[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7027144B2 - Elastic wave devices and their manufacturing methods and multiplexers - Google Patents

Elastic wave devices and their manufacturing methods and multiplexers Download PDF

Info

Publication number
JP7027144B2
JP7027144B2 JP2017235111A JP2017235111A JP7027144B2 JP 7027144 B2 JP7027144 B2 JP 7027144B2 JP 2017235111 A JP2017235111 A JP 2017235111A JP 2017235111 A JP2017235111 A JP 2017235111A JP 7027144 B2 JP7027144 B2 JP 7027144B2
Authority
JP
Japan
Prior art keywords
piezoelectric
film
resonators
piezoelectric film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017235111A
Other languages
Japanese (ja)
Other versions
JP2019103083A (en
Inventor
遼 岩城
眞司 谷口
時弘 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2017235111A priority Critical patent/JP7027144B2/en
Publication of JP2019103083A publication Critical patent/JP2019103083A/en
Application granted granted Critical
Publication of JP7027144B2 publication Critical patent/JP7027144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、弾性波デバイスおよびその製造方法並びにマルチプレクサに関し、例えば圧電薄膜共振器を有する弾性波デバイスおよびその製造方法並びにマルチプレクサに関する。 The present invention relates to an elastic wave device, a method for manufacturing the same, and a multiplexer, for example, an elastic wave device having a piezoelectric thin film resonator, a method for manufacturing the same, and a multiplexer.

圧電薄膜共振器を用いた弾性波デバイスは、例えば携帯電話等の無線機器のフィルタおよびデュプレクサとして用いられている。圧電薄膜共振器は、圧電膜を挟み下部電極と上部電極が対向する積層構造を有している。圧電膜を挟み下部電極と上部電極が対向する領域が共振領域である。単一の圧電膜を用いる複数の圧電薄膜共振器において圧電膜の膜厚を異ならせることが知られている(例えば特許文献1)。 Elastic wave devices using piezoelectric thin film resonators are used as filters and duplexers for wireless devices such as mobile phones. The piezoelectric thin film resonator has a laminated structure in which a lower electrode and an upper electrode face each other with a piezoelectric film interposed therebetween. The region where the lower electrode and the upper electrode face each other across the piezoelectric film is the resonance region. It is known that the film thickness of the piezoelectric film is different in a plurality of piezoelectric thin film resonators using a single piezoelectric film (for example, Patent Document 1).

特開2006-24995号公報Japanese Unexamined Patent Publication No. 2006-24995

単一の圧電膜を用いる圧電薄膜共振器において共振周波数を異ならせるためには、特許文献1のように圧電膜の膜厚を異ならせる、または一部の圧電薄膜共振器に質量付加膜を設けることを行う。このため、製造方法が煩雑になる。異なる共振周波数を有する圧電薄膜共振器を異なる圧電膜で形成すると、小型化が難しくなる。 In order to make the resonance frequency different in the piezoelectric thin film resonator using a single piezoelectric film, the thickness of the piezoelectric film is made different as in Patent Document 1, or a mass addition film is provided in some of the piezoelectric thin film resonators. Do that. Therefore, the manufacturing method becomes complicated. When piezoelectric thin film resonators having different resonance frequencies are formed of different piezoelectric films, miniaturization becomes difficult.

本発明は、上記課題に鑑みなされたものであり、製造を容易とすることまたは小型化することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to facilitate manufacturing or to reduce the size.

本発明は、基板と、前記基板の面上に設けられ、前記基板の前記面に平行な第1方向の一方から他方に行くにしたがい連続的に厚くなり、前記面に平行でかつ前記第1方向に交差する第2方向に沿った圧電膜の厚さの変化率は前記第1方向に沿った圧電膜の厚さの変化率より小さい単一の圧電膜と、前記第2方向に沿って複数設けられ、前記基板と前記圧電膜との間に設けられた第1下部電極と、前記圧電膜の一部を挟み前記第1下部電極と対向する第1上部電極と、を有する複数の第1圧電薄膜共振器と、前記複数の第1圧電薄膜共振器よりも前記第1方向の他方側に前記第2方向に沿って複数設けられ、前記基板と前記圧電膜との間に設けられた第2下部電極と、前記圧電膜の一部を挟み前記第2下部電極と対向する第2上部電極と、を有する複数の第2圧電薄膜共振器と、を備える弾性波デバイスである。
INDUSTRIAL APPLICABILITY The present invention is provided on a substrate and a surface of the substrate, and becomes continuously thicker from one of the first directions parallel to the surface of the substrate to the other , and is parallel to the surface and said to the first. The rate of change in the thickness of the piezoelectric film along the second direction intersecting in one direction is smaller than the rate of change in the thickness of the piezoelectric film along the first direction . A plurality of first lower electrodes provided between the substrate and the piezoelectric film, and a first upper electrode facing the first lower electrode with a part of the piezoelectric film interposed therebetween. A plurality of first piezoelectric thin film resonators are provided along the second direction on the other side of the first piezoelectric thin film resonator from the plurality of first piezoelectric thin film resonators, and are provided between the substrate and the piezoelectric film. It is an elastic wave device including a plurality of second piezoelectric thin film resonators having a second lower electrode and a second upper electrode facing the second lower electrode with a part of the piezoelectric film interposed therebetween.

上記構成において、第1入力端子から第1出力端子に至る第1経路に設けられそれぞれ前記複数の第1圧電薄膜共振器である複数の第1直列共振器と、一端が前記第1経路に電気的に接続され他端がグランドに電気的に接続されそれぞれ前記複数の第2圧電薄膜共振器である複数の第1並列共振器を有する第1ラダー型フィルタを備える構成とすることができる。 In the above configuration, a plurality of first series resonators provided in the first path from the first input terminal to the first output terminal, each of which is the plurality of first piezoelectric thin film resonators, and one end of which is electrically connected to the first path. A first ladder type filter having a plurality of first parallel resonators, each of which is electrically connected to the ground and the other end thereof is electrically connected to the ground, can be configured.

上記構成において、前記複数の第2圧電薄膜共振器よりも前記第1方向の他方側に前記第2方向に沿って複数設けられ、前記基板と前記圧電膜との間に設けられた第3下部電極と、前記圧電膜の一部を挟み前記第3下部電極と対向する第3上部電極と、を有する複数の第3圧電薄膜共振器と、前記複数の第3圧電薄膜共振器よりも前記第1方向の他方側に前記第2方向に沿って複数設けられ、前記基板と前記圧電膜との間に設けられた第4下部電極と、前記圧電膜の一部を挟み前記第4下部電極と対向する第4上部電極と、を有する複数の第4圧電薄膜共振器と、第2入力端子から第2出力端子に至る第2経路に直列に接続されそれぞれ前記複数の第3圧電薄膜共振器である複数の第2直列共振器と、一端が前記第2経路に電気的に接続され他端がグランドに電気的に接続されそれぞれ前記複数の第4圧電薄膜共振器である複数の第2並列共振器を有し、前記第1ラダー型フィルタの通過帯域より低い通過帯域を有する第2ラダー型フィルタと、を備える構成とすることができる。 In the above configuration, a plurality of third lower portions are provided along the second direction on the other side of the first direction with respect to the plurality of second piezoelectric thin film resonators, and are provided between the substrate and the piezoelectric film. A plurality of third piezoelectric thin-film resonators having an electrode and a third upper electrode having an electrode and a third upper electrode facing the third lower electrode with a part of the piezoelectric film sandwiched therein, and the first more than the plurality of third piezoelectric thin-film resonators. A plurality of fourth lower electrodes provided along the second direction on the other side of one direction and provided between the substrate and the piezoelectric film, and the fourth lower electrode sandwiching a part of the piezoelectric film. A plurality of fourth piezoelectric thin film resonators having facing fourth upper electrodes, and the plurality of third piezoelectric thin film resonators connected in series to a second path from the second input terminal to the second output terminal, respectively. A plurality of second series resonators, one end of which is electrically connected to the second path and the other end of which is electrically connected to the ground, and a plurality of second parallel resonators, each of which is the plurality of fourth piezoelectric thin film resonators. It can be configured to include a second rudder type filter having a device and having a passing band lower than the passing band of the first rudder type filter.

上記構成において、前記圧電膜の厚さは前記第2方向に沿って略一定である構成とすることができる。 In the above configuration, the thickness of the piezoelectric film can be substantially constant along the second direction.

本発明は、上記弾性波デバイスを含むマルチプレクサである。 The present invention is a multiplexer including the elastic wave device.

