JP7027177B2 - Correction information generation method, drawing method, correction information generation device and drawing device - Google Patents
Correction information generation method, drawing method, correction information generation device and drawing device Download PDFInfo
- Publication number
- JP7027177B2 JP7027177B2 JP2018007939A JP2018007939A JP7027177B2 JP 7027177 B2 JP7027177 B2 JP 7027177B2 JP 2018007939 A JP2018007939 A JP 2018007939A JP 2018007939 A JP2018007939 A JP 2018007939A JP 7027177 B2 JP7027177 B2 JP 7027177B2
- Authority
- JP
- Japan
- Prior art keywords
- measurement position
- measurement
- design
- correction information
- correction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/68—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Description
本発明は、基板上の目印の位置情報に基づいて、基板に描画する画像の描画データの補正に利用される補正情報を生成する技術に関する。 The present invention relates to a technique for generating correction information used for correction of drawing data of an image drawn on a substrate based on the position information of a mark on the substrate.
従来より、半導体基板やプリント基板、あるいは、プラズマ表示装置や液晶表示装置用のガラス基板等(以下、「基板」という。)に形成された感光材料に光を照射することにより、パターンの描画が行われている。近年、パターンの高精細化に伴い、感光材料上にて光ビームを走査してパターンを直接描画する描画装置が利用されている。 Conventionally, a pattern can be drawn by irradiating a photosensitive material formed on a semiconductor substrate, a printed circuit board, a glass substrate for a plasma display device, a liquid crystal display device, or the like (hereinafter, referred to as "board") with light. It is done. In recent years, with the increase in definition of patterns, drawing devices that directly draw a pattern by scanning a light beam on a photosensitive material have been used.
例えば、特許文献1の描画装置では、表面に複数の半導体チップがマウントされたウエハ(いわゆる、モールドウエハ)に対して、光学ヘッドから変調レーザ光を照射することにより、CADデータで記述されたパターンが各半導体チップに重ねて描画される。
For example, in the drawing apparatus of
ところで、上述のようなモールドウエハでは、半導体チップのマウント時の位置ずれやモールド時に発生する応力に起因する位置ずれが生じる。このような離散的な位置ずれを補正して描画を行うため、特許文献1に記載の描画装置では、ウエハ全体を撮像した測定画像において一の目印を注目目印とし、その測定位置から縦方向または横方向に所定の距離だけ離れた隣接中心位置を中心とする隣接領域に含まれる目印を隣接目印として抽出して測定位置を取得する。このような取得工程を、測定画像上の全目印の測定位置が取得されるまで、隣接目印を新たな注目目印としながら繰り返す。そして、測定画像上の全目印の測定位置を目印の設計位置に対応付けるペアリング処理を行った後で、対応付けられた各目印の測定位置と設計位置との差に基づいて、CADデータ(描画データ)を補正するための補正情報を生成している。
By the way, in the mold wafer as described above, the position shift due to the position shift at the time of mounting the semiconductor chip and the stress generated at the time of molding occurs. In order to correct such discrete positional deviation and perform drawing, in the drawing apparatus described in
しかしながら、上記ペアリング処理では、全ての目印が測定画像に含まれ、目印が検出されることを前提としている。したがって、基板上の汚れなどにより目印を検出することができない場合には、当該目印以降について測定位置を求めることができず、ペアリング処理を正しく行うことができない。 However, in the above pairing process, it is premised that all the marks are included in the measurement image and the marks are detected. Therefore, when the mark cannot be detected due to dirt on the substrate or the like, the measurement position cannot be obtained after the mark, and the pairing process cannot be performed correctly.
この発明は上記課題に鑑みなされたものであり、基板に描画する画像の描画データの補正に利用される補正情報を生成する際に必要となる目印のペアリング処理を安定して行うことができる技術を提供することを目的とする。 The present invention has been made in view of the above problems, and can stably perform a mark pairing process required for generating correction information used for correction of drawing data of an image drawn on a substrate. The purpose is to provide technology.
この発明の第1態様は、基板上において格子状に配置された複数の目印の位置情報に基づいて、基板に描画する画像の描画データの補正に利用される補正情報を生成する補正情報生成方法であって、(a)複数の目印の設計位置を準備する工程と、(b)複数の目印を撮影して測定画像を取得する工程と、(c)測定画像における各目印の測定位置を取得する工程と、(d)(c)工程により取得された各測定位置を設計位置に対応付ける工程と、(e)(d)工程により対応付けられた測定位置と設計位置との差に基づいて、描画データの補正に利用される補正情報を生成する工程とを備え、(d)工程は、 (d-1)複数の測定位置から、第1方向と直交する第2方向における位置ずれが一定の許容範囲に収まりつつ第1方向に一列状に配列される複数の目印の測定位置を測定位置列として収集する工程と、(d-2)複数の設計位置のうち測定位置列に対応する設計位置を設計位置列として収集する工程と、(d-3)測定位置列を構成する測定位置毎に設計位置列のうち測定位置に対して最近傍の設計位置を対応付ける工程とを有し、(d-1)工程、(d-2)工程および(d-3)工程を、第1方向と直交する第2方向に配置される測定位置列毎に行うことを特徴としている。 A first aspect of the present invention is a correction information generation method for generating correction information used for correction of drawing data of an image drawn on a substrate based on the position information of a plurality of marks arranged in a grid pattern on the substrate. Therefore, (a) a step of preparing design positions for a plurality of marks, (b) a step of photographing a plurality of marks to acquire a measurement image, and (c) acquiring a measurement position of each mark in the measurement image. Based on the steps to be performed, the step of associating each measurement position acquired by the steps (d) and (c) with the design position, and the difference between the measurement position and the design position associated with the steps (e) and (d). It includes a step of generating correction information used for correction of drawing data, and in the step (d) , the positional deviation from a plurality of measurement positions (d-1) in the second direction orthogonal to the first direction is constant. The process of collecting the measurement positions of a plurality of marks arranged in a row in the first direction while being within the permissible range as a measurement position sequence, and (d-2) the design position corresponding to the measurement position sequence among the plurality of design positions. It has a step of collecting as a design position sequence and a step of (d-3) associating the design position closest to the measurement position in the design position sequence for each measurement position constituting the measurement position sequence, and (d). -1) The step, the step (d-2) and the step (d-3) are performed for each measurement position sequence arranged in the second direction orthogonal to the first direction.
また、この発明の第2態様は、基板上において格子状に配置された複数の目印の位置情報に基づいて、基板に描画する画像の描画データの補正に利用される補正情報を生成する補正情報生成装置であって、複数の目印の設計位置を記憶する設計位置記憶部と、複数の目印を撮影した測定画像における各目印の測定位置を取得する測定位置取得部と、測定位置取得部により取得された各測定位置を目印の設計位置に対応付けるペアリング処理部と、ペアリング処理部により対応付けられた測定位置と設計位置との差に基づいて、描画データの補正に利用される補正情報を生成する補正情報生成部とを備え、ペアリング処理部は、複数の測定位置から、第1方向と直交する第2方向における位置ずれが一定の許容範囲に収まりつつ第1方向に一列状に配列される複数の目印の測定位置を測定位置列として取得するとともに複数の設計位置のうち測定位置列に対応する複数の設計位置を設計位置列として取得して測定位置列を構成する測定位置毎に設計位置列のうち最近傍の設計位置を対応付ける、列ペアリング動作を第1方向と直交する第2方向に配置される各測定位置列について行うことを特徴としている。 Further, the second aspect of the present invention is correction information that generates correction information used for correction of drawing data of an image drawn on the board based on the position information of a plurality of marks arranged in a grid pattern on the board. It is a generation device, and is acquired by a design position storage unit that stores the design positions of a plurality of marks, a measurement position acquisition unit that acquires the measurement position of each mark in a measurement image obtained by photographing a plurality of marks, and a measurement position acquisition unit. Based on the difference between the pairing processing unit that associates each measured position with the design position of the mark and the measurement position and design position associated with the pairing processing unit, the correction information used for correction of drawing data is obtained. The pairing processing unit is provided with a correction information generation unit to generate, and the pairing processing unit is arranged in a row in the first direction while the positional deviation in the second direction orthogonal to the first direction is within a certain allowable range from a plurality of measurement positions. The measurement positions of a plurality of marks to be measured are acquired as a measurement position sequence, and a plurality of design positions corresponding to the measurement position sequences among a plurality of design positions are acquired as a design position sequence for each measurement position constituting the measurement position sequence. It is characterized in that a column pairing operation for associating the nearest design position among the design position sequences is performed for each measurement position sequence arranged in the second direction orthogonal to the first direction.
