[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7033826B2 - How to join dissimilar metal materials - Google Patents

How to join dissimilar metal materials Download PDF

Info

Publication number
JP7033826B2
JP7033826B2 JP2018062330A JP2018062330A JP7033826B2 JP 7033826 B2 JP7033826 B2 JP 7033826B2 JP 2018062330 A JP2018062330 A JP 2018062330A JP 2018062330 A JP2018062330 A JP 2018062330A JP 7033826 B2 JP7033826 B2 JP 7033826B2
Authority
JP
Japan
Prior art keywords
interface
valve seat
members
cylinder head
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018062330A
Other languages
Japanese (ja)
Other versions
JP2019171423A (en
Inventor
亨朗 荻野
誠 是繁
直樹 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2018062330A priority Critical patent/JP7033826B2/en
Publication of JP2019171423A publication Critical patent/JP2019171423A/en
Application granted granted Critical
Publication of JP7033826B2 publication Critical patent/JP7033826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、異種金属材料の接合方法、特に、鉄系材料とアルミニウム材との接合方法に関する。 The present invention relates to a method for joining dissimilar metal materials, particularly a method for joining an iron-based material and an aluminum material.

自動車等のエンジンには、燃焼室に開口した吸気ポートおよび排気ポートが設けられる。これらの吸気ポートおよび排気ポートは、開口部に設けられたバルブにより開閉される。各ポートの開口部のうち、バルブが着座する部分には、通常、強度の高い鉄系材料からなる環状のバルブシートが設けられる。 An engine such as an automobile is provided with an intake port and an exhaust port opened in a combustion chamber. These intake and exhaust ports are opened and closed by valves provided in the openings. Of the openings of each port, the portion where the valve is seated is usually provided with an annular valve seat made of a high-strength iron-based material.

バルブシートは、シリンダヘッドに対して圧入により固定されることが多い。この場合、バルブシートとシリンダヘッドとの圧入部の面積を確保するために、バルブシートの高さ(軸方向寸法)をある程度確保する必要が生じる。これにより、シリンダヘッドの設計、特に吸気ポートおよび排気ポートの設計が制限されるため、吸排気能力を向上させることが困難となるおそれがある。 The valve seat is often fixed to the cylinder head by press fitting. In this case, in order to secure the area of the press-fitting portion between the valve seat and the cylinder head, it is necessary to secure the height (axial dimension) of the valve seat to some extent. This limits the design of the cylinder head, especially the design of the intake port and the exhaust port, which may make it difficult to improve the intake / exhaust capacity.

そこで、バルブシートの高さを小さくした場合でも、シリンダヘッドに強固に接合することができる方法が提案されている。例えば、下記の特許文献1には、ポートの開口部に金属粉を供給しながらレーザを照射して肉盛層を形成し、この肉盛層でバルブシートを形成する技術が示されている。 Therefore, a method has been proposed that can be firmly joined to the cylinder head even when the height of the valve seat is reduced. For example, Patent Document 1 below discloses a technique in which a built-up layer is formed by irradiating a laser while supplying metal powder to an opening of a port, and a valve seat is formed by the built-up layer.

また、下記の特許文献2には、バルブシートを鉄系焼結材で形成し、このバルブシートを抵抗熱接合法によってアルミニウム材からなるシリンダヘッドに接合する方法が示されている。具体的には、複数の部材を互いに押し付けながら両部材間に通電することで、両部材の界面から、両部材の表面に形成された酸化被膜等を排出し、両部材の母材同士を直接接触させることにより、両部材が強固に結合される。 Further, Patent Document 2 below discloses a method in which a valve seat is formed of an iron-based sintered material and the valve seat is joined to a cylinder head made of an aluminum material by a resistance heat joining method. Specifically, by energizing between both members while pressing a plurality of members against each other, an oxide film or the like formed on the surfaces of both members is discharged from the interface of both members, and the base materials of both members are directly connected to each other. By bringing them into contact with each other, both members are firmly bonded.

特開2017-80756号公報Japanese Unexamined Patent Publication No. 2017-80756 特開平9-239566号公報Japanese Unexamined Patent Publication No. 9-239566

上記特許文献1に示されているレーザビームを用いた肉盛方法によりバルブシートを形成すれば、バルブシートの高さを抑えることはできるが、レーザ照射設備等を要するため製造コストが高くなる。 If the valve seat is formed by the overlay method using the laser beam shown in Patent Document 1, the height of the valve seat can be suppressed, but the manufacturing cost is high because the laser irradiation equipment or the like is required.

また、上記特許文献2に示されている抵抗熱接合法は、同種材料を強固に接合することはできるが、異種材料を強固に接合することは容易ではない。特に、鉄系材料とアルミニウム材とを接合する場合には、これらの界面に、脆いFe-Al化合物層が生成されるため、接合強度を高めることが非常に難しい。 Further, the resistance heat bonding method shown in Patent Document 2 can firmly bond the same kind of materials, but it is not easy to firmly bond different materials. In particular, when an iron-based material and an aluminum material are bonded, it is very difficult to increase the bonding strength because a brittle Fe—Al compound layer is formed at these interfaces.

本発明は、鉄系材料からなる部材とアルミニウム材からなる部材を、圧入やレーザ肉盛方法によることなく、強固に接合することを目的とする。 An object of the present invention is to firmly join a member made of an iron-based material and a member made of an aluminum material without using a press-fitting method or a laser overlay method.

本発明者らの検証によると、鉄系材料からなる第1の部材とアルミニウム材からなる第2の部材とを接合するに際し、第1の部材を銅を含む鉄系焼結材で形成し、これをアルミニウム材からなる第2の部材に高加圧力で押し付けながら、両部材間に高電流値を通電することにより、両部材が強固に結合されることが明らかになった。 According to the verification by the present inventors, when joining the first member made of an iron-based material and the second member made of an aluminum material, the first member is formed of an iron-based sintered material containing copper. It was clarified that both members are firmly bonded by applying a high current value between the two members while pressing the second member made of an aluminum material with a high pressing force.