本発明は、基板と、前記基板の面上に設けられ、前記基板の前記面に平行な第1方向の一方から他方に行くにしたがい連続的に厚くなり、前記面に平行でかつ前記第1方向に交差する第2方向に沿った圧電膜の厚さの変化率は前記第1方向に沿った圧電膜の厚さの変化率より小さい単一の圧電膜と、前記第2方向に沿って複数設けられ、共通端子から第1端子に至る第1経路に設けられ、前記基板と前記圧電膜との間に設けられた第1下部電極と、前記圧電膜の一部を挟み前記第1下部電極と対向する第1上部電極と、を有する複数の第1直列共振器と、一端が前記第1経路に電気的に接続され他端がグランドに電気的に接続され、前記複数の第1直列共振器よりも前記第1方向の他方側に前記第2方向に沿って複数設けられ、前記基板と前記圧電膜との間に設けられた第2下部電極と、前記圧電膜の一部を挟み前記第2下部電極と対向する第2上部電極と、を有する複数の第1並列共振器と、を備える第1ラダー型フィルタと、前記共通端子から第2端子に至る第2経路に設けられ、前記複数の第1並列共振器よりも前記第1方向の他方側に前記第2方向に沿って複数設けられ、前記基板と前記圧電膜との間に設けられた第3下部電極と、前記圧電膜の一部を挟み前記第3下部電極と対向する第3上部電極と、を有する複数の第2直列共振器と、一端が前記第2経路に電気的に接続され他端がグランドに電気的に接続され、前記複数の第2直列共振器よりも前記第1方向の他方側に前記第2方向に沿って複数設けられ、前記基板と前記圧電膜との間に設けられた第4下部電極と、前記圧電膜の一部を挟み前記第4下部電極と対向する第4上部電極と、を有する複数の第2並列共振器と、を備え、前記第1ラダー型フィルタの通過帯域より低い通過帯域を有する第2ラダー型フィルタと、を備えるマルチプレクサである。
INDUSTRIAL APPLICABILITY The present invention is provided on a substrate and a surface of the substrate, and becomes continuously thicker from one of the first directions parallel to the surface of the substrate to the other, and is parallel to the surface and the first. The rate of change in the thickness of the piezoelectric film along the second direction intersecting the directions is smaller than the rate of change in the thickness of the piezoelectric film along the first direction with a single piezoelectric film and along the second direction. A plurality of the first lower electrodes are provided, which are provided in the first path from the common terminal to the first terminal, and the first lower electrode provided between the substrate and the piezoelectric film, and a part of the piezoelectric film are sandwiched between the first lower electrode. A plurality of first series resonators having a first upper electrode facing the electrode, one end electrically connected to the first path and the other end electrically connected to the ground, said the plurality of first series. A plurality of second lower electrodes provided along the second direction on the other side of the first direction with respect to the resonator, and a second lower electrode provided between the substrate and the piezoelectric film, and a part of the piezoelectric film are sandwiched. A first ladder type filter comprising a plurality of first parallel resonators having a second upper electrode facing the second lower electrode and a second path from the common terminal to the second terminal. A plurality of third lower electrodes provided along the second direction on the other side of the first direction than the plurality of first parallel resonators and provided between the substrate and the piezoelectric film, and the piezoelectric. A plurality of second series resonators having a third upper electrode facing the third lower electrode with a part of the film sandwiched between them, one end of which is electrically connected to the second path and the other end of which is electrically connected to the ground. A fourth lower electrode, which is connected to the plurality of second series resonators and is provided on the other side of the first direction along the second direction and is provided between the substrate and the piezoelectric film. And a plurality of second parallel resonators having a fourth upper electrode facing the fourth lower electrode with a part of the piezoelectric film interposed therebetween, and passing through lower than the passing band of the first ladder type filter. A multiplexer comprising a second ladder type filter having a band.

本発明によれば、製造を容易とすることまたは小型化することができる。 According to the present invention, the production can be facilitated or miniaturized.

図1は、実施例1に係る弾性波デバイスの平面図である。FIG. 1 is a plan view of the elastic wave device according to the first embodiment. 図2(a)および図2(b)は、それぞれ図1のA-A断面図およびB-B断面図である。2 (a) and 2 (b) are a sectional view taken along the line AA and a sectional view taken along the line BB of FIG. 1, respectively. 図3(a)および図3(b)は、実施例1における圧電膜を示す断面図である。3 (a) and 3 (b) are cross-sectional views showing a piezoelectric film according to the first embodiment. 図4(a)から図4(d)は、実施例1の弾性波デバイスの製造方法を示す断面図(その1)である。4 (a) to 4 (d) are cross-sectional views (No. 1) showing a method of manufacturing the elastic wave device of the first embodiment. 図5(a)から図5(c)は、実施例1の弾性波デバイスの製造方法を示す断面図(その2)である。5 (a) to 5 (c) are cross-sectional views (No. 2) showing a method of manufacturing the elastic wave device of the first embodiment. 図6は、実施例2に係るデュプレクサの回路図である。FIG. 6 is a circuit diagram of the duplexer according to the second embodiment. 図7は、実施例2に係るデュプレクサの平面図である。FIG. 7 is a plan view of the duplexer according to the second embodiment. 図8は、実施例2に係るデュプレクサの別の平面図である。FIG. 8 is another plan view of the duplexer according to the second embodiment. 図9(a)から図9(c)は、実施例1および2の変形例1に係る弾性波デバイスの断面図である。9 (a) to 9 (c) are cross-sectional views of the elastic wave device according to the first modification of Examples 1 and 2. 図10(a)から図10(c)は、実施例1および2の変形例1に係る弾性波デバイスの断面図である。10 (a) to 10 (c) are cross-sectional views of the elastic wave device according to the first modification of Examples 1 and 2. 図11は、実施例1および2の変形例2に係る弾性波デバイスの断面図である。FIG. 11 is a cross-sectional view of the elastic wave device according to the second modification of Examples 1 and 2.

以下図面を参照し、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.

図1は、実施例1に係る弾性波デバイスの平面図、図2(a)および図2(b)は、それぞれ図1のA-A断面図およびB-B断面図である。図1では、圧電膜14を透視して空隙30を図示している。基板10の上面と平行で互いに直交する方向をX方向およびY方向とし、基板10の上面の法線方向をZ方向とする。 1 is a plan view of the elastic wave device according to the first embodiment, and FIGS. 2 (a) and 2 (b) are a sectional view taken along the line AA and a sectional view taken along the line BB of FIG. 1, respectively. In FIG. 1, the gap 30 is shown through the piezoelectric film 14. The directions parallel to the upper surface of the substrate 10 and orthogonal to each other are the X direction and the Y direction, and the normal direction of the upper surface of the substrate 10 is the Z direction.

図1から図2(b)に示すように、X方向およびY方向に圧電薄膜共振器11aから11dが配列されている。基板10上に、空隙30を介し下部電極12aから12dが設けられている。下部電極12aから12d上に単一の圧電膜14が設けられている。圧電膜14は+X方向に沿って厚くなり、Y方向に沿ってほぼ同じ厚さである。すなわち、圧電膜14の上面はX方向に沿って傾斜し、Y方向に沿って傾斜していない。 As shown in FIGS. 1 to 2 (b), the piezoelectric thin film resonators 11a to 11d are arranged in the X direction and the Y direction. Lower electrodes 12a to 12d are provided on the substrate 10 via the gap 30. A single piezoelectric film 14 is provided on the lower electrodes 12a to 12d. The piezoelectric film 14 becomes thicker along the + X direction and has substantially the same thickness along the Y direction. That is, the upper surface of the piezoelectric film 14 is inclined along the X direction and not along the Y direction.

圧電膜14上に上部電極16aから16dが設けられている。圧電膜14の少なくとも一部を挟み下部電極12aから12dと上部電極16aから16dとがそれぞれ対向する領域は圧電薄膜共振器11aから11dに対応する共振領域50aから50dである。共振領域50aから50dの平面形状は略楕円形状である。 Upper electrodes 16a to 16d are provided on the piezoelectric film 14. The regions where the lower electrodes 12a to 12d and the upper electrodes 16a to 16d face each other with at least a part of the piezoelectric film 14 interposed therebetween are resonance regions 50a to 50d corresponding to the piezoelectric thin film resonators 11a to 11d. The planar shape of the resonance regions 50a to 50d is a substantially elliptical shape.

基板10としては、シリコン基板、アルミナ基板、石英基板、スピネル基板、ガラス基板または水晶基板等の絶縁基板を用いることができる。下部電極12aから12dおよび上部電極16aから16dとしては、Ru(ルテニウム)、Cr(クロム)、Al(アルミニウム)、Ti(チタン)、Cu(銅)、Mo(モリブデン)、W(タングステン)、Ta(タンタル)、Pt(白金)、Rh(ロジウム)またはIr(イリジウム)等の単層膜またはこれらの積層膜を用いることができる。 As the substrate 10, an insulating substrate such as a silicon substrate, an alumina substrate, a quartz substrate, a spinel substrate, a glass substrate, or a crystal substrate can be used. The lower electrodes 12a to 12d and the upper electrodes 16a to 16d include Ru (ruthenium), Cr (chromium), Al (aluminum), Ti (tantalum), Cu (copper), Mo (molybdenum), W (tungsten), and Ta. A single-layer film such as (tantalum), Pt (platinum), Rh (rhodium) or Ir (iridium) or a laminated film thereof can be used.

圧電膜14としては、(002)方向を主軸とする窒化アルミニウム(AlN)、酸化亜鉛(ZnO)、チタン酸ジルコン酸鉛(PZT)、チタン酸鉛(PbTiO3)等を用いることができる。また、例えば、圧電膜14は、窒化アルミニウムを主成分とし、共振特性の向上または圧電性の向上のため他の元素を含んでもよい。例えば、添加元素として、Sc(スカンジウム)、2族元素もしくは12族元素と4族元素との2つの元素、または2族元素もしくは12族元素と5族元素との2つの元素を用いることにより、圧電膜14の圧電性が向上する。このため、圧電薄膜共振器の実効的電気機械結合係数を向上できる。2族元素は、例えばCa(カルシウム)、Mg(マグネシウム)またはSr(ストロンチウム)である。12族元素は例えばZn(亜鉛)である。4族元素は、例えばTi、Zr(ジルコニウム)またはHf(ハフニウム)である。5族元素は、例えばTa、Nb(ニオブ)またはV(バナジウム)である。さらに、圧電膜14は、窒化アルミニウムを主成分とし、B(ボロン)を含んでもよい。 As the piezoelectric film 14, aluminum nitride (AlN), zinc oxide (ZnO), lead zirconate titanate (PZT), lead titanate (PbTiO 3 ), etc., whose main axis is in the (002) direction can be used. Further, for example, the piezoelectric film 14 may contain aluminum nitride as a main component and may contain other elements for improving resonance characteristics or piezoelectricity. For example, by using Sc (scandium), two elements of a group 2 element or a group 12 element and a group 4 element, or two elements of a group 2 element or a group 12 element and a group 5 element, as an additive element, The piezoelectricity of the piezoelectric film 14 is improved. Therefore, the effective electromechanical coupling coefficient of the piezoelectric thin film resonator can be improved. Group 2 elements are, for example, Ca (calcium), Mg (magnesium) or Sr (strontium). The Group 12 element is, for example, Zn (zinc). Group 4 elements are, for example, Ti, Zr (zirconium) or Hf (hafnium). Group 5 elements are, for example, Ta, Nb (niobium) or V (vanadium). Further, the piezoelectric film 14 contains aluminum nitride as a main component and may contain B (boron).