また、この発明の第3態様は、基板上において格子状に配置された複数の目印の位置情報に基づいて、基板に描画する画像の描画データの補正に利用される補正情報を生成する補正情報生成装置であって、複数の目印の設計位置を記憶する設計位置記憶部と、複数の目印を撮影した測定画像における各目印の測定位置を取得する測定位置取得部と、測定位置取得部により取得された各測定位置を目印の設計位置に対応付けるペアリング処理部と、ペアリング処理部により対応付けられた測定位置と設計位置との差に基づいて、描画データの補正に利用される補正情報を生成する補正情報生成部とを備え、ペアリング処理部は、複数の測定位置から第1方向に一列状に配列される複数の測定位置を測定位置列として取得するとともに複数の設計位置のうち測定位置列に対応する複数の設計位置を設計位置列として取得して測定位置列を構成する測定位置毎に設計位置列のうち最近傍の設計位置を対応付ける、列ペアリング動作を第1方向と直交する第2方向に配置される各測定位置列について行うことを特徴としている。 Further, the third aspect of the present invention is correction information that generates correction information used for correction of drawing data of an image drawn on the board based on the position information of a plurality of marks arranged in a grid pattern on the board. It is a generation device, and is acquired by a design position storage unit that stores the design positions of a plurality of marks, a measurement position acquisition unit that acquires the measurement position of each mark in a measurement image obtained by photographing a plurality of marks, and a measurement position acquisition unit. Based on the difference between the pairing processing unit that associates each measured position with the design position of the mark and the measurement position and design position associated with the pairing processing unit, the correction information used for correction of drawing data is obtained. The pairing processing unit is provided with a correction information generation unit to generate, and the pairing processing unit acquires a plurality of measurement positions arranged in a line in a first direction from a plurality of measurement positions as a measurement position sequence and measures among a plurality of design positions. A column pairing operation is orthogonal to the first direction, in which a plurality of design positions corresponding to a position row are acquired as a design position row and the nearest design position among the design position rows is associated with each measurement position constituting the measurement position row. It is characterized in that it is performed for each measurement position sequence arranged in the second direction.
さらに、この発明の第4態様は、基板上に画像を描画する描画装置であって、光源部と、上記補正情報生成装置と、補正情報生成装置により生成された補正情報を利用して基板に描画する画像の描画データを補正する描画データ補正部と、描画データ補正部により補正された描画データに基づいて光源部からの光を変調する光変調部と、光変調部により変調された光を基板上にて走査する走査機構とを備えることを特徴としている。 Further, a fourth aspect of the present invention is a drawing device for drawing an image on a substrate, which is formed on a substrate by using a light source unit, the correction information generation device, and correction information generated by the correction information generation device. A drawing data correction unit that corrects the drawing data of the image to be drawn, an optical modulation unit that modulates the light from the light source unit based on the drawing data corrected by the drawing data correction unit, and light modulated by the optical modulation unit. It is characterized by being provided with a scanning mechanism that scans on a substrate.
このように構成された発明では、測定画像に含まれる目印の測定位置から測定位置列が収集されるとともに、その測定位置列に対応する設計位置列が収集される。こうして相互に関連する測定位置列および設計位置列が抽出された後で測定位置列を構成する測定位置が設計位置列の設計位置に対応付けられてペアリングされる。したがって、本来的には測定位置列に含まれるべき測定位置が欠けていたとしても、その他の測定位置について設計位置とペアリングされる。 In the invention configured as described above, the measurement position sequence is collected from the measurement position of the mark included in the measurement image, and the design position sequence corresponding to the measurement position sequence is collected. After the interrelated measurement position sequence and design position sequence are extracted in this way, the measurement positions constituting the measurement position sequence are associated with the design position of the design position sequence and paired. Therefore, even if the measurement position that should be originally included in the measurement position sequence is missing, the other measurement positions are paired with the design position.
以上のように、本発明によれば、基板上の汚れなどにより複数の目印のうちの一部を検出することができない場合であっても、残りの目印について測定位置と設計位置とを対応付けることができ、ペアリング処理の安定化を図ることができる。 As described above, according to the present invention, even if a part of a plurality of marks cannot be detected due to dirt on the substrate or the like, the measurement position and the design position are associated with each other for the remaining marks. It is possible to stabilize the pairing process.
図1は本発明の一の実施の形態に係る描画装置である直描装置1の概略構成を示す図である。直描装置1は、レジスト等の感光材料の層である感光層が形成された基板9の上面に光を照射して基板9上にパターンの画像を描画する装置である。基板9は、半導体基板、プリント配線基板、カラーフィルタ用基板、液晶表示装置、有機EL表示装置、プラズマ表示装置等のフラットパネル表示装置用ガラス基板、記録ディスク用基板等の様々な基板であってよい。
FIG. 1 is a diagram showing a schematic configuration of a
直描装置1は、ステージ11、ステージ移動機構12、光源部13、光学ヘッド14、搬送ロボット15、カセット載置部16、基台17、カバー18、制御部19等を有する。カバー18は、基台17の上方を覆い、基板9が処理される処理空間を形成する。処理空間内には、ステージ11、ステージ移動機構12、光源部13、光学ヘッド14および搬送ロボット15が配置される。光源部13は処理空間外に配置されてもよい。直描装置1には、図示省略のアライメントユニットも設けられる。
The
ステージ移動機構12は、基台17上に配置される。ステージ移動機構12は、Y方向移動機構121と、X方向移動機構122と、回転機構123とを含む。ステージ11は、その上面に基板9を水平姿勢にて保持する。ステージ移動機構12は、ステージ11と共に基板9を移動する移動機構である。回転機構123は、ステージ11を上下方向であるZ方向を向く中心軸を中心に回転する。X方向移動機構122は、回転機構123およびステージ11を、副走査方向であるX方向に移動する。X方向は、Z方向に垂直な水平方向である。Y方向移動機構121は、X方向移動機構122、回転機構123およびステージ11を、主走査方向であるY方向に移動する。Y方向は、Z方向およびX方向に垂直な水平方向である。
The