これは以下の理由によると考えられる。上記のように両部材を加圧通電することで、両部材の界面に脆いFe-Al化合物層が生成されるが、両部材間の加圧力及び通電量を高くすることで、両部材の界面からFe-Al化合物層が排出され、両部材の母材同士が直接接触する。この状態で加圧通電し続けることで、両部材の界面において、第1の部材の母材(鉄系焼結材)に含まれる銅と第2の部材の母材(アルミニウム材)との間で相互拡散が生じ、両部材の界面にCu-Al拡散層が生成される。このように、両部材の界面から脆いFe-Al化合物層を排出すると共に、界面にCu-Al拡散層を生成することで、このCu-Al拡散層を介して両部材が強固に結合される。すなわち、両部材の界面にCu-Al拡散層が生成されるように、両部材間の加圧力及び電流値を設定することで、両部材を強固に接合することができる。 This is considered to be due to the following reasons. By pressurizing and energizing both members as described above, a brittle Fe-Al compound layer is generated at the interface between the two members, but by increasing the pressing force and the amount of energization between the two members, the interface between the two members The Fe—Al compound layer is discharged from the material, and the base materials of both members come into direct contact with each other. By continuing to pressurize and energize in this state, at the interface between both members, between the copper contained in the base material (iron-based sintered material) of the first member and the base material (aluminum material) of the second member. Mutual diffusion occurs at the above, and a Cu—Al diffusion layer is formed at the interface between the two members. In this way, by discharging the brittle Fe-Al compound layer from the interface of both members and forming a Cu-Al diffusion layer at the interface, both members are firmly bonded to each other via the Cu-Al diffusion layer. .. That is, both members can be firmly joined by setting the pressing force and the current value between the two members so that the Cu—Al diffusion layer is generated at the interface between the two members.

以上の知見から、本発明は、銅を含む鉄系焼結材からなる第1の部材と、アルミニウム材からなる第2の部材とを接合するための方法であって、前記第1の部材を前記第2の部材に押し付けながら両部材間に通電することにより、両部材の界面に生成されたFe-Al化合物層を前記界面から排出すると共に、前記界面にCu-Al拡散層を生成させる異種金属材料の接合方法を提供する。 Based on the above findings, the present invention is a method for joining a first member made of an iron-based sintered material containing copper and a second member made of an aluminum material. By energizing between both members while pressing against the second member, the Fe-Al compound layer formed at the interface between the two members is discharged from the interface, and a different type of Cu-Al diffusion layer is formed at the interface. A method for joining a metal material is provided.

上記のような方法で第1の部材と第2の部材とを接合すると、両部材の界面から排出されたFe-Al化合物が、上記界面に隣接する領域に溜まる。すなわち、上記の方法により、銅を含む鉄系焼結材からなる第1の部材と、アルミニウム材からなる第2の部材とを接合してなる接合部品であって、前記第1の部材と前記第2の部材との界面にCu-Al拡散層が介在し、前記界面と隣接する領域にFe-Al化合物が存在する接合部品が得られる。 When the first member and the second member are joined by the method as described above, the Fe—Al compound discharged from the interface between the two members is accumulated in the region adjacent to the interface. That is, it is a joining part formed by joining a first member made of an iron-based sintered material containing copper and a second member made of an aluminum material by the above method, and the first member and the above. A bonded part is obtained in which a Cu—Al diffusion layer is interposed at an interface with a second member and a Fe—Al compound is present in a region adjacent to the interface.

上記のような条件で第1の部材及び第2の部材を加圧通電すると、第1の部材(鉄系焼結材)中に分散した銅が、第1の部材を流れる通電経路に沿って両部材の界面に向けて移動する。これにより、界面付近における銅の濃度が上昇し、この銅と第2の部材(アルミニウム材)とが相互拡散することで、界面にCu-Al拡散層が生成される。従って、第2の部材に接合する前の第1の部材中に銅を均一に分散させた場合、加圧通電により第1の部材中の前記界面付近の銅が前記界面に向けて移動することで、第1の部材のうち、両部材の界面付近における銅の濃度が、他の領域における銅の濃度よりも低くなる。 When the first member and the second member are pressurized and energized under the above conditions, the copper dispersed in the first member (iron-based sintered material) is carried along the energization path flowing through the first member. Move towards the interface of both members. As a result, the concentration of copper in the vicinity of the interface increases, and the copper and the second member (aluminum material) are mutually diffused to form a Cu—Al diffusion layer at the interface. Therefore, when copper is uniformly dispersed in the first member before being joined to the second member, the copper in the vicinity of the interface in the first member moves toward the interface by pressurized energization. Therefore, among the first members, the concentration of copper in the vicinity of the interface between the two members is lower than the concentration of copper in the other regions.

一方、第2の部材に接合する前の第1の部材において、両部材の界面付近における銅の濃度が相対的に高くなるように銅を偏析させてもよい。この場合、両部材を加圧通電した際に、界面に向けて移動する銅の量が増え、界面における銅の濃度がさらに高められるため、界面にCu-Al拡散層が生成されやすくなる。 On the other hand, in the first member before joining to the second member, copper may be segregated so that the concentration of copper in the vicinity of the interface between the two members is relatively high. In this case, when both members are pressurized and energized, the amount of copper that moves toward the interface increases, and the concentration of copper at the interface is further increased, so that a Cu—Al diffusion layer is likely to be formed at the interface.

以上のように、銅を含む鉄系焼結材からなる第1の部材とアルミニウム材からなる第2の部材との界面からFe-Al化合物層を排出すると共に、この界面にCu-Al拡散層を生成させることで、両部材を、圧入やレーザ肉盛方法によることなく、強固に接合することができる。 As described above, the Fe—Al compound layer is discharged from the interface between the first member made of an iron-based sintered material containing copper and the second member made of an aluminum material, and the Cu—Al diffusion layer is discharged at this interface. By generating the above, both members can be firmly joined without using a press-fitting method or a laser overlay method.