共振領域50aから50dの少なくとも一部に、周波数を調整するための質量負荷膜が設けられていてもよい。質量付加膜としては、酸化シリコン膜または窒化シリコン膜等の絶縁膜、または下部電極および上部電極として例示した金属膜を用いることができる。 A mass load film for adjusting the frequency may be provided in at least a part of the resonance regions 50a to 50d. As the mass addition film, an insulating film such as a silicon oxide film or a silicon nitride film, or a metal film exemplified as a lower electrode and an upper electrode can be used.

図3(a)および図3(b)は、実施例1における圧電膜を示す断面図である。図3(a)に示すように、X方向に沿った圧電薄膜共振器11aから11dの共振領域50aから50dにおける圧電膜14の膜厚T1からT4は+X方向に行くにしたがい大きくなる。共振領域50aから50dにおける圧電膜14の膜厚T1からT4は、共振領域50aから50d内の圧電膜14の体積を共振領域50aから50dのXY平面の面積で割った値である。膜厚T1<T2<T3<T4となる。膜厚T1からT4が大きいと圧電薄膜共振器11aから11dの共振周波数fr1からfr4は低くなる。よって、fr1>fr2>fr3>fr4となる。 3 (a) and 3 (b) are cross-sectional views showing a piezoelectric film according to the first embodiment. As shown in FIG. 3A, the film thicknesses T1 to T4 of the piezoelectric film 14 in the resonance regions 50a to 50d of the piezoelectric thin film resonators 11a to 11d along the X direction increase in the + X direction. The thickness T1 to T4 of the piezoelectric film 14 in the resonance regions 50a to 50d is a value obtained by dividing the volume of the piezoelectric film 14 in the resonance regions 50a to 50d by the area of the XY plane of the resonance regions 50a to 50d. The film thickness T1 <T2 <T3 <T4. When the film thicknesses T1 to T4 are large, the resonance frequencies fr1 to fr4 of the piezoelectric thin film resonators 11a to 11d become low. Therefore, fr1> fr2> fr3> fr4.

図3(b)に示すように、Y方向に沿った圧電薄膜共振器11dの共振領域50dにおける圧電膜14の膜厚T4はほぼ一定である。よって、圧電薄膜共振器11dの共振周波数fr4はほぼ一定である。 As shown in FIG. 3B, the film thickness T4 of the piezoelectric film 14 in the resonance region 50d of the piezoelectric thin film resonator 11d along the Y direction is substantially constant. Therefore, the resonance frequency fr4 of the piezoelectric thin film resonator 11d is almost constant.

2GHz程度の圧電薄膜共振器の場合、下部電極12aから12dは、例えば基板10側から膜厚が100nmのCr膜および膜厚が200nmのRu膜である。圧電膜14は、例えば膜厚が1200nmから1300nmの窒化アルミニウム膜である。上部電極16aから16dは、例えば圧電膜14側から膜厚が230nmのRu膜および膜厚が50nmのCr膜である。共振領域50aから50dの下部電極12aから12dと上部電極16aから16dとの間には挿入膜が設けられていてもよい。挿入膜は共振領域50aから50dの各々の外周領域に設けられ中央領域には設けられていない。挿入膜は、例えば膜厚が150nmの酸化シリコン膜である。圧電薄膜共振器11aから11dを12個設ける場合、空隙30のX方向およびY方向の大きさはそれぞれ例えば850μmから1000μmおよび450μmから550μmである。各層の材料、膜厚および大きさは所望の共振特性を得るため適宜設定できる。 In the case of a piezoelectric thin film resonator of about 2 GHz, the lower electrodes 12a to 12d are, for example, a Cr film having a film thickness of 100 nm and a Ru film having a film thickness of 200 nm from the substrate 10 side. The piezoelectric film 14 is, for example, an aluminum nitride film having a film thickness of 1200 nm to 1300 nm. The upper electrodes 16a to 16d are, for example, a Ru film having a film thickness of 230 nm and a Cr film having a film thickness of 50 nm from the piezoelectric film 14 side. An insertion film may be provided between the lower electrodes 12a to 12d and the upper electrodes 16a to 16d in the resonance regions 50a to 50d. The insert film is provided in each outer peripheral region of the resonance regions 50a to 50d, and is not provided in the central region. The insertion membrane is, for example, a silicon oxide film having a film thickness of 150 nm. When 12 piezoelectric thin film resonators 11a to 11d are provided, the sizes of the voids 30 in the X direction and the Y direction are, for example, 850 μm to 1000 μm and 450 μm to 550 μm, respectively. The material, film thickness and size of each layer can be appropriately set in order to obtain desired resonance characteristics.

[実施例1の製造方法]
図4(a)から図5(c)は、実施例1の弾性波デバイスの製造方法を示す断面図である。図4(a)に示すように、基板10の上面に凹部39を形成する。凹部39はフォトリソグラフィ法およびエッチング法等を用い形成する。凹部内に犠牲層38を埋め込む。犠牲層38は、例えばスパッタリング法、真空蒸着法またはCVD(Chemical Vapor Deposition)法を用い成膜する。犠牲層38の膜厚は、例えば10~100nmであり、酸化マグネシウム(MgO)、酸化亜鉛、ゲルマニウム(Ge)または酸化シリコン等のエッチング液またはエッチングガスに容易に溶解できる材料から選択される。
[Manufacturing method of Example 1]
4 (a) to 5 (c) are cross-sectional views showing a method of manufacturing the elastic wave device of the first embodiment. As shown in FIG. 4A, a recess 39 is formed on the upper surface of the substrate 10. The recess 39 is formed by using a photolithography method, an etching method, or the like. The sacrificial layer 38 is embedded in the recess. The sacrificial layer 38 is formed into a film by using, for example, a sputtering method, a vacuum deposition method, or a CVD (Chemical Vapor Deposition) method. The thickness of the sacrificial layer 38 is, for example, 10 to 100 nm, and is selected from materials that can be easily dissolved in an etching solution or an etching gas such as magnesium oxide (MgO), zinc oxide, germanium (Ge), or silicon oxide.

図4(b)に示すように、犠牲層38上に下部電極12aから12dを、例えば、スパッタリング法、真空蒸着法またはCVD法を用い成膜する。下部電極12aから12dを、フォトリソグラフィ法およびエッチング法を用い所望の形状にパターニングする。下部電極12aから12dは、リフトオフ法により形成してもよい。 As shown in FIG. 4B, the lower electrodes 12a to 12d are formed on the sacrificial layer 38 by using, for example, a sputtering method, a vacuum vapor deposition method, or a CVD method. The lower electrodes 12a to 12d are patterned into a desired shape using a photolithography method and an etching method. The lower electrodes 12a to 12d may be formed by a lift-off method.

図4(c)に示すように、下部電極12aから12dおよび基板10上に圧電膜14を、例えばスパッタリング法、真空蒸着法またはCVD法を用い成膜する。圧電膜14の膜厚はほぼ一定である。 As shown in FIG. 4C, a piezoelectric film 14 is formed on the lower electrodes 12a to 12d and the substrate 10 by using, for example, a sputtering method, a vacuum vapor deposition method, or a CVD method. The film thickness of the piezoelectric film 14 is almost constant.

図4(d)に示すように、圧電膜14上にマスク層36を形成する。マスク層36は感光性の材料であり、例えばポジ型のフォトレジストである。マスク層36の膜厚はほぼ一定である。 As shown in FIG. 4D, the mask layer 36 is formed on the piezoelectric film 14. The mask layer 36 is a photosensitive material, for example, a positive photoresist. The film thickness of the mask layer 36 is almost constant.

図5(a)に示すように、マスク37をマスク層36上に配置する。マスク37はグレースケールマスクである。グレースケールマスクは、露光に用いる波長の光に対し透過率が3段階以上または連続的に変化するマスクである。マスク37は+X方向に行くにしたがい露光に用いる光の透過率が低くなり、Y方向に沿って透過率がほぼ一定である。マスク37を用いてポジ型のフォトレジストであるマスク層36を露光現像すると、マスク層36の膜厚は+X方向に行くにしたがい大きくなり、Y方向に沿ってほぼ一定である。マスク層36としてネガ型のフォトレジストを用いる場合、+X方向に行くにしたがい露光に用いる光の透過率が高くなり、Y方向に沿って透過率がほぼ一定のマスク37を用いる。 As shown in FIG. 5A, the mask 37 is arranged on the mask layer 36. The mask 37 is a grayscale mask. The gray scale mask is a mask in which the transmittance changes in three or more steps or continuously with respect to light having a wavelength used for exposure. As the mask 37 goes in the + X direction, the transmittance of light used for exposure decreases, and the transmittance is substantially constant along the Y direction. When the mask layer 36, which is a positive photoresist, is exposed and developed using the mask 37, the film thickness of the mask layer 36 increases in the + X direction and is substantially constant along the Y direction. When a negative photoresist is used as the mask layer 36, the transmittance of light used for exposure increases in the + X direction, and the mask 37 having a substantially constant transmittance in the Y direction is used.

図5(b)に示すように、マスク層36をマスクに圧電膜14をエッチングする。圧電膜14とマスク層36とエッチングレートの比に応じ圧電膜14の上面は傾斜する。エッチングは、イオンミリング法等のドライエッチングを用いてもよいし、リン酸等を用いたウェットエッチング法を用いてもよい。例えば、圧電膜14とマスク層36のエッチングレートの比をほぼ1:1とすれば、図5(a)のマスク層36の上面の傾斜とほぼ同じ角度で圧電膜14の上面が傾斜する。犠牲層38の外側の圧電膜14をフォトグラフィ法およびエッチング法を用い所望の形状にパターニングする。 As shown in FIG. 5B, the piezoelectric film 14 is etched using the mask layer 36 as a mask. The upper surface of the piezoelectric film 14 is inclined according to the ratio of the piezoelectric film 14, the mask layer 36, and the etching rate. As the etching, dry etching such as an ion milling method may be used, or a wet etching method using phosphoric acid or the like may be used. For example, if the ratio of the etching rates of the piezoelectric film 14 and the mask layer 36 is approximately 1: 1, the upper surface of the piezoelectric film 14 is inclined at substantially the same angle as the inclination of the upper surface of the mask layer 36 in FIG. 5 (a). The piezoelectric film 14 on the outer side of the sacrificial layer 38 is patterned into a desired shape by using a photography method and an etching method.