Y方向移動機構121は、リニアモータと、ガイドレール212とを有し、リニアモータによりX方向移動機構122をガイドレール212に沿って移動する。X方向移動機構122も、リニアモータ221と、ガイドレール222とを有し、リニアモータ221により回転機構123をガイドレール222に沿って移動する。
The Y-
光源部13は、基台17に固定された支柱131により支持される。光学ヘッド14は、光源部13に接続される。光学ヘッド14の数は2以上であってもよく、この場合、例えば、光学ヘッド14はX方向に配列される。光源部13は、レーザ駆動部と、レーザ発振器と、光学系とを含む。光源部13にて生成された光ビームは光学ヘッド14へと導かれる。
The
光学ヘッド14は、光源部13からの光を変調する光変調部である空間光変調器141を含む。空間光変調器141は、例えば、GLV(登録商標)(Grating Light Valve)である。空間光変調器141は、DMD(Digital Mirror Device)等であってもよい。光学ヘッド14は、光源部13からの光ビームを光束断面が線状である線状光に変換して空間光変調器141へと導く光学系と、空間光変調器141にて空間変調された光ビームを基板9へと導く光学系とをさらに含む。
The
未処理の基板9は、カセット161に収納された状態でカセット載置部16に載置される。基板9は搬送ロボット15によりカバー18の開口を介してカセット161から取り出され、ステージ11上に載置される。そして、制御部19によりアライメントユニットが制御され、基板9のXY方向の位置および回転位置が調整される。
The
ステージ11はY方向移動機構121によりY方向に移動し、並行して光学ヘッド14から空間変調された光ビームが基板9に向けて出射され、基板9にパターンが描画される。Y方向の移動が完了すると、X方向移動機構122によりステージ11はX方向にステップ移動し、Y方向移動機構121より前回とは逆の方向に移動しつつ描画が行われる。上記動作を繰り返して基板9上の描画すべき領域全体に描画が行われると、搬送ロボット15により基板9はステージ11からカセット161へと搬送される。
The stage 11 moves in the Y direction by the Y-
直描装置1では、ステージ移動機構12は、空間光変調器141により変調された光を基板9上にて走査する走査機構である。なお、当該走査機構として、固定されたステージ11上において光学ヘッド14をX方向およびY方向に移動する機構が設けられてもよい。直描装置1は、基板9の上面91を撮像する撮像部21をさらに備える。撮像部21は、例えば、光学ヘッド14に取り付けられる。
In the
図2は基板の上面の一例を示す平面図である。基板9は、略円板状の半導体基板上に複数の半導体チップ92をマウントし、樹脂により当該複数の半導体チップ92をモールドしたもの(いわゆる、モールド基板)である。各半導体チップ92は、平面視において略矩形状である。図2に示す例では、各半導体チップ92の左上の角部に目印93が設けられる。目印93は、例えば、各半導体チップ92の上面に設けられたアライメントマークである。目印93は、半導体チップ92の上面に設けられたパターンの一部等であってもよい。図2では、目印93を黒丸にて示すが、目印93の形状は様々に変更されてよい。また、半導体チップ92の数および配置、並びに、目印93の数および配置も様々に変更されてよい。
FIG. 2 is a plan view showing an example of the upper surface of the substrate. The
複数の目印93は、基板9上において図2中の横方向(X方向)および縦方向(Y方向)に、格子状に配置される。以下の説明では、X方向およびY方向を、単に「横方向」および「縦方向」とも呼ぶ。また、後述するようにY方向に一列状に配置された目印列単位で測定位置の収集を行うことから、図2に示すようにX方向における最上流側でY方向に一列に配置された4つの目印93をまとめて目印列941と呼び、当該目印列941を構成する4つの目印93をそれぞれ目印93a~93dと呼ぶ。また、それ以外の目印列942~944についても同様である。つまり、目印列942を構成する4つの目印93をそれぞれ目印93e~93hと呼び、目印列943を構成する4つの目印93をそれぞれ目印93i~93lと呼び、目印列944を構成する4つの目印93をそれぞれ目印93m~93pと呼ぶ。
The plurality of
直描装置1では、基板9上の目印93の位置情報に基づいて、制御部19により基板9に描画する画像の描画データが補正され、補正済みの描画データに基づいて、複数の半導体チップ92上にパターンが描画される。描画データの補正については後述する。基板9では、複数の半導体チップ92の上面が、それぞれにパターンが描画される複数のパターン描画領域である。
In the
図3は制御部の機能を示すブロック図である。図3では、制御部19に接続される直描装置1の構成の一部を併せて示す。制御部19は、各種演算処理を行うCPUと、基本プログラムを記憶するROMと、各種情報を記憶するRAMとを含む一般的なコンピュータシステムの構成となっている。制御部19の機能は専用の電気的回路により実現されてもよく、部分的に専用の電気的回路が用いられてもよい。
FIG. 3 is a block diagram showing the functions of the control unit. FIG. 3 also shows a part of the configuration of the
図3に示すように、制御部19は、補正情報生成装置31と、描画データ補正部32とを備える。補正情報生成装置31は、設計位置記憶部311と、測定位置取得部312と、ペアリング処理部313と、補正情報生成部314とを備える。補正情報生成装置31は、基板9上の目印93の位置情報に基づいて、基板9に描画する画像の描画データの補正に利用される補正情報を生成する。描画データ補正部32は、補正情報生成装置31により生成された補正情報を利用して、基板9に描画する画像の描画データを補正する。
As shown in FIG. 3, the
次に、直描装置1による基板9上への画像の描画の流れを、図4を参照しつつ説明する。直描装置1では、まず、基板9上において縦方向および横方向に格子状に配置された複数の目印93の設計位置が、補正情報生成装置31の設計位置記憶部311により記憶されることにより準備される(ステップS1)。すなわち、目印93a~93pの設定位置は、例えば、基板9上に描画される予定の画像の設計データであるCADデータから抽出され、設計位置記憶部311に記憶される。このため、補正情報生成装置31は目印93a~93pの設定位置の全部あるいは一部を適宜収集することが可能となっている。
Next, the flow of drawing an image on the
当該設計データでは、各目印列941~944における目印93のY方向間隔(後で説明する図9中の間隔PT)ならびに目印列941~944のX方向間隔はいずれも約2mmに設定されているが、それらは互いに異なっていてもよい。また、2mmに限定されるものでもない。
In the design data, the Y-direction spacing of the
続いて、撮像部21により、ステージ11上の基板9の上面91が撮像され、基板9の画像(以下、「測定画像」という。)が取得される(ステップS2)。基板9の測定画像は、基板9上の全目印93を撮影した画像である。撮像部21により取得された測定画像は、制御部19の測定位置取得部312へと送られる。
Subsequently, the
測定位置取得部312では、測定画像に含まれる目印像(図示省略)が画像認識され、全目印93の位置が取得され、RAMに一時的に記憶される(ステップS3)。以下の説明では、測定画像上における目印の位置を「測定位置」といい、上記ステップS3の実行により取得される目印93a~93pの測定位置をそれぞれ測定位置Pa(xa,ya)~Pp(xp,yp)、あるいは単に測定位置Pa~Ppと呼ぶ。なお、測定画像から目印93の測定位置を求める方法について従来より周知のものを用いることができるため、ここでは詳しい説明を省略する。
The measurement
こうして、全目印93について設計位置および測定位置の取得が完了すると、ペアリング処理部313でペアリング処理が実行され、各目印93の測定位置と設計位置とが対応付けられる(ステップS4)。なお、ペアリング処理については後で詳述する。
In this way, when the acquisition of the design position and the measurement position for all the
次のステップS5では、各目印93について、上記ペアリング処理により互いに対応付けられた測定位置と設計位置との差に基づいて、描画データの補正に利用される補正情報が生成される。具体的には、各目印93の測定位置の設計位置からのずれが、各目印93に対応する半導体チップ92の設計位置からの位置ずれとして取得され、基板9上の全ての半導体チップ92の位置ずれをそれぞれ補正する補正情報が生成される。なお、後で説明するようにペアリング処理において回転補正やシフト補正を実行する場合には、これらの補正内容を考慮して補正情報の生成が行われる。
In the next step S5, for each
上述のように補正情報が取得されると、描画データ補正部32により、当該補正情報を利用して基板9に描画する予定の画像の描画データが補正される(ステップS6)。具体的には、描画データに含まれる各半導体チップ92に描画される予定のパターンの位置が、各半導体チップ92の設計位置からの位置ずれを示す補正情報に基づいて補正される。そして、補正された描画データに基づいて、空間光変調器141およびステージ移動機構12が制御されることにより、変調された光が基板上にて走査される。これにより、描画データに含まれる各半導体チップ92用のパターンが、対応する各半導体チップ92上に、半導体チップ92の位置ずれを考慮した上で正確に描画される(ステップS7)。
When the correction information is acquired as described above, the drawing
次に、図5ないし図10を参照しつつペアリング処理について詳述する。図5は補正情報を生成する際に行われるペアリング処理を示すフローチャートである。このペアリング処理は測定画像に基づき測定された各目印93の位置、つまり測定位置を設計位置と対応付ける処理である。この実施形態では、単に基板9に対する半導体チップ92の位置ずれが発生しているだけでなく、基板9自体が予め設定した基準位置に対して回転したり、シフト変位してステージ11に載置されている可能性がある。このような回転やシフト変位が大きな場合には、このような回転やシフト変位が生じたままペアリング処理を行うと、精度低下を招くおそれがある。そこで、本実施形態では図4に示すように測定位置と設計位置とのペアリングを行う前に、ステップS41~S43を実行することによって、基板9が載置されたステージ11を実際に回転させたり、X方向やY方向にシフト移動させたりすることなく、データ上で測定位置を回転補正するとともに、シフト補正により測定位置をオフセットすることで、測定位置と設計位置との位置ずれに回転やシフト変位による位置ずれ成分が含まれるのを抑制している。
Next, the pairing process will be described in detail with reference to FIGS. 5 to 10. FIG. 5 is a flowchart showing a pairing process performed when the correction information is generated. This pairing process is a process of associating the position of each
