ . Time domain waveform is obtained. When the incident elevation angle θ is the critical incident elevation angle θ 0 or 180 ° −θ 0 , E 1z (φ) does not vibrate even if the observation position is changed on the circumference, and is an almost constant value. The time domain waveform obtained in this way is the same at any position on the circumference. This means that when the time domain waveforms of each electromagnetic wave received by the dipole antenna elements distributed and arranged on the circumference of the radius ρ are superimposed, there is no deviation in the time axis direction, and there is no deviation between the antenna elements. The arrival time difference does not appear large enough to accurately estimate the arrival direction of the electromagnetic wave.

一方、入射仰角θが臨界入射仰角θまたは180°-θから外れる場合、E1z(φ)は上記円周上で観測位置を変化させると振動するので、これらを逆フーリエ変換して得られる時間領域波形は、上記円周上の観測位置に応じて変化する。このことは、半径ρの円周上に分散して配置されたダイポールアンテナ素子で受信される各電磁波の時間領域波形を重ね合わせたときに、時間軸方向にずれが生じて、各アンテナ素子間の到達時間差を利用して、電磁波の到来方向を正確に推定できるようになる。 On the other hand, when the incident elevation angle θ deviates from the critical incident elevation angle θ 0 or 180 ° −θ 0 , E 1z (φ) vibrates when the observation position is changed on the circumference, so these are obtained by inverse Fourier transform. The time domain waveform to be generated changes according to the observation position on the circumference. This means that when the time domain waveforms of each electromagnetic wave received by the dipole antenna elements distributed and arranged on the circumference of the radius ρ are superimposed, a deviation occurs in the time axis direction, and the distance between the antenna elements occurs. It becomes possible to accurately estimate the arrival direction of electromagnetic waves by using the arrival time difference of.

次に、図1及び図2に示すモデルを用いて、ダイポールアンテナ素子D1~D4で受信される入射電磁波の時間領域波形のシミュレーション結果について説明する。ダイポールアレイアンテナの周囲に存在する円筒状境界面からの散乱電磁界を考慮したグリーン関数を用いたモーメント法によってアンテナ特性の解析を行い、入射電磁波を介してダイポールアンテナ素子D1~D4に誘起される受信電圧を算出することができる。図3(A)に、シミュレーションに使用した入射電磁波の電界強度E(V/m)の時間領域波形を示し、図3(B)に、入射仰角θが20°、40°、60°、80°の4通りにおけるダイポールアンテナ素子D1~D4に誘起される受信電圧の時間領域波形を重ね合わせて示す。図3(B)全体の縦軸は入射仰角θとなっているが、各入射仰角θでの各アンテナ素子D1~D4の時間領域波形の縦軸は明示されていないが、正規化された受信電圧である。尚、シミュレーションでは、以下の条件を想定した。入射電磁波の入射方位角φが0°、ダイポールアンテナ素子D1~D4が、全長2h=10cmで、xy平面上の半径b(=2cm)の円周上に、x軸を基準として周方向に0°、90°、180°、270°の位置に順番に配置され、容器Vの内径2a-=4.7cm、容器Vの外径2a=5.7cm、坑井Bの直径2a=6.7cmである。更に、容器V内部の誘電率ε、容器V壁部の誘電率ε、容器Vの外壁と坑井Bの内壁間の誘電率ε、地中の誘電率εは、夫々順番に、ε、5ε、81ε-j4.1×10-3/ω、29ε-j6.4×10-3/ωである。但し、εは真空誘電率であり、ω=2π×100MHzである。 Next, the simulation results of the time domain waveforms of the incident electromagnetic waves received by the dipole antenna elements D1 to D4 will be described using the models shown in FIGS. 1 and 2. The antenna characteristics are analyzed by the moment method using the green function considering the scattered electromagnetic field from the cylindrical boundary surface existing around the dipole array antenna, and the antenna characteristics are induced in the dipole antenna elements D1 to D4 via the incident electromagnetic wave. The received voltage can be calculated. FIG. 3A shows a time domain waveform of the electric field strength E (V / m) of the incident electromagnetic wave used in the simulation, and FIG. 3B shows the incident elevation angles θ of 20 °, 40 °, 60 °, and 80. The time domain waveforms of the received voltage induced in the dipole antenna elements D1 to D4 in the four ways of ° are shown in an superimposed manner. Although the vertical axis of the entire FIG. 3B is the incident elevation angle θ, the vertical axis of the time domain waveforms of the antenna elements D1 to D4 at each incident elevation angle θ is not specified, but is normalized reception. It is a voltage. In the simulation, the following conditions were assumed. The incident azimuth angle φ 0 of the incident electromagnetic wave is 0 °, the dipole antenna elements D1 to D4 have a total length of 2h = 10 cm, and are on the circumference of the radius b (= 2 cm) on the xy plane in the circumferential direction with reference to the x axis. Arranged in order at 0 °, 90 °, 180 ° and 270 °, the inner diameter of the container V is 2a 1- = 4.7 cm, the outer diameter of the container V is 2a 2 = 5.7 cm, and the diameter of the well B is 2a 3 . = 6.7 cm. Further, the permittivity ε 1 inside the container V, the permittivity ε 2 at the wall of the container V, the permittivity ε 3 between the outer wall of the container V and the inner wall of the well B, and the permittivity ε 4 in the ground are in order. , Ε 0 , 5ε 0 , 81ε 0 −j4.1 × 10 -3 / ω, 29ε 0 −j6.4 × 10 -3 / ω. However, ε 0 is the vacuum permittivity, and ω = 2π × 100 MHz.

入射電磁波Winは、平面波のTM波であり、入射方位角φが0°であるので、入射仰角θが90°の場合は、アンテナ素子D1が最初に受信し、次に、アンテナ素子D2及びD4が同時に受信し、最後にアンテナ素子D3が受信する。しかしながら、図3(B)に示すように、入射仰角θが60°と80°のときは、入射仰角θが90°の場合と同様に、アンテナ素子D1、D2とD4、D3の順に入射電磁波が到達しているが、入射仰角θが40°のときは、アンテナ素子D1~D4に同時に入射電磁波が到達しており、入射仰角θが20°のときは、アンテナ素子D3、D2とD4、D1の順に入射電磁波が到達し、到達順が、入射仰角θが60°と80°のときと逆転している。 Since the incident electromagnetic wave Win is a TM wave of a plane wave and the incident azimuth angle φ 0 is 0 °, when the incident elevation angle θ is 90 °, the antenna element D1 receives first, and then the antenna element D2 and D4 receives at the same time, and finally the antenna element D3 receives. However, as shown in FIG. 3B, when the incident elevation angles θ are 60 ° and 80 °, the incident electromagnetic waves are in the order of the antenna elements D1, D2, D4, and D3, as in the case where the incident elevation angle θ is 90 °. However, when the incident elevation angle θ is 40 °, the incident electromagnetic waves reach the antenna elements D1 to D4 at the same time, and when the incident elevation angle θ is 20 °, the antenna elements D3, D2 and D4, The incident electromagnetic waves arrive in the order of D1, and the order of arrival is reversed from that when the incident elevation angles θ are 60 ° and 80 °.

入射仰角θが40°のときは、アンテナ素子D1~D4に同時に入射電磁波が到達していることから、本シミュレーション結果では、臨界入射仰角θが40°であることが分かる。また、入射仰角θを同じ条件で90°~180°の間で変化させた場合には、臨界入射仰角180°-θが140°となる。ここで、入射仰角θが2つの臨界入射仰角θと180°-θの間の第1入射仰角範囲内(40°~140°)では、入射電磁波が最初に到達したアンテナ素子D1の上記円周上の位置に対応する角度(0°)が入射方位角φ(0°)と一致する。しかし、入射仰角θが0°から180°までの全範囲における第1入射仰角範囲外の第2入射仰角範囲内(0~40°、140°~180°)では、入射電磁波が最初に到達したアンテナ素子D3の上記円周上の位置に対応する角度(180°)ではなく、入射電磁波が最後に到達したアンテナ素子D1の上記円周上の位置に対応する角度(0°)が入射方位角φ(0°)と一致する。 When the incident elevation angle θ is 40 °, the incident electromagnetic waves reach the antenna elements D1 to D4 at the same time. Therefore, in this simulation result, it can be seen that the critical incident elevation angle θ 0 is 40 °. Further, when the incident elevation angle θ is changed between 90 ° and 180 ° under the same conditions, the critical incident elevation angle 180 ° −θ 0 becomes 140 °. Here, when the incident elevation angle θ is within the first incident elevation angle range (40 ° to 140 °) between the two critical incident elevation angles θ 0 and 180 ° −θ 0 , the antenna element D1 to which the incident electromagnetic wave first reaches is described above. The angle (0 °) corresponding to the position on the circumference coincides with the incident azimuth φ 0 (0 °). However, the incident electromagnetic wave first arrived within the second incident elevation range (0 to 40 °, 140 ° to 180 °) outside the first incident elevation range in the entire range of the incident elevation angle θ from 0 ° to 180 °. The angle corresponding to the position on the circumference of the antenna element D1 finally reached by the incident electromagnetic wave (0 °) is not the angle corresponding to the position on the circumference of the antenna element D3 (180 °). Consistent with φ 0 (0 °).

次に、入射仰角θが第2入射仰角範囲内にある場合に、アンテナ素子D1~D4への入射電磁波の到達順が第1入射仰角範囲内にある場合とは逆転する理由について簡単に説明する。 Next, when the incident elevation angle θ is within the second incident elevation angle range, the reason why the order of arrival of the incident electromagnetic waves to the antenna elements D1 to D4 is reversed from the case where the incident electromagnetic wave is within the first incident elevation angle range will be briefly described. ..

上記数3で示したE1z EzとE1z Eφの両者のn≠0の成分の存在によって、上記円周上で観測位置を変えると、観測される電界の時間領域波形が変化する。より詳細には、上記円周上で観測位置を変えると、観測される電界の時間領域波形は、波の形がほぼそのままで、時間方向にシフトする。E1z Ezは順方向に到達するようにシフトさせ、E1z Eφは逆方向に到達するようにシフトさせる役割を果たす。ここで、順方向とは、入射電磁波が坑井B内において各アンテナ素子に順番に到達していく方向が、入射電磁波の坑井B外での伝搬方向と一致していることを意味し、逆方向とは、入射電磁波が坑井B内において各アンテナ素子に順番に到達していく方向が、入射電磁波の坑井B外での伝搬方向と逆であることを意味する。このように、E1z EzとE1z Eφが、上記円周上で観測される電界の時間領域波形を互いに逆方向へシフトさせる働きは、E1z EzとE1z Eφが相互に逆相であることに起因する。 When the observation position is changed on the circumference due to the presence of the n ≠ 0 component of both E 1z Ez and E 1z shown in the above equation 3, the time domain waveform of the observed electric field changes. More specifically, when the observation position is changed on the circumference, the time domain waveform of the observed electric field shifts in the time direction with almost the same wave shape. E 1z Ez serves to shift to reach in the forward direction, and E 1z serves to shift to reach in the opposite direction. Here, the forward direction means that the direction in which the incident electromagnetic wave reaches each antenna element in order in the well B coincides with the propagation direction of the incident electromagnetic wave outside the well B. The reverse direction means that the direction in which the incident electromagnetic wave reaches each antenna element in order in the well B is opposite to the propagation direction of the incident electromagnetic wave outside the well B. In this way, the function of E 1z Ez and E 1z to shift the time domain waveforms of the electric field observed on the circumference in opposite directions is that E 1z Ez and E 1z are in opposite phase to each other. Due to that.

従って、入射仰角θが第1入射仰角範囲内で90°に近付くほど、E1z EφよりもE1z Ezの方が大きくなり、E1z Ezが支配的となる。E1z Ezのn≠0の成分は、坑井B内において入射電磁波の時間領域波形が各アンテナ素子へ順方向に到達して到達時間差を生じさせる。一方、入射仰角θが第2入射仰角範囲内で0°または180°に近付くほど、E1z EzよりもE1z Eφの方が大きくなり、E1z Eφが支配的となる。E1z Eφのn≠0の成分は、坑井B内の各アンテナ素子に対して逆方向に到達時間差を生じさせるので、入射仰角θが第2入射仰角範囲内にあると、アンテナ素子D1~D4への入射電磁波の到達順が第1入射仰角範囲内にある場合とは逆転する。 Therefore, as the incident elevation angle θ approaches 90 ° within the first incident elevation angle range, E 1z Ez becomes larger than E 1z , and E 1z Ez becomes dominant. The component of n ≠ 0 of E 1z Ez causes the time domain waveform of the incident electromagnetic wave to reach each antenna element in the forward direction in the well B, resulting in an arrival time difference. On the other hand, as the incident elevation angle θ approaches 0 ° or 180 ° within the second incident elevation angle range, E 1z becomes larger than E 1z Ez , and E 1z becomes dominant. Since the component of n ≠ 0 of E 1z Eφ causes an arrival time difference in the opposite direction with respect to each antenna element in the well B, when the incident elevation angle θ is within the second incident elevation angle range, the antenna elements D1 to The order of arrival of the incident electromagnetic wave to D4 is reversed from the case where the incident electromagnetic wave is within the first incident elevation angle range.

以上の説明より明らかなように、上記第1乃至第5の特徴の方向推定システムまたは方法によれば、入射仰角が第1入射仰角範囲内と第2入射仰角範囲内の何れ側にあるかに応じて、適切な入射方位角の導出が可能となり、探査対象面が坑井の軸心に対して対向する方向を正確に推定できる。 As is clear from the above description, according to the direction estimation system or method of the first to fifth features, whether the incident elevation angle is within the first incident elevation range or the second incident elevation range. Therefore, it is possible to derive an appropriate incident azimuth, and it is possible to accurately estimate the direction in which the exploration target surface faces the axis of the well.

坑井、坑井内に挿入された4本のダイポールアンテナ素子からなるダイポールアレイアンテナ、入射電磁波等の位置関係を模式的に示す斜視図。A perspective view schematically showing the positional relationship between a well, a dipole array antenna composed of four dipole antenna elements inserted into the well, and incident electromagnetic waves. 図1に示す位置関係を坑井の軸心に直交し、ダイポールアレイアンテナの中心を通過する断面における断面図。FIG. 3 is a cross-sectional view of a cross section in which the positional relationship shown in FIG. 1 is orthogonal to the axis of the well and passes through the center of the dipole array antenna. 図1及び図2に示すモデルを用いて、4本のダイポールアンテナ素子で受信される入射電磁波の時間領域波形のシミュレーションに使用した入射電磁波の電界強度の時間領域波形、及び、各アンテナ素子に誘起される受信電圧の時間領域波形を示す図。Using the models shown in FIGS. 1 and 2, the time domain waveform of the electric field strength of the incident electromagnetic wave used for simulating the time domain waveform of the incident electromagnetic wave received by the four dipole antenna elements, and induced in each antenna element. The figure which shows the time domain waveform of the received voltage. 本発明の一実施形態に係る方向推定システムの概略の構成例を模式的に示す構成図。A block diagram schematically showing a schematic configuration example of a direction estimation system according to an embodiment of the present invention. 入射仰角とダイポールアレイアンテナの中心との関係を説明する説明図。Explanatory drawing explaining the relationship between the incident elevation angle and the center of a dipole array antenna. フィールド実験の構成に対応した条件で計算した電界周方向依存性指数c(θ)の計算結果の一例を示す図。The figure which shows an example of the calculation result of the electric field circumferential dependence index c (θ) calculated under the condition corresponding to the structure of a field experiment. 図6で想定したフィールド実験で測定した4本の受信アンテナ素子に誘起される受信電圧の時間領域波形を示す図。The figure which shows the time domain waveform of the received voltage induced in the four receiving antenna elements measured by the field experiment assumed in FIG. 入射仰角とダイポールアレイアンテナの給電点の坑井の軸心上の位置との関係の数値計算に使用したモデルを説明する説明図。An explanatory diagram illustrating a model used for numerical calculation of the relationship between the incident elevation angle and the position of the feeding point of the dipole array antenna on the axis of the well. 入射仰角とダイポールアレイアンテナの給電点の坑井の軸心上の位置との関係を数値計算により求めた結果を示す図。The figure which shows the result of having calculated the relationship between the incident elevation angle and the position of the feeding point of a dipole array antenna on the axis of a well by numerical calculation.