図5(c)に示すように、圧電膜14上に上部電極16aから16dを、例えば、スパッタリング法、真空蒸着法またはCVD法を用い成膜する。上部電極16aから16dを、フォトリソグラフィ法およびエッチング法を用い所望の形状にパターニングする。上部電極16aから16dは、リフトオフ法により形成してもよい。 As shown in FIG. 5 (c), the upper electrodes 16a to 16d are formed on the piezoelectric film 14 by using, for example, a sputtering method, a vacuum vapor deposition method, or a CVD method. The upper electrodes 16a to 16d are patterned into a desired shape by using a photolithography method and an etching method. The upper electrodes 16a to 16d may be formed by a lift-off method.

その後、犠牲層38をエッチングすることで、空隙30を形成する。これにより、図2(a)の圧電薄膜共振器11aから11dが形成される。図4(a)において凹部39を形成せず、基板10の平坦な上面上に犠牲層38を形成する。圧電膜14等の応力を圧縮応力となるように設定しておく。これにより、空隙30をZ方向にドーム状の膨らみを有する形状とすることもできる。 Then, the sacrificial layer 38 is etched to form the void 30. As a result, the piezoelectric thin film resonators 11a to 11d shown in FIG. 2A are formed. In FIG. 4A, the recess 39 is not formed, and the sacrificial layer 38 is formed on the flat upper surface of the substrate 10. The stress of the piezoelectric film 14 or the like is set to be a compressive stress. Thereby, the void 30 can be formed into a shape having a dome-shaped bulge in the Z direction.

実施例1によれば、図2(a)および図3(a)のように、単一の圧電膜14は基板10の上面上に設けられ、+X方向(基板10の上面に平行な第1方向の一方から他方)に行くにしたがい厚くなる。1または複数の圧電薄膜共振器11a(第1圧電薄膜共振器)は、基板10と圧電膜14との間に設けられた下部電極12a(第1下部電極)と、圧電膜14の一部を挟み下部電極12aと対向する上部電極16a(第1上部電極)と、を有する。1または複数の圧電薄膜共振器11b(第2圧電薄膜共振器)は、圧電薄膜共振器11aよりも+X方向(第1方向の他方)側に設けられ、基板10と圧電膜14との間に設けられた下部電極12b(第2下部電極)と、圧電膜14の一部を挟み下部電極12bと対向する上部電極16b(第2上部電極)と、を有する。 According to the first embodiment, as shown in FIGS. 2A and 3A, the single piezoelectric film 14 is provided on the upper surface of the substrate 10 and is the first in the + X direction (parallel to the upper surface of the substrate 10). It gets thicker as you go from one direction to the other. The one or a plurality of piezoelectric thin film resonators 11a (first piezoelectric thin film resonator) includes a lower electrode 12a (first lower electrode) provided between the substrate 10 and the piezoelectric film 14, and a part of the piezoelectric film 14. It has an upper electrode 16a (first upper electrode) facing the sandwiched lower electrode 12a. One or a plurality of piezoelectric thin film resonators 11b (second piezoelectric thin film resonators) are provided on the + X direction (the other side of the first direction) side of the piezoelectric thin film resonator 11a, and are provided between the substrate 10 and the piezoelectric film 14. It has a provided lower electrode 12b (second lower electrode) and an upper electrode 16b (second upper electrode) that faces the lower electrode 12b with a part of the piezoelectric film 14 sandwiched therein.

このように、圧電膜14の厚さが+X方向に行くにしたがい大きくなる。このため、X方向の位置に対応して共振周波数が変化する。例えば圧電膜14は+X方向に行くにしたがい連続的に厚くなる。これにより、圧電薄膜共振器11aおよび11bを製造するときに、異なる共振周波数fr1およびfr2ごとに圧電膜14の膜厚T1およびT2を異ならせる工程を行わなくてもよい。また、異なる共振周波数fr1およびfr2ごとに質量付加膜を設ける工程を行わなくてもよい。よって、弾性波デバイスの製造が容易となる。圧電膜14の厚さは、圧電薄膜共振器11aから11dが形成される領域の範囲内において、+X方向に行くにしたがい大きくなればよい。 In this way, the thickness of the piezoelectric film 14 increases as it goes in the + X direction. Therefore, the resonance frequency changes according to the position in the X direction. For example, the piezoelectric film 14 continuously thickens as it goes in the + X direction. As a result, when manufacturing the piezoelectric thin film resonators 11a and 11b, it is not necessary to perform the step of differentiating the film thicknesses T1 and T2 of the piezoelectric film 14 for different resonance frequencies fr1 and fr2. Further, it is not necessary to perform the step of providing the mass addition film for each of the different resonance frequencies fr1 and fr2. Therefore, the manufacturing of elastic wave devices becomes easy. The thickness of the piezoelectric film 14 may be increased in the + X direction within the range of the region where the piezoelectric thin film resonators 11a to 11d are formed.

また、Y方向(基板10の上面に平行でかつ第1方向に交差する第2方向)に沿った圧電膜14の厚さの変化率をX方向に沿った圧電膜14の厚さの変化率より小さくする。これにより、Y方向に設けられた圧電薄膜共振器の共振周波数の差を小さくできる。Y方向に沿った圧電膜14の厚さの変化率はX方向に沿った圧電膜14の厚さの変化率の1/5以下が好ましく、1/10以下がより好ましい。なお、X方向の圧電膜14の厚さの変化率は、X座標をX、圧電膜14の厚さをTとすると、ΔT/ΔXである。Y方向の圧電膜14の厚さの変化率は、Y座標をY、圧電膜14の厚さをTとすると、ΔT/ΔYである。圧電膜14の膜厚のX方向の変化率および/またはY方向の変化率が一定でない場合、圧電薄膜共振器11aから11dが形成される領域内において、Y方向に沿った圧電膜14の厚さの最大の変化率がX方向に沿った圧電膜14の厚さの最小の変化率より小さければよい。 Further, the rate of change in the thickness of the piezoelectric film 14 along the Y direction (the second direction parallel to the upper surface of the substrate 10 and intersecting the first direction) is the rate of change in the thickness of the piezoelectric film 14 along the X direction. Make it smaller. As a result, the difference in resonance frequency of the piezoelectric thin film resonator provided in the Y direction can be reduced. The rate of change in the thickness of the piezoelectric film 14 along the Y direction is preferably 1/5 or less, more preferably 1/10 or less of the rate of change in the thickness of the piezoelectric film 14 along the X direction. The rate of change in the thickness of the piezoelectric film 14 in the X direction is ΔT / ΔX, where X is the X coordinate and T is the thickness of the piezoelectric film 14. The rate of change in the thickness of the piezoelectric film 14 in the Y direction is ΔT / ΔY, where Y is the Y coordinate and T is the thickness of the piezoelectric film 14. When the rate of change of the film thickness of the piezoelectric film 14 in the X direction and / or the rate of change in the Y direction is not constant, the thickness of the piezoelectric film 14 along the Y direction in the region where the piezoelectric thin film resonators 11a to 11d are formed. It suffices if the maximum rate of change of the shaving is smaller than the minimum rate of change in the thickness of the piezoelectric film 14 along the X direction.

圧電膜14の厚さはY方向に沿って製造誤差程度に略一定である。これにより、Y方向に沿った複数の圧電薄膜共振器の共振周波数を互いに略同じにできる。 The thickness of the piezoelectric film 14 is substantially constant along the Y direction to the extent of manufacturing error. As a result, the resonance frequencies of the plurality of piezoelectric thin film resonators along the Y direction can be made substantially the same as each other.

圧電薄膜共振器11aをY方向に沿って複数設け、圧電薄膜共振器11bをY方向に沿って複数設ける。これにより、圧電薄膜共振器11a内の共振周波数の差および圧電薄膜共振器11b内の共振周波数の差を、圧電薄膜共振器11aと11bとの共振周波数fr1およびfr2の差より小さくできる。また、複数の圧電薄膜共振器11a内でX方向の位置を異ならせることで、複数の圧電薄膜共振器11aの共振周波数を細かく設定することができる。 A plurality of piezoelectric thin film resonators 11a are provided along the Y direction, and a plurality of piezoelectric thin film resonators 11b are provided along the Y direction. Thereby, the difference in the resonance frequency in the piezoelectric thin film resonator 11a and the difference in the resonance frequency in the piezoelectric thin film resonator 11b can be made smaller than the difference in the resonance frequencies fr1 and fr2 between the piezoelectric thin film resonators 11a and 11b. Further, by making the positions in the X direction different in the plurality of piezoelectric thin film resonators 11a, the resonance frequencies of the plurality of piezoelectric thin film resonators 11a can be finely set.

1または複数の圧電薄膜共振器11c(第3圧電薄膜共振器)は、圧電薄膜共振器11bの+X方向側に設けられ、基板10と圧電膜14との間に設けられた下部電極12c(第3下部電極)と、圧電膜14の一部を挟み下部電極12cと対向する上部電極16c(第3上部電極)と、を有する。1または複数の圧電薄膜共振器11d(第4圧電薄膜共振器)は、圧電薄膜共振器11cの+X方向側に設けられ、基板10と圧電膜14との間に設けられた下部電極12d(第4下部電極)と、圧電膜14の一部を挟み下部電極12dと対向する上部電極16d(第4上部電極)と、を有する。これにより、共振周波数が3以上異なる複数の圧電薄膜共振器11aから11dを容易に製造することができる。 One or a plurality of piezoelectric thin film resonators 11c (third piezoelectric thin film resonators) are provided on the + X direction side of the piezoelectric thin film resonator 11b, and lower electrodes 12c (third) provided between the substrate 10 and the piezoelectric film 14. 3 Lower electrode) and an upper electrode 16c (third upper electrode) facing the lower electrode 12c with a part of the piezoelectric film 14 interposed therebetween. The one or more piezoelectric thin film resonators 11d (fourth piezoelectric thin film resonator) are provided on the + X direction side of the piezoelectric thin film resonator 11c, and the lower electrode 12d (third) provided between the substrate 10 and the piezoelectric film 14. 4 lower electrode) and an upper electrode 16d (fourth upper electrode) facing the lower electrode 12d with a part of the piezoelectric film 14 interposed therebetween. Thereby, a plurality of piezoelectric thin film resonators 11a to 11d having different resonance frequencies of 3 or more can be easily manufactured.

このような、弾性波デバイスの製造方法として、図5(a)のように、マスク層36をグレースケールマスクを介して露光することで、マスク層36の膜厚を異ならせる。図5(b)のように、膜厚が異なるマスク層36をマスクに圧電膜14をエッチングすることで、複数の下部電極12aから12dの少なくとも2つの下部電極12aから12d上における圧電膜14の膜厚を異ならせる。図5(c)のように、複数の圧電薄膜共振器11aから11dが形成される領域において、それぞれ圧電膜14を挟み複数の下部電極12aから12dと複数の上部電極16aから16dとが対向するように、圧電膜14上に複数の上部電極16aから16bを形成する。これにより、圧電膜14の膜厚T1およびT2を異ならせる工程または質量付加膜を設ける工程を行わなくてもよい。よって、弾性波デバイスの製造が容易となる。 As a method for manufacturing such an elastic wave device, as shown in FIG. 5A, the mask layer 36 is exposed through a gray scale mask to make the thickness of the mask layer 36 different. As shown in FIG. 5B, by etching the piezoelectric film 14 with the mask layer 36 having a different film thickness as a mask, the piezoelectric film 14 on at least two lower electrodes 12a to 12d of the plurality of lower electrodes 12a to 12d can be formed. Different film thickness. As shown in FIG. 5C, in the region where the plurality of piezoelectric thin film resonators 11a to 11d are formed, the plurality of lower electrodes 12a to 12d and the plurality of upper electrodes 16a to 16d face each other with the piezoelectric film 14 interposed therebetween. As described above, a plurality of upper electrodes 16a to 16b are formed on the piezoelectric film 14. As a result, it is not necessary to perform the step of making the film thicknesses T1 and T2 of the piezoelectric film 14 different or the step of providing the mass addition film. Therefore, the manufacturing of elastic wave devices becomes easy.

図6は、実施例2に係るデュプレクサの回路図である。図6に示すように、デュプレクサは、受信フィルタ40および送信フィルタ42を備えている。受信フィルタ40は、共通端子Antと受信端子Rxとの間に接続されている。送信フィルタ42は、共通端子Antと送信端子Txとの間に接続されている。受信フィルタ40は、共通端子Antから入力された高周波信号のうち受信帯域の信号を受信信号として受信端子Rxに通過させ、他の周波数の信号を抑圧する。送信フィルタ42は、送信端子Txから入力された高周波信号のうち送信帯域の信号を送信信号として共通端子Antに通過させ、他の周波数の信号を抑圧する。 FIG. 6 is a circuit diagram of the duplexer according to the second embodiment. As shown in FIG. 6, the duplexer includes a receive filter 40 and a transmit filter 42. The reception filter 40 is connected between the common terminal Ant and the reception terminal Rx. The transmission filter 42 is connected between the common terminal Ant and the transmission terminal Tx. The reception filter 40 passes a signal in the reception band among the high frequency signals input from the common terminal Ant to the reception terminal Rx as a reception signal, and suppresses signals of other frequencies. The transmission filter 42 passes a signal in the transmission band among the high frequency signals input from the transmission terminal Tx to the common terminal Ant as a transmission signal, and suppresses signals of other frequencies.

受信フィルタ40および送信フィルタ42は、ラダー型フィルタである。受信フィルタ40では、共通端子Antと受信端子Rxの間に1または複数の直列共振器S11からS13が直列に接続されている。共通端子Antと受信端子Rxの間に1または複数の並列共振器P11からP13が並列に接続されている。送信フィルタ42では、共通端子Antと送信端子Txの間に1または複数の直列共振器S21からS23が直列に接続されている。共通端子Antと送信端子Txの間に1または複数の並列共振器P21からP23が並列に接続されている。受信フィルタ40および送信フィルタ42における直列共振器および並列共振器の個数は適宜設定できる。 The reception filter 40 and the transmission filter 42 are ladder type filters. In the reception filter 40, one or a plurality of series resonators S11 to S13 are connected in series between the common terminal Ant and the reception terminal Rx. One or more parallel resonators P11 to P13 are connected in parallel between the common terminal Ant and the receiving terminal Rx. In the transmission filter 42, one or a plurality of series resonators S21 to S23 are connected in series between the common terminal Ant and the transmission terminal Tx. One or more parallel resonators P21 to P23 are connected in parallel between the common terminal Ant and the transmission terminal Tx. The number of series resonators and parallel resonators in the receive filter 40 and the transmit filter 42 can be appropriately set.

図7は、実施例2に係るデュプレクサの平面図である。図7に示すように、直列共振器S11からS13は圧電薄膜共振器11aにより形成される。並列共振器P11からP13は圧電薄膜共振器11bにより形成される。直列共振器S21からS23は圧電薄膜共振器11cにより形成される。並列共振器P21からP23は圧電薄膜共振器11dにより形成される。 FIG. 7 is a plan view of the duplexer according to the second embodiment. As shown in FIG. 7, the series resonators S11 to S13 are formed by the piezoelectric thin film resonator 11a. The parallel resonators P11 to P13 are formed by the piezoelectric thin film resonator 11b. The series resonators S21 to S23 are formed by the piezoelectric thin film resonator 11c. The parallel resonators P21 to P23 are formed by the piezoelectric thin film resonator 11d.

圧電薄膜共振器11aから11d間は下部電極12および/または上部電極16を配線として介し電気的に接続されている。配線は、下部電極12および/または上部電極16に低抵抗層が積層されていてもよい。低抵抗層は、金層または銅層のように下部電極12および/または上部電極16より抵抗率の低い層である。配線を下部電極12と上部電極16とで切り替えている箇所32(例えばS11とS12の間)では、圧電膜14に貫通孔が設けられ、貫通孔を介し下部電極12と上部電極16とが電気的に接続されている。共通端子Antは上部電極16を介し圧電薄膜共振器11aから11dに電気的に接続されている。受信端子Rx、送信端子Txおよびグランド端子GNDは、下部電極12を介し圧電薄膜共振器11aから11dに電気的に接続されている。共通端子Antは、圧電膜14上に設けられ、受信端子Rx、送信端子Txおよびグランド端子GNDは、圧電膜14が設けられてない領域の基板10上に設けられている。その他の構成は実施例1と同じであり説明を省略する。 The piezoelectric thin film resonators 11a to 11d are electrically connected via the lower electrode 12 and / or the upper electrode 16 as wiring. The wiring may have a low resistance layer laminated on the lower electrode 12 and / or the upper electrode 16. The low resistivity layer is a layer having a lower resistivity than the lower electrode 12 and / or the upper electrode 16 such as a gold layer or a copper layer. At the location 32 where the wiring is switched between the lower electrode 12 and the upper electrode 16 (for example, between S11 and S12), a through hole is provided in the piezoelectric film 14, and the lower electrode 12 and the upper electrode 16 are electrically connected to each other through the through hole. Is connected. The common terminal Ant is electrically connected to the piezoelectric thin film resonators 11a to 11d via the upper electrode 16. The receiving terminal Rx, the transmitting terminal Tx, and the ground terminal GND are electrically connected to the piezoelectric thin film resonators 11a to 11d via the lower electrode 12. The common terminal Ant is provided on the piezoelectric film 14, and the receiving terminal Rx, the transmitting terminal Tx, and the ground terminal GND are provided on the substrate 10 in the region where the piezoelectric film 14 is not provided. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.

図8は、実施例2に係るデュプレクサの別の平面図である。図8に示すように、共通端子Antおよびグランド端子GNDは上部電極16を介し圧電薄膜共振器11aから11dに電気的に接続されている。送信端子Txおよび受信端子Rxは、下部電極12を介し圧電薄膜共振器11aから11dに電気的に接続されている。共通端子Antおよびグランド端子GNDは、圧電膜14上に設けられ、受信端子Rxおよび送信端子Txは、圧電膜14の開口35内の基板10上に設けられている。その他の構成は図7と同じであり説明を省略する。 FIG. 8 is another plan view of the duplexer according to the second embodiment. As shown in FIG. 8, the common terminal Ant and the ground terminal GND are electrically connected to the piezoelectric thin film resonators 11a to 11d via the upper electrode 16. The transmission terminal Tx and the reception terminal Rx are electrically connected to the piezoelectric thin film resonators 11a to 11d via the lower electrode 12. The common terminal Ant and the ground terminal GND are provided on the piezoelectric film 14, and the receiving terminal Rx and the transmitting terminal Tx are provided on the substrate 10 in the opening 35 of the piezoelectric film 14. Other configurations are the same as those in FIG. 7, and the description thereof will be omitted.

例えば、LTE(Long Term Evolution)バンド25では、送信帯域は185MHzから1915MHzであり、受信帯域は1930MHzから1995MHzである。例えば圧電膜14の膜厚が1200nmのとき共振周波数が2000MHzとなるような圧電薄膜共振器を用い、バンド25のデュプレクサを作製する場合を考える。この場合、圧電膜14の膜厚T1からT4を、それぞれ例えば1203nm、1244nm、1253nmおよび1297nmとする。 For example, in the LTE (Long Term Evolution) band 25, the transmission band is 185 MHz to 1915 MHz, and the reception band is 1930 MHz to 1995 MHz. For example, consider a case where a duplexer of band 25 is manufactured by using a piezoelectric thin film resonator having a resonance frequency of 2000 MHz when the thickness of the piezoelectric film 14 is 1200 nm. In this case, the film thicknesses T1 to T4 of the piezoelectric film 14 are set to, for example, 1203 nm, 1244 nm, 1253 nm and 1297 nm, respectively.

実施例2によれば、図6から図8のように、受信フィルタ40(第1ラダー型フィルタ)では、共通端子Ant(第1入力端子)から受信端子Rx(第1出力端子、第1端子)に至る経路を第1経路とする。複数の直列共振器S11からS13(第1直列共振器)は第1経路に電気的に直列に接続され、それぞれが圧電薄膜共振器11aである。複数の並列共振器P11からP13(第1並列共振器)は、一端が第1経路に電気的に接続され他端がグランドに電気的に接続され、それぞれが圧電薄膜共振器11bである。 According to the second embodiment, as shown in FIGS. 6 to 8, in the receiving filter 40 (first ladder type filter), from the common terminal Ant (first input terminal) to the receiving terminal Rx (first output terminal, first terminal). ) Is the first route. The plurality of series resonators S11 to S13 (first series resonators) are electrically connected in series to the first path, and each is a piezoelectric thin film resonator 11a. The plurality of parallel resonators P11 to P13 (first parallel resonators) have one end electrically connected to the first path and the other end electrically connected to the ground, each of which is a piezoelectric thin film resonator 11b.

Y方向に沿って直列共振器S11からS13が設けられているため、直列共振器S11からS13の共振領域50aにおける圧電膜14をほぼ同じ厚さにできる。これにより、直列共振器S11からS13の共振周波数を互いにほぼ同じにできる。Y方向に沿って並列共振器P11からP13が設けられているため、並列共振器P11からP13における共振領域50bにおける圧電膜14を互いにほぼ同じ厚さにできる。これにより、並列共振器P11からP13の共振周波数をほぼ同じにできる。 Since the series resonators S11 to S13 are provided along the Y direction, the piezoelectric film 14 in the resonance region 50a of the series resonators S11 to S13 can have substantially the same thickness. As a result, the resonance frequencies of the series resonators S11 to S13 can be made substantially the same as each other. Since the parallel resonators P11 to P13 are provided along the Y direction, the piezoelectric films 14 in the resonance region 50b in the parallel resonators P11 to P13 can have substantially the same thickness. As a result, the resonance frequencies of the parallel resonators P11 to P13 can be made substantially the same.

直列共振器S11からS13の+X方向側に並列共振器P11からP13が設けられているため、直列共振器S11からS13の共振領域50a(第1共振領域)における圧電膜14を並列共振器P11からP13の共振領域50b(第2共振領域)における圧電膜14より薄くできる。これにより、並列共振器P11からP13の共振周波数を直列共振器S11からS13より低くできる。 Since the parallel resonators P11 to P13 are provided on the + X direction side of the series resonators S11 to S13, the piezoelectric film 14 in the resonance region 50a (first resonance region) of the series resonators S11 to S13 is formed from the parallel resonator P11. It can be made thinner than the piezoelectric film 14 in the resonance region 50b (second resonance region) of P13. As a result, the resonance frequency of the parallel resonators P11 to P13 can be made lower than that of the series resonators S11 to S13.

送信フィルタ42(第2ラダー型フィルタ)では、送信端子Tx(第2入力端子、第2端子)から共通端子Ant(第2出力端子)に至る経路を第2経路とする。複数の直列共振器S21からS23(第2直列共振器)は、第2経路に直列に電気的に接続され、それぞれが圧電薄膜共振器11cである。並列共振器P21からP23(第2並列共振器)は、一端が第2経路に電気的に接続され他端がグランドに電気的に接続され、それぞれ圧電薄膜共振器11dである。 In the transmission filter 42 (second ladder type filter), the path from the transmission terminal Tx (second input terminal, second terminal) to the common terminal Ant (second output terminal) is set as the second path. The plurality of series resonators S21 to S23 (second series resonators) are electrically connected in series to the second path, and each is a piezoelectric thin film resonator 11c. The parallel resonators P21 to P23 (second parallel resonator) are piezoelectric thin film resonators 11d, one end of which is electrically connected to the second path and the other end of which is electrically connected to the ground.

直列共振器S21からS23の共振領域50cにおける圧電膜14をほぼ同じ厚さにでき、並列共振器P21からP23における共振領域50dにおける圧電膜14をほぼ同じ厚さにできる。これにより、直列共振器S21からS23の共振周波数を互いにほぼ同じにでき、並列共振器P21からP23の共振周波数を互いにほぼ同じにできる。 The piezoelectric film 14 in the resonance region 50c of the series resonators S21 to S23 can be made to have substantially the same thickness, and the piezoelectric film 14 in the resonance region 50d of the parallel resonators P21 to P23 can be made to have substantially the same thickness. As a result, the resonance frequencies of the series resonators S21 to S23 can be made substantially the same as each other, and the resonance frequencies of the parallel resonators P21 to P23 can be made substantially the same as each other.

並列共振器P11からP13の+X方向側に直列共振器S21からS23が設けられているため、直列共振器S21からS23の共振領域50c(第3共振領域)における圧電膜14を共振領域50bにおける圧電膜より厚くできる。これにより、直列共振器S21からS23の共振周波数を並列共振器P11からP13より低くできる。 Since the series resonators S21 to S23 are provided on the + X direction side of the parallel resonators P11 to P13, the piezoelectric film 14 in the resonance region 50c (third resonance region) of the series resonators S21 to S23 is piezoelectric in the resonance region 50b. Can be thicker than the membrane. As a result, the resonance frequency of the series resonators S21 to S23 can be made lower than that of the parallel resonators P11 to P13.

直列共振器S21からS23の+X方向側に並列共振器P21からP23が設けられているため、並列共振器P21からP23の共振領域50d(第4共振領域)における圧電膜14を共振領域50cにおける圧電膜より厚くできる。これにより、並列共振器P21からP23の共振周波数を直列共振器S21からS23より低くできる。 Since the parallel resonators P21 to P23 are provided on the + X direction side of the series resonators S21 to S23, the piezoelectric film 14 in the resonance region 50d (fourth resonance region) of the parallel resonators P21 to P23 is piezoelectric in the resonance region 50c. Can be thicker than the membrane. As a result, the resonance frequency of the parallel resonators P21 to P23 can be made lower than that of the series resonators S21 to S23.

これにより、受信フィルタ40の通過帯域より低い通過帯域を有する送信フィルタ42を容易に製造できる。 As a result, the transmission filter 42 having a pass band lower than the pass band of the reception filter 40 can be easily manufactured.

複数のラダー型フィルタを有するデュプレクサでは、少なくとも4個の共振周波数を有する圧電薄膜共振器11aから11dを設けることになる。デュプレクサの小型化のためには単一の圧電膜14に圧電薄膜共振器11aから11dを設けることが好ましい。しかし、圧電膜14の膜厚および/または質量付加膜の膜厚を異ならせて4個の共振周波数を有する圧電薄膜共振器11aから11dを形成しようとすると、製造工程が煩雑となる。このため、単一の圧電膜14に圧電薄膜共振器11aから11dを形成することは難しかった。そこで、図5(a)のようにグレースケールマスクを用いる。これにより、複数のラダー型フィルタを有するデュプレクサを単一の圧電膜14に形成することができる。よって、デュプレクサの小型化が可能となる。 In a duplexer having a plurality of ladder type filters, piezoelectric thin film resonators 11a to 11d having at least four resonance frequencies will be provided. In order to reduce the size of the duplexer, it is preferable to provide the piezoelectric thin film resonators 11a to 11d on a single piezoelectric film 14. However, if it is attempted to form 11d from the piezoelectric thin film resonators 11a having four resonance frequencies by making the film thickness of the piezoelectric film 14 and / or the film thickness of the mass addition film different, the manufacturing process becomes complicated. Therefore, it is difficult to form the piezoelectric thin film resonators 11a to 11d on the single piezoelectric film 14. Therefore, a gray scale mask is used as shown in FIG. 5 (a). Thereby, a duplexer having a plurality of ladder type filters can be formed on a single piezoelectric film 14. Therefore, the duplexer can be downsized.

マルチプレクサの例としてデュプレクサについて説明したが、マルチプレクサは例えばトリプレクサまたはクワッドプレクサでもよい。 Although the duplexer has been described as an example of the multiplexer, the multiplexer may be, for example, a triplexer or a quadplexer.

[実施例1および2の変形例1]
図9(a)から図10(c)は、実施例1および2の変形例1に係る弾性波デバイスの断面図である。図9(a)に示すように、圧電膜14の厚さは階段状に変化し、共振領域50aから50d内の各々の圧電膜14の厚さはほぼ一定でもよい。図9(b)に示すように、一部の圧電薄膜共振器11aおよび11cでは共振領域50aおよび50c内の圧電膜14の厚さは連続的に変化し、圧電薄膜共振器11bおよび11dの共振領域50bおよび50d内では各々圧電膜14の厚さはほぼ一定でもよい。図9(c)に示すように、共振領域50aから50d内の圧電膜14の厚さのXに沿った変化率は異なっていてもよい。
[Modification 1 of Examples 1 and 2]
9 (a) to 10 (c) are cross-sectional views of the elastic wave device according to the first modification of Examples 1 and 2. As shown in FIG. 9A, the thickness of the piezoelectric film 14 changes stepwise, and the thickness of each of the piezoelectric films 14 within the resonance regions 50a to 50d may be substantially constant. As shown in FIG. 9B, in some of the piezoelectric thin film resonators 11a and 11c, the thickness of the piezoelectric film 14 in the resonance regions 50a and 50c changes continuously, and the piezoelectric thin film resonators 11b and 11d resonate. Within the regions 50b and 50d, the thickness of the piezoelectric film 14 may be substantially constant, respectively. As shown in FIG. 9 (c), the rate of change of the thickness of the piezoelectric film 14 in the resonance region 50a to 50d along X may be different.

図10(a)に示すように、圧電膜14の厚さは階段状に変化し、共振領域50aから50d内の各々の圧電膜14の厚さは連続的に変化し、共振領域50aから50d内の圧電膜14の厚さのXに対する変化率はほぼ同じでもよい。図10(b)に示すように、圧電膜14の厚さは階段状に変化し、共振領域50aから50d内の各々の圧電膜14の厚さは連続的に変化してもよい。図10(c)に示すように、X方向に沿った圧電膜14の厚さは連続的に変化し、圧電膜14の厚さのXに対する変化率は連続的に変化していてもよい。図9(a)から図10(c)において、その他の構成は、実施例1および2と同じであり説明を省略する。 As shown in FIG. 10A, the thickness of the piezoelectric film 14 changes stepwise, and the thickness of each of the piezoelectric films 14 within the resonance regions 50a to 50d changes continuously, and the resonance regions 50a to 50d. The rate of change of the thickness of the piezoelectric film 14 in X with respect to X may be substantially the same. As shown in FIG. 10B, the thickness of the piezoelectric film 14 may change stepwise, and the thickness of each of the piezoelectric films 14 within the resonance regions 50a to 50d may change continuously. As shown in FIG. 10 (c), the thickness of the piezoelectric film 14 along the X direction may change continuously, and the rate of change of the thickness of the piezoelectric film 14 with respect to X may change continuously. 9 (a) to 10 (c), the other configurations are the same as those of the first and second embodiments, and the description thereof will be omitted.

実施例1の図2(a)および図10(c)のように、+X方向に行くにしたがい圧電膜14が厚くなることにより、X方向の位置を調整することで、圧電薄膜共振器11aから11dの共振周波数を任意の値に設定できる。 As shown in FIGS. 2 (a) and 10 (c) of the first embodiment, the piezoelectric film 14 becomes thicker in the + X direction, and the position in the X direction is adjusted by adjusting the position in the X direction from the piezoelectric thin film resonator 11a. The resonance frequency of 11d can be set to any value.

図5(a)のように、グレースケールマスクを用いることで、図9(a)から図10(c)のように、共振領域50aから50dにおける圧電膜14の厚さが異なる圧電薄膜共振器11aから11dを1回のパターニングおよびエッチングを用い形成できる。よって、製造工程を簡略化できる。 Piezoelectric thin film resonators having different thicknesses of the piezoelectric film 14 in the resonance regions 50a to 50d as shown in FIGS. 9 (a) to 10 (c) by using a gray scale mask as shown in FIG. 5 (a). 11a to 11d can be formed using a single patterning and etching. Therefore, the manufacturing process can be simplified.

[実施例1および2の変形例2]
図11は、実施例1および2の変形例2に係る弾性波デバイスの断面図である。図11に示すように、共振領域50aから50dの下部電極12aから12d下に音響反射膜31が形成されている。音響反射膜31は、音響インピーダンスの低い膜31aと音響インピーダンスの高い膜31bとが交互に設けられている。膜31aおよび31bの膜厚は例えばそれぞれほぼλ/4(λは弾性波の波長)である。膜31aと膜31bの積層数は任意に設定できる。音響反射膜31は、音響特性の異なる少なくとも2種類の層が間隔をあけて積層されていればよい。また、基板10が音響反射膜31の音響特性の異なる少なくとも2種類の層のうちの1層であってもよい。例えば、音響反射膜31は、基板10中に音響インピーダンスの異なる膜が一層設けられている構成でもよい。その他の構成は、実施例1および2と同じであり説明を省略する。
[Modified Examples 2 of Examples 1 and 2]
FIG. 11 is a cross-sectional view of the elastic wave device according to the second modification of Examples 1 and 2. As shown in FIG. 11, the acoustic reflection film 31 is formed below the lower electrodes 12a to 12d in the resonance regions 50a to 50d. The acoustic reflection film 31 is provided with a film 31a having a low acoustic impedance and a film 31b having a high acoustic impedance alternately. The film thicknesses of the films 31a and 31b are, for example, approximately λ / 4 (λ is the wavelength of the elastic wave), respectively. The number of layers of the film 31a and the film 31b can be arbitrarily set. The acoustic reflection film 31 may be formed by laminating at least two types of layers having different acoustic characteristics at intervals. Further, the substrate 10 may be one of at least two types of layers having different acoustic characteristics of the acoustic reflection film 31. For example, the acoustic reflection film 31 may be configured such that a film having a different acoustic impedance is further provided in the substrate 10. Other configurations are the same as those of Examples 1 and 2, and the description thereof will be omitted.

実施例1および2並びにその変形例1において、実施例1および2の変形例2と同様に空隙30の代わりに音響反射膜31を形成してもよい。 In Examples 1 and 2 and the modified example 1 thereof, the acoustic reflection film 31 may be formed instead of the void 30 in the same manner as in the modified examples 2 of the first and second embodiments.

圧電薄膜共振器11aから11dは、共振領域50aから50dにおいて空隙30が基板10と下部電極12aから12dとの間に形成されているFBAR(Film Bulk Acoustic Resonator)でもよい。また、圧電薄膜共振器11aから11dは、共振領域50aから50dにおいて下部電極12aから12d下に圧電膜14を伝搬する弾性波を反射する音響反射膜31を備えるSMR(Solidly Mounted Resonator)でもよい。 The piezoelectric thin film resonators 11a to 11d may be an FBAR (Film Bulk Acoustic Resonator) in which a gap 30 is formed between the substrate 10 and the lower electrodes 12a to 12d in the resonance regions 50a to 50d. Further, the piezoelectric thin film resonators 11a to 11d may be an SMR (Solidly Mounted Resonator) provided with an acoustic reflection film 31 that reflects elastic waves propagating in the piezoelectric film 14 under the lower electrodes 12a to 12d in the resonance regions 50a to 50d.

複数の圧電薄膜共振器11aから11dに共通に空隙30が設けられている例を説明したが、空隙30は圧電薄膜共振器11aから11dごとに設けられていてもよい。共振領域50aから50dの平面形状として楕円形状を例に説明したが、四角形状または五角形状等の多角形状でもよい。 Although the example in which the voids 30 are provided in common to the plurality of piezoelectric thin film resonators 11a to 11d has been described, the voids 30 may be provided for each of the piezoelectric thin film resonators 11a to 11d. Although the elliptical shape has been described as an example of the planar shape of the resonance regions 50a to 50d, a polygonal shape such as a quadrangular shape or a pentagonal shape may be used.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the examples of the present invention have been described in detail above, the present invention is not limited to such specific examples, and various modifications and variations are made within the scope of the gist of the present invention described in the claims. It can be changed.

10 基板
11a-11d 圧電薄膜共振器
12a-12d 下部電極
14 圧電膜
16a-16d 上部電極
30 空隙
40 受信フィルタ
42 送信フィルタ
50a-50d 共振領域
10 Substrate 11a-11d Piezoelectric thin film resonator 12a-12d Lower electrode 14 Piezoelectric membrane 16a-16d Upper electrode 30 Void 40 Reception filter 42 Transmission filter 50a-50d Resonance region

Claims (7)

基板と、
前記基板の面上に設けられ、前記基板の前記面に平行な第1方向の一方から他方に行くにしたがい連続的に厚くなり、前記面に平行でかつ前記第1方向に交差する第2方向に沿った圧電膜の厚さの変化率は前記第1方向に沿った圧電膜の厚さの変化率より小さい単一の圧電膜と、
前記第2方向に沿って複数設けられ、前記基板と前記圧電膜との間に設けられた第1下部電極と、前記圧電膜の一部を挟み前記第1下部電極と対向する第1上部電極と、を有する複数の第1圧電薄膜共振器と、
前記複数の第1圧電薄膜共振器よりも前記第1方向の他方側に前記第2方向に沿って複数設けられ、前記基板と前記圧電膜との間に設けられた第2下部電極と、前記圧電膜の一部を挟み前記第2下部電極と対向する第2上部電極と、を有する複数の第2圧電薄膜共振器と、
を備える弾性波デバイス。
With the board
A second that is provided on the surface of the substrate and is continuously thickened from one of the first directions parallel to the surface of the substrate to the other , parallel to the surface and intersecting the first direction. The rate of change in the thickness of the piezoelectric film along the direction is smaller than the rate of change in the thickness of the piezoelectric film along the first direction .
A plurality of first lower electrodes provided along the second direction, which are provided between the substrate and the piezoelectric film, and a first upper electrode which sandwiches a part of the piezoelectric film and faces the first lower electrode. With a plurality of first piezoelectric thin film resonators,
A plurality of second lower electrodes provided along the second direction on the other side of the first direction with respect to the plurality of first piezoelectric thin film resonators, and the second lower electrode provided between the substrate and the piezoelectric film, and the said. A plurality of second piezoelectric thin film resonators having a second upper electrode facing the second lower electrode with a part of the piezoelectric film interposed therebetween.
An elastic wave device equipped with.
第1入力端子から第1出力端子に至る第1経路に設けられそれぞれ前記複数の第1圧電薄膜共振器である複数の第1直列共振器と、一端が前記第1経路に電気的に接続され他端がグランドに電気的に接続されそれぞれ前記複数の第2圧電薄膜共振器である複数の第1並列共振器を有する第1ラダー型フィルタを備える請求項に記載の弾性波デバイス。 A plurality of first series resonators provided in the first path from the first input terminal to the first output terminal, each of which is the plurality of first piezoelectric thin film resonators, and one end thereof are electrically connected to the first path. The elastic wave device according to claim 1 , further comprising a first ladder type filter having a plurality of first parallel resonators, each of which is electrically connected to the ground at the other end and is the plurality of second piezoelectric thin-film resonators. 前記複数の第2圧電薄膜共振器よりも前記第1方向の他方側に前記第2方向に沿って複数設けられ、前記基板と前記圧電膜との間に設けられた第3下部電極と、前記圧電膜の一部を挟み前記第3下部電極と対向する第3上部電極と、を有する複数の第3圧電薄膜共振器と、
前記複数の第3圧電薄膜共振器よりも前記第1方向の他方側に前記第2方向に沿って複数設けられ、前記基板と前記圧電膜との間に設けられた第4下部電極と、前記圧電膜の一部を挟み前記第4下部電極と対向する第4上部電極と、を有する複数の第4圧電薄膜共振器と、
第2入力端子から第2出力端子に至る第2経路に直列に接続されそれぞれ前記複数の第3圧電薄膜共振器である複数の第2直列共振器と、一端が前記第2経路に電気的に接続され他端がグランドに電気的に接続されそれぞれ前記複数の第4圧電薄膜共振器である複数の第2並列共振器を有し、前記第1ラダー型フィルタの通過帯域より低い通過帯域を有する第2ラダー型フィルタと、
を備える請求項に記載の弾性波デバイス。
A plurality of third lower electrodes provided along the second direction on the other side of the first direction with respect to the plurality of second piezoelectric thin film resonators, and the third lower electrode provided between the substrate and the piezoelectric film, and the said. A plurality of third piezoelectric thin film resonators having a third upper electrode facing the third lower electrode with a part of the piezoelectric film interposed therebetween.
A plurality of fourth lower electrodes provided along the second direction on the other side of the first direction with respect to the plurality of third piezoelectric thin film resonators, and the fourth lower electrode provided between the substrate and the piezoelectric film, and the said. A plurality of fourth piezoelectric thin film resonators having a fourth upper electrode facing the fourth lower electrode with a part of the piezoelectric film interposed therebetween.
A plurality of second series resonators, each of which is connected in series to a second path from the second input terminal to the second output terminal and is the plurality of third piezoelectric thin film resonators, and one end of which is electrically connected to the second path. The other end is connected and electrically connected to the ground, each having a plurality of second parallel resonators, which are the plurality of fourth piezoelectric thin-film resonators, and has a pass band lower than the pass band of the first ladder type filter. The second ladder type filter and
2. The elastic wave device according to claim 2 .
前記圧電膜の厚さは前記第2方向に沿って略一定である請求項からのいずれか一項に記載の弾性波デバイス。 The elastic wave device according to any one of claims 1 to 3 , wherein the thickness of the piezoelectric film is substantially constant along the second direction. 請求項1からのいずれか一項に記載の弾性波デバイスを含むマルチプレクサ。 A multiplexer including the elastic wave device according to any one of claims 1 to 4 . 基板と、
前記基板の面上に設けられ、前記基板の前記面に平行な第1方向の一方から他方に行くにしたがい連続的に厚くなり、前記面に平行でかつ前記第1方向に交差する第2方向に沿った圧電膜の厚さの変化率は前記第1方向に沿った圧電膜の厚さの変化率より小さい単一の圧電膜と、
前記第2方向に沿って複数設けられ、共通端子から第1端子に至る第1経路に設けられ、前記基板と前記圧電膜との間に設けられた第1下部電極と、前記圧電膜の一部を挟み前記第1下部電極と対向する第1上部電極と、を有する複数の第1直列共振器と、
一端が前記第1経路に電気的に接続され他端がグランドに電気的に接続され、前記複数の第1直列共振器よりも前記第1方向の他方側に前記第2方向に沿って複数設けられ、前記基板と前記圧電膜との間に設けられた第2下部電極と、前記圧電膜の一部を挟み前記第2下部電極と対向する第2上部電極と、を有する複数の第1並列共振器と、
を備える第1ラダー型フィルタと、
前記共通端子から第2端子に至る第2経路に設けられ、前記複数の第1並列共振器よりも前記第1方向の他方側に前記第2方向に沿って複数設けられ、前記基板と前記圧電膜との間に設けられた第3下部電極と、前記圧電膜の一部を挟み前記第3下部電極と対向する第3上部電極と、を有する複数の第2直列共振器と、
一端が前記第2経路に電気的に接続され他端がグランドに電気的に接続され、前記複数の第2直列共振器よりも前記第1方向の他方側に前記第2方向に沿って複数設けられ、前記基板と前記圧電膜との間に設けられた第4下部電極と、前記圧電膜の一部を挟み前記第4下部電極と対向する第4上部電極と、を有する複数の第2並列共振器と、
を備え、前記第1ラダー型フィルタの通過帯域より低い通過帯域を有する第2ラダー型フィルタと、
を備えるマルチプレクサ。
With the board
A second direction provided on the surface of the substrate, which is continuously thickened from one of the first directions parallel to the surface of the substrate to the other, parallel to the surface and intersecting the first direction. The rate of change in the thickness of the piezoelectric film along the first direction is smaller than the rate of change in the thickness of the piezoelectric film along the first direction .
A plurality of the first lower electrodes provided along the second direction, provided in the first path from the common terminal to the first terminal, and provided between the substrate and the piezoelectric film, and one of the piezoelectric films. A plurality of first series resonators having a first upper electrode facing the first lower electrode with a portion interposed therebetween.
One end is electrically connected to the first path and the other end is electrically connected to the ground, and a plurality of the first series resonators are provided on the other side of the first direction along the second direction. A plurality of first parallel electrodes having a second lower electrode provided between the substrate and the piezoelectric film and a second upper electrode facing the second lower electrode with a part of the piezoelectric film interposed therebetween. Resonator and
With a first ladder type filter,
A plurality of portions are provided along the second direction on the other side of the first direction from the plurality of first parallel resonators, which are provided in the second path from the common terminal to the second terminal, and the substrate and the piezoelectric. A plurality of second series resonators having a third lower electrode provided between the film and a third upper electrode having a part of the piezoelectric film sandwiched between the third lower electrode and the third lower electrode facing the third lower electrode.
One end is electrically connected to the second path and the other end is electrically connected to the ground, and a plurality of the second series resonators are provided on the other side of the first direction along the second direction. A plurality of second parallel electrodes having a fourth lower electrode provided between the substrate and the piezoelectric film and a fourth upper electrode facing the fourth lower electrode with a part of the piezoelectric film interposed therebetween. Resonator and
A second ladder type filter having a pass band lower than the pass band of the first ladder type filter.
A multiplexer equipped with.
前記圧電膜の厚さは前記第2方向に沿って略一定である請求項6に記載のマルチプレクサ。The multiplexer according to claim 6, wherein the thickness of the piezoelectric film is substantially constant along the second direction.
JP2017235111A 2017-12-07 2017-12-07 Elastic wave devices and their manufacturing methods and multiplexers Active JP7027144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017235111A JP7027144B2 (en) 2017-12-07 2017-12-07 Elastic wave devices and their manufacturing methods and multiplexers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017235111A JP7027144B2 (en) 2017-12-07 2017-12-07 Elastic wave devices and their manufacturing methods and multiplexers

Publications (2)

Publication Number Publication Date
JP2019103083A JP2019103083A (en) 2019-06-24
JP7027144B2 true JP7027144B2 (en) 2022-03-01

Family

ID=66974361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017235111A Active JP7027144B2 (en) 2017-12-07 2017-12-07 Elastic wave devices and their manufacturing methods and multiplexers

Country Status (1)

Country Link
JP (1) JP7027144B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7456737B2 (en) * 2019-07-31 2024-03-27 太陽誘電株式会社 Piezoelectric thin film resonators, filters and multiplexers
JP7561343B2 (en) * 2019-12-09 2024-10-04 三安ジャパンテクノロジー株式会社 Surface acoustic wave filters, duplexers and modules

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024995A (en) 2004-07-06 2006-01-26 Matsushita Electric Ind Co Ltd Manufacturing method of oscillator
JP2006333276A (en) 2005-05-30 2006-12-07 Hitachi Media Electoronics Co Ltd Bulk elastic wave resonator, filter using the bulk elastic wave resonator, high-frequency module using the same, and oscillator using the bulk elastic wave resonator
JP2013123184A (en) 2011-12-12 2013-06-20 Taiyo Yuden Co Ltd Filter and duplexer
JP2015173408A (en) 2014-03-12 2015-10-01 日本電波工業株式会社 Piezoelectric vibration piece, manufacturing method of the same, and piezoelectric device
JP2015228638A (en) 2013-12-28 2015-12-17 株式会社弾性波デバイスラボ Variable frequency acoustic wave converter and electronic apparatus using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5072562A (en) * 1973-10-30 1975-06-16

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024995A (en) 2004-07-06 2006-01-26 Matsushita Electric Ind Co Ltd Manufacturing method of oscillator
JP2006333276A (en) 2005-05-30 2006-12-07 Hitachi Media Electoronics Co Ltd Bulk elastic wave resonator, filter using the bulk elastic wave resonator, high-frequency module using the same, and oscillator using the bulk elastic wave resonator
JP2013123184A (en) 2011-12-12 2013-06-20 Taiyo Yuden Co Ltd Filter and duplexer
JP2015228638A (en) 2013-12-28 2015-12-17 株式会社弾性波デバイスラボ Variable frequency acoustic wave converter and electronic apparatus using the same
JP2015173408A (en) 2014-03-12 2015-10-01 日本電波工業株式会社 Piezoelectric vibration piece, manufacturing method of the same, and piezoelectric device

Also Published As

Publication number Publication date
JP2019103083A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP7017364B2 (en) Ladder type filter, piezoelectric thin film resonator and its manufacturing method
US10790799B2 (en) Piezoelectric thin film resonator, filter, and multiplexer
US10491191B2 (en) Acoustic wave device and method of fabricating the same
JP6886357B2 (en) Piezoelectric thin film resonators, filters and multiplexers
JP6556099B2 (en) Piezoelectric thin film resonator, filter and multiplexer
US9496848B2 (en) Piezoelectric thin-film resonator, filter and duplexer utilizing a piezoelectric film having an air space
JP2015139167A (en) Piezoelectric thin film resonator, filter, and duplexer
JP7269719B2 (en) Piezoelectric film and its manufacturing method, piezoelectric device, resonator, filter and multiplexer
US10862448B2 (en) Piezoelectric thin film resonator, filter, and multiplexer
US10680576B2 (en) Piezoelectric thin film resonator, filter, and duplexer
US20190149123A1 (en) Acoustic wave device and method of fabricating the same, filter and multiplexer
JP2018125762A (en) Piezoelectric thin film resonator, filter and multiplexer
US10069478B2 (en) Acoustic wave filter, duplexer, and module
US10554196B2 (en) Acoustic wave device
JP7027144B2 (en) Elastic wave devices and their manufacturing methods and multiplexers
JP2018207376A (en) Acoustic wave device
JP2020141337A (en) Piezoelectric thin film resonator, filter, and multiplexer
JP7190313B2 (en) Piezoelectric thin film resonators, filters and multiplexers
JP7383404B2 (en) Piezoelectric thin film resonators, filters and multiplexers
JP7383417B2 (en) Acoustic wave devices and their manufacturing methods, piezoelectric thin film resonators, filters and multiplexers
JP2024120503A (en) Filter, multiplexer, and method for manufacturing filter
JP2022140991A (en) Acoustic wave devices, filter and multiplexer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220216

R150 Certificate of patent or registration of utility model

Ref document number: 7027144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150