より具体的には、ペアリング処理部313が図6に示す回転角度の算出処理(ステップS41)を実行して基板9の回転角度を算出する。この算出処理では、全目印93の測定位置を用いるのではなく、Y方向に一列状に配列された測定位置列を抜き出し、当該測定位置列を用いている。例えば目印列941を構成する目印93a~93dの測定位置Pa(xa,ya)~Pd(xd,yd)を用いる場合、それらが全測定位置から抜き出され、回転角度算出用の測定位置列として機能する。なお、以下において、上記した「測定位置列」とは、Y方向に一列状に配列される測定位置群を意味しており、例えば図7中では、目印列941の測定位置Pa(xa,ya)~Pd(xd,yd)により構成される測定位置列P941と、目印列942の測定位置Pe(xe,ye)~Ph(xh,yh)により構成される測定位置列P942が図示されている。
More specifically, the
上記測定位置列の抜出のために、本実施形態ではペアリング処理部313は、2種類の記憶部、つまりListMes記憶部313aおよびListLeft記憶部313bを設けている。また、後で説明するペアリング処理のためにペアリング処理部313はさらにListCAD記憶部313cを有している。これらのうちListMes記憶部313aでは、回転角度の算出処理の開始直後に、全測定位置Pa(xa,ya)~Pp(xp,yp)が記憶される(ステップS411)。
In order to extract the measurement position sequence, in the present embodiment, the
次のステップS412では、ListMes記憶部313aに記憶された測定位置Pa(xa,ya)~Pp(xp,yp)がX座標で昇順ソートされる。例えば図7の(a)欄に示すように測定位置PaがX方向の最上流に位置している場合には、目印93a~93dの配列順序の通り、測定位置Pa(xa,ya)がListMes記憶部313aで先頭に位置する。一方、同図の(b)欄に示すように測定位置PbがX方向の最上流に位置している場合には、測定位置Pb(xb,yb)がListMes記憶部313aで先頭に位置する。そして、昇順ソートを受けたListMes記憶部313aの先頭に位置する測定位置がListMes記憶部313aから取り出され、位置P0としてペアリング処理部313のListLeft記憶部313bに記憶される(ステップS413)。
In the next step S412, the measurement positions Pa (xa, ya) to Pp (xp, yp) stored in the
この位置P0は測定位置列の抜出開始位置を意味しており、ここから図7の下側に向けて測定位置を検索して収集する測定位置の下側検索・収集処理(ステップS414)と、図7の上側に向けて測定位置を検索して収集する測定位置の上側検索・収集処理(ステップS415)とを順番に実行する。なお、これら2つの処理は、検索方向が反対である点を除き、実質的に同一であるため、下側検索・収集処理(ステップS414)について図8および図9を参照しつつ詳述し、上側検索・収集処理(ステップS415)の説明を省略する。 This position P0 means the extraction start position of the measurement position sequence, and the lower search / collection process (step S414) of the measurement position for searching and collecting the measurement position toward the lower side of FIG. 7 from here. , The upper side search / collection process (step S415) of the measurement position for searching and collecting the measurement position toward the upper side of FIG. 7 is executed in order. Since these two processes are substantially the same except that the search directions are opposite, the lower search / collection process (step S414) will be described in detail with reference to FIGS. 8 and 9. The description of the upper search / collection process (step S415) will be omitted.
図8はY方向に一列状に配列される測定位置を検索し、抜き出して収集する下側検索・収集処理を示すフローチャートである。図9は図8で実行される判定条件を模式的に示す図である。ここでは、最初に基準位置p_ref(xr,yr)として位置P0が設定される(ステップS414a)。そして、基準位置p_ref(xr,yr)から下側(図9の下方側)に測定位置p_ref.next()が存在するか否かが判定される(ステップS414b)。例えば図9の(a)欄に示すように基準位置p_ref(xr,yr)から下側に間隔PTだけ離れた近傍位置に別の測定位置が存在する場合には、それが測定位置p_ref.next()に相当する一方、同図の(b)欄に示すように上記近傍位置で測定位置が欠け、基準位置p_ref(xr,yr)から下側に間隔(2×PT)だけ離れた近傍位置に別の測定位置が存在する場合には、それが測定位置p_ref.next()に相当する。なお、基準位置p_ref(xr,yr)の下側に測定位置p_ref.next()が存在しない(ステップS414bで「NO」)場合には、下側検索・収集処理(ステップS414)が終了され、上側検索・収集処理(ステップS415)に進む。 FIG. 8 is a flowchart showing a lower search / collection process of searching for measurement positions arranged in a row in the Y direction and extracting and collecting them. FIG. 9 is a diagram schematically showing the determination conditions executed in FIG. Here, the position P0 is first set as the reference position p_ref (xr, yr) (step S414a). Then, from the reference position p_ref (xr, yr) to the lower side (lower side in FIG. 9), the measurement position p_ref. It is determined whether or not next () exists (step S414b). For example, as shown in the column (a) of FIG. 9, when another measurement position exists in the vicinity position which is separated from the reference position p_ref (xr, yr) by the interval PT, it is the measurement position p_ref. While it corresponds to next (), as shown in the column (b) of the figure, the measurement position is missing at the vicinity position, and the vicinity is separated from the reference position p_ref (xr, yr) by an interval (2 × PT). If another measurement position exists at the position, it is the measurement position p_ref. Corresponds to next (). The measurement position p_ref is located below the reference position p_ref (xr, yr). If next () does not exist (“NO” in step S414b), the lower search / collection process (step S414) is terminated, and the process proceeds to the upper search / collection process (step S415).
ステップS414bで測定位置p_ref.next()の存在が確認されると、図8および図9に示すように位置p_curとして測定位置p_ref.next()が設定され(ステップS414c)、ステップS414dに進む。このステップS414dでは、以下の判定条件Aを満足しているか否かが判定される。この判定条件Aは、X座標に関する条件とY座標に関する条件とを有している。具体的には、X座標に関する条件は、位置p_curのX座標p_cur.xが次の不等式
p_ref.x-α<p_cur.x<p_ref.x+α
ただし、p_ref.xは基準位置p_refのX座標、つまりxr、
αは位置ずれの許容値であり、例えば間隔PTの1/10の値、
を満足することを意味している。
In step S414b, the measurement position p_ref. When the presence of next () is confirmed, the measurement position p_ref is set as the position p_cur as shown in FIGS. 8 and 9. next () is set (step S414c), and the process proceeds to step S414d. In this step S414d, it is determined whether or not the following determination condition A is satisfied. This determination condition A has a condition relating to the X coordinate and a condition relating to the Y coordinate. Specifically, the condition regarding the X coordinate is that the X coordinate p_cur of the position p_cur. x is the following inequality p_ref. x-α <p_cur. x <p_ref. x + α
However, p_ref. x is the X coordinate of the reference position p_ref, that is, xr,
α is an allowable value of misalignment, for example, 1/10 of the interval PT,
Means to be satisfied.