以下、本発明の実施形態に係る方向推定システム(以下、適宜、「本システム」と称す。)及び方向推定方法(以下、適宜、「本方法」と称す。)について、図面を参照して説明する。 Hereinafter, the direction estimation system (hereinafter, appropriately referred to as “the present system”) and the direction estimation method (hereinafter, appropriately referred to as “the present method”) according to the embodiment of the present invention will be described with reference to the drawings. do.

<本システムの概略構成>
図4は、本システム10の概略の構成図である。本システム10は、一例として、一周波数fで利得(振幅)と位相を測定し、この周波数fを掃引することで周波数領域のデータを直接取得するステップ周波数連続波(SFCW)レーダシステムを想定する。本システム10は、入射方位角導出部11、送信用インタフェース部12、受信用インタフェース部13、送信用アンテナ部14、及び、受信用アンテナ部15を備えて構成される。
<Outline configuration of this system>
FIG. 4 is a schematic configuration diagram of the system 10. As an example, the system 10 assumes a step frequency continuous wave (SFW) radar system that measures gain (amplitude) and phase at one frequency f and directly acquires data in the frequency domain by sweeping this frequency f. .. The system 10 includes an incident azimuth derivation unit 11, a transmission interface unit 12, a reception interface unit 13, a transmission antenna unit 14, and a reception antenna unit 15.

ここで、本システム10及び本方法の推定対象である地中に存在する探査対象面は、実際は有限の広さであるが、探査用に地中に掘削された有限長の坑井内において探査用の送信アンテナ及び受信アンテナを走査させる限りにおいては、送信アンテナから放射された電磁波が探査対象面で反射され、受信アンテナに到達して受信され得る十分な平面的な広がりを有するものと想定する。また、実際の地中探査では、地中に存在する複数の断片的な断層面は一つの無限平板で近似することが多く、斯かるケースも本システム10及び本方法の推定対象となり得る。よって、本実施形態では、探査対象面は無限平板の表面(平面)の一部として扱う。 Here, the exploration target surface existing in the ground, which is the estimation target of the system 10 and the method, is actually a finite area, but is used for exploration in a finite-length well excavated in the ground for exploration. As long as the transmitting antenna and the receiving antenna of the above are scanned, it is assumed that the electromagnetic wave radiated from the transmitting antenna is reflected on the surface to be searched and has a sufficient planar spread that can reach the receiving antenna and be received. Further, in actual ground penetrating radar, a plurality of fragmentary fault planes existing in the ground are often approximated by one infinite flat plate, and such a case can also be an estimation target of the system 10 and the method. Therefore, in the present embodiment, the surface to be explored is treated as a part of the surface (plane) of the infinite flat plate.

入射方位角導出部11は、地中の探査対象面が前記地中に掘削された円筒状の坑井の軸心に対して対向する方向を推定する処理、及び、当該処理に必要な電磁波の送受信に係る処理を行う装置で構成され、本実施形態では、一例として、ベクトルネットワークアナライザ111とパソコン(パーソナルコンピュータ)112を備えて構成される。入射方位角導出部11は、地上において使用され、オペレータの操作に供される。 The incident azimuth derivation unit 11 estimates the direction in which the surface to be explored in the ground faces the axis of the cylindrical well excavated in the ground, and the electromagnetic waves required for the processing. It is composed of an apparatus that performs processing related to transmission and reception, and in the present embodiment, it is configured to include a vector network analyzer 111 and a personal computer (personal computer) 112 as an example. The incident azimuth deriving unit 11 is used on the ground and is used for operator operation.

ベクトルネットワークアナライザ111は、送信用アンテナ部14内に設けられたダイポールアンテナ素子141の給電点に、送信用インタフェース部12及び光ファイバケーブル16を介して、周波数fの正弦波電圧X(複素数)を給電し、受信用アンテナ部15内に設けられたダイポールアレイアンテナ151の各アンテナ素子の給電点における受信電圧Y(複素数)を、受信用インタフェース部13及び光ファイバケーブル16を介して測定し、伝達特性G=Y/X(複素数)を出力可能に構成されている。 The vector network analyzer 111 applies a sinusoidal voltage X (complex number) having a frequency f to the feeding point of the dipole antenna element 141 provided in the transmitting antenna unit 14 via the transmitting interface unit 12 and the optical fiber cable 16. Power is supplied, and the reception voltage Y (complex number) at the feeding point of each antenna element of the dipole array antenna 151 provided in the receiving antenna unit 15 is measured and transmitted via the receiving interface unit 13 and the optical fiber cable 16. The characteristic G = Y / X (complex number) can be output.

送信用インタフェース部12は、ベクトルネットワークアナライザ111が出力した送信波信号を増幅するアンプ121と、アンプ121で増幅された送信波信号を光信号に変換するレーザダイオード等の電気/光変換素子122を備えて構成され、地上に設置される。 The transmission interface unit 12 includes an amplifier 121 that amplifies the transmission wave signal output by the vector network analyzer 111, and an electric / optical conversion element 122 such as a laser diode that converts the transmission wave signal amplified by the amplifier 121 into an optical signal. It is configured and installed on the ground.

送信用アンテナ部14は、円筒状のFRP(繊維強化プラスチック)製ベッセル142内にダイポールアンテナ素子141を備えて構成され、地中に掘削された円筒状の坑井B内に挿入して使用される。送信用アンテナ部14は、送信用インタフェース部12から、光ファイバケーブル16を介して送信された送信波信号(光信号)をフォトダイオード等の光/電気変換素子(図示せず)で受信して電気信号に変換し、アンプ(図示せず)により増幅してダイポールアンテナ素子141の給電点に供給し、ダイポールアンテナ素子141から電磁波を、坑井B内から地中の探査対象面に向けて放射する。 The transmitting antenna portion 14 is configured to include a dipole antenna element 141 in a cylindrical FRP (fiber reinforced plastic) vessel 142, and is used by being inserted into a cylindrical well B excavated in the ground. To. The transmission antenna unit 14 receives a transmission wave signal (optical signal) transmitted from the transmission interface unit 12 via the optical fiber cable 16 by an optical / electrical conversion element (not shown) such as a photodiode. It is converted into an electric signal, amplified by an amplifier (not shown) and supplied to the feeding point of the dipole antenna element 141, and electromagnetic waves are radiated from the dipole antenna element 141 from the inside of the well B toward the exploration target surface in the ground. do.

受信用アンテナ部15は、円筒状のFRP製ベッセル152内にダイポールアレイアンテナ151と電気/光変換ユニット153とダイポールアレイアンテナ151の坑井B内の向きを知るための方位計154を備えて構成され、送信用アンテナ部14と共に同一の坑井B内に挿入して使用される。ダイポールアンテナ素子141から探査対象面に向けて放射された電磁波は、当該探査対象面で反射し、ダイポールアレイアンテナ151に向けて伝搬する入射電磁波が、ダイポールアレイアンテナ151を構成する3以上の各ダイポールアンテナ素子により各別に受信される。 The receiving antenna unit 15 includes a dipole array antenna 151, an electric / optical conversion unit 153, and an azimuth meter 154 for knowing the orientation of the dipole array antenna 151 in the well B in a cylindrical FRP vessel 152. It is inserted into the same well B together with the transmitting antenna unit 14 and used. The electromagnetic waves radiated from the dipole antenna element 141 toward the exploration target surface are reflected by the exploration target surface, and the incident electromagnetic waves propagating toward the dipole array antenna 151 are the three or more dipoles constituting the dipole array antenna 151. It is received separately by the antenna element.

本実施形態では、ダイポールアレイアンテナ151は、図1に示した構成と同様に、4本の同じ長さのダイポールアンテナ素子(受信アンテナ素子)で構成され、各受信アンテナ素子は、夫々の軸心が、ベッセル152の軸心から同じ距離だけ離間して該軸心と平行に、且つ、該軸心の周方向に90°ずつ離間して配置されている。各受信アンテナ素子の給電点は、ベッセル152の軸心方向の同位置にあって、夫々特性インピーダンス50Ωの同軸ケーブルの一端に接続され、該同軸ケーブルは、夫々、中心に集められ、円柱状に束ねられて給電線を構成し、当該給電線を介して受信波信号が電気/光変換ユニット153に伝送される。電気/光変換ユニット153は、該受信波信号をアンプにより増幅し、レーザダイオード等の電気/光変換素子により光信号に変換して、これによりS/N比が向上された受信波信号を、光ファイバケーブル16を介して、受信用インタフェース部13に送信する。 In the present embodiment, the dipole array antenna 151 is composed of four dipole antenna elements (reception antenna elements) having the same length, as in the configuration shown in FIG. 1, and each receiving antenna element has its own axis. However, they are arranged so as to be separated from the axis of the vessel 152 by the same distance, parallel to the axis, and separated by 90 ° in the circumferential direction of the axis. The feeding point of each receiving antenna element is located at the same position in the axial direction of the vessel 152, and is connected to one end of a coaxial cable having a characteristic impedance of 50Ω. It is bundled to form a feeder line, and the received wave signal is transmitted to the electric / optical conversion unit 153 via the feeder line. The electric / optical conversion unit 153 amplifies the received wave signal by an amplifier and converts it into an optical signal by an electric / optical conversion element such as a laser diode, thereby producing a received wave signal having an improved S / N ratio. It is transmitted to the receiving interface unit 13 via the optical fiber cable 16.

受信用アンテナ部15は、上述の電気/光変換ユニット153を設けて、各受信アンテナ素子の給電点と同軸ケーブルの給電線で接続する構成(同軸給電構成)において、当該同軸給電線からなる中心導体柱にフェライトを装荷することで、各受信アンテナ素子と当該中心導体柱との間の干渉の影響を大幅に低減することが可能である。更に、当該干渉の影響を完全に排除する方法として、各受信アンテナ素子の給電点に夫々光変調器を接続し、各光変調器で光信号に変換された受信波信号を、光ファイバケーブル16を介して、受信用インタフェース部13に送信する構成(光給電構成)を採用するのも好ましい実施態様である。 The receiving antenna unit 15 is provided with the above-mentioned electric / optical conversion unit 153, and is connected to the feeding point of each receiving antenna element by the feeding line of the coaxial cable (coaxial feeding configuration). By loading ferrite on the conductor column, it is possible to significantly reduce the influence of interference between each receiving antenna element and the central conductor column. Further, as a method of completely eliminating the influence of the interference, an optical modulator is connected to each feeding point of each receiving antenna element, and the received wave signal converted into an optical signal by each optical modulator is used as an optical fiber cable 16. It is also a preferable embodiment to adopt a configuration (optical power supply configuration) of transmitting to the receiving interface unit 13 via the above.

本実施形態では、送信用アンテナ部14のベッセル142と受信用アンテナ部15のベッセル152は、内径及び外径が同じで、夫々の軸心が一致して、当該軸心方向に直列して接続され使用される。送信用アンテナ部14と受信用アンテナ部15が坑井B内に挿入して使用される場合、各ベッセル142,152の軸心と坑井Bの軸心Zは一致し、各軸心は同軸上に整列する。よって、以下の説明では、各ベッセル142,152の軸心と坑井Bの軸心Zは互いに同義に使用する。尚、ダイポールアンテナを用いる一般的なボアホールレーダでは、一般的には、送信用アンテナ部14は受信用アンテナ部15の前方側(坑井B内に挿入する際の挿入方向側)に配置されるが、受信用アンテナ部15を送信用アンテナ部14より前方側に配置してもよい。以下、適宜、送信用アンテナ部14と受信用アンテナ部15を纏めて「送受信アンテナ部」と称す。 In the present embodiment, the vessel 142 of the transmitting antenna unit 14 and the vessel 152 of the receiving antenna unit 15 have the same inner diameter and outer diameter, and their respective axes are aligned and connected in series in the direction of the axis. And used. When the transmitting antenna unit 14 and the receiving antenna unit 15 are inserted into the well B and used, the axes of the vessels 142 and 152 and the axis Z of the well B coincide with each other, and the axes are coaxial. Align on top. Therefore, in the following description, the axis of the vessels 142 and 152 and the axis Z of the well B are used synonymously with each other. In a general borehole radar using a dipole antenna, the transmitting antenna unit 14 is generally arranged on the front side of the receiving antenna unit 15 (the insertion direction side when inserting into the well B). However, the receiving antenna unit 15 may be arranged on the front side of the transmitting antenna unit 14. Hereinafter, the transmitting antenna unit 14 and the receiving antenna unit 15 are collectively referred to as a “transmission / reception antenna unit” as appropriate.

受信用インタフェース部13は、ダイポールアレイアンテナ151の各受信アンテナ素子から各別に出力された受信波信号(光信号)を電気信号に変換するフォトダイオード等の光/電気変換素子132と、光/電気変換素子132が出力する受信信号を増幅するアンプ131を備えて構成され、地上に設置される。 The receiving interface unit 13 includes an optical / electric conversion element 132 such as a photodiode that converts a received wave signal (optical signal) separately output from each receiving antenna element of the dipole array antenna 151 into an electric signal, and optical / electric. It is configured to include an amplifier 131 that amplifies the received signal output by the conversion element 132, and is installed on the ground.

光ファイバケーブル16は、送信用アンテナ部14の光/電気変換素子と送信用インタフェース部12の電気/光変換素子122の間で送信波信号(光信号)を伝送する光ファイバと、受信用アンテナ部15の電気/光変換ユニット153内の電気/光変換素子と受信用インタフェース部13の光/電気変換素子132の間でアンテナ素子別の受信波信号(光信号)を各別に伝送する光ファイバとを束ねて構成される。上述のように、送信用アンテナ部14が受信用アンテナ部15の前方側に配置される場合は、送信波信号(光信号)用の光ファイバは、受信用アンテナ部15のベッセル152内を通過する(図示せず)。一方、受信用アンテナ部15が送信用アンテナ部14の前方側に配置される場合は、受信波信号(光信号)を各別に伝送する光ファイバが送信用アンテナ部14のベッセル142内を通過する。 The optical fiber cable 16 includes an optical fiber that transmits a transmission wave signal (optical signal) between the optical / electrical conversion element of the transmission antenna unit 14 and the electric / optical conversion element 122 of the transmission interface unit 12, and a reception antenna. An optical fiber that separately transmits a received wave signal (optical signal) for each antenna element between the electric / optical conversion element in the electric / optical conversion unit 153 of the unit 15 and the optical / electric conversion element 132 of the receiving interface unit 13. It is composed by bundling and. As described above, when the transmitting antenna unit 14 is arranged on the front side of the receiving antenna unit 15, the optical fiber for the transmitted wave signal (optical signal) passes through the vessel 152 of the receiving antenna unit 15. (Not shown). On the other hand, when the receiving antenna unit 15 is arranged on the front side of the transmitting antenna unit 14, the optical fiber that separately transmits the received wave signal (optical signal) passes through the vessel 142 of the transmitting antenna unit 14. ..

本実施形態では、入射方位角導出部11において、ベクトルネットワークアナライザ111が、送信用インタフェース部12にステップ周波数連続波(SFCW)を出力し、受信用インタフェース部13からダイポールアレイアンテナ151のアンテナ素子別に受信した受信波信号の周波数領域の受信波データを生成し、GPIBインタフェースを介してパソコン112に出力する。 In the present embodiment, in the incident azimuth angle deriving unit 11, the vector network analyzer 111 outputs a step frequency continuous wave (SFW) to the transmitting interface unit 12, and the receiving interface unit 13 outputs the step frequency continuous wave (SFW) for each antenna element of the dipole array antenna 151. The received wave data in the frequency region of the received received wave signal is generated and output to the personal computer 112 via the GPIB interface.

パソコン112は、当該周波数領域の受信波データを取り込み、ケーブル及び電子回路で生じる減衰や遅延時間の補正を行った後、必要に応じてフィルタ処理を行う。このとき、ダイポールアレイアンテナ151の各受信アンテナ素子と同軸給電線間の干渉、或いは、各アンテナ素子間の共振の影響により受信波(入射電磁波)の到来方向の推定が困難な周波数帯域が存在する場合には、当該周波数帯域を通過させず、受信波の到来方向の推定が可能な周波数帯域のみ通過させるフィルタ処理を行う。パソコン112は、更に、上記補正及びフィルタ処理後の周波数領域の受信波データを逆フーリエ変換することで時間領域の受信波形を得る。当該受信波形を受信アンテナ素子毎に解析し、受信アンテナ素子毎の受信波の到達時刻を求めることにより、ダイポールアレイアンテナ151に入射する入射電磁波の坑井Bの軸心Z周りの到来方向(入射方位角)の推定を、後述する要領で正確に行うことが可能になる。 The personal computer 112 takes in the received wave data in the frequency domain, corrects the attenuation and delay time generated in the cable and the electronic circuit, and then performs the filter processing as necessary. At this time, there is a frequency band in which it is difficult to estimate the arrival direction of the received wave (incident electromagnetic wave) due to the interference between each receiving antenna element of the dipole array antenna 151 and the coaxial feeder or the influence of resonance between each antenna element. In this case, the filter processing is performed so that the frequency band is not passed and only the frequency band in which the arrival direction of the received wave can be estimated is passed. The personal computer 112 further obtains a received waveform in the time domain by performing an inverse Fourier transform on the received wave data in the frequency domain after the correction and filtering. By analyzing the received waveform for each receiving antenna element and obtaining the arrival time of the received wave for each receiving antenna element, the arrival direction (incident) around the axis Z of the well B of the incident electromagnetic wave incident on the dipole array antenna 151. The azimuth) can be estimated accurately as described later.

本実施形態では、送信用アンテナ部14のダイポールアンテナ素子141から放射される電磁波は、坑井Bの軸心Z周りの全方位に放射され、その内のある放射方位角で放射された電磁波(放射電磁波)が、探査対象面で反射して、受信用アンテナ部15のダイポールアレイアンテナ151に当該放射方位角と同じ角度の入射方位角φで入射電磁波として入射する。放射電磁波の波数ベクトルと入射電磁波の波数ベクトルと坑井Bの軸心Zを含む平面は、図1及び図2を参照して説明したダイポールアレイアンテナ151の中心Oを通り探査対象面に向くρ軸と坑井Bの軸心Zを含むρz平面と一致する。 In the present embodiment, the electromagnetic wave radiated from the dipole antenna element 141 of the transmitting antenna unit 14 is radiated in all directions around the axis Z of the well B, and the electromagnetic wave radiated at a certain radiation azimuth angle ( (Radio electromagnetic wave) is reflected on the surface to be searched and is incident on the dipole array antenna 151 of the receiving antenna unit 15 as an incident electromagnetic wave at an incident azimuth angle φ0 at the same angle as the radiation azimuth angle. The plane including the wave vector of the radiated electromagnetic wave, the wave vector of the incident electromagnetic wave, and the axis Z of the well B passes through the center O of the dipole array antenna 151 described with reference to FIGS. 1 and 2 and faces the exploration target surface. It coincides with the ρz plane containing the axis Z and the axis Z of the well B.

<入射方位角の推定処理(1)>
次に、入射方位角導出部11が行う入射方位角φの推定処理の内容について詳細に説明する。本システム10及び本方法は、当該入射方位角φの推定処理に特徴がある。当該推定処理は、大別して、以下の4つの工程を備える。
<Estimation processing of incident azimuth (1)>
Next, the content of the estimation process of the incident azimuth angle φ0 performed by the incident azimuth derivation unit 11 will be described in detail. The system 10 and the method are characterized in the estimation process of the incident azimuth angle φ0 . The estimation process is roughly classified into the following four steps.

(1) 送受信アンテナ部を坑井B内に、例えば、軸心Z方向に一定距離ずつ順次移動させ挿入する工程(第1工程)。ここで、ダイポールアレイアンテナ151の中心Oの坑井B内の所定位置(例えば、入口)を基準とした移動位置(該所定位置からの移動距離)が、パソコン112により逐次記録される。以下、便宜的に、中心Oの各移動位置をPr(j=1~N、但し、Nは移動回数)と称する。 (1) A step of sequentially moving and inserting the transmission / reception antenna portion into the well B, for example, by a fixed distance in the Z direction of the axis (first step). Here, the moving position (moving distance from the predetermined position) with respect to the predetermined position (for example, the entrance) in the well B of the center O of the dipole array antenna 151 is sequentially recorded by the personal computer 112. Hereinafter, for convenience, each movement position of the center O is referred to as Pr j (j = 1 to N, where N is the number of movements).

(2) ダイポールアンテナ素子141から探査対象面に向けて電磁波を放射し、ダイポールアレイアンテナ151が、探査対象面で反射され受信用アンテナ部15に向かって伝搬する入射電磁波を受信する工程(第2工程)。ここで、電磁波の放射は、パソコン112の制御下において、ベクトルネットワークアナライザ111、送信用インタフェース部12、及び、送信用アンテナ部14により、上記要領で実行される。また、入射電磁波の受信は、パソコン112の制御下において、ダイポールアレイアンテナ151の各受信アンテナ素子別に、受信用アンテナ部15、受信用インタフェース部13、及び、ベクトルネットワークアナライザ111により、上記要領で実行される。 (2) A step of radiating an electromagnetic wave from the dipole antenna element 141 toward the exploration target surface, and the dipole array antenna 151 receiving the incident electromagnetic wave reflected by the exploration target surface and propagating toward the receiving antenna unit 15 (second). Process). Here, the radiation of the electromagnetic wave is executed in the above manner by the vector network analyzer 111, the transmission interface unit 12, and the transmission antenna unit 14 under the control of the personal computer 112. Further, the reception of the incident electromagnetic wave is executed in the above manner by the receiving antenna unit 15, the receiving interface unit 13, and the vector network analyzer 111 for each receiving antenna element of the dipole array antenna 151 under the control of the personal computer 112. Will be done.

(3) パソコン112により、受信アンテナ素子別に受信された入射電磁波の信号波形を解析し、入射電磁波の受信アンテナ素子毎の到達時刻を求める工程(第3工程)。ここで、移動位置Prでの受信アンテナ素子毎の到達時刻Tij(i=1~M:但し、Mは受信アンテナ素子の個数で、3以上(本実施形態ではM=4))は、送信電磁波の時間領域波形における所定の基準位相箇所(例えば、電界強度最大時)の時刻から、受信アンテナ素子別の各時間領域波形における基準位相箇所に対応する位相箇所(例えば、受信電圧最大時)の時刻までの遅延時間として求められる。到達時刻Tijは、移動位置Prとともに、パソコン112により、逐次記録される。 (3) A step of analyzing the signal waveform of the incident electromagnetic wave received for each receiving antenna element by the personal computer 112 and obtaining the arrival time of each receiving antenna element of the incident electromagnetic wave (third step). Here, the arrival time Tij (i = 1 to M: where M is the number of receiving antenna elements and 3 or more (M = 4 in this embodiment)) at the moving position Pr j for each receiving antenna element is set. From the time of a predetermined reference phase location (for example, when the electric field strength is maximum) in the time region waveform of the transmitted electromagnetic wave, the phase location corresponding to the reference phase location in each time region waveform for each receiving antenna element (for example, when the reception voltage is maximum). It is calculated as the delay time until the time of. The arrival time Tij is sequentially recorded by the personal computer 112 together with the movement position Pr j .

尚、第2及び第3工程は、第1工程において、送受信アンテナ部が順次移動する毎に順番に実行される。 The second and third steps are sequentially executed each time the transmission / reception antenna unit moves sequentially in the first step.

(4) 第3工程で求めた受信アンテナ素子毎の到達時刻Tijと各受信アンテナ素子の軸心Z周りの位置(方位角φi、i=1~M)に基づいて、移動位置Prでの任意の方位角φに位置する受信アンテナ素子で同じ入射電磁波を受信した場合の到達時刻T(φ)を、最小二乗誤差法により正弦関数で近似する。そして、移動位置Prでの入射仰角θが第1入射仰角範囲内にある場合は、関数T(φ)が最小値となる方位角φminを入射方位角φとして算出し、移動位置Prでの入射仰角θが第2入射仰角範囲内にある場合は、関数T(φ)が最大値となる方位角φmaxを入射方位角φとして算出する(第4工程)。以下、便宜的に、φ=φminとする推定を「順方向推定」と称し、φ=φmaxとする推定を「逆方向推定」と称し、両者を区別する。 (4) At the moving position Pr j , based on the arrival time Tij for each receiving antenna element obtained in the third step and the position (azimuth φi, i = 1 to M) around the axis Z of each receiving antenna element. The arrival time T j (φ) when the same incident electromagnetic wave is received by the receiving antenna element located at an arbitrary azimuth angle φ is approximated by a sine function by the minimum square error method. Then, when the incident elevation angle θ at the moving position Pr j is within the first incident elevation angle range, the azimuth angle φ min at which the function T j (φ) is the minimum value is calculated as the incident azimuth angle φ 0 , and the moving position. When the incident elevation angle θ at Pr j is within the second incident elevation angle range, the azimuth angle φ max at which the function T (φ) is the maximum value is calculated as the incident azimuth angle φ 0 (4th step). Hereinafter, for convenience, the estimation with φ 0 = φ min is referred to as “forward estimation”, and the estimation with φ 0 = φ max is referred to as “reverse direction estimation” to distinguish between the two.

尚、第4工程は、送受信アンテナ部が順次移動し終わった後に、つまり、全ての移動位置Prにおいて、第1乃至第3工程が終了した後に纏めて行うのが好ましい。しかし、後述するように、各移動位置Prで、入射仰角θが第1入射仰角範囲内と第2入射仰角範囲内の何れにあるかが予め分かる場合は、送受信アンテナ部が順次移動する都度行ってもよく、各移動位置Prに対する第4工程の実施タイミングは幾つも実施態様が存在する。 It is preferable that the fourth step is collectively performed after the transmission / reception antenna portions have been sequentially moved, that is, after the first to third steps have been completed at all the moving positions Pr j . However, as will be described later, if it is known in advance whether the incident elevation angle θ is within the first incident elevation angle range or the second incident elevation angle range at each movement position Pr j , each time the transmission / reception antenna unit moves in sequence. It may be performed, and there are many embodiments of the implementation timing of the fourth step for each movement position Pr j .

ここで、上述のように、第1入射仰角範囲は、2つの臨界入射仰角θと180°-θの間の入射仰角θの範囲であり、第2入射仰角範囲は、0°から180°までの全範囲における第1入射仰角範囲以外の入射仰角θの範囲(0°からθまでの間と180°-θから180°までの間)である。 Here, as described above, the first incident elevation angle range is the range of the incident elevation angle θ between the two critical incident elevation angles θ 0 and 180 ° − θ 0 , and the second incident elevation angle range is from 0 ° to 180. The range of the incident elevation angle θ other than the first incident elevation angle range in the entire range up to ° (between 0 ° and θ 0 and between 180 ° -θ 0 and 180 °).

上記第1乃至第4工程におけるパソコン112が実行する処理内容は、パソコン112内の所定の記憶領域に予め格納されている入射方位角φの推定処理用のコンピュータプログラムを、パソコン112内のCPU(中央演算処理装置)が逐次読み出して実行することで実施される。 The processing content executed by the personal computer 112 in the first to fourth steps is a computer program for estimation processing of the incident azimuth angle φ0 stored in advance in a predetermined storage area in the personal computer 112, and the CPU in the personal computer 112. It is carried out by sequentially reading and executing (central processing unit).

次に、入射仰角θ(入射電磁波の到来方向と坑井Bの軸心Zが成す角度)と移動位置Pr(ダイポールアレイアンテナ151の中心O)の関係について、図5を参照して説明する。図5は、探査対象面Fと軸心Zの交点Oを通り入射方位角φに向くρ軸とz軸(坑井Bの軸心Z)を含むρz平面内におけるダイポールアンテナ素子141の中心Pt、ダイポールアレイアンテナ151の中心Pr、及び、探査対象面Fの位置関係を示す。図5に示すρ軸と、図1に示すダイポールアレイアンテナの中心O(Pr)を通り探査対象面Fに向くρ軸は互いに平行であり、両図のρz平面は同じである。探査対象面Fとρz平面は直交している。尚、z軸の原点は、坑井Bの軸心Z上の任意の点に設定できるが、図5では、一例として、探査対象面Fと軸心Zの交点Oをz=0として図示している。また、図5では、ダイポールアンテナ素子141がダイポールアレイアンテナ151の下側に配置され、PtとPrが距離dだけ離間している場合を想定する。 Next, the relationship between the incident elevation angle θ (the angle formed by the arrival direction of the incident electromagnetic wave and the axial center Z of the well B) and the moving position Pr j (center O of the dipole array antenna 151) will be described with reference to FIG. .. FIG. 5 shows the dipole antenna element 141 in the ρz plane including the ρ-axis and the z-axis (the axis Z of the well B) that pass through the intersection OF of the exploration target surface F and the axis Z and face the incident azimuth angle φ0. The positional relationship between the center Pt j , the center Pr j of the dipole array antenna 151, and the exploration target plane F is shown. The ρ-axis shown in FIG. 5 and the ρ-axis passing through the center O (Pr j ) of the dipole array antenna shown in FIG. 1 and facing the exploration target surface F are parallel to each other, and the ρz planes in both figures are the same. The exploration target plane F and the ρz plane are orthogonal to each other. The origin of the z-axis can be set to an arbitrary point on the axis Z of the well B, but in FIG. 5, as an example, the intersection OF of the exploration target surface F and the axis Z is set to z = 0. Shows. Further, in FIG. 5, it is assumed that the dipole antenna element 141 is arranged below the dipole array antenna 151, and Pt j and Pr j are separated by a distance d.

ダイポールアンテナ素子141から放射された放射電磁波(波数ベクトルkt)は、探査対象面F上の反射点Rにおいて反射(鏡面反射)して、入射電磁波(波数ベクトルkr)としてダイポールアレイアンテナ151の中心Prに到達する。z軸と線分Pr-Rの成す角度が、移動位置Prに対応する入射仰角θとなる。 The radiated electromagnetic wave (wave vector kt) radiated from the dipole antenna element 141 is reflected (mirror surface reflection) at the reflection point Rj on the exploration target surface F, and is the center of the dipole array antenna 151 as an incident electromagnetic wave (wave vector kr). Reach Pr j . The angle formed by the z-axis and the line segment Pr j − R j is the incident elevation angle θ corresponding to the moving position Pr j .

受信アンテナ素子毎の到達時刻Tijの受信アンテナ素子間の平均値Ta(PtからRを経由してPrに至る伝搬時間)と電磁波の伝播速度vの積(Ta・v)からPtからRを経由してPrに至る全長Lが計算できる。ここで、送受信アンテナ部を1ステップだけ軸心Z方向に移動させると、移動位置PrはPrj+1に変化し、z座標値がΔzだけ変化し、同様に、全長LはLj+1(=L+ΔL)に変化する。移動位置Prに対応する反射点Rの軸心Zからの距離ρr(反射点Rから軸心Zに下した垂線の長さ)及び入射仰角θは、これらの値及びその変化から計算することができる。 Arrival time for each receiving antenna element Ta j (propagation time from Pt j to Pr j via R j ) and the product of the propagation speed v of the electromagnetic wave (Ta j · v) The total length L j from Pt j to Pr j via R j can be calculated. Here, when the transmission / reception antenna portion is moved in the axis Z direction by one step, the movement position Pr j changes to Pr j + 1 , the z coordinate value changes by Δz, and the total length L j is similarly L j + 1 (=). It changes to L j + ΔL). The distance ρr j (the length of the perpendicular line from the reflection point R j to the axis Z) and the incident elevation angle θ of the reflection point R j corresponding to the moving position Pr j from the axis Z are obtained from these values and their changes. Can be calculated.

更に、送受信アンテナ部をN回移動させて得られたN個の反射点Rの座標値(ρ,z)を線形近似して得られた直線(図5では、探査対象面Fに一致している)とρ軸のρz平面内で成す角度が、探査対象面Fの傾斜角δとして計算できる。 Further, a straight line obtained by linearly approximating the coordinate values (ρ j , z j ) of N reflection points R j obtained by moving the transmission / reception antenna portion N times (in FIG. 5, on the exploration target plane F). The angle formed in the ρz plane of the ρ axis can be calculated as the inclination angle δ of the exploration target surface F.

上記「発明の効果」の欄で説明したように、臨界入射仰角θまたは(180°-θ)は、電界周方向依存性指数c(θ)が-20dB以下で極小値となる入射仰角θとして定義することができる。上記数1に示す電界E1z(φ)は、実際に送受信アンテナ部を挿入する坑井Bの周囲及び内部の状態を、坑井Bの掘削時にボーリングコア(掘削屑)の採取や孔壁の写真撮影等によって取得し、坑井Bの内径、FRP製ベッセル152の内径及び外径等の既知の情報とともに、図1及び図2に示すモデルに対して計算に必要な条件(境界条件等)を設定することで、例えば、円柱関数を用いた解析解をパソコンで計算できる。よって、上記数2に示す指数c(θ)により定義される臨界入射仰角θまたは(180°-θ)は、理論的に計算可能であり、一般的なパソコンを用いて数秒程度で計算できる。従って、上記第1乃至第4工程を実施する前に臨界入射仰角θまたは(180°-θ)を予め計算しておくことができる。以下、便宜的に、理論計算により臨界入射仰角θまたは(180°-θ)の導出する手法を「理論計算法」と称する。 As explained in the section of "Effects of the Invention", the critical incident elevation angle θ 0 or (180 ° −θ 0 ) is the incident elevation angle at which the electric field circumferential dependence index c (θ) becomes a minimum value at −20 dB or less. It can be defined as θ. The electric field E 1z (φ) shown in the above number 1 indicates the state around and inside the well B into which the transmission / reception antenna portion is actually inserted, and the boring core (excavation waste) is collected or the hole wall is used when the well B is excavated. Conditions necessary for calculation for the models shown in FIGS. 1 and 2 (boundary conditions, etc.), along with known information such as the inner diameter of the well B, the inner diameter and outer diameter of the FRP vessel 152, acquired by photography or the like. By setting, for example, an analytical solution using a cylinder function can be calculated on a personal computer. Therefore, the critical incident elevation angle θ 0 or (180 ° −θ 0 ) defined by the exponent c (θ) shown in Equation 2 can be theoretically calculated, and can be calculated in about a few seconds using a general personal computer. can. Therefore, the critical incident elevation angle θ 0 or (180 ° −θ 0 ) can be calculated in advance before carrying out the first to fourth steps. Hereinafter, for convenience, a method for deriving a critical incident elevation angle θ 0 or (180 ° −θ 0 ) by theoretical calculation will be referred to as a “theoretical calculation method”.

従って、例えば、上記第3工程において、到達時刻Tijの計算に加えて、1ステップ前の移動位置Prj-1における入射仰角θを上記要領で計算すれば、予め計算しておいた臨界入射仰角θまたは(180°-θ)に基づいて、上記第4工程において、1ステップ前の該入射仰角θが、第1入射仰角範囲と第2入射仰角範囲の内の何れの範囲内にあるかを特定でき、該入射仰角θに応じて選択される「順方向推定」と「逆方向推定」の何れか一方により、入射方位角φを適切に推定することができる。 Therefore, for example, in the third step, if the incident elevation angle θ at the moving position Pr j-1 one step before is calculated in the above manner in addition to the calculation of the arrival time Tij , the critical incident calculated in advance is performed. Based on the elevation angle θ 0 or (180 ° −θ 0 ), in the fourth step, the incident elevation angle θ one step before is within either the first incident elevation angle range or the second incident elevation angle range. It is possible to specify whether or not there is, and the incident azimuth angle φ0 can be appropriately estimated by either “forward direction estimation” or “reverse direction estimation” selected according to the incident elevation angle θ.

<入射方位角の推定処理(2)>
次に、上述の入射方位角φの推定処理の変形例について説明する。
<Estimation processing of incident azimuth (2)>
Next, a modified example of the above-mentioned estimation process of the incident azimuth angle φ0 will be described.

上記説明では、上記第4工程において、予め理論計算により得られた臨界入射仰角θまたは(180°-θ)を使用する場合を想定した。しかしながら、上記「発明の効果」の欄において、図3(B)を参照して説明したように、入射仰角θが臨界入射仰角θまたは(180°-θ)である場合は、各受信アンテナ素子の到達時刻Tijの間の時間差は0(またはほぼ0)になることから、臨界入射仰角θまたは(180°-θ)を、「理論計算法」により導出せずに、上記第4工程において、同工程において各移動位置Prに対して導出した関数T(φ)の最大値(最大到達時刻Tmax)と最小値(最小到達時刻Tmin)の差(最大到達時間差2τ、2τ=Tmax-Tmin)を計算し、送受信アンテナ部の全移動範囲内において、最大到達時間差2τが所定値(例えば、0.1~0.5nsの範囲内で選択される値、一例として、0.2ns)以下で極小値となる移動位置Prが存在する場合は、当該Prを特異位置Pとし、当該特異位置Pに対応する入射仰角θを臨界入射仰角θまたは(180°-θ)として特定することもできる。以下、便宜的に、最大到達時間差2τに基づく臨界入射仰角θまたは(180°-θ)の導出手法を「時間差法」と称する。 In the above description, it is assumed that the critical incident elevation angle θ 0 or (180 ° −θ 0 ) obtained in advance by theoretical calculation is used in the fourth step. However, as described with reference to FIG. 3B in the “Effect of the Invention” column, when the incident elevation angle θ is the critical incident elevation angle θ 0 or (180 ° −θ 0 ), each reception is performed. Since the time difference between the arrival times Tij of the antenna element is 0 (or almost 0), the critical incident elevation angle θ 0 or (180 ° −θ 0 ) is not derived by the “theoretical calculation method” as described above. In the fourth step, the difference (maximum arrival time difference) between the maximum value (maximum arrival time Tmax j ) and the minimum value (minimum arrival time Tmin j ) of the function T j (φ) derived for each movement position Pr j in the same step. 2τj, 2τj = Tmax j −Tmin j ) is calculated , and the maximum arrival time difference 2τj is selected within a predetermined value (for example, within the range of 0.1 to 0.5 ns) within the entire movement range of the transmission / reception antenna section. If there is a moving position Pr j that becomes a minimum value at 0.2 ns) or less, the Pr j is set as the singular position P 0 , and the incident elevation angle θ corresponding to the singular position P 0 is critically incident. It can also be specified as an elevation angle θ 0 or (180 ° −θ 0 ). Hereinafter, for convenience, a method for deriving the critical incident elevation angle θ 0 or (180 ° −θ 0 ) based on the maximum arrival time difference 2τj is referred to as a “time difference method”.

ここで、「時間差法」において、最大到達時間差2τが所定値以下で極小値となる特異位置Pを探索するための計算上の処理として、移動位置Prを変化させる場合、当該変化の方向は、上記第1工程において送受信アンテナ部を坑井B内において軸心Z方向に順次移動させる方向、つまり、物理的な移動処理の方向と同方向または逆方向の何れであっても構わない。 Here, in the "time difference method", when the moving position Pr j is changed as a computational process for searching for a singular position P 0 in which the maximum arrival time difference 2τj is a predetermined value or less and becomes a minimum value, the change is made. The direction may be a direction in which the transmission / reception antenna portion is sequentially moved in the well B in the axial Z direction in the first step, that is, either in the same direction as the physical movement processing direction or in the opposite direction. ..

ここで、「理論計算法」で導出した臨界入射仰角θまたは(180°-θ)と、フィールド実験において「時間差法」で導出した臨界入射仰角θまたは(180°-θ)が精度良く一致することを、図6及び図7を参照して説明する。 Here, the critical incident elevation angle θ 0 or (180 ° −θ 0 ) derived by the “theoretical calculation method” and the critical incident elevation angle θ 0 or (180 ° −θ 0 ) derived by the “time difference method” in the field experiment are The exact match will be described with reference to FIGS. 6 and 7.

フィールド実験は、地中に2本の坑井Bを、各軸心を1m離間させて掘削し、一方に、送信用アンテナ部14を挿入して所定の深さに位置を固定し、他方に、受信用アンテナ部15を挿入し、ダイポールアンテナ素子141から放射された電磁波が、ダイポールアレイアンテナ151で直接受信される構成とし、ダイポールアレイアンテナ151の移動位置Prでの入射仰角θが正確に算出できるようにした。 In the field experiment, two wells B were excavated in the ground with their axes separated by 1 m, and a transmitting antenna portion 14 was inserted into one to fix the position at a predetermined depth, and the other. , The receiving antenna unit 15 is inserted so that the electromagnetic wave radiated from the dipole antenna element 141 is directly received by the dipole array antenna 151, and the incident elevation angle θ at the moving position Pr j of the dipole array antenna 151 is accurate. I made it possible to calculate.

図6は、当該フィールド実験の構成に対応した諸条件で計算した電界周方向依存性指数c(θ)の計算結果を、横軸が入射仰角θ、縦軸が指数c(θ)のグラフ上にプロットした図である。図6より、「理論計算法」で導出した臨界入射仰角θが29°と30°の間に存在することが分かる。 FIG. 6 shows the calculation results of the electric field circumferential dependence index c (θ) calculated under various conditions corresponding to the configuration of the field experiment on the graph with the incident elevation angle θ on the horizontal axis and the index c (θ) on the vertical axis. It is a figure plotted in. From FIG. 6, it can be seen that the critical incident elevation angle θ 0 derived by the “theoretical calculation method” exists between 29 ° and 30 °.

図7は、送信用アンテナ部14を他方側の坑井B内において軸心Z方向に順次移動して、各移動位置Prでの4本の受信アンテナ素子(D1~D4)に誘起される受信電圧の時間領域波形を測定した結果を示す。図7(A)は、16箇所の移動位置Prでの各受信アンテナ素子の受信電圧波形を重ね合わせて表示したもので、図7(B)は、その内の3箇所(z=0cm、-180cm、-280cm)の移動位置Prでの各受信アンテナ素子の受信電圧波形を重ね合わせて表示したものの要部を拡大した図である。尚、z=0cmは、ダイポールアンテナ素子141の給電点の深さに等しく、z=0cm、-180cm、-280cmに対応する入射仰角θは、90°、29°、20°である。従って、図7(B)より、z=-180cm(入射仰角θ=29°)において、4本の受信アンテナ素子の受信電圧波形が重なり合っており、「時間差法」での最大到達時間差2τがほぼ0nsとなっており、「理論計算法」で導出した臨界入射仰角θと精度良く一致していることが確認できる。図7(A)及び(B)の夫々の全体の縦軸は移動位置Prのz座標となっているが、各移動位置Prの各アンテナ素子D1~D4の時間領域波形の縦軸は明示されていないが、正規化された受信電圧である。 In FIG. 7, the transmitting antenna portion 14 is sequentially moved in the well B on the other side in the axial Z direction, and is induced in four receiving antenna elements (D1 to D4) at each moving position Pr j . The result of measuring the time domain waveform of the received voltage is shown. FIG. 7A shows the reception voltage waveforms of each receiving antenna element at 16 moving positions Pr j superimposed and displayed, and FIG. 7B shows three of them (z = 0 cm, It is an enlarged view of the main part of what superposed and displayed the received voltage waveform of each receiving antenna element at the moving position Pr j of (-180 cm, -280 cm). Note that z = 0 cm is equal to the depth of the feeding point of the dipole antenna element 141, and the incident elevation angles θ corresponding to z = 0 cm, −180 cm, and 280 cm are 90 °, 29 °, and 20 °. Therefore, from FIG. 7B, the received voltage waveforms of the four receiving antenna elements overlap at z = −180 cm (incident elevation angle θ = 29 °), and the maximum arrival time difference 2τj in the “time difference method” is. It is almost 0 ns, and it can be confirmed that it accurately matches the critical incident elevation angle θ 0 derived by the “theoretical calculation method”. The vertical axis of each of FIGS. 7A and 7B is the z coordinate of the moving position Pr j , but the vertical axis of the time domain waveform of each antenna element D1 to D4 of each moving position Pr j is. Although not specified, it is a normalized reception voltage.

上記「時間差法」では、送受信アンテナ部の全移動範囲内において、特異位置Pとなる移動位置Prが存在する場合は、送受信アンテナ部を坑井B内において軸心Z方向に順次移動させて、当該特異位置Pに至るまでが、入射仰角θが第1入射仰角範囲または第2入射仰角範囲の何れか一方側にあり、上記特異位置Pを超えてからが、入射仰角θが第1入射仰角範囲内または第2入射仰角範囲内の何れか他方側にあることになる。 In the above "time difference method", if there is a moving position Pr j that becomes a singular position P 0 within the entire moving range of the transmitting / receiving antenna portion, the transmitting / receiving antenna portion is sequentially moved in the well B in the axial Z direction. The incident elevation angle θ is on either side of the first incident elevation angle range or the second incident elevation angle range up to the singular position P 0 , and the incident elevation angle θ is after the singular position P 0 is exceeded. It will be on either the other side of the first incident elevation range or the second incident elevation range.

一方、送受信アンテナ部の全移動範囲内において、特異位置Pとなる移動位置Prが存在しない場合は、送受信アンテナ部の全移動範囲内では、入射仰角θは、常時、第1入射仰角範囲内または第2入射仰角範囲内の何れか一方側にあることになる。 On the other hand, if there is no moving position Pr j that becomes a singular position P 0 within the entire moving range of the transmitting / receiving antenna portion, the incident elevation angle θ is always the first incident elevation angle range within the entire moving range of the transmitting / receiving antenna portion. It will be on either side of the inside or within the second incident elevation range.

従って、送受信アンテナ部を坑井B内において軸心Z方向に順次移動させる開始地点において、入射仰角θが第1入射仰角範囲内と第2入射仰角範囲の何れの側にあるかが予め想定できれば、臨界入射仰角θまたは(180°-θ)を「理論計算法」により予め計算すること、及び、上記第3工程において移動位置Prでの入射仰角θを逐次計算することを省略して、任意の移動位置Prにおいて、上記「時間差法」により、特異位置Pに到達したか否かのみを判定することで、「順方向推定」と「逆方向推定」の何れに基づいて入射方位角φを推定すべきかを決定できる。 Therefore, if it can be assumed in advance whether the incident elevation angle θ is within the first incident elevation range or the second incident elevation range at the starting point where the transmission / reception antenna portion is sequentially moved in the axial Z direction in the well B. , It is omitted to calculate the critical incident elevation angle θ 0 or (180 ° −θ 0 ) in advance by the “theoretical calculation method” and to sequentially calculate the incident elevation angle θ at the moving position Pr j in the third step. Then, at any moving position Pr j , by determining only whether or not the singular position P 0 has been reached by the above-mentioned "time difference method", based on either "forward estimation" or "reverse direction estimation". It can be determined whether the incident azimuth φ 0 should be estimated.

次に、図8に示すモデルにおいて、送信用アンテナ部14が受信用アンテナ部15の前方側(坑井B内に挿入する際の挿入方向側)に配置される第1配置構成と、その逆の第2配置構成の両方について、送受信アンテナ部が、地中内の坑井Bの軸心Zと探査対象面Fとの交点Oより上側(坑井Bの入口側)を移動するケースAと下側を移動するケースBの2つのケースに対し、入射仰角θとダイポールアレイアンテナの給電点の軸心Z上の位置との関係を数値計算により求めた結果を、図9に示す。 Next, in the model shown in FIG. 8, the first arrangement configuration in which the transmitting antenna unit 14 is arranged on the front side of the receiving antenna unit 15 (the insertion direction side when inserting into the well B) and vice versa. Case A in which the transmitting / receiving antenna portion moves above the intersection OF of the axis Z of the well B in the ground and the exploration target surface F (the entrance side of the well B) for both of the second arrangement configurations of the above. FIG. 9 shows the results obtained by numerically calculating the relationship between the incident elevation angle θ and the position of the feeding point of the dipole array antenna on the axis Z for the two cases of the case B moving below and the case B.

通常は、計測対象とする断層等の探査対象面Fに地中にて貫通するように坑井Bを掘削し、ボーリングコア(掘削屑)の採取や孔壁の写真撮影(ボアホールスキャナー)等により探査対象面に関する情報を取得し、その後、本システムのようなボアホールレーダを用いて坑井Bから離れたところの情報を取得する。このため、殆どの場合、探査対象面Fと坑井Bは地中で交差する。従って、通常は、送受信アンテナ部は坑井B内において交点Oより上側を移動させて測定を行う(ケースA)。しかし、図8に示すモデルでは、坑井Bを交点Oより下側に更に延伸させて、送受信アンテナ部が坑井B内において交点Oより下側を移動させて測定を行うケースBを追加して、入射仰角θの議論の一般化を図っている。尚、ケースBは、地表面が交点Oより下側にあるケースも含んでいる。 Normally, a well B is excavated so as to penetrate the exploration target surface F such as a fault to be measured in the ground, and a boring core (excavation debris) is collected or a hole wall is photographed (bore hole scanner). Information on the surface to be explored is acquired, and then information on a location away from well B is acquired using a borehole radar such as this system. Therefore, in most cases, the exploration target surface F and the well B intersect in the ground. Therefore, normally, the transmission / reception antenna portion is moved above the intersection OF in the well B for measurement (case A). However, in the model shown in FIG. 8, the case B in which the well B is further extended below the intersection OF and the transmission / reception antenna portion is moved below the intersection OF in the well B for measurement is performed. In addition, we are trying to generalize the discussion of the incident elevation angle θ. Case B also includes a case where the ground surface is below the intersection OF .

図8において、z軸は坑井Bの軸心Zであり、z軸の原点(z=0)は交点Oであり、ρ軸は交点Oを通り探査対象面Fに向く軸であり、探査対象面Fはρz平面に直交している。+z方向は、交点Oを基準に上向き方向(坑井Bの入口方向)である。P1(z=z1)は、ケースA及びBの何れの場合も、上側に配置されるアンテナ素子の給電点、つまり、第1配置構成におけるダイポールアレイアンテナ151の中心(給電点)、または、第2配置構成におけるダイポールアンテナ素子141の中心(給電点)を示し、P2(z=z2)は、ケースA及びBの何れの場合も、下側に配置されるアンテナ素子の給電点、つまり、第1配置構成におけるダイポールアンテナ素子141の中心(給電点)、または、第2配置構成におけるダイポールアレイアンテナ151の中心(給電点)を示し、z1>z2であり、z1-z2=dである。Rは、P1またはP2の一方から放射された電磁波が、探査対象面Fで鏡面反射してP1またはP2の他方に入射するときの探査対象面F上の反射点である。δは探査対象面Fの傾斜角であり、ρz平面上で探査対象面Fとρ軸の成す角度であり、0°<δ<90°である。 In FIG. 8, the z-axis is the axis Z of the well B, the origin (z = 0) of the z-axis is the intersection OF, and the ρ-axis is the axis that passes through the intersection OF and faces the exploration target plane F. , The exploration target surface F is orthogonal to the ρz plane. The + z direction is an upward direction (toward the entrance of well B) with respect to the intersection OF. In both cases A and B, P1 (z = z1) is the feeding point of the antenna element arranged on the upper side, that is, the center (feeding point) of the dipole array antenna 151 in the first arrangement configuration, or the first. The center (feeding point) of the dipole antenna element 141 in the two-arranged configuration is shown, and P2 (z = z2) is the feeding point of the antenna element arranged on the lower side in both cases A and B, that is, the first. The center (feeding point) of the dipole antenna element 141 in the one arrangement configuration or the center (feeding point) of the dipole array antenna 151 in the second arrangement configuration is shown, z1> z2, and z1-z2 = d. R is a reflection point on the exploration target surface F when an electromagnetic wave radiated from one of P1 or P2 is specularly reflected by the exploration target surface F and is incident on the other of P1 or P2. δ is the inclination angle of the exploration target surface F, and is the angle formed by the exploration target surface F and the ρ axis on the ρz plane, and 0 ° <δ <90 °.

入射仰角θは、ケースA及びBの何れの場合も、第1配置構成では、z軸と線分P1‐Rの成す角度θ1となり、第2配置構成では、z軸と線分P2‐Rの成す角度θ2となる。 In both cases A and B, the incident elevation angle θ is the angle θ1 formed by the z-axis and the line segment P1-R in the first arrangement configuration, and the z-axis and the line segment P2-R in the second arrangement configuration. The angle θ2 is formed.

図9は、第1臨界入射仰角θと第2臨界入射仰角(180°-θ)が30°と150°で、探査対象面Fの傾斜角δが70°であり(δ>θ)、d=1.36mの場合について、上側に配置されるアンテナ素子の給電点の位置P1(z=z1)と入射仰角θ(θ1またはθ2)の間の関係を数値計算によって求めた結果をプロットしたグラフであり、縦軸は、入射仰角θ(θ1またはθ2)を示し、横軸は、位置P1のz座標(z1)を示している。 In FIG. 9, the first critical incident elevation angle θ 0 and the second critical incident elevation angle (180 ° −θ 0 ) are 30 ° and 150 °, and the inclination angle δ of the exploration target surface F is 70 ° (δ> θ 0 ). ), For the case of d = 1.36 m, the result obtained by numerically calculating the relationship between the position P1 (z = z1) of the feeding point of the antenna element arranged on the upper side and the incident elevation angle θ (θ1 or θ2) is obtained. It is a plotted graph, the vertical axis shows the incident elevation angle θ (θ1 or θ2), and the horizontal axis shows the z coordinate (z1) of the position P1.

ケースAはz1≧dとなる範囲で、ケースBはz1≦0となる範囲であり、0<z1<dの範囲では、送受信アンテナ間に探査対象面Fが存在するため解を求めることができず、実際の計測においても情報の取得が困難な範囲である。また、図9中、第1配置構成での入射仰角θ(=θ1)を実線で示し、第2配置構成での入射仰角θ(=θ2)を破線で示している。 Case A is a range in which z1 ≧ d, Case B is a range in which z1 ≦ 0, and in the range of 0 <z1 <d, a solution can be obtained because the search target surface F exists between the transmitting and receiving antennas. However, it is difficult to obtain information even in actual measurement. Further, in FIG. 9, the incident elevation angle θ (= θ1) in the first arrangement configuration is shown by a solid line, and the incident elevation angle θ (= θ2) in the second arrangement configuration is shown by a broken line.

図9に示すように、ケースAでは、位置P1が+z方向に移動すると、第1及び第2配置構成の何れにおいても、入射仰角θ(θ1またはθ2)は(180°-δ)に漸近する(図9中の一点鎖線参照)。この際θ1は単調減少し、θ2は単調増加する。一方、ケースBでは、位置P1が-z方向に移動すると、第1及び第2配置構成の何れにおいても、入射仰角θ(θ1またはθ2)はδに漸近する(図9中の一点鎖線参照)。この際θ1は単調減少し、θ2は単調増加する。 As shown in FIG. 9, in case A, when the position P1 moves in the + z direction, the incident elevation angle θ (θ1 or θ2) gradually approaches (180 ° −δ) in both the first and second arrangement configurations. (See the alternate long and short dash line in FIG. 9). At this time, θ1 decreases monotonically and θ2 increases monotonically. On the other hand, in Case B, when the position P1 moves in the −z direction, the incident elevation angle θ (θ1 or θ2) gradually approaches δ in both the first and second arrangement configurations (see the alternate long and short dash line in FIG. 9). .. At this time, θ1 decreases monotonically and θ2 increases monotonically.

また、ケースAにおいて位置P1がz1=dとなる位置(つまり、位置P2が交点O上)にある場合、第1配置構成では、入射仰角θ(=θ1)は上限値の180°となり、第2配置構成では、入射仰角θ(=θ2)は下限値の(180°-2δ)となる。一方、ケースBにおいて位置P1がz1=0となる位置(つまり、交点O上)にある場合、第1配置構成では、入射仰角θ(=θ1)は上限値の2δとなり、第2配置構成では、入射仰角θ(=θ2)は下限値の0°となる。尚、位置P1がz1=0またはdの場合は、その近傍にある場合も含めて、入射仰角θは計算上求まるが、実際の計測においては情報の取得が困難な範囲内である。 Further, in the case A, when the position P1 is at the position where z1 = d (that is, the position P2 is on the intersection OF), the incident elevation angle θ (= θ1 ) becomes 180 °, which is the upper limit value, in the first arrangement configuration. In the second arrangement configuration, the incident elevation angle θ (= θ2) is the lower limit value (180 ° -2δ). On the other hand, in case B, when the position P1 is at the position where z1 = 0 (that is, on the intersection OF), the incident elevation angle θ (= θ1) becomes the upper limit value in the first arrangement configuration, and the second arrangement configuration Then, the incident elevation angle θ (= θ2) becomes 0 °, which is the lower limit value. When the position P1 is z1 = 0 or d, the incident elevation angle θ can be calculated, including the case where it is in the vicinity thereof, but it is within the range where it is difficult to acquire information in actual measurement.

図9に示す一例(θ=30°、δ=70°)では、ケースAであって第1配置構成の場合、入射仰角θ(=θ1)が第2臨界入射仰角(180°-θ)と一致する位置P1(z1=z1)が、上記特異位置Pとして存在し、z1>z1では、入射仰角θ(=θ1)は第1入射仰角範囲内にあり、上記第4工程で「順方向推定」が選択され、d≦z1<z1では、入射仰角θ(=θ1)は第2入射仰角範囲内にあり、上記第4工程で「逆方向推定」が選択される。 In the example shown in FIG. 9 (θ 0 = 30 °, δ = 70 °), in the case of case A and the first arrangement configuration, the incident elevation angle θ (= θ 1) is the second critical incident elevation angle (180 ° −θ 0 ). ), The position P1 (z1 = z1 2 ) exists as the singular position P0, and when z1> z1 2 , the incident elevation angle θ (= θ1) is within the first incident elevation angle range, and the fourth step. In, "forward estimation" is selected, and when d ≦ z1 < z12 , the incident elevation angle θ (= θ1) is within the second incident elevation angle range, and “reverse direction estimation” is selected in the fourth step.

更に、ケースAであって第2配置構成の場合、入射仰角θ(=θ2)が第1臨界入射仰角θと一致する位置P1(z1=z1)が、上記特異位置Pとして存在せず、入射仰角θ(=θ2)は常時第1入射仰角範囲内にあり、上記第4工程で「順方向推定」が選択される。 Further, in the case A and in the case of the second arrangement configuration, the position P1 (z1 = z1 1 ) at which the incident elevation angle θ ( = θ2) coincides with the first critical incident elevation angle θ 0 exists as the singular position P0. However, the incident elevation angle θ (= θ2) is always within the first incident elevation angle range, and “forward estimation” is selected in the fourth step.

更に、ケースBであって第1配置構成の場合、入射仰角θ(=θ1)が第2臨界入射仰角(180°-θ)と一致する位置P1(z1=z1)が、上記特異位置Pとして存在せず、入射仰角θ(=θ1)は常時第1入射仰角範囲内にあり、上記第4工程で「順方向推定」が選択される。 Further, in the case B and in the case of the first arrangement configuration, the position P1 (z1 = z1 2 ) where the incident elevation angle θ (= θ1) coincides with the second critical incident elevation angle (180 ° −θ 0 ) is the above-mentioned singular position. It does not exist as P 0 , the incident elevation angle θ (= θ1) is always within the first incident elevation angle range, and “forward estimation” is selected in the fourth step.

更に、ケースBであって第2配置構成の場合、入射仰角θ(=θ2)が第1臨界入射仰角θと一致する位置P1(z1=z1)が、上記特異位置Pとして存在し、z1<z1≦0では、入射仰角θ(=θ2)は第2入射仰角範囲内にあり、上記第4工程で「逆方向推定」が選択され、z1<z1では、入射仰角θ(=θ2)は第1入射仰角範囲内にあり、上記第4工程で「順方向推定」が選択される。 Further, in the case B and the second arrangement configuration, the position P1 (z1 = z1 1 ) where the incident elevation angle θ ( = θ2) coincides with the first critical incident elevation angle θ 0 exists as the singular position P0. , Z1 1 <z1 ≦ 0, the incident elevation angle θ (= θ2) is within the second incident elevation angle range, “reverse direction estimation” is selected in the fourth step, and z1 <z1 1 causes the incident elevation angle θ (= θ2). = Θ2) is within the range of the first incident elevation angle, and “forward estimation” is selected in the fourth step.

次に、図9に示す一例(θ=30°、δ=70°)を更に一般化させ、任意の第1臨界入射仰角θ(0<θ<90°)と任意の探査対象面Fの傾斜角δ(0°<δ<90°)の間の関係について検討する。但し、以下の理由から、δ>θの場合を想定する。つまり、本システムのようなボアホールレーダでは、傾斜角δが例えば20°以下のように、坑井Bの軸心Zに対して直交か、直交に近いような探査対象面Fは、現実には計測の対象とはならないからである。これは、坑井B内におけるダイポールアンテナの仰角方向の指向性により、坑井Bの軸心Zに平行に近い方向へ大きなパワーの電磁波を放射することが困難であり、更に、同方向からの電磁波を受信する感度が十分に高くないという理由による。 Next, an example shown in FIG. 9 (θ 0 = 30 °, δ = 70 °) is further generalized, and an arbitrary first critical incident elevation angle θ 0 (0 <θ 0 <90 °) and an arbitrary exploration target surface. The relationship between the inclination angle δ (0 ° <δ <90 °) of F is examined. However, for the following reasons, the case of δ> θ 0 is assumed. That is, in a borehole radar such as this system, the exploration target surface F such that the inclination angle δ is orthogonal to or close to the axial center Z of the well B, for example, is 20 ° or less, is actually This is because it is not the target of measurement. This is because it is difficult to radiate a large power electromagnetic wave in a direction close to parallel to the axis Z of the well B due to the directivity of the dipole antenna in the well B in the elevation direction, and further, from the same direction. The reason is that the sensitivity to receive electromagnetic waves is not high enough.

尚、傾斜角δは、上述の要領で上記第4工程の前処理として事前に計算して取得できる。また、傾斜角δの計算過程で、坑井Bの軸心Zと探査対象面Fとの交点Oが地中内にあることが確認できた場合は、送受信アンテナ部の坑井B内での移動範囲がケースAかケースBかは事前に決定される。また、交点Oが地上にある場合(但し、交点Oは、探査対象面Fを地上にまで延長させた場合の探査対象面Fを含む平面と、坑井Bの軸心Zを地上にまで延伸させた場合との交点である)は、送受信アンテナ部の坑井B内での移動範囲はケースBとなる。 The inclination angle δ can be calculated and obtained in advance as the pretreatment of the fourth step as described above. If it is confirmed in the process of calculating the inclination angle δ that the intersection OF between the axis Z of the well B and the exploration target surface F is in the ground, it is found in the well B of the transmission / reception antenna section. Whether the moving range of the case A or the case B is determined in advance. Further, when the intersection OF is on the ground (however, the intersection OF is a plane including the exploration target surface F when the exploration target surface F is extended to the ground, and the axis Z of the well B is on the ground. (This is the intersection with the case of extending to), the range of movement of the transmission / reception antenna portion in the well B is case B.

ケースAであって第1配置構成の場合、δ>θであれば、入射仰角θ(=θ1)が下限値(180°-δ)と上限値180°の間を変化する際に、必ず第2臨界入射仰角(180°-θ)を通過する。つまり、(180°-θ)>(180°-δ)。よって、上述の図9に示す一例(θ=30°、δ=70°)と同様の扱いとなり、z1>z1では、入射仰角θ(=θ1)は第1入射仰角範囲内にあり、上記第4工程で「順方向推定」が選択され、d≦z1<z1では、入射仰角θ(=θ1)は第2入射仰角範囲内にあり、上記第4工程で「逆方向推定」が選択される。 In case A and in the case of the first arrangement configuration, if δ> θ 0 , the incident elevation angle θ (= θ1) always changes between the lower limit value (180 ° -δ) and the upper limit value 180 °. It passes through the second critical incident elevation angle (180 ° -θ 0 ). That is, (180 ° -θ 0 )> (180 ° -δ). Therefore, the treatment is the same as that of the example (θ 0 = 30 °, δ = 70 °) shown in FIG. 9, and when z1> z1 2 , the incident elevation angle θ (= θ1) is within the first incident elevation angle range. “Forward estimation” is selected in the fourth step, and when d ≦ z1 < z12 , the incident elevation angle θ (= θ1) is within the second incident elevation angle range, and “reverse direction estimation” is performed in the fourth step. Be selected.

ケースAであって第2配置構成の場合、入射仰角θ(=θ2)の下限値(180°-2δ)と第1臨界入射仰角θの大小関係が問題となる。(180°-2δ)>θの場合は、入射仰角θ(=θ2)が下限値(180°-2δ)と上限値(180°-δ)の間を変化する際に、第1臨界入射仰角θを通過しないため、図9に示す一例(θ=30°、δ=70°)と同様、入射仰角θ(=θ2)は常時第1入射仰角範囲内にあり、上記第4工程で「順方向推定」が選択される。 In case A and the second arrangement configuration, the magnitude relationship between the lower limit value (180 ° -2δ) of the incident elevation angle θ (= θ2) and the first critical incident elevation angle θ 0 becomes a problem. When (180 ° -2δ)> θ 0 , the first critical incident occurs when the incident elevation angle θ (= θ2) changes between the lower limit value (180 ° -2δ) and the upper limit value (180 ° -δ). Since it does not pass through the elevation angle θ 0 , the incident elevation angle θ (= θ 2) is always within the first incident elevation angle range as in the example (θ 0 = 30 °, δ = 70 °) shown in FIG. "Forward estimation" is selected with.

一方、(180°-2δ)<θの場合は、入射仰角θ(=θ2)が下限値(180°-2δ)と上限値(180°-δ)の間を変化する際に、第1臨界入射仰角θを通過する。よって、入射仰角θ(=θ2)が第1臨界入射仰角θと一致する位置P1(z1=z1)が、上記特異位置Pとして存在し、z1>z1では、入射仰角θ(=θ2)は第1入射仰角範囲内にあり、上記第4工程で「順方向推定」が選択され、d≦z1<z1では、入射仰角θ(=θ2)は第2入射仰角範囲内にあり、上記第4工程で「逆方向推定」が選択される。よって、上述のケースAであって第1配置構成の場合と同様の扱いとなる。 On the other hand, when (180 ° -2δ) <θ 0 , when the incident elevation angle θ (= θ2) changes between the lower limit value (180 ° -2δ) and the upper limit value (180 ° -δ), the first It passes through the critical incident elevation angle θ 0 . Therefore, the position P1 (z1 = z1 1 ) where the incident elevation angle θ (= θ2) coincides with the first critical incident elevation angle θ 0 exists as the singular position P0, and when z1 > z1 1 , the incident elevation angle θ (=) θ2) is within the first incident elevation range, “forward estimation” is selected in the fourth step, and when d ≦ z1 <z1 1 , the incident elevation angle θ (= θ2) is within the second incident elevation range. , "Reverse direction estimation" is selected in the fourth step. Therefore, in the above-mentioned case A, the treatment is the same as in the case of the first arrangement configuration.

ケースBであって第1配置構成の場合、入射仰角θ(=θ1)の上限値2δと第2臨界入射仰角(180°-θ)の大小関係が問題となる。2δ<(180°-θ)の場合は、入射仰角θ(=θ1)が下限値δと上限値2δの間を変化する際に、第2臨界入射仰角(180°-θ)を通過しないため、図9に示す一例(θ=30°、δ=70°)と同様、入射仰角θ(=θ1)は常時第1入射仰角範囲内にあり、上記第4工程で「順方向推定」が選択される。 In case B and the first arrangement configuration, the magnitude relationship between the upper limit value 2δ of the incident elevation angle θ (= θ1) and the second critical incident elevation angle (180 ° −θ 0 ) becomes a problem. When 2δ <(180 ° −θ 0 ), the incident elevation angle θ (= θ1) passes through the second critical incident elevation angle (180 ° −θ 0 ) when the incident elevation angle θ (= θ1) changes between the lower limit value δ and the upper limit value 2δ. Therefore, as in the example shown in FIG. 9 (θ 0 = 30 °, δ = 70 °), the incident elevation angle θ (= θ1) is always within the first incident elevation angle range, and the “forward estimation” is performed in the fourth step. Is selected.

一方、2δ>(180°-θ)の場合は、入射仰角θ(=θ1)が下限値δと上限値2δの間を変化する際に、第2臨界入射仰角(180°-θ)を通過する。よって、入射仰角θ(=θ1)が第2臨界入射仰角(180°-θ)と一致する位置P1(z1=z1)が、上記特異位置Pとして存在し、z1>z1では、入射仰角θ(=θ2)は第2入射仰角範囲内にあり、上記第4工程で「逆方向推定」が選択され、z1<z1では、入射仰角θ(=θ1)は第1入射仰角範囲内にあり、上記第4工程で「順方向推定」が選択される。よって、後述のケースBであって第2配置構成の場合と同様の扱いとなる。 On the other hand, when 2δ> (180 ° −θ 0 ), the second critical incident elevation angle (180 ° −θ 0 ) when the incident elevation angle θ (= θ1) changes between the lower limit value δ and the upper limit value 2δ. Pass through. Therefore, the position P1 (z1 = z1 2 ) where the incident elevation angle θ (= θ1) coincides with the second critical incident elevation angle (180 ° −θ 0 ) exists as the singular position P0, and in z1 > z1 2 , The incident elevation angle θ (= θ2) is within the second incident elevation angle range, “reverse direction estimation” is selected in the fourth step, and when z1 <z1 2 , the incident elevation angle θ (= θ1) is the first incident elevation angle range. "Forward estimation" is selected in the fourth step. Therefore, in case B described later, the treatment is the same as in the case of the second arrangement configuration.

ケースBであって第2配置構成の場合、δ>θであれば、入射仰角θ(=θ2)が下限値0°と上限値δの間を変化する際に、必ず第1臨界入射仰角θを通過する。よって、上述の図9に示す一例(θ=30°、δ=70°)と同様の扱いとなり、z1<z1≦0では、入射仰角θ(=θ2)は第2入射仰角範囲内にあり、上記第4工程で「逆方向推定」が選択され、z1<z1では、入射仰角θ(=θ2)は第1入射仰角範囲内にあり、上記第4工程で「順方向推定」が選択される。 In case B and in the case of the second arrangement configuration, if δ> θ 0 , when the incident elevation angle θ (= θ2) changes between the lower limit value 0 ° and the upper limit value δ, the first critical incident elevation angle is always present. Passes θ 0 . Therefore, the treatment is the same as that of the example shown in FIG. 9 (θ 0 = 30 °, δ = 70 °), and when z1 1 <z1 ≦ 0, the incident elevation angle θ (= θ2) is within the second incident elevation angle range. Yes, "reverse direction estimation" is selected in the fourth step, and when z1 < z11 , the incident elevation angle θ (= θ2) is within the range of the first incident elevation angle, and in the fourth step, “forward direction estimation” is performed. Be selected.

ここで注目すべき点として、ケースAであって第2配置構成の場合で、(180°-2δ)>θの場合に、入射仰角θ(=θ2)が常時第1入射仰角範囲内にあり、上記第4工程で「順方向推定」が選択される点である。この場合、無条件に上記第4工程で「順方向推定」を利用できるため、入射方位角φの推定処理のアルゴリズムの簡易化が図れる点で好ましく、更に、入射仰角θ(=θ2)が90°を挟んで変化するため、坑井B内におけるダイポールアンテナの仰角方向の指向性に関し、ダイポールアレイアンテナ151の受信感度の高い入射仰角θの範囲を利用できる点で好ましい。 It should be noted here that in case A and the second arrangement configuration, when (180 ° -2δ)> θ 0 , the incident elevation angle θ (= θ2) is always within the first incident elevation angle range. There is a point that "forward estimation" is selected in the fourth step. In this case, since "forward estimation" can be used unconditionally in the fourth step, it is preferable in that the algorithm for the estimation process of the incident directivity angle φ0 can be simplified, and the incident elevation angle θ ( = θ2) is further set. Since it changes across 90 °, it is preferable that the range of the incident elevation angle θ with high reception sensitivity of the dipole array antenna 151 can be used with respect to the directivity in the elevation angle direction of the dipole antenna in the well B.

同様に注目すべき点として、ケースBであって第1配置構成の場合で、2δ<(180°-θ)の場合に、入射仰角θ(=θ1)が常時第1入射仰角範囲内にあり、上記第4工程で「順方向推定」が選択される点である。この場合、無条件に上記第4工程で「順方向推定」を利用できるため、入射方位角φの推定処理のアルゴリズムの簡易化が図れる点で好ましく、更に、入射仰角θ(=θ1)が90°を挟んで変化するため、坑井B内におけるダイポールアンテナの仰角方向の指向性に関し、ダイポールアレイアンテナ151の受信感度の高い入射仰角θの範囲を利用できる点で好ましい。 Similarly, it should be noted that in the case of case B and the first arrangement configuration, when 2δ <(180 ° −θ 0 ), the incident elevation angle θ (= θ1) is always within the first incident elevation angle range. There is a point that "forward estimation" is selected in the fourth step. In this case, since "forward estimation" can be used unconditionally in the fourth step, it is preferable in that the algorithm for the estimation process of the incident directivity angle φ0 can be simplified, and the incident elevation angle θ ( = θ1) is further set. Since it changes across 90 °, it is preferable that the range of the incident elevation angle θ with high reception sensitivity of the dipole array antenna 151 can be used with respect to the directivity in the elevation angle direction of the dipole antenna in the well B.

以上、注目すべき2つのケース、つまり、ケースAであって第2配置構成の場合とケースBであって第1配置構成の場合は、何れも、受信用アンテナ部15が送信用アンテナ部14より交点Oに近い側に配置されている点で共通している。 As described above, in both the two cases to be noted, that is, the case A having the second arrangement configuration and the case B having the first arrangement configuration, the receiving antenna unit 15 is the transmitting antenna unit 14. It is common in that it is located closer to the intersection OF .

以上、δ>θの場合を想定して、第1臨界入射仰角θと傾斜角δの間の関係について検討したが、δ<θの場合は、ケースAであって第1配置構成の場合は、入射仰角θ(=θ1)の下限値(180°-δ)が第2臨界入射仰角(180°-θ)より大きくなり、ケースAであって第2配置構成の場合は、入射仰角θ(=θ2)の上限値(180°-δ)が第2臨界入射仰角(180°-θ)より大きくなり、ケースBであって第1配置構成の場合は、入射仰角θ(=θ1)の下限値δが第1臨界入射仰角θより小さくなり、ケースBであって第2配置構成の場合は、入射仰角θ(=θ2)の上限値δが第1臨界入射仰角θより小さくなる点で、δ>θの場合と相違するので、当該相違点を考慮して、入射仰角θ(θ1またはθ2)が第1入射仰角範囲内または第2入射仰角範囲内の何れに属するかを判断すればよい。 As described above, the relationship between the first critical incident elevation angle θ 0 and the inclination angle δ was examined assuming the case of δ> θ 0 , but in the case of δ <θ 0 , it is the case A and the first arrangement configuration. In the case of, the lower limit value (180 ° −δ) of the incident elevation angle θ (= θ1) becomes larger than the second critical incident elevation angle (180 ° −θ 0 ), and in case A and the second arrangement configuration, The upper limit value (180 ° -δ) of the incident elevation angle θ (= θ2) is larger than the second critical incident elevation angle (180 ° -θ 0 ), and in the case of case B and the first arrangement configuration, the incident elevation angle θ (180 ° −δ). = Θ1) The lower limit value δ is smaller than the first critical incident elevation angle θ 0 , and in case B and the second arrangement configuration, the upper limit value δ of the incident elevation angle θ (= θ2) is the first critical incident elevation angle θ. Since it is different from the case of δ> θ 0 in that it is smaller than 0 , the incident elevation angle θ (θ1 or θ2) is either within the first incident elevation angle range or within the second incident elevation angle range in consideration of the difference. You just have to judge whether it belongs to.

[別実施形態]
次に、上記実施形態の変形例(別実施形態)について説明する。
[Another Embodiment]
Next, a modified example (another embodiment) of the above embodiment will be described.

〈1〉上記実施形態では、本システム10は、ベクトルネットワークアナライザ111が発生したステップ周波数連続波をダイポールアレイアンテナ151が受信し、ベクトルネットワークアナライザ111により得られる周波数領域の受信波データをパソコン112が解析して、ダイポールアレイアンテナ151に入射する入射電磁波の坑井Bの軸心Z周りの到来方向(入射方位角)の推定する構成を想定したが、所定の周波数特性を持つ送信パルスをダイポールアンテナ素子141から放射し、探査対象面で反射された入射電磁波をダイポールアレイアンテナ151が受信し、パソコン112が受信した時間領域波形を解析することにより入射電磁波の到来方向の推定を行うシステム構成としても良い。この場合、入射方位角導出部11は、必ずしもベクトルネットワークアナライザ111を備えている必要はなく、ベクトルネットワークアナライザ111に代えて、上記送信パルスを発生するパルス発生器と、入射電磁波のダイポールアレイアンテナ151の各受信アンテナ素子での受信電圧の時間領域波形を測定可能なオシロスコープ等の測定器を備えて構成することができる。 <1> In the above embodiment, in the system 10, the dipole array antenna 151 receives the step frequency continuous wave generated by the vector network analyzer 111, and the personal computer 112 receives the received wave data in the frequency region obtained by the vector network analyzer 111. By analysis, we assumed a configuration to estimate the arrival direction (incident azimuth angle) around the axis Z of the well B of the incident electromagnetic wave incident on the dipole array antenna 151, but the transmission pulse with a predetermined frequency characteristic was transmitted by the dipole antenna. As a system configuration, the dipole array antenna 151 receives the incident electromagnetic wave radiated from the element 141 and reflected on the surface to be explored, and the time region waveform received by the personal computer 112 is analyzed to estimate the arrival direction of the incident electromagnetic wave. good. In this case, the incident azimuth angle deriving unit 11 does not necessarily have to include the vector network analyzer 111, and instead of the vector network analyzer 111, the pulse generator that generates the transmission pulse and the dipole array antenna 151 of the incident electromagnetic wave It can be configured to include a measuring instrument such as an oscilloscope capable of measuring the time region waveform of the received voltage at each receiving antenna element.

〈2〉上記実施形態では、送信用アンテナ部14と受信用アンテナ部15を、ダイポールアンテナ素子141の給電点とダイポールアレイアンテナ151の給電点の間の距離を一定に維持して、1つの坑井B内に挿入して使用する場合を想定したが、送信用アンテナ部14と受信用アンテナ部15の一方の坑井B内での深さを固定し、他方を坑井B内で軸心方向に移動させる実施態様としてもよい。この場合、例えば、長短2本の坑井Bを掘削して、短い側の坑井Bに送信用アンテナ部14を所定の深さで挿入し、長い側の坑井Bに受信用アンテナ部15を挿入して、長い側の坑井Bの軸心Z方向に移動させて入射電磁波を都度受信する構成としてもよい。 <2> In the above embodiment, the transmitting antenna unit 14 and the receiving antenna unit 15 maintain a constant distance between the feeding point of the dipole antenna element 141 and the feeding point of the dipole array antenna 151, and one shaft is provided. It is assumed that it is used by inserting it into the well B, but the depth in one of the well B of the transmitting antenna unit 14 and the receiving antenna unit 15 is fixed, and the other is the axial center in the well B. It may be an embodiment of moving in a direction. In this case, for example, two long and short wells B are excavated, the transmitting antenna portion 14 is inserted into the short side well B at a predetermined depth, and the receiving antenna portion 15 is inserted into the long side well B. May be configured to be inserted and moved in the axial Z direction of the well B on the long side to receive the incident electromagnetic wave each time.

〈3〉上記実施形態では、入射方位角導出部11が汎用のパソコン112を備え、内蔵された入射方位角φの推定処理用のコンピュータプログラムを実行することで、上記第1乃至第4工程におけるパソコン112が実行する処理内容が実施される態様を説明したが、同じ処理内容を汎用のパソコン112に代えて専用のハードウェアで実施するようにしてもよい。 <3> In the above embodiment, the incident azimuth angle deriving unit 11 is provided with a general-purpose personal computer 112, and the built-in computer program for estimating the incident azimuth angle φ0 is executed to execute the first to fourth steps. Although the mode in which the processing content executed by the personal computer 112 in the above is executed has been described, the same processing content may be executed by dedicated hardware instead of the general-purpose personal computer 112.

本発明の方向推定システム及び方法は、地中に存在するき裂、断層、境界面等の平面的な広がりを有する探査対象面が地中に掘削された円筒状の坑井の軸心に対して対向する方向を推定する処理に利用できる。 The direction estimation system and method of the present invention relate to the axis of a cylindrical well in which an exploration target surface having a planar spread such as a crack, a fault, or a boundary surface existing in the ground is excavated in the ground. It can be used for the process of estimating the opposite direction.

10 : 方向推定システム
11 : 入射方位角導出部
111 : ベクトルネットワークアナライザ
112 : パソコン
12 : 送信用インタフェース部
121 : アンプ
122 : 電気/光変換素子
13 : 受信用インタフェース部
131 : アンプ
132 : 光/電気変換素子
14 : 送信用アンテナ部
141 : ダイポールアンテナ素子
142 : ベッセル
15 : 受信用アンテナ部
151 : ダイポールアレイアンテナ
152 : ベッセル
153 : 電気/光変換ユニット
154 : 方位計
16 : 光ファイバケーブル
B : 坑井
D1~D4 : ダイポールアンテナ素子
F : 探査対象面
R : 反射点
V : 容器(ベッセル)
Win : 入射電磁波
Z : 坑井の軸心
10: Direction estimation system 11: Incident azimuth angle derivation unit 111: Vector network analyzer 112: Personal computer 12: Transmission interface unit 121: Amplifier 122: Electric / optical conversion element 13: Reception interface unit 131: Amplifier 132: Optical / electric Conversion element 14: Transmitting antenna part 141: Dipole antenna element 142: Vessel 15: Receiving antenna part 151: Dipole array antenna 152: Vessel 153: Electric / optical conversion unit 154: Direction meter 16: Optical fiber cable B: Well D1 to D4: Dipole antenna element F: Exploration target surface R: Reflection point V: Container (vessel)
Win: Incident electromagnetic wave Z: Axial center of the well

Claims (10)

地中に存在する平面的な広がりを有する探査対象面が前記地中に掘削された円筒状の坑井の軸心に対して対向する方向を推定する方向推定システムであって、
前記坑井内に挿入して使用するダイポールアレイアンテナと、
前記探査対象面から前記坑井内に挿入された前記ダイポールアレイアンテナに入射する入射電磁波の前記軸心周りの入射方位角を、前記探査対象面が対向する方向として導出する入射方位角導出部とを備えてなり、
前記ダイポールアレイアンテナが、互いに平行に延伸する3以上の受信用のダイポールアンテナ素子を管状の容器内に備え、
前記ダイポールアンテナ素子が、前記容器と同軸の仮想円柱面上に、前記仮想円柱面の周方向に分散して配置され、
前記入射方位角導出部は、
前記坑井内に挿入された前記ダイポールアレイアンテナが、前記探査対象面に向けて放射された電磁波であって、前記探査対象面で反射されて入射した前記入射電磁波を受信すると、前記ダイポールアンテナ素子別に受信された前記入射電磁波の信号波形を解析し、前記入射電磁波の前記ダイポールアンテナ素子毎の到達時刻を求め、
前記ダイポールアンテナ素子毎の到達時刻に基づいて、前記仮想円柱面の周方向の位置と当該位置で前記入射電磁波を受信したときの到達時刻の関係を正弦関数で近似した場合における最も早い到達時刻または最も遅い到達時刻を示す前記仮想円柱面の周方向の位置を特定し、
前記入射電磁波の到来方向と前記坑井の軸心とが成す入射仰角が、0°から90°の間に存在する第1臨界入射仰角と90°から180°の間に存在する第2臨界入射仰角の間の第1入射仰角範囲内にある場合は、前記最も早い到達時刻を示す前記仮想円柱面の周方向の位置を、前記入射方位角として導出し、
前記入射仰角が、0°から180°の範囲内の前記第1入射仰角範囲外の第2入射仰角範囲内にある場合は、前記最も遅い到達時刻を示す前記仮想円柱面の周方向の位置を、前記入射方位角として導出し、
前記第1及び第2臨界入射仰角は、前記入射仰角を0°から180°の範囲内で変化させた場合に、前記入射電磁波の前記容器の軸心方向と平行な電界成分において前記周方向に変化する電界の大きさを前記周方向に変化しない電界の大きさで除した比で表される電界周方向依存性指数が、-20dB以下で極小値となる前記入射仰角として与えられ、前記第1及び第2臨界入射仰角の和が180°であることを特徴とする方向推定システム。
It is a direction estimation system that estimates the direction in which the exploration target surface with a planar spread existing in the ground faces the axis of the cylindrical well excavated in the ground.
The dipole array antenna used by inserting it into the well,
An incident azimuth deriving unit that derives the incident azimuth around the axis of the incident electromagnetic wave incident on the dipole array antenna inserted into the well from the exploration target surface as a direction in which the exploration target surface faces. Be prepared
The dipole array antenna comprises three or more receiving dipole antenna elements extending parallel to each other in a tubular container.
The dipole antenna element is dispersed and arranged in the circumferential direction of the virtual cylindrical surface on a virtual cylindrical surface coaxial with the container.
The incident azimuth derivation unit is
When the dipole array antenna inserted into the well is an electromagnetic wave radiated toward the exploration target surface and receives the incident electromagnetic wave reflected and incident on the exploration target surface, the dipole antenna element is divided. The signal waveform of the received electromagnetic wave is analyzed, and the arrival time of the incident electromagnetic wave for each dipole antenna element is obtained.
Based on the arrival time of each dipole antenna element, the earliest arrival time or the earliest arrival time when the relationship between the position in the circumferential direction of the virtual cylindrical surface and the arrival time when the incident electromagnetic wave is received at the position is approximated by a sine function. The position in the circumferential direction of the virtual cylindrical surface indicating the latest arrival time is specified.
The incident elevation angle formed by the direction of arrival of the incident electromagnetic wave and the axis of the well is the first critical incident elevation angle existing between 0 ° and 90 ° and the second critical incident existing between 90 ° and 180 °. When it is within the range of the first incident elevation angle between the elevation angles, the position in the circumferential direction of the virtual cylindrical surface indicating the earliest arrival time is derived as the incident azimuth angle.
When the incident elevation angle is within the range of 0 ° to 180 ° and is within the range of the second incident elevation angle outside the range of the first incident elevation angle, the position in the circumferential direction of the virtual cylindrical surface indicating the latest arrival time is determined. , Derived as the incident azimuth
The first and second critical incident elevation angles are the circumferential direction in the electric field component parallel to the axial direction of the container of the incident electromagnetic wave when the incident elevation angle is changed within the range of 0 ° to 180 °. The electric field circumferential dependence index expressed by the ratio obtained by dividing the magnitude of the changing electric field by the magnitude of the electric field that does not change in the circumferential direction is given as the incident elevation angle that becomes the minimum value at -20 dB or less, and the first A directional estimation system characterized in that the sum of the first and second critical incident elevation angles is 180 °.
前記坑井内に前記ダイポールアレイアンテナと共に挿入された状態で前記探査対象面に向けて電磁波を放射する送信用ダイポールアンテナ素子を備え、
前記送信用ダイポールアンテナ素子は、前記ダイポールアレイアンテナから前記坑井の軸心方向に所定距離離間して配置されていることを特徴とする請求項1に記載の方向推定システム。
A transmission dipole antenna element that radiates an electromagnetic wave toward the exploration target surface while being inserted into the well together with the dipole array antenna is provided.
The direction estimation system according to claim 1, wherein the transmission dipole antenna element is arranged at a predetermined distance from the dipole array antenna in the axial direction of the well.
前記入射方位角導出部は、前記ダイポールアレイアンテナと前記送信用ダイポールアンテナ素子からなる送受信アンテナ部が、前記坑井内を前記坑井の軸心方向に順次移動した場合の各位置での前記最も早い到達時刻と前記最も遅い到達時刻の時間差を導出し、
前記坑井の軸心方向の位置の変化に対して前記時間差が所定値以下の極小値となる当該位置を特異位置として特定した場合、その特定した前記特異位置において前記入射仰角が前記第1及び第2臨界入射仰角の何れか一方に一致すると近似的に推定し、前記坑井の軸心方向の前記特異位置を基準として一方側において、前記入射仰角が前記第1入射仰角範囲内にあり、前記特異位置を基準として他方側において、前記入射仰角が第2入射仰角範囲内にあると判定して、前記入射方位角を導出することを特徴とする請求項2に記載の方向推定システム。
The incident azimuth derivation unit is the earliest at each position when the transmission / reception antenna unit including the dipole array antenna and the transmission dipole antenna element sequentially moves in the well in the axial direction of the well. Derived the time difference between the arrival time and the latest arrival time,
When the position where the time difference is the minimum value of a predetermined value or less with respect to the change in the position in the axial direction of the well is specified as the singular position, the incident elevation angle is the first and the singular position at the specified singular position. It is approximately estimated that it coincides with any one of the second critical incident elevation angles, and the incident elevation angle is within the first incident elevation angle range on one side with respect to the singular position in the axial direction of the well. The direction estimation system according to claim 2, wherein the incident elevation angle is determined to be within the second incident elevation angle range on the other side with the singular position as a reference, and the incident azimuth angle is derived.
前記入射方位角導出部は、
前記送受信アンテナ部が前記坑井内を前記坑井の軸心方向に順次移動した場合の各位置における、前記送信用ダイポールアンテナ素子から前記ダイポールアレイアンテナまでの前記電磁波の伝搬時間を計測し、前記坑井の軸心方向の位置と前記伝搬時間の関係に基づいて、前記探査対象面を含む平面の前記坑井の軸心と直交する平面に対する傾斜角を導出し、
前記傾斜角が前記第1臨界入射仰角より大きい場合において、
前記入射方位角導出部は、
前記送受信アンテナ部の前記坑井の軸心方向の移動範囲内において前記特異位置が特定された場合、前記移動範囲内の前記特異位置を基準として、前記探査対象面を含む平面が前記坑井の軸心と交差する交点側において、前記入射仰角が前記第2入射仰角範囲内にあると判定し、前記交点側と反対側において、前記入射仰角が前記第1入射仰角範囲内にあると判定し、
前記送受信アンテナ部の前記坑井の軸心方向の移動範囲内において前記特異位置が特定されない場合、前記移動範囲内の全域において、前記入射仰角が前記第1入射仰角範囲内にあると判定することを特徴とする請求項3に記載の方向推定システム。
The incident azimuth derivation unit is
The propagation time of the electromagnetic wave from the transmission dipole antenna element to the dipole array antenna at each position when the transmission / reception antenna unit sequentially moves in the well in the axial direction of the well is measured, and the well is said. Based on the relationship between the position of the well in the axial direction and the propagation time, the inclination angle of the plane including the exploration target plane with respect to the plane orthogonal to the axis of the well is derived.
When the inclination angle is larger than the first critical incident elevation angle,
The incident azimuth derivation unit is
When the singular position is specified within the movement range of the transmission / reception antenna unit in the axial direction of the well, the plane including the search target surface is the well with reference to the singular position within the movement range. It is determined that the incident elevation angle is within the second incident elevation range on the intersection side intersecting the axis, and it is determined that the incident elevation angle is within the first incident elevation range on the side opposite to the intersection side. ,
When the singular position is not specified within the movement range of the transmission / reception antenna unit in the axial direction of the well, it is determined that the incident elevation angle is within the first incident elevation angle range in the entire range of the movement range. The direction estimation system according to claim 3.
前記ダイポールアレイアンテナが、前記坑井内において、前記送信用ダイポールアンテナ素子より前記探査対象面を含む平面が前記坑井の軸心と交差する交点側に位置していることを特徴とする請求項2~4の何れか1項に記載の方向推定システム。 2. The direction estimation system according to any one of 4 to 4. 地中に存在する平面的な広がりを有する探査対象面が前記地中に掘削された円筒状の坑井の軸心に対して対向する方向を推定する方向推定方法であって、
互いに平行に延伸する3以上の受信用のダイポールアンテナ素子を管状の容器内に備え、前記ダイポールアンテナ素子が、前記容器と同軸の仮想円柱面上に、前記仮想円柱面の周方向に分散して配置されてなるダイポールアレイアンテナを、前記坑井内に挿入する第1の工程と、
前記探査対象面に向けて放射された電磁波であって、前記探査対象面で反射され、前記坑井内に挿入された前記ダイポールアレイアンテナに入射する入射電磁波を受信する第2の工程と、
前記ダイポールアンテナ素子別に受信された前記入射電磁波の信号波形を解析し、前記入射電磁波の前記ダイポールアンテナ素子毎の到達時刻を求める第3の工程と、
前記ダイポールアンテナ素子毎の到達時刻に基づいて、前記仮想円柱面の周方向の位置と当該位置で前記入射電磁波を受信したときの到達時刻の関係を正弦関数で近似した場合における最も早い到達時刻または最も遅い到達時刻を示す前記仮想円柱面の周方向の位置を特定し、前記探査対象面から前記ダイポールアレイアンテナに入射する前記入射電磁波の前記軸心周りの入射方位角とする第4の工程と、を備え、
前記第4の工程において、
前記入射電磁波の到来方向と前記坑井の軸心とが成す入射仰角が、0°から90°の間に存在する第1臨界入射仰角と90°から180°の間に存在する第2臨界入射仰角の間の第1入射仰角範囲内にある場合は、前記最も早い到達時刻を示す前記仮想円柱面の周方向の位置に対応する前記入射方位角を、前記探査対象面が前記坑井の軸心に対して対向する方向として導出し、
前記入射仰角が、0°から180°の範囲内の前記第1入射仰角範囲外の第2入射仰角範囲内にある場合は、前記最も遅い到達時刻を示す前記仮想円柱面の周方向の位置に対応する前記入射方位角を、前記探査対象面が前記坑井の軸心に対して対向する方向として導出し、
前記第1及び第2臨界入射仰角は、前記入射仰角を0°から180°の範囲内で変化させた場合に、前記入射電磁波の前記容器の軸心方向と平行な電界成分において前記周方向に変化する電界の大きさを前記周方向に変化しない電界の大きさで除した比で表される電界周方向依存性指数が、-20dB以下で極小値となる前記入射仰角として与えられ、前記第1及び第2臨界入射仰角の和が180°であることを特徴とする方向推定方法。
It is a direction estimation method that estimates the direction in which the exploration target surface having a planar spread existing in the ground faces the axis of the cylindrical well excavated in the ground.
Three or more dipole antenna elements for reception extending in parallel with each other are provided in a tubular container, and the dipole antenna elements are dispersed on a virtual cylindrical surface coaxial with the container in the circumferential direction of the virtual cylindrical surface. The first step of inserting the arranged dipole array antenna into the well, and
A second step of receiving an electromagnetic wave radiated toward the exploration target surface, which is reflected by the exploration target surface and is incident on the dipole array antenna inserted into the well.
A third step of analyzing the signal waveform of the incident electromagnetic wave received for each dipole antenna element and obtaining the arrival time of the incident electromagnetic wave for each dipole antenna element.
Based on the arrival time of each dipole antenna element, the earliest arrival time or the earliest arrival time when the relationship between the position in the circumferential direction of the virtual cylindrical surface and the arrival time when the incident electromagnetic wave is received at the position is approximated by a sine function. A fourth step of specifying the position in the circumferential direction of the virtual cylindrical surface indicating the latest arrival time and setting the incident directional angle of the incident electromagnetic wave incident on the dipole array antenna from the exploration target surface around the axis. , Equipped with
In the fourth step,
The incident elevation angle formed by the direction of arrival of the incident electromagnetic wave and the axis of the well is the first critical incident elevation angle existing between 0 ° and 90 ° and the second critical incident existing between 90 ° and 180 °. When it is within the range of the first incident elevation angle between the elevation angles, the incident azimuth corresponding to the position in the circumferential direction of the virtual cylindrical surface indicating the earliest arrival time is obtained, and the search target surface is the axis of the well. Derived as the direction facing the heart,
When the incident elevation angle is within the range of 0 ° to 180 ° and is within the range of the second incident elevation angle outside the range of the first incident elevation angle, the position in the circumferential direction of the virtual cylindrical surface indicating the latest arrival time is reached. The corresponding incident azimuth is derived as the direction in which the exploration target surface faces the axis of the well.
The first and second critical incident elevation angles are the circumferential direction in the electric field component parallel to the axial direction of the container of the incident electromagnetic wave when the incident elevation angle is changed within the range of 0 ° to 180 °. The electric field circumferential dependence index expressed by the ratio obtained by dividing the magnitude of the changing electric field by the magnitude of the electric field that does not change in the circumferential direction is given as the incident elevation angle that becomes the minimum value at -20 dB or less, and the first A direction estimation method characterized in that the sum of the first and second critical incident elevation angles is 180 °.
前記第1の工程において、送信用ダイポールアンテナ素子を、前記ダイポールアレイアンテナから前記坑井の軸心方向に所定距離離間させて前記坑井内に挿入し、前記送信用ダイポールアンテナ素子から前記探査対象面に向けて前記電磁波を放射することを特徴とする請求項6に記載の方向推定方法。 In the first step, the transmitting dipole antenna element is inserted into the well at a predetermined distance from the dipole array antenna in the axial direction of the well, and the surface to be explored from the transmitting dipole antenna element. The direction estimation method according to claim 6, wherein the electromagnetic wave is radiated toward the antenna. 前記第1の工程において、前記ダイポールアレイアンテナと前記送信用ダイポールアンテナ素子からなる送受信アンテナ部を、前記坑井内において前記坑井の軸心方向に順次移動させ、
前記第1の工程において、前記送受信アンテナ部が、前記坑井内を前記坑井の軸心方向に順次移動する毎に、前記第2の工程乃至前記第4の工程を順次実行するか、或いは、
前記第1の工程において、前記送受信アンテナ部が、前記坑井内を前記坑井の軸心方向に順次移動する毎に、前記第2の工程と前記第3の工程を順次実行し、前記第1の工程乃至前記第3の工程が終了した後に前記第4の工程を実行し、
前記第4の工程において、
前記送受信アンテナ部が、前記坑井内を前記坑井の軸心方向に順次移動した各位置での前記最も早い到達時刻と前記最も遅い到達時刻の時間差を導出し、
前記坑井の軸心方向の位置の変化に対して前記時間差が所定値以下の極小値となる当該位置を特異位置として特定した場合、その特定した前記特異位置において前記入射仰角が前記第1及び第2臨界入射仰角の何れか一方に一致すると近似的に推定し、前記坑井の軸心方向の前記特異位置を基準として一方側において、前記入射仰角が前記第1入射仰角範囲内にあり、前記特異位置を基準として他方側において、前記入射仰角が第2入射仰角範囲内にあると判定して、前記入射方位角を導出することを特徴とする請求項7に記載の方向推定方法。
In the first step, the transmission / reception antenna portion including the dipole array antenna and the transmission dipole antenna element is sequentially moved in the well in the axial direction of the well.
In the first step, each time the transmission / reception antenna unit sequentially moves in the well in the axial direction of the well, the second step to the fourth step are sequentially executed, or the fourth step is sequentially executed.
In the first step, each time the transmission / reception antenna unit sequentially moves in the well in the axial direction of the well, the second step and the third step are sequentially executed, and the first step is performed. After the step 1 to the third step is completed, the fourth step is executed.
In the fourth step,
The transmitting / receiving antenna unit derives the time difference between the earliest arrival time and the latest arrival time at each position where the well is sequentially moved in the axial direction of the well.
When the position where the time difference is the minimum value of a predetermined value or less with respect to the change in the position in the axial direction of the well is specified as the singular position, the incident elevation angle is the first and the singular position at the specified singular position. It is approximately estimated that it coincides with any one of the second critical incident elevation angles, and the incident elevation angle is within the first incident elevation angle range on one side with respect to the singular position in the axial direction of the well. The direction estimation method according to claim 7, wherein the incident elevation angle is determined to be within the second incident elevation angle range on the other side with the singular position as a reference, and the incident azimuth angle is derived.
前記第3の工程において、前記送受信アンテナ部が、前記坑井内を前記坑井の軸心方向に順次移動した各位置において前記送信用ダイポールアンテナ素子から前記ダイポールアレイアンテナまでの前記電磁波の伝搬時間を計測し、
前記第4の工程の前処理工程として、前記坑井の軸心方向の位置と前記伝搬時間の関係に基づいて、前記探査対象面を含む平面の前記坑井の軸心と直交する平面に対する傾斜角を導出し、
前記傾斜角が前記第1臨界入射仰角より大きい場合、
前記第4の工程において、
前記送受信アンテナ部の前記坑井の軸心方向の移動範囲内において前記特異位置が特定された場合、前記移動範囲内の前記特異位置を基準として、前記探査対象面を含む平面が前記坑井の軸心と交差する交点側において、前記入射仰角が前記第2入射仰角範囲内にあると判定し、前記交点側と反対側において、前記入射仰角が前記第1入射仰角範囲内にあると判定し、
前記送受信アンテナ部の前記坑井の軸心方向の移動範囲内において前記特異位置が特定されない場合、前記移動範囲内の全域において、前記入射仰角が前記第1入射仰角範囲内にあると判定することを特徴とする請求項8に記載の方向推定方法。
In the third step, the propagation time of the electromagnetic wave from the transmitting dipole antenna element to the dipole array antenna is set at each position where the transmitting / receiving antenna unit sequentially moves in the well in the axial direction of the well. Measure and
As the pretreatment step of the fourth step, the inclination of the plane including the exploration target plane with respect to the plane orthogonal to the axis of the well is based on the relationship between the position in the axial direction of the well and the propagation time. Derived the angle,
When the inclination angle is larger than the first critical incident elevation angle,
In the fourth step,
When the singular position is specified within the movement range of the transmission / reception antenna unit in the axial direction of the well, the plane including the search target surface is the well with reference to the singular position within the movement range. It is determined that the incident elevation angle is within the second incident elevation range on the intersection side intersecting the axis, and it is determined that the incident elevation angle is within the first incident elevation range on the side opposite to the intersection side. ,
When the singular position is not specified within the movement range of the transmission / reception antenna unit in the axial direction of the well, it is determined that the incident elevation angle is within the first incident elevation angle range in the entire range of the movement range. 8. The direction estimation method according to claim 8.
前記第1の工程において、前記ダイポールアレイアンテナを、前記坑井内において、前記送信用ダイポールアンテナ素子より前記探査対象面を含む平面が前記坑井の軸心と交差する交点側に配置することを特徴とする請求項7~9の何れか1項に記載の方向推定方法。 The first step is characterized in that the dipole array antenna is arranged in the well on the intersection side of the transmission dipole antenna element so that the plane including the search target surface intersects the axis of the well. The direction estimation method according to any one of claims 7 to 9.
JP2018112724A 2018-06-13 2018-06-13 Direction estimation system and method for planar exploration target using dipole array antenna Active JP7036432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018112724A JP7036432B2 (en) 2018-06-13 2018-06-13 Direction estimation system and method for planar exploration target using dipole array antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018112724A JP7036432B2 (en) 2018-06-13 2018-06-13 Direction estimation system and method for planar exploration target using dipole array antenna

Publications (2)

Publication Number Publication Date
JP2019215261A JP2019215261A (en) 2019-12-19
JP7036432B2 true JP7036432B2 (en) 2022-03-15

Family

ID=68918587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018112724A Active JP7036432B2 (en) 2018-06-13 2018-06-13 Direction estimation system and method for planar exploration target using dipole array antenna

Country Status (1)

Country Link
JP (1) JP7036432B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111538095B (en) * 2020-06-05 2023-03-28 安徽理工大学 Geological exploration method based on ground single-borehole internal reflection radio waves
CN118759511A (en) * 2024-09-05 2024-10-11 国营洛阳丹城无线电厂 High-precision measurement method for target angular position of introduced aviation equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124595A (en) 2006-11-09 2008-05-29 Yokohama National Univ Calculating method of correction matrix for receiving array antenna, self-correcting method of receiving array antenna, correction matrix calculating devoce for receiving array antenna, and self-correcting device
JP2010164327A (en) 2009-01-13 2010-07-29 Satoshi Ebihara System for estimating three-dimensional position, and dipole array antenna
CN103477247A (en) 2011-04-18 2013-12-25 哈利伯顿能源服务公司 Multicomponent borehole radar systems and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124595A (en) 2006-11-09 2008-05-29 Yokohama National Univ Calculating method of correction matrix for receiving array antenna, self-correcting method of receiving array antenna, correction matrix calculating devoce for receiving array antenna, and self-correcting device
JP2010164327A (en) 2009-01-13 2010-07-29 Satoshi Ebihara System for estimating three-dimensional position, and dipole array antenna
CN103477247A (en) 2011-04-18 2013-12-25 哈利伯顿能源服务公司 Multicomponent borehole radar systems and methods

Also Published As

Publication number Publication date
JP2019215261A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
US11067685B2 (en) System, device and methods for imaging of objects using electromagnetic array
US9903199B2 (en) Use of metamaterial to enhance measurement of dielectric properties
RU2648391C2 (en) Downhole gradiometric ranging utilising transmitters and receivers having magnetic dipoles
JP6567162B2 (en) Underground physical property exploration system and underground physical property analysis method using the same
CN104737036A (en) Enhanced materials investigation
US10716488B2 (en) Imaging using gated elements
Tu et al. Fast quantitative microwave imaging with resolvent kernel extracted from measurements
JP7036432B2 (en) Direction estimation system and method for planar exploration target using dipole array antenna
Ebihara et al. Estimating the 3D position and inclination of a planar interface with a directional borehole radar
JP5568237B2 (en) 3D position estimation system and dipole array antenna
EP2506040A1 (en) Method and device for characterization of physical properties of a target volume by electromagnetic inspection.
López et al. On the use of an Equivalent Currents-based Technique to improve Electromagnetic Imaging
Ebihara et al. $\hbox {HE} _ {11} $ Mode Effect on Direct Wave in Single-Hole Borehole Radar
Ebihara et al. Interference criterion for coaxial-fed circular dipole array antenna in a borehole
CN110414182A (en) Introduce the Ground Penetrating Radar FRTM algorithm of antenna radiation pattern
Fang et al. Visualization and quantitative evaluation of delamination defects in GFRPs via sparse millimeter-wave imaging and image processing
Ebihara et al. Arrival times of plane waves obliquely incident on a dipole array antenna in a borehole
Ebihara et al. Calculation of Sommerfeld integrals for modeling vertical dipole array antenna for borehole radar
US10422913B2 (en) Metamaterial-based electromagnetic field measurement device
He et al. 2D imaging system with optical tracking for EMI source localization
JP2006098112A (en) Underground radar image processing method
Zhang et al. Resolution and robustness to noise of the sensitivity-based method for microwave imaging with data acquired on cylindrical surfaces
Isaacson et al. High frequency EMI sensing for detection and location of underground metallic utilities
Herbette et al. Using a 3D metamaterial to enhance surface wave propagation in HF band
Ebihara et al. Loop array antenna in a borehole for directivity to a horizontally polarized wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220224

R150 Certificate of patent or registration of utility model

Ref document number: 7036432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150