エンジンの燃焼室の吸排気口付近の断面図である。It is sectional drawing around the intake / exhaust port of the combustion chamber of an engine. 図2のバルブシート付近の拡大図である。It is an enlarged view near the valve seat of FIG. バルブシートをシリンダヘッドに接合する手順を示す断面図であり、押し込み開始前の状態を示す。It is sectional drawing which shows the procedure of joining a valve seat to a cylinder head, and shows the state before the start of pushing. 図3のX部の拡大図である。It is an enlarged view of the X part of FIG. バルブシートをシリンダヘッドに接合する手順を示す断面図であり、押し込んでいる途中の状態を示す。It is sectional drawing which shows the procedure of joining a valve seat to a cylinder head, and shows the state in the process of pushing. 図5のY部の拡大図である。It is an enlarged view of the Y part of FIG. バルブシートをシリンダヘッドに接合する手順を示す断面図であり、押し込みが完了した状態を示す。It is sectional drawing which shows the procedure of joining a valve seat to a cylinder head, and shows the state which the pushing is completed. 図7のZ部の拡大図である。It is an enlarged view of the Z part of FIG. バルブシートとシリンダヘッドとの接合部を示す拡大断面図である。It is an enlarged sectional view which shows the joint part of a valve seat and a cylinder head. 他の実施形態に係る、シリンダヘッドに接合する前のバルブシートの断面図である。It is sectional drawing of the valve seat before joining to a cylinder head which concerns on another embodiment. さらに他の実施形態に係る、シリンダヘッドに接合する前のバルブシートの断面図である。It is sectional drawing of the valve seat before joining to a cylinder head which concerns on still another embodiment. 各試験片の試験条件(横軸:単位面積当たりの加圧力、縦軸:電流密度)を示すグラフである。It is a graph which shows the test condition (horizontal axis: pressing force per unit area, vertical axis: current density) of each test piece.

本発明の実施の形態を図面に基づいて説明する。本実施形態では、鉄系材料からなる第1の部材としてのバルブシートを、アルミニウム材からなる第2の部材としてのシリンダヘッドに接合する場合を示す。 Embodiments of the present invention will be described with reference to the drawings. The present embodiment shows a case where a valve seat as a first member made of an iron-based material is joined to a cylinder head as a second member made of an aluminum material.

図1に、エンジンの燃焼室3の吸排気口付近の構造を示す。シリンダヘッド2は、アルミニウム材(アルミニウム合金)の鋳造品である。シリンダヘッド2には、燃焼室3に開口した吸気ポート4及び排気ポート5が形成されている。各ポート4,5の開口部は、それぞれバルブ6により開閉される。バルブ6のステム部6aは、シリンダヘッド2に取り付けられた円筒状のバルブガイド7の内周に挿入され、図示しないカム機構及びスプリングにより往復動される。各ポート4,5の開口部には、環状のバルブシート1が設けられる。バルブ6の傘部6bがバルブシート1に着座することで各ポート4,5が閉じ、バルブ6の傘部6bがバルブシート1から離反することで各ポート4,5が開く。 FIG. 1 shows a structure in the vicinity of the intake / exhaust port of the combustion chamber 3 of the engine. The cylinder head 2 is a cast product of an aluminum material (aluminum alloy). The cylinder head 2 is formed with an intake port 4 and an exhaust port 5 that are open to the combustion chamber 3. The openings of the ports 4 and 5 are opened and closed by the valve 6. The stem portion 6a of the valve 6 is inserted into the inner circumference of the cylindrical valve guide 7 attached to the cylinder head 2, and is reciprocated by a cam mechanism and a spring (not shown). An annular valve seat 1 is provided at the openings of the ports 4 and 5. When the umbrella portion 6b of the valve 6 is seated on the valve seat 1, the ports 4 and 5 are closed, and when the umbrella portion 6b of the valve 6 is separated from the valve seat 1, the ports 4 and 5 are opened.

バルブシート1は、銅を含む鉄系焼結材からなる。具体的に、バルブシート1は、50質量%以上の鉄と、1~40質量%の銅を含む焼結材からなる。この焼結材には、必要に応じてC、Ni、Co、Cr、Mo、V、W、Mn、Si、Sのうちの1種又は複数種が添加される。バルブシート1は、銅粉及び鉄粉を含む原料粉末を均一に混合した後、この原料粉末を金型で圧縮成形して圧粉体を形成し、この圧粉体を所定の温度で焼結することにより形成される。こうして形成されたバルブシート1(シリンダヘッド2に接合する前のバルブシート1)には、銅が全体に均一に分散している。 The valve seat 1 is made of an iron-based sintered material containing copper. Specifically, the valve seat 1 is made of a sintered material containing 50% by mass or more of iron and 1 to 40% by mass of copper. If necessary, one or more of C, Ni, Co, Cr, Mo, V, W, Mn, Si, and S are added to the sintered material. In the valve seat 1, after the raw material powder containing copper powder and iron powder is uniformly mixed, the raw material powder is compression-molded with a mold to form a green compact, and the green powder is sintered at a predetermined temperature. It is formed by doing. Copper is uniformly dispersed throughout the valve seat 1 (valve seat 1 before joining to the cylinder head 2) formed in this way.

バルブシート1は環状に形成される。具体的には、図2に拡大して示すように、バルブシート1の内周面のポート開口側(燃焼室3側)の端部には、バルブ6の傘部6bが着材する内周テーパ面1aが設けられる。また、バルブシート1の外周面のポート奥側(燃焼室3から離反する側)の端部には、外周テーパ面1bが設けられる。 The valve seat 1 is formed in an annular shape. Specifically, as shown in an enlarged manner in FIG. 2, the inner circumference of the inner peripheral surface of the valve seat 1 to which the umbrella portion 6b of the valve 6 is attached is attached to the end of the port opening side (combustion chamber 3 side). A tapered surface 1a is provided. Further, an outer peripheral tapered surface 1b is provided at the end of the outer peripheral surface of the valve seat 1 on the back side of the port (the side away from the combustion chamber 3).

以下、バルブシート1をシリンダヘッド2に接合する手順を、図3~図9を用いて説明する。本実施形態では、吸気ポート4(以下、単に「ポート4」とも言う。)の開口部にバルブシート1を接合する場合を説明するが、排気ポート5へのバルブシート1の接合も同様の手順で行う。 Hereinafter, the procedure for joining the valve seat 1 to the cylinder head 2 will be described with reference to FIGS. 3 to 9. In the present embodiment, the case where the valve seat 1 is joined to the opening of the intake port 4 (hereinafter, also simply referred to as “port 4”) will be described, but the procedure for joining the valve seat 1 to the exhaust port 5 is the same. Do it at.

まず、図3に示すように、シリンダヘッド2を、ポート4が上向きに開口するように配置する。シリンダヘッド2のポート4の開口部には、バルブシート1が取り付けられるシート取付部8が設けられる。接合前の状態で、シート取付部8の内径は、バルブシート1の外径よりも小さい。具体的に、シート取付部8は、ポート4の内径よりも大径で、バルブシート1の外径よりも小径な円筒面8aと、円筒面8aとポート4の内周面との間に設けられた平坦面8bと、円筒面8aの開口側(図中上側)に設けられた面取り部8cとを有する。図示例では、円筒面8aと平坦面8bとの境界に盗み部8dが設けられる。 First, as shown in FIG. 3, the cylinder head 2 is arranged so that the port 4 opens upward. A seat mounting portion 8 to which the valve seat 1 is mounted is provided at the opening of the port 4 of the cylinder head 2. In the state before joining, the inner diameter of the seat mounting portion 8 is smaller than the outer diameter of the valve seat 1. Specifically, the seat mounting portion 8 is provided between the cylindrical surface 8a having a diameter larger than the inner diameter of the port 4 and smaller than the outer diameter of the valve seat 1 and the cylindrical surface 8a and the inner peripheral surface of the port 4. It has a flat surface 8b and a chamfered portion 8c provided on the opening side (upper side in the drawing) of the cylindrical surface 8a. In the illustrated example, the stealing portion 8d is provided at the boundary between the cylindrical surface 8a and the flat surface 8b.

そして、バルブシート1を、シリンダヘッド2のシート取付部8に配置する。このとき、シート取付部8の円筒面8aの内径が、接合前のバルブシート1の外径よりも小さくなっているため、バルブシート1は円筒面8aの内周に挿入されず、シート取付部8の上端に載置される。図示例では、バルブシート1の外周テーパ面1bが、シート取付部8の上端に設けられた面取り部8cの上に載置される。 Then, the valve seat 1 is arranged in the seat mounting portion 8 of the cylinder head 2. At this time, since the inner diameter of the cylindrical surface 8a of the seat mounting portion 8 is smaller than the outer diameter of the valve seat 1 before joining, the valve seat 1 is not inserted into the inner circumference of the cylindrical surface 8a, and the seat mounting portion is not inserted. It is placed on the upper end of 8. In the illustrated example, the outer peripheral tapered surface 1b of the valve seat 1 is placed on the chamfered portion 8c provided at the upper end of the seat mounting portion 8.

図4に、このときのバルブシート1とシリンダヘッド2との界面(バルブシート1の外周テーパ面1bとシリンダヘッドのシート取付部8の面取り部8cとの接触部)を拡大して示す。図示のように、バルブシート1及びシリンダヘッド2の表面には、それぞれ酸化被膜や不純物等からなる被膜C1,C2が形成されており、それぞれの母材(鉄系焼結材、アルミニウム材)同士は直接接触していない。 FIG. 4 shows an enlarged interface between the valve seat 1 and the cylinder head 2 (contact portion between the outer peripheral tapered surface 1b of the valve seat 1 and the chamfered portion 8c of the seat mounting portion 8 of the cylinder head). As shown in the figure, coatings C1 and C2 made of oxide coatings, impurities, etc. are formed on the surfaces of the valve seat 1 and the cylinder head 2, respectively, and the respective base materials (iron-based sintered material, aluminum material) are formed with each other. Is not in direct contact.

そして、図5に示すように、バルブシート1を一方の電極10で下方に押し込むと共に、シリンダヘッド2に他方の電極(図示省略)を接触させ、この状態で一方の電極10と他方の電極との間に通電する。図示例では、電極10のテーパ状の外周面により、バルブシート1の内周テーパ面1aが下方に押し込まれる。これにより、バルブシート1がシリンダヘッド2に強く押し付けられ、この状態で両部材1,2間に通電されることで、両部材1,2の界面P、特に電極10による加圧力を受ける界面P、すなわち電極10による加圧方向(図5では上下方向)と交差する界面P、本実施形態ではバルブシート1の外周テーパ面1bとこれに接触するシリンダヘッド2の表面との界面Pが、抵抗発熱により加熱されて軟化し、塑性変形する。具体的には、バルブシート1の外周テーパ面1bが、シリンダヘッド2のシート取付部8の面取り部8c及び円筒面8aを押し潰し、シリンダヘッド2の肉を塑性流動させる。これにより、シリンダヘッド2のシート取付部8に、バルブシート1の外周テーパ面1bに倣ったテーパ面8eが形成されると共に、その下方に、塑性流動した肉により内径側に盛り上がった隆起部8fが形成される。これと同時に、バルブシート1の外周テーパ面1bにも塑性変形が生じ、外周テーパ面1bの角度が電極10の加圧方向(図中上下方向)に近づく。 Then, as shown in FIG. 5, the valve seat 1 is pushed downward by one electrode 10 and the other electrode (not shown) is brought into contact with the cylinder head 2, and in this state, one electrode 10 and the other electrode are brought into contact with each other. Energize during. In the illustrated example, the inner peripheral tapered surface 1a of the valve seat 1 is pushed downward by the tapered outer peripheral surface of the electrode 10. As a result, the valve seat 1 is strongly pressed against the cylinder head 2, and by energizing between the members 1 and 2 in this state, the interface P between the members 1 and 2, particularly the interface P under pressure from the electrode 10. That is, the interface P intersecting the pressurizing direction (vertical direction in FIG. 5) by the electrode 10, and in the present embodiment, the interface P between the outer peripheral tapered surface 1b of the valve seat 1 and the surface of the cylinder head 2 in contact with the outer peripheral tapered surface 1b is a resistance. It is heated by heat generation, softens, and plastically deforms. Specifically, the outer peripheral tapered surface 1b of the valve seat 1 crushes the chamfered portion 8c and the cylindrical surface 8a of the seat mounting portion 8 of the cylinder head 2, and the meat of the cylinder head 2 is plastically flowed. As a result, a tapered surface 8e that follows the outer peripheral tapered surface 1b of the valve seat 1 is formed on the seat mounting portion 8 of the cylinder head 2, and a raised portion 8f that is raised toward the inner diameter side due to the plastically fluidized meat below the tapered surface 8e. Is formed. At the same time, plastic deformation occurs on the outer peripheral tapered surface 1b of the valve seat 1, and the angle of the outer peripheral tapered surface 1b approaches the pressurizing direction (upper and lower direction in the figure) of the electrode 10.

このとき、バルブシート1の外周テーパ面1bが、シリンダヘッド2のテーパ面8eに強く押し付けられることで、これらの界面Pに介在していた被膜C1,C2が界面Pから押し出されて、両部材1,2の母材(鉄系焼結材及びアルミニウム材)同士が接触する。この状態で両部材1,2間に通電し続けることで、図6に示すように、両部材1,2の界面PにFe-Al化合物層が生成される。このFe-Al化合物層は、例えばFeAl、FeAl、FeAlのうちの一種又は複数種からなる。 At this time, the outer peripheral tapered surface 1b of the valve seat 1 is strongly pressed against the tapered surface 8e of the cylinder head 2, so that the coating films C1 and C2 intervening in these interfaces P are extruded from the interface P and both members. The base materials (iron-based sintered material and aluminum material) of 1 and 2 come into contact with each other. By continuing to energize between both members 1 and 2 in this state, an Fe—Al compound layer is formed at the interface P of both members 1 and 2, as shown in FIG. The Fe—Al compound layer is composed of, for example, one or more of FeAl, FeAl 2 , and FeAl 3 .

その後、さらにバルブシート1を下方に押し込みながら通電することにより、図7に示すように、バルブシート1をシリンダヘッド2のシート取付部8の平坦面8bに着座させる。このとき、塑性変形により流動したシリンダヘッド2の肉(隆起部8f)は、予めシリンダヘッド2のシート取付部8に設けられた盗み部8dに収容される。 After that, by further energizing the valve seat 1 while pushing it downward, the valve seat 1 is seated on the flat surface 8b of the seat mounting portion 8 of the cylinder head 2 as shown in FIG. 7. At this time, the meat (raised portion 8f) of the cylinder head 2 that has flowed due to plastic deformation is housed in the stealing portion 8d previously provided in the seat mounting portion 8 of the cylinder head 2.

このとき、図6に示すように、両部材1,2の界面PにFe-Al化合物層が形成されていると、バルブシート1の母材(鉄系焼結材)とシリンダヘッド2の母材(アルミニウム材)とがFe-Al化合物層で遮断される。しかし、両部材1,2を高加圧力・高電流値で加圧通電することにより、両部材1,2の界面Pに介在したFe-Al化合粒層が界面Pから排出される。これにより、両部材1,2の母材同士が直接接触し、バルブシート1中の銅とシリンダヘッド2の母材(アルミニウム材)との間で相互拡散が生じ、界面PにCu-Al拡散層が生成される(図8参照)。Cu-Al拡散層は、例えば、界面Pの面積の50%以上の領域に生成される。Cu-Al拡散層は、銅とアルミニウムが相互拡散することにより生成されたCu-Al化合物であり、例えばCuAl及び/又はCuAlからなる。 At this time, as shown in FIG. 6, if the Fe—Al compound layer is formed at the interface P of both members 1 and 2, the base material (iron-based sintered material) of the valve seat 1 and the mother material of the cylinder head 2 are formed. The material (aluminum material) is blocked by the Fe—Al compound layer. However, by pressurizing and energizing both members 1 and 2 at a high pressing force and a high current value, the Fe—Al compounded grain layer interposed at the interface P of both members 1 and 2 is discharged from the interface P. As a result, the base materials of both members 1 and 2 come into direct contact with each other, mutual diffusion occurs between the copper in the valve seat 1 and the base material (aluminum material) of the cylinder head 2, and Cu—Al diffusion occurs at the interface P. Layers are generated (see Figure 8). The Cu—Al diffusion layer is formed, for example, in a region of 50% or more of the area of the interface P. The Cu—Al diffusion layer is a Cu—Al compound produced by mutual diffusion of copper and aluminum, and is composed of, for example, CuAl and / or CuAl 2 .

両部材1,2の界面Pから排出されたFe-Al化合物は、界面Pに隣接する領域に存在する。本実施形態では、図9に示すように、テーパ状の界面Pの母線方向両側に隣接する領域、具体的には、バルブシート1の円筒面状の外周面1cとこれに対向するシリンダヘッド2の内周面との間や、盗み部8dに流入した材料に、Fe-Al化合物が存在する。 The Fe—Al compound discharged from the interface P of both members 1 and 2 exists in the region adjacent to the interface P. In the present embodiment, as shown in FIG. 9, a region adjacent to both sides of the tapered interface P in the generatrix direction, specifically, a cylindrical outer peripheral surface 1c of the valve seat 1 and a cylinder head 2 facing the outer peripheral surface 1c. The Fe—Al compound is present in the material between the inner peripheral surface of the surface and the material flowing into the stealing portion 8d.

上記のように両部材1,2を加圧通電して、界面PからFe-Al化合物を排出すると共に、界面PにCu-Al化合物を生成する際、バルブシート1中に分散した銅が、バルブシート1中を流れる電流の経路に沿って、バルブシート1とシリンダヘッド2との界面(電極10による加圧力が作用するバルブシート1の外周テーパ面1bとシリンダヘッド2のテーパ面8eとの界面)Pに向けて移動する(図9の点線矢印参照)。本実施形態では、シリンダヘッド2に接合する前のバルブシート1中に銅が均一に分散しているため、上記のように、バルブシート1内に分散した銅が界面Pに向けて移動することにより、バルブシート1内の銅の分布が不均一となる。具体的には、図9に示すように、シリンダヘッド2に接合された後のバルブシート1において、界面P付近の領域Qにおける銅の濃度が、他の領域における銅の濃度よりも低くなっている(図9では、銅を散点で表している)。図示例では、領域Qには銅がほとんど存在していない。 When both members 1 and 2 are pressurized and energized as described above to discharge the Fe—Al compound from the interface P and generate the Cu—Al compound at the interface P, the copper dispersed in the valve seat 1 is generated. Along the path of the current flowing through the valve seat 1, the interface between the valve seat 1 and the cylinder head 2 (the outer peripheral tapered surface 1b of the valve seat 1 on which the pressure applied by the electrode 10 acts and the tapered surface 8e of the cylinder head 2 (Intersection) Moves toward P (see the dotted arrow in FIG. 9). In the present embodiment, since the copper is uniformly dispersed in the valve seat 1 before being joined to the cylinder head 2, the copper dispersed in the valve seat 1 moves toward the interface P as described above. As a result, the distribution of copper in the valve seat 1 becomes non-uniform. Specifically, as shown in FIG. 9, in the valve seat 1 after being joined to the cylinder head 2, the concentration of copper in the region Q near the interface P becomes lower than the concentration of copper in the other regions. (In FIG. 9, copper is represented by scattered dots). In the illustrated example, copper is scarcely present in the region Q.

以上により、バルブシート1及びシリンダヘッド2の母材同士が、両部材1,2の界面P(本実施形態ではバルブシート1の外周テーパ面1bとシリンダヘッド2のテーパ面8eとの界面P)において、脆いFe-Al化合物層を介することなく、Cu-Al拡散層を介して固相状態で接合されるため、両部材1,2を強固に接合することができる。その後、必要に応じてバルブシート1に切削加工を施して、バルブシート1とシリンダヘッド2との接合が完了する。尚、界面Pには、Fe-Al化合物層が全く存在しないことが理想的であるが、界面PにFe-Al化合物層が僅かに残っていても問題ない。 As described above, the base materials of the valve seat 1 and the cylinder head 2 are at the interface P of both members 1 and 2 (in the present embodiment, the interface P between the outer peripheral tapered surface 1b of the valve seat 1 and the tapered surface 8e of the cylinder head 2). In the above, since the bonding is performed in a solid phase state via the Cu—Al diffusion layer without the intervention of the brittle Fe—Al compound layer, both members 1 and 2 can be firmly bonded. After that, if necessary, the valve seat 1 is machined to complete the joining between the valve seat 1 and the cylinder head 2. Ideally, there is no Fe—Al compound layer at the interface P, but there is no problem even if a small amount of the Fe—Al compound layer remains at the interface P.

本発明は、上記の実施形態に限られない。例えば、上記の実施形態では、接合前のバルブシート1中に銅が均一に分散している場合を示したが、これに限られない。例えば、接合前のバルブシート1中の銅を偏析させ、シリンダヘッド2との界面Pを形成する外周テーパ面1b付近における銅の濃度が相対的に高くなるようにしてもよい。これにより、加圧通電時に界面Pに向けて移動する銅の量が増えて、界面Pにおける銅の濃度が高められ、界面PにCu-Al拡散層が形成されやすくなる。 The present invention is not limited to the above embodiment. For example, in the above embodiment, the case where copper is uniformly dispersed in the valve seat 1 before joining is shown, but the present invention is not limited to this. For example, the copper in the valve seat 1 before joining may be segregated so that the concentration of copper in the vicinity of the outer peripheral tapered surface 1b forming the interface P with the cylinder head 2 is relatively high. As a result, the amount of copper that moves toward the interface P during pressurization and energization increases, the concentration of copper at the interface P increases, and the Cu—Al diffusion layer is likely to be formed at the interface P.

具体的には、例えば図10に示すように、接合前のバルブシート1の外周テーパ面1b付近のみの銅の密度を高くし(密な散点で示す)、その他の領域の銅の密度を低くしてもよい(疎な散点で示す)。あるいは、バルブシート1のうち、相対的に電流密度が高くなる領域、具体的には、図11に示すように、電極10が当接する内周テーパ面1aから、界面Pを形成する外周テーパ面1bに至る最短の通電経路に沿った領域における銅の密度を高くし(密な散点で示す)、その他の領域の銅の密度を低くしてもよい(疎な散点で示す)。 Specifically, for example, as shown in FIG. 10, the density of copper is increased only in the vicinity of the outer peripheral tapered surface 1b of the valve seat 1 before joining (indicated by dense scattering points), and the density of copper in other regions is increased. May be low (indicated by sparse dots). Alternatively, in the valve seat 1, the region where the current density is relatively high, specifically, as shown in FIG. 11, the outer peripheral tapered surface forming the interface P from the inner peripheral tapered surface 1a with which the electrode 10 abuts. The density of copper in the region along the shortest energization path to 1b may be increased (indicated by dense scattering points), and the density of copper in other regions may be decreased (indicated by sparse scattering points).

また、本発明は、鉄系焼結材からなる第1の部材(バルブシート1)が環状をなし、第1の部材を第2の部材(シリンダヘッド2)の内周に取り付けた場合を示したが、これに限られない。例えば、アルミニウム材からなる第2の部材の外周に、鉄系材料からなる第1の部材を取り付ける際に、本発明を適用してもよい。また、第1の部材は環状に限らず、その他の形状であってもよい。また、本発明は、バルブシートとシリンダヘッドとの接合に限らず、鉄系焼結材とアルミニウム材とを接合する場合であれば、用途によらずに適用することができる。 Further, the present invention shows a case where the first member (valve seat 1) made of an iron-based sintered material forms an annular shape and the first member is attached to the inner circumference of the second member (cylinder head 2). However, it is not limited to this. For example, the present invention may be applied when the first member made of an iron-based material is attached to the outer periphery of the second member made of an aluminum material. Further, the first member is not limited to the annular shape, and may have other shapes. Further, the present invention is not limited to joining the valve seat and the cylinder head, but can be applied regardless of the application as long as the iron-based sintered material and the aluminum material are joined.

本発明の接合方法における適切な条件を探るために、以下の試験を行った。具体的には、鉄系焼結材からなる第1の部材と、アルミニウム材からなる第2の部材とを、加圧力及び通電量が異ならせて接合した複数の試験片を作製し、各試験片の接合強度(抜け強度)を測定した。第1の部材及び第2の部材の材質及び形状は、上記の実施形態のバルブシート1及びシリンダヘッド2(特にシート取付部8)に準ずる。加圧力としては、第1の部材を押し込む加圧力(通電中の最大加圧力)を、この加圧力が加わる第1の部材と第2の部材との接触面(界面P)の加圧方向の投影面積で割った値(単位面積当たりの加圧力)を算出した。また、通電量としては、両部材間に流す電流値の最大値を、両部材の接触面(界面P)の加圧方向の投影面積で割った値(電流密度)を算出した。 The following tests were conducted in order to find appropriate conditions for the joining method of the present invention. Specifically, a plurality of test pieces are prepared by joining a first member made of an iron-based sintered material and a second member made of an aluminum material at different pressures and energization amounts, and each test is performed. The joint strength (removal strength) of the pieces was measured. The materials and shapes of the first member and the second member conform to the valve seat 1 and the cylinder head 2 (particularly the seat mounting portion 8) of the above embodiment. As the pressing force, the pressing force for pushing the first member (maximum pressing force during energization) is the pressurizing direction of the contact surface (interface P) between the first member and the second member to which the pressing force is applied. The value divided by the projected area (pressurization per unit area) was calculated. Further, as the energization amount, a value (current density) was calculated by dividing the maximum value of the current value flowing between the two members by the projected area of the contact surface (interface P) of both members in the pressurizing direction.

図12は、各試験片の条件(加圧力及び通電量)を示すグラフである。これらのうち、実施例1、比較例1及び2で示す試験片の試験条件および試験結果を、下記の表1に示す。 FIG. 12 is a graph showing the conditions (pressurized pressure and energized amount) of each test piece. Of these, the test conditions and test results of the test pieces shown in Example 1, Comparative Examples 1 and 2 are shown in Table 1 below.

Figure 0007033826000001
Figure 0007033826000001

図12のグラフで示す試験片のうち、ひし形で示したもの、すなわち、電流密度が2.9A/mmに満たないもの、あるいは、単位面積あたりの加圧力が370MPaに満たないものは、接合強度が弱く、具体的には引抜き強度が5kN以下であった。例えば比較例1は、通電量が低いため、両部材の界面にFe-Al化合物層もCu-Al拡散層もほとんど形成されていなかった。この比較例1は、引抜き試験では、低荷重(3.97kN)で界面が破断した。また、比較例2は、通電量は高めであるが、加圧力が低いため、両部材の界面のFe-Al化合物層が排出されず、Cu-Al拡散層はほとんど形成されていなかった。この比較例2は、引抜き試験では、低荷重(1.47kN)で界面、特にFe-Al化合物層が破断した。 Among the test pieces shown in the graph of FIG. 12, those shown in diamonds, that is, those having a current density of less than 2.9 A / mm 2 or those having a pressing force of less than 370 MPa per unit area are joined. The strength was weak, specifically, the pull-out strength was 5 kN or less. For example, in Comparative Example 1, since the amount of energization was low, neither the Fe—Al compound layer nor the Cu—Al diffusion layer was formed at the interface between the two members. In Comparative Example 1, the interface was broken under a low load (3.97 kN) in the pull-out test. Further, in Comparative Example 2, although the energization amount was high, the pressing force was low, so that the Fe—Al compound layer at the interface between the two members was not discharged, and the Cu—Al diffusion layer was hardly formed. In Comparative Example 2, in the drawing test, the interface, particularly the Fe—Al compound layer, was broken under a low load (1.47 kN).

これに対し、図12のグラフで示す試験片のうち、四角形で示したもの、すなわち、電流密度が2.9A/mm以上で、且つ、単位面積あたりの加圧力が370MPa以上のものは、接合強度が強く、具体的には引抜き強度が5kN以上であった。これらの実施例1では、通電量及び加圧力が十分に高く、界面に高い熱量(入熱量)が供給されたと推定される。具体的に、実施例1の両部材の界面には、Fe-Al化合物層は形成されておらず、Cu-Al拡散層が十分に形成されていた。この実施例1は、引抜き試験では、界面は破断せず、母材(アルミニウム材)が破断し、そのときの荷重は30kN以上であった。これらの結果から、両部材の界面にCu-Al拡散層を形成することで、両部材の接合強度(引抜き強度)が大幅に高められることが確認された。また、そのための条件としては、電流密度を2.9A/mm以上とし、単位面積あたりの加圧力を370MPa以上とすることが好ましいことが明らかになった。 On the other hand, among the test pieces shown in the graph of FIG. 12, those shown in squares, that is, those having a current density of 2.9 A / mm 2 or more and a pressing force of 370 MPa or more per unit area are used. The joint strength was strong, and specifically, the pull-out strength was 5 kN or more. In these Examples 1, it is presumed that the energization amount and the pressing force were sufficiently high, and a high heat amount (heat input amount) was supplied to the interface. Specifically, the Fe—Al compound layer was not formed at the interface between the two members of Example 1, and the Cu—Al diffusion layer was sufficiently formed. In Example 1, in the pull-out test, the interface was not broken, the base material (aluminum material) was broken, and the load at that time was 30 kN or more. From these results, it was confirmed that the bonding strength (pulling strength) of both members was significantly increased by forming the Cu—Al diffusion layer at the interface between the two members. Further, as the conditions for that, it was clarified that it is preferable that the current density is 2.9 A / mm 2 or more and the pressing force per unit area is 370 MPa or more.

一方、図12のグラフで示す試験片のうち、三角形で示したもの、すなわち、電流密度が3.6A/mmより大きく、あるいは、単位面積あたりの加圧力が650MPaより大きいものは、両部材間の通電量あるいは加圧力が大きすぎるため、鉄系焼結材の焼けや、アルミニウム材のへたり、あるいは爆飛が生じるおそれがある。従って、通電量及び加圧力は、上記のような不具合が生じないように設定され、具体的には、通電密度を3.6A/mm以下、単位面積あたりの加圧力を650MPa以下とすることが好ましい。 On the other hand, among the test pieces shown in the graph of FIG. 12, those shown by triangles, that is, those having a current density of more than 3.6 A / mm 2 or a pressing force of more than 650 MPa per unit area are both members. Since the amount of current applied or the pressure applied between them is too large, there is a risk that the iron-based sintered material will be burnt, the aluminum material will be sagging, or the material will explode. Therefore, the energization amount and the pressing force are set so as not to cause the above-mentioned problems. Specifically, the energizing density is 3.6 A / mm 2 or less, and the pressing force per unit area is 650 MPa or less. Is preferable.

1 バルブシート(第1の部材)
2 シリンダヘッド(第2の部材)
3 燃焼室
4 吸気ポート
5 排気ポート
6 バルブ
8 シート取付部
10 電極
C1,C2 被膜
P 第1の部材と第2の部材との界面
1 Valve seat (first member)
2 Cylinder head (second member)
3 Combustion chamber 4 Intake port 5 Exhaust port 6 Valve 8 Seat mounting part 10 Electrodes C1, C2 Coating P Interface between the first member and the second member

Claims (2)

銅を含む鉄系焼結材からなる第1の部材と、アルミニウム材からなる第2の部材とを接合するための方法であって、
前記第1の部材を前記第2の部材に押し付けながら両部材間に通電することにより、両部材の界面に生成されたFe-Al化合物層を前記界面から排出すると共に、前記界面にCu-Al拡散層を生成させる異種金属材料の接合方法。
It is a method for joining a first member made of an iron-based sintered material containing copper and a second member made of an aluminum material.
By energizing between the two members while pressing the first member against the second member, the Fe—Al compound layer generated at the interface between the two members is discharged from the interface and Cu—Al is discharged to the interface. A method of joining dissimilar metal materials to form a diffusion layer.
前記第2の部材に接合する前の前記第1の部材中に、銅を均一に分散させた請求項1に記載の異種金属材料の接合方法。 The method for joining a dissimilar metal material according to claim 1, wherein copper is uniformly dispersed in the first member before joining to the second member.
JP2018062330A 2018-03-28 2018-03-28 How to join dissimilar metal materials Active JP7033826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018062330A JP7033826B2 (en) 2018-03-28 2018-03-28 How to join dissimilar metal materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018062330A JP7033826B2 (en) 2018-03-28 2018-03-28 How to join dissimilar metal materials

Publications (2)

Publication Number Publication Date
JP2019171423A JP2019171423A (en) 2019-10-10
JP7033826B2 true JP7033826B2 (en) 2022-03-11

Family

ID=68166199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062330A Active JP7033826B2 (en) 2018-03-28 2018-03-28 How to join dissimilar metal materials

Country Status (1)

Country Link
JP (1) JP7033826B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125889A (en) 2009-12-16 2011-06-30 Kobe Steel Ltd Different material joining joint and different material joining method
US20170297134A1 (en) 2016-04-19 2017-10-19 GM Global Technology Operations LLC Resistance spot welding aluminum to steel using preplaced metallurgical additives

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3335036B2 (en) * 1995-03-31 2002-10-15 ヤマハ発動機株式会社 Joint type valve seat

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125889A (en) 2009-12-16 2011-06-30 Kobe Steel Ltd Different material joining joint and different material joining method
US20170297134A1 (en) 2016-04-19 2017-10-19 GM Global Technology Operations LLC Resistance spot welding aluminum to steel using preplaced metallurgical additives

Also Published As

Publication number Publication date
JP2019171423A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP7154722B2 (en) Iron-based sintered alloy valve seats for internal combustion engines
US7726026B1 (en) Powdered metal inlay
JP3740858B2 (en) Joined metal member and method of joining the member
JP3752830B2 (en) Joined metal member and method of joining the member
EP0795377B1 (en) Process for producing deposits on localized areas of superalloy workpieces
EP0743428B1 (en) Valve seat insert
CA3044225A1 (en) Composite valve plugs and related methods
JPH08246821A (en) Valve seat
JP7033826B2 (en) How to join dissimilar metal materials
JP4701309B2 (en) Exhaust valve spindle for internal combustion engine and method of manufacturing the same
EP1485582A1 (en) Lightweight valve
JPH09239566A (en) Method for joining different metallic materials
JP4104778B2 (en) Cylinder inner surface coating method
JP3797853B2 (en) Method for producing aluminum alloy composite member by current bonding
JPH0658116A (en) Valve seat
JP4013297B2 (en) Method for joining metal members
JP2003096531A (en) Piston for internal combustion engine
JP7582367B2 (en) Hot forging dies
JP4178568B2 (en) Method of joining metal members
JPH11285846A (en) Joining method of metallic member
JP2843644B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JP3752833B2 (en) Method for joining metal members
JP3752831B2 (en) Method for joining metal members
JPH1190619A (en) Method and device for joining metallic member
JP3752832B2 (en) Method and apparatus for joining metal members

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7033826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150