また、判定条件AのY座標に関する条件は、位置p_curのY座標p_cur.yが次の不等式
p_ref.y-PT+α<p_cur.y<p_ref.y-3×PT-α
ただし、p_ref.yは基準位置p_refのY座標、つまりxy、
を満足することを意味している。つまり、これらを含む判定条件Aを満足することは例えば図9中の破線で示す許容領域内に収まっており、測定位置p_curが基準位置p_ref(xr,yr)の下側でY方向に一列状に配列され、測定位置列を構成する測定位置であることを意味している。
Further, the condition regarding the Y coordinate of the determination condition A is the Y coordinate p_cur. y is the following inequality p_ref. y-PT + α <p_cur. y <p_ref. y-3 × PT-α
However, p_ref. y is the Y coordinate of the reference position p_ref, that is, xy,
Means to be satisfied. That is, satisfying the determination condition A including these is, for example, within the allowable region shown by the broken line in FIG. 9, and the measurement position p_cur is arranged in a row in the Y direction below the reference position p_ref (xr, yr). It means that it is a measurement position that is arranged in the above and constitutes a measurement position sequence.
そこで、ステップS414dで判定条件Aが満足されて「True」と判定されると、測定位置p_curが測定位置列を構成する測定位置としてListMes記憶部313aから取り出され、ListLeft記憶部313bに記憶される(ステップS414e)とともに、測定位置p_curが新たな基準位置p_refとされた(ステップS414f)後でステップS414bに戻る。したがって、ステップS414dで「True」と判定される間、Y方向に一列状に配列される測定位置が順次ListMes記憶部313aから取り出されListLeft記憶部313bに記憶される。
Therefore, when the determination condition A is satisfied in step S414d and the determination is "True", the measurement position p_cur is taken out from the
一方、ステップS414dで判定条件Aが満足されず「False」と判定されると、ステップS414gに進み、ListMes記憶部313aに上記測定位置p_curの次の測定位置p_cur.next()が存在するか否かが判定される。そして、次の測定位置p_cur.next()が存在する場合には、これが新たな測定位置p_curとされ(ステップS414h)、ステップS414dに戻る。
On the other hand, if the determination condition A is not satisfied in step S414d and it is determined to be "False", the process proceeds to step S414g, and the
このような一連の処理を実行することにより、先頭の位置P0からY方向に一列状に配列された測定位置がListMes記憶部313aから取り出される。例えば図7の(a)欄に示すケースでは測定位置Pa~Pdが取り出され収集される一方、図7の(b)欄に示すケースでは測定位置Pb~Pdが取り出され収集される。
By executing such a series of processes, the measurement positions arranged in a line in the Y direction from the head position P0 are taken out from the
こうした下側検索・収集処理(ステップS414)のみを行うと、図7の(b)欄に示すケースでは、本来収集されるべき測定位置Paの収集が失念されるが、下側検索・収集処理(ステップS)に続いて上側検索・収集処理(ステップS415)が実行されることで、図7の(b)欄のケースにおける測定位置Paも確実に収集される。そこで、本実施形態では、上記したように下側検索・収集処理(ステップS414)と上側検索・収集処理(ステップS415)を連続的に行っている。そして、これらに続いて収集された測定位置の個数、つまり収集個数が所定のしきい値を超えているが否かが判定される(ステップS416)。 If only such a lower search / collection process (step S414) is performed, in the case shown in the column (b) of FIG. 7, the collection of the measurement position Pa that should be originally collected is forgotten, but the lower search / collection process is performed. By executing the upper search / collection process (step S415) following (step S), the measurement position Pa in the case in the column (b) of FIG. 7 is surely collected. Therefore, in the present embodiment, as described above, the lower search / collection process (step S414) and the upper search / collection process (step S415) are continuously performed. Then, it is determined whether or not the number of measurement positions collected subsequently, that is, the number of collections exceeds a predetermined threshold value (step S416).
ステップS416で「NO」と判定した場合、換言すると回転角度の算出に充分な測定位置が収集されていない場合には、ListLeft記憶部313bの記憶内容がクリアされる(ステップS417)とともに測定位置を取り出す先頭ポジション(ListMes記憶部313aから最初に測定位置を取り出すメモリアドレス)が変更された(ステップS418)後でステップS413に戻って上記一連の処理(ステップS413~S416)が繰り返される。これによって測定位置列P941の代わりに他の測定位置列P942などが回転補正用として新たに取り出される。
When a determination of "NO" is made in step S416, in other words, when a measurement position sufficient for calculating the rotation angle has not been collected, the stored content of the
一方、ステップS416で「YES」と判定される、つまり測定位置列がY方向にある程度延びて測定位置列の傾き、つまり基板9の回転角度を算出することが可能となっている場合には、ステップS419に進む。ここでは、収集した測定位置に基づく線分近似により回転角度が算出される。
On the other hand, when it is determined as "YES" in step S416, that is, the measurement position sequence extends to some extent in the Y direction and the inclination of the measurement position sequence, that is, the rotation angle of the
図5に戻って説明を続ける。上記のようにして回転角度の算出(ステップS41)が完了すると、回転角度だけ逆方向に全測定位置Pa~Ppが回転され、測定位置の回転補正が実行される(ステップS42)。また、回転補正された全測定位置Pa~PpがX方向およびY方向にシフト移動されて測定位置Pa~Ppのオフセットが実行される(ステップS43)。これらによって、例えば図7の(c)欄に示すように、測定位置Pa~Ppが設計位置(同図中の四角印)に対してアライメントされる。その結果、基板9の回転やステージ11に対する基板9の載置ずれなどの影響を抑えることができる。
The explanation will be continued by returning to FIG. When the calculation of the rotation angle (step S41) is completed as described above, all the measurement positions Pa to Pp are rotated in the opposite direction by the rotation angle, and the rotation correction of the measurement position is executed (step S42). Further, all the rotation-corrected measurement positions Pa to Pp are shifted and moved in the X direction and the Y direction, and the offset of the measurement positions Pa to Pp is executed (step S43). As a result, for example, as shown in column (c) of FIG. 7, the measurement positions Pa to Pp are aligned with respect to the design position (square mark in the figure). As a result, it is possible to suppress the influence of the rotation of the
次に、ステップS44~S48が測定位置列P941~P944の数だけ繰り返されて測定位置列ごとに測定位置と設計位置とのペアリングを行う。すなわち、ペアリングが完了していない測定位置列P941~P944のうち一つを選択する(ステップS44)とともに選択された測定位置列を構成する測定位置が収集される(ステップS45)。 Next, steps S44 to S48 are repeated for the number of measurement position rows P941 to P944, and pairing of the measurement position and the design position is performed for each measurement position row. That is, one of the measurement position sequences P941 to P944 for which pairing has not been completed is selected (step S44), and the measurement positions constituting the selected measurement position sequence are collected (step S45).
図10は選択された測定位置列を構成する測定位置の収集動作を示すフローチャートである。この収集動作(ステップS45)では、回転補正およびシフト補正を受けた測定位置の全てがListMes記憶部313aに記憶された(ステップS450)後にX座標で昇順ソートされる(ステップS451)。そして、昇順ソートされた測定位置からY方向に一列分の測定位置が収集される(ステップS452~S459)。その具体的な収集手法は、判定条件を除き、基本的には図8に示した下側検索・収集(ステップS414a~S414h)と同一である。例えばX方向における最上流の測定位置列P941を収集する場合には、位置P0として昇順ソート後のListMes記憶部313aに記憶された先頭の測定位置が取り出され、ListLeft記憶部313bに記憶される。そして、当該位置P0が基準位置p_ref(xr,yr)として設定される(ステップS452)。
FIG. 10 is a flowchart showing a collection operation of measurement positions constituting the selected measurement position sequence. In this collection operation (step S45), all the measurement positions subjected to the rotation correction and the shift correction are stored in the
次に、基準位置p_ref(xr,yr)から下側に測定位置p_ref.next()が存在するか否かが判定され(ステップS453)、測定位置p_ref.next()の存在が確認されると、位置p_curとして測定位置p_ref.next()が設定され(ステップS454)、ステップS455に進む。このステップS455では、以下の判定条件Cを満足しているか否かが判定される。この判定条件CはX座標に関する条件のみで構成されている。というのも、ListMes記憶部313aに記憶されている測定位置は回転補正およびシフト補正を受けたものであり、収集の対象となる測定位置はほぼY方向に一列状に配列されているからである。そこで、ステップS455では、位置p_curのX座標p_cur.xが次の不等式
p_ref.x-α<p_cur.x<p_ref.x+α
を満足するか否かを判定している。そして、判定条件Cを満足している(ステップS456で「True」)、つまり測定位置p_curが収集対象となる測定位置列を構成する測定位置であると判定されると、測定位置p_curがペアリング対象の測定位置としてListMes記憶部313aから取り出され、ListLeft記憶部313bに記憶される(ステップS456)とともに、測定位置p_curが新たな基準位置p_refとされた(ステップS457)後でステップS453に戻る。したがって、ステップS455で「True」と判定される間、収集対象となる測定位置が順次ペアリング対象としてListMes記憶部313aから取り出され、ListLeft記憶部313bに記憶される。
Next, the measurement position p_ref. Whether or not next () is present is determined (step S453), and the measurement position p_ref. When the existence of next () is confirmed, the measurement position p_ref. next () is set (step S454), and the process proceeds to step S455. In this step S455, it is determined whether or not the following determination condition C is satisfied. This determination condition C is composed only of the conditions related to the X coordinate. This is because the measurement positions stored in the
It is judged whether or not the satisfaction is satisfied. Then, when it is determined that the determination condition C is satisfied (“True” in step S456), that is, the measurement position p_cur is a measurement position constituting the measurement position sequence to be collected, the measurement position p_cur is paired. It is taken out from the
一方、ステップS455で判定条件Cが満足されず「False」と判定されると、ステップS458に進み、ListMes記憶部313aに上記測定位置p_curの次の測定位置p_cur.next()が存在するか否かが判定される。そして、次の測定位置p_cur.next()が存在する場合には、これが新たな測定位置p_curとされ(ステップS459)、ステップS455に戻る。このような一連の処理を実行することにより、位置P0からY方向に一列状に配列された測定位置がListMes記憶部313aから取り出されて収集され、ペアリングのための測定位置列が得られる。
On the other hand, if the determination condition C is not satisfied in step S455 and it is determined to be "False", the process proceeds to step S458, and the
図5に再び戻って説明を続ける。次のステップS46では、上記測定位置列に対応する一列分の設計位置がペアリング候補として設計位置記憶部311から収集され、ListCAD記憶部313cに記憶される(ステップS46)。それに続いて、ListLeft記憶部313bに記憶された測定位置がそれぞれListCAD記憶部313cに記憶された設計位置のうち最近傍のものに対応付けられ、ペアリングが行われる(ステップS47)。
Returning to FIG. 5 again, the explanation will be continued. In the next step S46, the design positions for one row corresponding to the measurement position row are collected from the design
このような一連の処理(ステップS44~S47)は、ペアリング未処理の測定位置列が存在する(ステップS48で「YES」)間、繰り返される。そして、全測定処理列についてペアリングが完了すると、ペアリング処理(ステップS4)が終了され、上記した補正情報の生成(ステップS5)および描画データの補正(ステップS6)が行われた後で基板9に対する描画が実行される(ステップS7)。 Such a series of processes (steps S44 to S47) is repeated as long as there is an unpaired measurement position sequence (“YES” in step S48). Then, when the pairing is completed for all the measurement processing columns, the pairing processing (step S4) is completed, and after the above-mentioned correction information generation (step S5) and drawing data correction (step S6) are performed, the substrate is used. Drawing for 9 is executed (step S7).
以上のように、本実施形態によれば、測定画像に含まれる目印93a~93pの測定位置Pa~PpからY方向に一列状に配列される測定位置Pa~Pdが測定位置列P941として収集される(ステップS45)とともに、その測定位置列P941に対応する設計位置列が収集される(ステップS46)。その上で、測定位置列P941を構成する測定位置Pa~Pdが設計位置列の設計位置に対応付けられてペアリングされる(ステップS47)。したがって、本来的には測定位置列P941に含まれるべき測定位置の一部が欠けていたとしても、その他の測定位置について設計位置と確実にペアリングされる。このような列ペアリング動作(ステップS45~S47)がX方向に配置される他の測定位置列P942~P944についても同様にして行われる。したがって、基板9上の汚れなどにより複数の目印93のうちの一部を検出することができない場合であっても、残りの目印93について測定位置と設計位置とを正しく対応付けることができ、ペアリング処理の安定化を図ることができる。
As described above, according to the present embodiment, the measurement positions Pa to Pd arranged in a row in the Y direction from the measurement positions Pa to Pp of the
また、このようにペアリング処理を正確に安定して行うことができることから基板9上に半導体チップ92を高密度に実装することができる。
Further, since the pairing process can be performed accurately and stably in this way, the
このように本実施形態では、ステップS1、S2、S3、S4、S5がそれぞれ本発明の「(a)工程」、「(b)工程」、「(c)工程」、「(d)工程」、「(e)工程」の一例に相当している。また、ステップSS41、S42、S43、S45、S46、S47がそれぞれ本発明の「(d-4)工程」、「(d-5)工程」、「(d-6)工程」、「(d-1)工程」、「(d-2)工程」、「(d-3)工程」の一例に相当している。また、ステップS45~S47が本発明の「列ペアリング動作」の一例に相当している。また、Y方向(縦方向)およびX方向(横方向)がそれぞれ本発明の「第1方向」および「第2方向」に相当している。 As described above, in the present embodiment, steps S1, S2, S3, S4, and S5 are the "(a) step", "(b) step", "(c) step", and "(d) step" of the present invention, respectively. , Corresponds to an example of "(e) step". Further, steps SS41, S42, S43, S45, S46, and S47 are the "(d-4) step", "(d-5) step", "(d-6) step", and "(d-)" of the present invention, respectively. It corresponds to an example of "1) step", "(d-2) step", and "(d-3) step". Further, steps S45 to S47 correspond to an example of the "column pairing operation" of the present invention. Further, the Y direction (vertical direction) and the X direction (horizontal direction) correspond to the "first direction" and the "second direction" of the present invention, respectively.
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば上記実施形態では、Y方向に測定位置を収集して測定位置列を取得しているが、その他の方向、例えばX方向に測定位置を収集して測定位置列を取得してもよい。 The present invention is not limited to the above-described embodiment, and various modifications can be made other than those described above as long as the present invention is not deviated from the gist thereof. For example, in the above embodiment, the measurement positions are collected in the Y direction to acquire the measurement position sequence, but the measurement positions may be collected in the other direction, for example, the X direction to acquire the measurement position sequence.
また、上記実施形態では、回転補正(ステップS42)およびシフト補正(ステップS43)を実行した後の測定位置に基づいて列ペアリング動作(ステップS45~S47)を繰り返して行っているが、回転補正およびシフト補正の少なくとも一方を省略してよい。つまり、回転補正のみを行った測定位置、シフト補正のみを行った測定位置、あるいは回転補正およびシフト補正のいずれも行うことなくステップS3で得られた測定位置を基づいて列ペアリング動作を実行してもよい。 Further, in the above embodiment, the column pairing operation (steps S45 to S47) is repeated based on the measurement position after the rotation correction (step S42) and the shift correction (step S43) are executed, but the rotation correction is performed. And at least one of the shift corrections may be omitted. That is, the column pairing operation is executed based on the measurement position obtained only by rotation correction, the measurement position obtained only by shift correction, or the measurement position obtained in step S3 without performing any rotation correction or shift correction. You may.
また、上記実施形態では、基板9の回転およびオフセットを行うことなく、データ上で回転補正(ステップS42)およびシフト補正(ステップS43)を行っているが、ペアリング処理において、回転補正(ステップS42)の代わりにステージ11を回転させることで回転補正を行うとともに、シフト補正(ステップS43)の代わりにステージ11をX方向およびY方向にシフト移動させてシフト補正を行って、設計位置に対して基板9を機械的にアライメントしてもよい。この場合、当該アライメント後に測定画像を改めて取得するとともに当該測定画像上の全目印の測定位置を改めて取得するのが望ましい。
Further, in the above embodiment, rotation correction (step S42) and shift correction (step S43) are performed on the data without rotating and offsetting the
また、上記実施形態では、回転補正は測定位置を用いて行われているが、目印93以外に基板9の上面91に複数のアライメントマークが設けられている場合には、これらのアライメントマークを撮像して得られる位置情報に基づいて回転補正やシフト補正を行ってもよい。
Further, in the above embodiment, the rotation correction is performed using the measurement position, but when a plurality of alignment marks are provided on the upper surface 91 of the
さらに、補正情報生成装置31は、基板9上の目印の位置情報に基づいて基板9に描画する画像の描画データの補正に利用される補正情報を生成する装置(例えば、上述のようなコンピュータシステム)として、単独で使用されてもよい。あるいは、補正情報生成装置31は直描装置1以外の装置と共に使用されてもよい。
Further, the correction
この発明は、基板上の目印の位置情報に基づいて、前記基板に描画する画像の描画データの補正に利用される補正情報を生成する技術全般に適用することができる。 INDUSTRIAL APPLICABILITY The present invention can be applied to all techniques for generating correction information used for correction of drawing data of an image drawn on the substrate based on the position information of a mark on the substrate.
1…直描装置(描画装置)
9…基板
12…ステージ移動機構(走査機構)
13…光源部
31…補正情報生成装置
32…描画データ補正部
93a~93p…目印
141…空間光変調器(光変調部)
311…設計位置記憶部
312…測定位置取得部
313…ペアリング処理部
313a…ListMes記憶部
313b…ListLeft記憶部
313c…ListCAD記憶部
314…補正情報生成部
P941~P944…測定位置列
Pa~Pp…測定位置
1 ... Direct drawing device (drawing device)
9 ...
13 ...
311 ... Design
Claims (6)
(a)前記複数の目印の設計位置を準備する工程と、
(b)前記複数の目印を撮影して測定画像を取得する工程と、
(c)前記測定画像における各目印の測定位置を取得する工程と、
(d)前記(c)工程により取得された各測定位置を前記設計位置に対応付ける工程と、
(e)前記(d)工程により対応付けられた測定位置と設計位置との差に基づいて、描画データの補正に利用される補正情報を生成する工程とを備え、
前記(d)工程は、
(d-1)前記複数の測定位置から、第1方向と直交する第2方向における位置ずれが一定の許容範囲に収まりつつ前記第1方向に一列状に配列される複数の目印の測定位置を測定位置列として収集する工程と、
(d-2)前記複数の設計位置のうち前記測定位置列に対応する設計位置を設計位置列として収集する工程と、
(d-3)前記測定位置列を構成する測定位置毎に前記設計位置列のうち前記測定位置に対して最近傍の設計位置を対応付ける工程とを有し、
前記(d-1)工程、前記(d-2)工程および前記(d-3)工程を、前記第1方向と直交する第2方向に配置される前記測定位置列毎に行う
ことを特徴とする補正情報生成方法。 It is a correction information generation method that generates correction information used for correction of drawing data of an image drawn on the substrate based on the position information of a plurality of marks arranged in a grid pattern on the substrate.
(A) The process of preparing the design positions of the plurality of marks and
(B) A step of photographing the plurality of marks to acquire a measurement image, and
(C) A step of acquiring the measurement position of each mark in the measurement image and
(D) A step of associating each measurement position acquired in the step (c) with the design position, and
(E) A step of generating correction information used for correction of drawing data based on the difference between the measurement position and the design position associated with the step (d) is provided.
The step (d) is
(D-1) The measurement positions of a plurality of marks arranged in a row in the first direction while the positional deviation in the second direction orthogonal to the first direction is within a certain allowable range from the plurality of measurement positions. The process of collecting as a measurement position sequence and
(D-2) A step of collecting the design positions corresponding to the measurement position rows among the plurality of design positions as the design position rows, and
(D-3) Each measurement position constituting the measurement position sequence includes a step of associating the nearest design position with respect to the measurement position in the design position sequence.
The feature is that the step (d-1), the step (d-2), and the step (d-3) are performed for each measurement position sequence arranged in the second direction orthogonal to the first direction. How to generate correction information.
前記(d)工程は、
(d-4)前記第1方向および前記第2方向を含む平面において前記(c)工程により取得された前記測定位置が前記設計位置に対して回転している回転角度を求める工程と、
(d-5)前記回転角度だけ前記設計位置に対して前記測定位置を相対的に回転させて補正する工程とを有し、
前記全測定位置列について前記(d-1)工程、前記(d-2)工程および前記(d-3)工程を実行するのに先立って前記(d-4)工程および前記(d-5)工程を実行するとともに、前記(d-5)工程の実行により得られる補正済の測定位置に基づいて前記(d-1)工程、前記(d-2)工程および前記(d-3)工程を実行する補正情報生成方法。 The amendment information generation method according to claim 1.
The step (d) is
(D-4) A step of obtaining a rotation angle at which the measurement position acquired by the step (c) is rotated with respect to the design position on a plane including the first direction and the second direction.
(D-5) The step includes a step of rotating the measurement position relative to the design position by the rotation angle to correct the measurement position.
The steps (d-4) and (d-5) above are performed prior to performing the steps (d-1), (d-2) and (d-3) for all the measurement position sequences. While executing the step, the step (d-1), the step (d-2) and the step (d-3) are performed based on the corrected measurement position obtained by executing the step (d-5). How to generate correction information to be executed.
前記(d)工程は、
(d-4)前記第1方向および前記第2方向を含む平面において前記(c)工程により取得された前記測定位置が前記設計位置に対して回転している回転角度を求める工程と、
(d-5)前記回転角度だけ前記設計位置に対して前記測定位置を相対的に回転させて補正する工程と、
(d-6)前記平面内において前記(d-5)工程により補正された測定位置を前記設計位置に対してシフトさせて補正する工程とを有し、
前記全測定位置列について前記(d-1)工程、前記(d-2)工程および前記(d-3)工程を実行するのに先立って前記(d-4)工程、前記(d-5)工程および前記(d-6)工程を実行するとともに、前記(d-6)工程の実行により得られる補正済の測定位置に基づいて前記(d-1)工程、前記(d-2)工程および前記(d-3)工程を実行する補正情報生成方法。 The amendment information generation method according to claim 1.
The step (d) is
(D-4) A step of obtaining a rotation angle at which the measurement position acquired by the step (c) is rotated with respect to the design position on a plane including the first direction and the second direction.
(D-5) A step of correcting the measurement position by rotating it relative to the design position by the rotation angle.
(D-6) has a step of shifting and correcting the measurement position corrected by the step (d-5) in the plane with respect to the design position.
The step (d-4), the step (d-5), and the steps (d-5) prior to executing the step (d-1), the step (d-2), and the step (d-3) for all the measurement position sequences. The step (d-1), the step (d-2) and the step (d-2) and the step (d-2) and the step (d-2) and the step (d-2) and the step (d-2) are executed based on the corrected measurement position obtained by executing the step and the step (d-6). A correction information generation method for executing the step (d-3).
請求項1ないし3のいずれか一項に記載の補正情報生成方法により補正情報を取得する工程と、
前記補正情報を利用して基板に描画する画像の描画データを補正する工程と、
補正された描画データに基づいて変調された光を基板上にて走査する工程と、
を備えることを特徴とする描画方法。 It is a drawing method that draws an image on a board.
A step of acquiring correction information by the correction information generation method according to any one of claims 1 to 3.
The process of correcting the drawing data of the image drawn on the board by using the correction information, and
The process of scanning the light modulated based on the corrected drawing data on the substrate, and
A drawing method characterized by being provided with.
前記複数の目印の設計位置を記憶する設計位置記憶部と、
前記複数の目印を撮影した測定画像における各目印の測定位置を取得する測定位置取得部と、
前記測定位置取得部により取得された各測定位置を前記目印の前記設計位置に対応付けるペアリング処理部と、
前記ペアリング処理部により対応付けられた測定位置と設計位置との差に基づいて、描画データの補正に利用される補正情報を生成する補正情報生成部とを備え、
前記ペアリング処理部は、前記複数の測定位置から、第1方向と直交する第2方向における位置ずれが一定の許容範囲に収まりつつ前記第1方向に一列状に配列される複数の目印の測定位置を測定位置列として取得するとともに前記複数の設計位置のうち前記測定位置列に対応する複数の設計位置を設計位置列として取得して前記測定位置列を構成する測定位置毎に前記設計位置列のうち最近傍の設計位置を対応付ける、列ペアリング動作を前記第1方向と直交する第2方向に配置される各測定位置列について行う
ことを特徴とする補正情報生成装置。 A correction information generation device that generates correction information used for correction of drawing data of an image drawn on the substrate based on the position information of a plurality of marks arranged in a grid pattern on the substrate.
A design position storage unit that stores the design positions of the plurality of marks, and
A measurement position acquisition unit that acquires the measurement position of each mark in the measurement image obtained by photographing the plurality of marks, and a measurement position acquisition unit.
A pairing processing unit that associates each measurement position acquired by the measurement position acquisition unit with the design position of the mark, and a pairing processing unit.
It is provided with a correction information generation unit that generates correction information used for correction of drawing data based on the difference between the measurement position and the design position associated with the pairing processing unit.
The pairing processing unit measures a plurality of marks arranged in a row in the first direction while the positional deviation in the second direction orthogonal to the first direction is within a certain allowable range from the plurality of measurement positions. The position is acquired as a measurement position sequence, and a plurality of design positions corresponding to the measurement position sequence among the plurality of design positions are acquired as a design position sequence, and the design position sequence is obtained for each measurement position constituting the measurement position sequence. A correction information generation device, characterized in that a column pairing operation for associating the nearest design position is performed for each measurement position sequence arranged in a second direction orthogonal to the first direction.
光源部と、
請求項5に記載の補正情報生成装置と、
前記補正情報生成装置により生成された補正情報を利用して基板に描画する画像の描画データを補正する描画データ補正部と、
前記描画データ補正部により補正された描画データに基づいて前記光源部からの光を変調する光変調部と、
前記光変調部により変調された光を前記基板上にて走査する走査機構と、
を備えることを特徴とする描画装置。 A drawing device that draws an image on a substrate.
Light source part and
The correction information generator according to claim 5 and
A drawing data correction unit that corrects drawing data of an image drawn on a substrate by using the correction information generated by the correction information generation device, and a drawing data correction unit.
An optical modulation unit that modulates the light from the light source unit based on the drawing data corrected by the drawing data correction unit, and
A scanning mechanism that scans the light modulated by the optical modulator on the substrate, and
A drawing device characterized by comprising.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018007939A JP7027177B2 (en) | 2018-01-22 | 2018-01-22 | Correction information generation method, drawing method, correction information generation device and drawing device |
PCT/JP2018/040860 WO2019142443A1 (en) | 2018-01-22 | 2018-11-02 | Method for generating correction information, drawing method, correction information generation device, and drawing device |
TW107143178A TWI709826B (en) | 2018-01-22 | 2018-12-03 | Correction information generating method, drawing method, correction information generating apparatus and drawing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018007939A JP7027177B2 (en) | 2018-01-22 | 2018-01-22 | Correction information generation method, drawing method, correction information generation device and drawing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019128375A JP2019128375A (en) | 2019-08-01 |
JP7027177B2 true JP7027177B2 (en) | 2022-03-01 |
Family
ID=67301408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018007939A Active JP7027177B2 (en) | 2018-01-22 | 2018-01-22 | Correction information generation method, drawing method, correction information generation device and drawing device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7027177B2 (en) |
TW (1) | TWI709826B (en) |
WO (1) | WO2019142443A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008124142A (en) | 2006-11-09 | 2008-05-29 | Dainippon Screen Mfg Co Ltd | Position detecting method and apparatus, pattern drawing apparatus, and object to be detected |
JP2010212383A (en) | 2009-03-09 | 2010-09-24 | Nikon Corp | Exposure method, exposure system, and device manufacturing method |
JP2014143335A (en) | 2013-01-25 | 2014-08-07 | Dainippon Screen Mfg Co Ltd | Drawing device and drawing method |
JP2017068002A (en) | 2015-09-30 | 2017-04-06 | 株式会社Screenホールディングス | Correction information creation device, drawing device, correction information creation method and drawing method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6278957B1 (en) * | 1993-01-21 | 2001-08-21 | Nikon Corporation | Alignment method and apparatus therefor |
JP3348918B2 (en) * | 1993-01-21 | 2002-11-20 | 株式会社ニコン | Alignment method, exposure method using the method, and device manufacturing method |
-
2018
- 2018-01-22 JP JP2018007939A patent/JP7027177B2/en active Active
- 2018-11-02 WO PCT/JP2018/040860 patent/WO2019142443A1/en active Application Filing
- 2018-12-03 TW TW107143178A patent/TWI709826B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008124142A (en) | 2006-11-09 | 2008-05-29 | Dainippon Screen Mfg Co Ltd | Position detecting method and apparatus, pattern drawing apparatus, and object to be detected |
JP2010212383A (en) | 2009-03-09 | 2010-09-24 | Nikon Corp | Exposure method, exposure system, and device manufacturing method |
JP2014143335A (en) | 2013-01-25 | 2014-08-07 | Dainippon Screen Mfg Co Ltd | Drawing device and drawing method |
JP2017068002A (en) | 2015-09-30 | 2017-04-06 | 株式会社Screenホールディングス | Correction information creation device, drawing device, correction information creation method and drawing method |
Also Published As
Publication number | Publication date |
---|---|
TWI709826B (en) | 2020-11-11 |
JP2019128375A (en) | 2019-08-01 |
TW201932990A (en) | 2019-08-16 |
WO2019142443A1 (en) | 2019-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100909159B1 (en) | Position detecting method, position detecting device, pattern drawing device and detected object | |
JP4484288B2 (en) | Image processing method and image processing system | |
US8886350B2 (en) | Displacement calculation method, drawing data correction method, substrate manufacturing method, and drawing apparatus | |
CN110582746A (en) | Three-dimensional object printing system and three-dimensional object printing method | |
JP7027177B2 (en) | Correction information generation method, drawing method, correction information generation device and drawing device | |
KR20190088546A (en) | Drawing device and drawing method | |
KR101588946B1 (en) | Drawing device and drawing method | |
KR20150138180A (en) | Lithographic device, lithographic exposure device, recording medium having program recorded thereon, and lithographic process | |
KR102721896B1 (en) | Substrate position detection method, drawing method, substrate position detection apparatus and drawing apparatus | |
JP6595870B2 (en) | Correction information generating apparatus, drawing apparatus, correction information generating method, and drawing method | |
JP7108480B2 (en) | Image processing device, mounting device, image processing method and program | |
JP5762072B2 (en) | Position detection method, pattern drawing method, pattern drawing apparatus, and computer program | |
KR102696052B1 (en) | Drawing apparatus, drawing method and, program recorded on storage medium | |
KR102696053B1 (en) | Drawing system, drawing method and, program recorded on storage medium | |
KR20150032772A (en) | Drawing apparatus, substrate processing system and drawing method | |
KR20150043322A (en) | Drawing device, exposure drawing device, drawing method, and recording medium whereon program is stored | |
JP7461240B2 (en) | Position detection device, drawing system, and position detection method | |
KR20150043329A (en) | Drawing device, exposure drawing device, drawing method, and recording medium whereon program is stored | |
KR20240041212A (en) | Template generating apparatus, drawing system, template generating method and program recorded on recording medium | |
KR20240041210A (en) | Method of acquiring drawing position information and Drawing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211020 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7027177 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |