[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7026088B2 - Collision energy absorbing parts for automobiles - Google Patents

Collision energy absorbing parts for automobiles Download PDF

Info

Publication number
JP7026088B2
JP7026088B2 JP2019190730A JP2019190730A JP7026088B2 JP 7026088 B2 JP7026088 B2 JP 7026088B2 JP 2019190730 A JP2019190730 A JP 2019190730A JP 2019190730 A JP2019190730 A JP 2019190730A JP 7026088 B2 JP7026088 B2 JP 7026088B2
Authority
JP
Japan
Prior art keywords
resin
closed cross
tubular member
section space
collision energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019190730A
Other languages
Japanese (ja)
Other versions
JP2020138722A (en
Inventor
和彦 樋貝
毅 塩崎
良清 玉井
繁明 北村
直樹 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Iida Industry Co Ltd
Original Assignee
JFE Steel Corp
Iida Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Iida Industry Co Ltd filed Critical JFE Steel Corp
Priority to CN201980091628.8A priority Critical patent/CN113423615B/en
Priority to EP19916530.9A priority patent/EP3929037A4/en
Priority to MX2021010052A priority patent/MX2021010052A/en
Priority to US17/429,101 priority patent/US11975762B2/en
Priority to KR1020217025348A priority patent/KR102547461B1/en
Priority to PCT/JP2019/048694 priority patent/WO2020170569A1/en
Publication of JP2020138722A publication Critical patent/JP2020138722A/en
Application granted granted Critical
Publication of JP7026088B2 publication Critical patent/JP7026088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/34Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/001Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material
    • B62D29/002Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material a foamable synthetic material or metal being added in situ

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Body Structure For Vehicles (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、自動車用衝突エネルギー吸収部品に関し、特に、車体の前方又は後方から衝突荷重が入力した際に、長手方向に軸圧壊することで衝突エネルギーを吸収する自動車用衝突エネルギー吸収部品に関する。 The present invention relates to an automobile collision energy absorbing component, and more particularly to an automobile collision energy absorbing component that absorbs collision energy by crushing the shaft in the longitudinal direction when a collision load is input from the front or the rear of the vehicle body.

自動車の衝突エネルギー吸収性能を向上させる技術として、自動車部品の形状・構造・材料等の最適化など多くの技術が存在する。さらに、近年では、閉断面構造を有する自動車部品の内部に樹脂(発泡樹脂など)を発泡させて充填することで、該自動車部品の衝突エネルギー吸収性能の向上と軽量化を両立させる技術が数多く提案されている。 There are many technologies for optimizing the shape, structure, materials, etc. of automobile parts as technologies for improving the collision energy absorption performance of automobiles. Furthermore, in recent years, many technologies have been proposed in which a resin (foamed resin, etc.) is foamed and filled inside an automobile part having a closed cross-sectional structure to improve the collision energy absorption performance of the automobile part and reduce the weight. Has been done.

例えば、特許文献1には、サイドシル、フロアメンバー、ピラー等のハット断面部品の天板方向を揃えフランジを重ねて内部に閉鎖空間を形成した構造の自動車用構造部材において、その内部に発泡充填材を充填することにより、最小限の重量増で該自動車用構造部材の曲げ強度、ねじり剛性を向上させ、車体の剛性及び衝突安全性を向上させる技術が開示されている。 For example, Patent Document 1 describes a structural member for an automobile having a structure in which a closed space is formed inside by aligning the top plate directions of hat cross-sectional parts such as side sills, floor members, and pillars and overlapping flanges. Disclosed is a technique for improving the bending strength and torsional rigidity of the structural member for automobiles, and improving the rigidity and collision safety of the vehicle body by filling with the above.

また、特許文献2には、ハット断面部品を対向させてフランジ部を合わせたピラー等の閉断面構造の内部空間内に高剛性発泡体を充填するに際し、該高剛性発泡体の充填および発泡による圧縮反力により発泡体を固定し、振動音の伝達を抑制する防振性の向上を図るとともに、強度、剛性、衝撃エネルギー吸収性を向上させる技術が開示されている。 Further, in Patent Document 2, when a high-rigidity foam is filled in an internal space of a closed cross-section structure such as a pillar in which a hat cross-section component is opposed to each other and a flange portion is aligned, the high-rigidity foam is filled and foamed. A technique for fixing a foam by a compression reaction force to improve vibration isolation that suppresses transmission of vibration sound and improving strength, rigidity, and impact energy absorption is disclosed.

特開2006-240134号公報Japanese Unexamined Patent Publication No. 2006-240134 特開2000-318075号公報Japanese Unexamined Patent Publication No. 2000-318575

特許文献1及び特許文献2に開示されている技術によれば、自動車部品の内部に発泡充填材又は発泡体を充填することにより、該自動車部品の曲げ変形に対する強度や衝突による曲げ変形の衝撃エネルギー吸収性、さらには捻り変形に対する剛性を向上することができ、当該自動車部品の変形を抑制することが可能であるとされている。
しかしながら、本発明が目的とするフロントサイドメンバーやクラッシュボックスのように、自動車の前方又は後方から衝突荷重が入力して軸圧壊する際に、蛇腹状に座屈変形して衝突エネルギーを吸収する自動車部品に対しては、該自動車部品の内部に発泡充填材や発泡体を充填する技術を適用したとしても、衝突エネルギーの吸収性を向上させることが困難であるという課題があった。
According to the techniques disclosed in Patent Document 1 and Patent Document 2, by filling the inside of an automobile part with a foam filler or a foam, the strength against bending deformation of the automobile part and the impact energy of bending deformation due to collision It is said that it is possible to improve the absorbency and the rigidity against torsional deformation, and it is possible to suppress the deformation of the automobile parts.
However, when a collision load is input from the front or the rear of the vehicle and the shaft is crushed, such as a front side member or a crash box, which is the object of the present invention, the vehicle buckles and deforms in a bellows shape to absorb the collision energy. For the parts, there is a problem that it is difficult to improve the absorption of collision energy even if the technique of filling the inside of the automobile parts with a foam filler or a foam is applied.

本発明は、上記のような課題を解決するためになされたものであり、フロントサイドメンバーやクラッシュボックスのような車体の前方又は後方から衝突荷重が入力して蛇腹状に軸圧壊する際に、衝突エネルギーの吸収効果を向上することができる自動車用衝突エネルギー吸収部品を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and when a collision load is input from the front or the rear of a vehicle body such as a front side member or a crash box to crush the shaft in a bellows shape. It is an object of the present invention to provide a collision energy absorbing component for an automobile capable of improving the collision energy absorbing effect.

(1)本発明に係る自動車用衝突エネルギー吸収部品は、車体の前部又は後部に設けられ、該車体の前方又は後方から衝突荷重が入力した際に軸圧壊して衝突エネルギーを吸収するものであって、引張強度が590MPa級以上1180MPa級以下の鋼板から形成されてなり、天板部とこれに続く一対の縦壁部を有する筒状部材と、該筒状部材よりも引張強度の低い鋼板から形成されてなり、前記筒状部材の内側に前記天板部を跨ぐように配設されて両端部が前記一対の縦壁部の内面に接合され、該筒状部材の周壁部の一部との間に閉断面空間を形成する閉断面空間形成壁部材と、前記閉断面空間に充填された樹脂と、を有し、該樹脂は、ゴム変性エポキシ樹脂と硬化剤とを含んでなり、引張破断伸びが80%以上、前記筒状部材及び前記閉断面空間形成壁部材との接着強度が12MPa以上、圧縮公称歪10%における圧縮公称応力が6MPa以上、であることを特徴とするものである。 (1) The automobile collision energy absorbing component according to the present invention is provided at the front or rear of the vehicle body, and when a collision load is input from the front or the rear of the vehicle body, the shaft is crushed to absorb the collision energy. Therefore, a tubular member having a tensile strength of 590 MPa class or more and 1180 MPa class or less, having a top plate portion and a pair of vertical wall portions following the top plate portion, and a steel plate having a lower tensile strength than the tubular member. It is formed from, and is arranged inside the tubular member so as to straddle the top plate portion, and both ends thereof are joined to the inner surface of the pair of vertical wall portions, and a part of the peripheral wall portion of the tubular member. It has a closed cross-section space forming wall member forming a closed cross-section space between the two, and a resin filled in the closed cross-section space, and the resin contains a rubber-modified epoxy resin and a curing agent. It is characterized by a tensile elongation at break of 80% or more, an adhesive strength between the tubular member and the closed cross-section space forming wall member of 12 MPa or more, and a compression nominal stress of 6 MPa or more at a compression nominal strain of 10%. be.

(2)本発明に係る自動車用衝突エネルギー吸収部品は、車体の前部又は後部に設けられ、該車体の前方又は後方から衝突荷重が入力した際に軸圧壊して衝突エネルギーを吸収するものであって、引張強度が590MPa級以上1180MPa級以下の鋼板から形成されてなり、天板部とこれに続く一対の縦壁部を有する筒状部材と、該筒状部材よりも引張強度の低い鋼板から形成されてなり、前記筒状部材の内側に前記天板部を跨ぐように配設されて両端部が前記一対の縦壁部の内面に接合され、該筒状部材の周壁部の一部との間に閉断面空間を形成する閉断面空間形成壁部材と、前記閉断面空間に充填された樹脂と、を有し、該樹脂は、ゴム変性エポキシ樹脂を含んでなり、引張破断伸びが80%以上、前記筒状部材及び前記閉断面空間形成壁部材との接着強度が12MPa以上、圧縮公称歪10%における圧縮公称応力が6MPa以上、であることを特徴とするものである。 (2) The automobile collision energy absorbing component according to the present invention is provided at the front or rear of the vehicle body, and when a collision load is input from the front or the rear of the vehicle body, the shaft is crushed to absorb the collision energy. Therefore, a tubular member having a tensile strength of 590 MPa class or more and 1180 MPa class or less, having a top plate portion and a pair of vertical wall portions following the top plate portion, and a steel plate having a lower tensile strength than the tubular member. It is formed from, and is arranged inside the tubular member so as to straddle the top plate portion, and both ends thereof are joined to the inner surface of the pair of vertical wall portions, and a part of the peripheral wall portion of the tubular member. It has a closed cross-section space forming wall member forming a closed cross-section space between the two, and a resin filled in the closed cross-section space. It is characterized in that the adhesive strength between the tubular member and the closed cross-section space forming wall member is 12 MPa or more, and the compression nominal stress at 10% compression nominal strain is 6 MPa or more.

本発明においては、車体の前部又は後部に設けられ、該車体の前方又は後方から衝突荷重が入力した際に軸圧壊して衝突エネルギーを吸収するものであって、引張強度が590MPa級以上1180MPa級以下の鋼板から形成されてなり、天板部とこれに続く一対の縦壁部を有する筒状部材と、該筒状部材よりも引張強度の低い鋼板から形成されてなり、前記筒状部材の内側に前記天板部を跨ぐように配設されて両端部が前記一対の縦壁部の内面に接合され、該筒状部材との間に閉断面空間を形成する閉断面空間形成壁部材と、前記閉断面空間に充填された樹脂と、を有し、該樹脂は、ゴム変性エポキシ樹脂と硬化剤、または、ゴム変性エポキシ樹脂を含んでなり、引張破断伸びが80%以上、前記筒状部材及び前記閉断面空間形成壁部材との接着強度が12MPa以上、圧縮公称歪10%における圧縮公称応力が6MPa以上、であることにより、車体の前方又は後方から衝突荷重が入力して軸圧壊する過程において、前記筒状部材の変形抵抗を低下させることなく蛇腹状に繰り返し座屈変形を発生させることができ、衝突エネルギーの吸収効果を向上させることができる。 In the present invention, it is provided at the front or rear of the vehicle body, and when a collision load is input from the front or the rear of the vehicle body, the shaft is crushed to absorb the collision energy, and the tensile strength is 590 MPa class or more and 1180 MPa. The tubular member is formed of a steel plate of grade or lower, has a top plate portion and a pair of vertical wall portions following the top plate portion, and is formed of a steel plate having a lower tensile strength than the tubular member. A closed cross-section space forming wall member which is arranged inside the top plate portion so as to straddle the top plate portion and both ends thereof are joined to the inner surface of the pair of vertical wall portions to form a closed cross-section space between the tubular member and the tubular member. And the resin filled in the closed cross-sectional space, the resin contains a rubber-modified epoxy resin and a curing agent, or a rubber-modified epoxy resin, and has a tensile elongation at break of 80% or more, and the cylinder. Since the adhesive strength between the shaped member and the closed cross-section space forming wall member is 12 MPa or more and the nominal compressive stress at 10% compression nominal strain is 6 MPa or more, a collision load is input from the front or rear of the vehicle body and the shaft collapses. In this process, buckling deformation can be repeatedly generated in a bellows shape without reducing the deformation resistance of the tubular member, and the effect of absorbing collision energy can be improved.

本発明の実施の形態に係る自動車用衝突エネルギー吸収部品の構成を説明する説明図である。It is explanatory drawing explaining the structure of the collision energy absorption component for automobiles which concerns on embodiment of this invention. 本実施の形態に係る自動車用衝突エネルギー吸収部品の断面図である。It is sectional drawing of the collision energy absorption component for automobiles which concerns on this embodiment. 実施例における自動車用衝突エネルギー吸収部品の軸圧壊試験方法を説明する図である。It is a figure explaining the shaft crushing test method of the collision energy absorption component for automobiles in an Example. 実施例において、軸圧壊試験に用いた試験体の構造を示す図である(発明例)。It is a figure which shows the structure of the test body used for the shaft crushing test in an Example (invention example). 実施例において、接着強度の測定方法を説明する図である。It is a figure explaining the method of measuring the adhesive strength in an Example. 実施例において、軸圧壊試験に用いた試験体の構造を示す図である(比較例)。It is a figure which shows the structure of the test body used for the shaft crushing test in an Example (comparative example). 実施例において、比較例に係る自動車用衝突エネルギー吸収部品を試験体として軸圧壊試験を行ったときの、衝突荷重と軸圧壊変形量(ストローク)の測定結果を示す図である。It is a figure which shows the measurement result of the collision load and the shaft crush deformation amount (stroke) when the shaft crush test was performed using the collision energy absorption component for automobiles which concerns on a comparative example as a test body in an Example. 実施例において、発明例に係る自動車用衝突エネルギー吸収部品を試験体として軸圧壊試験を行ったときの、衝突荷重と軸圧壊変形量(ストローク)の測定結果を示す図である。It is a figure which shows the measurement result of the collision load and the shaft crush deformation amount (stroke) when the shaft crush test was performed using the collision energy absorption component for automobiles which concerns on the invention example as a test body in an Example.

本発明の実施の形態に係る自動車用衝突エネルギー吸収部品について、図1及び図2に基づいて以下に説明する。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略する。 The collision energy absorbing component for an automobile according to the embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In the present specification and the drawings, elements having substantially the same function and configuration are designated by the same reference numerals, so that duplicate description will be omitted.

本実施の形態に係る自動車用衝突エネルギー吸収部品1は、図1に示すように、アウタ部品5とインナ部品7とからなる筒状部材3を有し、車体の前部又は後部に設けられて該車体の前方又は後方から衝突荷重が入力した際に衝突エネルギーを吸収するものであって、筒状部材3の周壁部の一部であるアウタ部品5との間に閉断面空間を形成する閉断面空間形成壁部材9と、該閉断面空間の断面を充満する樹脂11とを備えたものである。 As shown in FIG. 1, the collision energy absorbing component 1 for an automobile according to the present embodiment has a tubular member 3 composed of an outer component 5 and an inner component 7, and is provided at the front or rear of the vehicle body. It absorbs collision energy when a collision load is input from the front or rear of the vehicle body, and forms a closed cross-sectional space with the outer component 5 which is a part of the peripheral wall portion of the tubular member 3. It includes a cross-section space forming wall member 9 and a resin 11 that fills the cross-section of the closed cross-section space.

<筒状部材>
筒状部材3は、軸圧壊して衝突エネルギーを吸収し、天板部5aとこれに続く一対の縦壁部5bを有するものであり、図2に示すように、天板部5aと縦壁部5bとフランジ部5cとからなるハット断面形状のアウタ部品5のフランジ部5cと、平板状のインナ部品7の両側端部とが接合して筒状に形成されたものである。
<Cylindrical member>
The tubular member 3 has a top plate portion 5a and a pair of vertical wall portions 5b following the top plate portion 5a by crushing the shaft to absorb the collision energy. As shown in FIG. 2, the top plate portion 5a and the vertical wall portion 3 are provided. The flange portion 5c of the outer component 5 having a hat cross-sectional shape composed of the portions 5b and the flange portion 5c and the both end portions of the flat plate-shaped inner component 7 are joined to form a cylindrical shape.

そして、筒状部材3を構成するアウタ部品5とインナ部品7は、いずれも、引張強度が590MPa級以上1180MPa級以下の鋼板からなるものである。ここで、鋼板の種類としては、冷延鋼板、熱延鋼板、亜鉛系めっき鋼板、亜鉛合金系めっき鋼板、アルミ合金系めっき鋼板、などが例示できる。 The outer component 5 and the inner component 7 constituting the tubular member 3 are both made of steel plates having a tensile strength of 590 MPa class or more and 1180 MPa class or less. Here, examples of the types of steel sheets include cold-rolled steel sheets, hot-rolled steel sheets, galvanized steel sheets, galvanized steel sheets, and aluminum alloy-plated steel sheets.

なお、筒状部材3は、車体前部の左右位置において車体前後方向に延びて車体骨格の一部を構成するフロントサイドメンバーや、該車体骨格の前端又は後端に設けられるクラッシュボックスといった閉断面構造を有する自動車部品に用いられ、該自動車部品は、筒状部材3の軸方向(長手方向)が車体の前後方向と一致するように該車体に配設される。 The tubular member 3 has a closed cross section such as a front side member extending in the front-rear direction of the vehicle body at the left and right positions of the front portion of the vehicle body to form a part of the vehicle body skeleton, and a crash box provided at the front end or the rear end of the vehicle body skeleton. Used for automobile parts having a structure, the automobile parts are arranged on the vehicle body so that the axial direction (longitudinal direction) of the tubular member 3 coincides with the front-rear direction of the vehicle body.

<閉断面空間形成壁部材>
閉断面空間形成壁部材9は、筒状部材3よりも引張強度の低い鋼板から形成されてなり、図2に示すように、筒状部材3の内側であるアウタ部品5とインナ部品7との間に天板部5aを跨ぐように配設された略コ字断面形状の部材であり、その両端部がアウタ部品5の一対の縦壁部5bに接合され、筒状部材3の周壁部の一部であるアウタ部品5の天板部5a及び縦壁部5bとの間に閉断面空間を形成するものである。
<Closed cross-section space forming wall member>
The closed cross-section space forming wall member 9 is made of a steel plate having a lower tensile strength than the tubular member 3, and as shown in FIG. 2, the outer component 5 and the inner component 7 inside the tubular member 3 are formed. It is a member having a substantially U-shaped cross section arranged so as to straddle the top plate portion 5a between them, and both ends thereof are joined to a pair of vertical wall portions 5b of the outer component 5 to form a peripheral wall portion of the tubular member 3. A closed cross-sectional space is formed between the top plate portion 5a and the vertical wall portion 5b of the outer component 5, which is a part of the outer component 5.

閉断面空間形成壁部材9の両端部と縦壁部5bとは、例えばスポット溶接等により接合されている。
さらに、閉断面空間形成壁部材9とアウタ部品5との間に形成される閉断面空間とは、図1に示す筒状部材3の軸方向に交差する方向の断面形状が閉断面であり、該閉断面が筒状部材3の軸方向に沿って連続して形成された空間のことをいう。
Both ends of the closed cross-section space forming wall member 9 and the vertical wall portion 5b are joined by, for example, spot welding.
Further, the closed cross-sectional space formed between the closed cross-sectional space forming wall member 9 and the outer component 5 has a closed cross-sectional shape in a direction intersecting the axial direction of the cylindrical member 3 shown in FIG. It refers to a space in which the closed cross section is continuously formed along the axial direction of the tubular member 3.

<樹脂>
樹脂11は、閉断面空間形成壁部材9とアウタ部品5との間に形成された閉断面空間に充填されたものである。
<Resin>
The resin 11 is filled in the closed cross-section space formed between the closed cross-section space forming wall member 9 and the outer component 5.

樹脂11は、ゴム変性エポキシ樹脂と硬化剤を含んでなるものであり、所定の温度及び時間で加熱処理を行うことで樹脂11自体の接着能によりアウタ部品5と閉断面空間形成壁部材9とに接着させることができる。
さらに、樹脂11は、引張破断伸びが80%以上、筒状部材3及び閉断面空間形成壁部材9との接着強度が12MPa以上、圧縮公称歪10%における圧縮公称応力が6MPa以上の物性を有するものである。これら各物性はいずれも、樹脂11を加熱処理した後の値である。
The resin 11 contains a rubber-modified epoxy resin and a curing agent, and by being heat-treated at a predetermined temperature and time, the outer component 5 and the closed cross-sectional space forming wall member 9 are formed by the adhesive ability of the resin 11 itself. Can be adhered to.
Further, the resin 11 has physical properties such as a tensile elongation at break of 80% or more, an adhesive strength with the tubular member 3 and the closed cross-section space forming wall member 9 of 12 MPa or more, and a compression nominal stress of 6 MPa or more at a compression nominal strain of 10%. It is a thing. All of these physical properties are values after the resin 11 is heat-treated.

引張破断伸び、接着強度及び圧縮公称応力は、それぞれ以下の方法により求めた値とすればよい。 The tensile elongation at break, the adhesive strength, and the nominal compressive stress may be the values obtained by the following methods, respectively.

≪引張破断伸び≫
所定の間隙に調整した2枚の鋼板の間に未硬化の樹脂を入れ、所定の条件で加熱硬化させ、鋼板を剥がして平板状樹脂を作製し、該平板状樹脂を所定の形状に加工して試験片を作製する。次いで、所定の引張速度で樹脂が破断するまで引張試験を行い、樹脂破断時の標線間伸び量を測定する。そして、該測定した樹脂破断時の標線間伸び量を初期の標線間距離で除して百分率表示した値を引張破断伸びとする。
≪Tension fracture elongation≫
An uncured resin is placed between two steel plates adjusted to a predetermined gap, heat-cured under predetermined conditions, the steel plates are peeled off to produce a flat resin, and the flat resin is processed into a predetermined shape. To prepare a test piece. Next, a tensile test is performed at a predetermined tensile speed until the resin breaks, and the amount of elongation between marked lines at the time of resin breakage is measured. Then, the measured elongation between the marked lines at the time of resin break is divided by the initial distance between the marked lines, and the value displayed as a percentage is defined as the tensile elongation at break.

≪接着強度≫
所定の間隙に調整した2枚の鋼板の間に未硬化の樹脂を入れ、所定の条件で加熱硬化させ、試験片を作製する。次いで、該試験片を所定の引張速度で引張試験を行い、鋼板と樹脂とが破断した時の荷重を測定する。そして、該測定した破断時の荷重を鋼板と樹脂との接着面積で除した値(=せん断接着強度)を接着強度とする。
≪Adhesive strength≫
An uncured resin is placed between two steel plates adjusted to a predetermined gap and heat-cured under predetermined conditions to prepare a test piece. Next, the test piece is subjected to a tensile test at a predetermined tensile speed, and the load when the steel plate and the resin are broken is measured. Then, the value obtained by dividing the measured load at break by the bonding area between the steel sheet and the resin (= shear bonding strength) is defined as the bonding strength.

≪圧縮公称応力≫
所定の間隙に調整した2枚の鋼板の間に未硬化の樹脂を入れ、所定の条件で加熱硬化させ、鋼板を剥がして平板状樹脂を作製する。次いで、該平板状樹脂を円柱状に切り出して試験片を作製する。そして、当該試験片における円形状面を圧縮面とし、所定の試験速度で公称歪10%まで圧縮した時の荷重について、初期の試験片の断面績で除した値を圧縮公称応力する。
≪Compression nominal stress≫
An uncured resin is placed between two steel plates adjusted to a predetermined gap, heated and cured under predetermined conditions, and the steel plates are peeled off to prepare a flat resin. Next, the flat plate-shaped resin is cut out into a columnar shape to prepare a test piece. Then, the circular surface of the test piece is used as a compression surface, and the value obtained by dividing the load when compressed to a nominal strain of 10% at a predetermined test speed by the cross-sectional area of the initial test piece is subjected to the compression nominal stress.

本実施の形態に係る自動車用衝突エネルギー吸収部品1において、樹脂11の種類及び物性を上記のとおり規定する理由は下記のとおりである。
まず、樹脂11がゴム変性エポキシ樹脂及び硬化剤を含んでなることにより、筒状部材3に衝突荷重が入力して蛇腹状に軸圧壊変形する際に、加熱処理により樹脂11を加熱硬化させ、12MPa以上の接着強度で筒状部材3及び閉断面空間形成壁部材9と接着することにより、筒状部材3の変形に追随して樹脂11が変形することができる。
The reason for defining the type and physical properties of the resin 11 in the collision energy absorbing component 1 for automobiles according to the present embodiment as described above is as follows.
First, since the resin 11 contains a rubber-modified epoxy resin and a curing agent, when a collision load is input to the tubular member 3 and the shaft is crushed and deformed in a bellows shape, the resin 11 is heat-cured by heat treatment. By adhering to the tubular member 3 and the closed cross-sectional space forming wall member 9 with an adhesive strength of 12 MPa or more, the resin 11 can be deformed following the deformation of the tubular member 3.

引張破断伸びが80%以上であることにより、筒状部材3の軸圧壊変形に追随して樹脂11が変形する際に樹脂11自体が破断しないようにすることができる。 When the tensile fracture elongation is 80% or more, it is possible to prevent the resin 11 itself from breaking when the resin 11 is deformed following the axial crush deformation of the tubular member 3.

接着強度が12MPa以上であることにより、筒状部材3の軸圧壊過程において樹脂11が筒状部材3や閉断面空間形成壁部材9から乖離して座屈耐力や変形抵抗が低下することを防ぐことができる。 When the adhesive strength is 12 MPa or more, it is prevented that the resin 11 is separated from the cylindrical member 3 and the closed cross-section space forming wall member 9 in the axial crushing process of the tubular member 3 to reduce the buckling resistance and the deformation resistance. be able to.

圧縮公称歪10%における圧縮公称応力が6MPa以上であることにより、軸圧壊過程において、筒状部材3が蛇腹状に変形しても、樹脂11自体が潰れて破壊しないほど十分な耐力を有することができる。 When the nominal compressive stress at 10% of the nominal compressive strain is 6 MPa or more, even if the tubular member 3 is deformed into a bellows shape in the axial crushing process, the resin 11 itself has sufficient proof stress so as not to be crushed and broken. Can be done.

そして、樹脂11の引張破断伸び、接着強度及び圧縮公称応力が上記範囲となるよう、ゴム変性エポキシ樹脂及び硬化剤の種類や組成、さらには、加熱処理の温度や時間を適宜調整すればよい。 Then, the type and composition of the rubber-modified epoxy resin and the curing agent, and the temperature and time of the heat treatment may be appropriately adjusted so that the tensile elongation at break, the adhesive strength, and the nominal compressive stress of the resin 11 are within the above ranges.

なお、硬化剤としては、ポリアミン系(脂肪族ポリアミン、芳香族アミン、芳香族ポリアミン、ポリアミドアミン)、酸無水物系、フェノール系、チオール系、や潜在性硬化剤であるジシアンジアミド、イミダゾール化合物、ケチミン化合物、有機酸ヒドラジド等、使用環境・反応温度等によって最適に選定される硬化剤がよい。 The curing agents include polyamines (aliphatic polyamines, aromatic amines, aromatic polyamines, polyamide amines), acid anhydrides, phenols, thiols, and latent curing agents such as dicyandiamide, imidazole compounds, and ketimine. A curing agent optimally selected according to the usage environment, reaction temperature, etc., such as a compound and an organic acid hydrazide, is preferable.

以上、本実施の形態に係る自動車用衝突エネルギー吸収部品1は、筒状部材3に衝突荷重が入力して軸圧壊する過程において、樹脂11は筒状部材3及び閉断面空間形成壁部材9から乖離することなく座屈抵抗を向上させ、さらに、筒状部材3の変形抵抗を低下させることなく筒状部材3に蛇腹状に繰り返し座屈を発生させることができ、衝突エネルギーの吸収性を向上させることができる。 As described above, in the collision energy absorbing component 1 for automobiles according to the present embodiment, in the process in which the collision load is input to the tubular member 3 and the shaft is crushed, the resin 11 is separated from the tubular member 3 and the closed cross-section space forming wall member 9. The buckling resistance can be improved without dissociation, and the tubular member 3 can be repeatedly buckled in a bellows shape without reducing the deformation resistance of the tubular member 3, improving the absorption of collision energy. Can be made to.

なお、上記の説明において、樹脂11は、加熱処理した後にゴム変性エポキシ樹脂と硬化剤とを含んでなるものであった。もっとも、閉断面空間形成壁部材9とアウタ部品5との間に形成された閉断面空間に充填する硬化剤の量によっては、所定の温度及び時間で加熱処理した後の樹脂11に硬化剤が残留しない又は検出されない場合がある。 In the above description, the resin 11 contains a rubber-modified epoxy resin and a curing agent after being heat-treated. However, depending on the amount of the curing agent filled in the closed cross-section space formed between the closed cross-section space forming wall member 9 and the outer component 5, the curing agent may be added to the resin 11 after heat treatment at a predetermined temperature and time. It may not remain or may not be detected.

そのため、本発明の実施の形態に係る自動車用衝突エネルギー吸収部品1の他の態様として、加熱処理した後の樹脂11が硬化剤を含まない又は検出されないもので、所定の温度及び時間で加熱処理を行うことで樹脂11自体の接着能によりアウタ部品5と閉断面空間形成壁部材9とに接着させたものであってもよい。 Therefore, as another aspect of the collision energy absorbing component 1 for automobiles according to the embodiment of the present invention, the resin 11 after the heat treatment does not contain a curing agent or is not detected, and is heat-treated at a predetermined temperature and time. By doing so, the outer component 5 and the closed cross-sectional space forming wall member 9 may be adhered to each other by the adhesive ability of the resin 11 itself.

加熱処理した後の樹脂11が硬化剤を含まない又は検出されないものである場合においても、その物性は、引張破断伸びが80%以上、筒状部材3及び閉断面空間形成壁部材9との接着強度が12MPa以上、圧縮公称歪10%における圧縮公称応力が6MPa以上を有するものとする。そして、樹脂11の引張破断伸び、接着強度及び圧縮公称応力が上記範囲となるよう、加熱処理前に閉断面空間に充填するゴム変性エポキシ樹脂及び硬化剤の種類や組成、さらには、加熱処理の温度や時間を適宜調整すればよい。 Even when the resin 11 after heat treatment does not contain a curing agent or is not detected, its physical properties are such that the tensile elongation at break is 80% or more, and the resin 11 adheres to the tubular member 3 and the closed cross-section space forming wall member 9. It is assumed that the strength is 12 MPa or more and the nominal compressive stress at 10% of the nominal compressive strain is 6 MPa or more. Then, the type and composition of the rubber-modified epoxy resin and the curing agent to be filled in the closed cross-sectional space before the heat treatment so that the tensile elongation at break, the adhesive strength and the nominal compressive stress of the resin 11 are within the above ranges, and further, the heat treatment. The temperature and time may be adjusted as appropriate.

ゴム変性エポキシ樹脂を含み、かつ硬化剤を含まない又は検出されない樹脂11が上記物性の範囲内にあれば、筒状部材3に衝突荷重が入力して軸圧壊する過程において、樹脂11は筒状部材3及び閉断面空間形成壁部材9から乖離することなく座屈抵抗を向上させ、さらに、筒状部材3の変形抵抗を低下させることなく筒状部材3に蛇腹状に繰り返し座屈を発生させることができ、衝突エネルギーの吸収性を向上させることができる。 If the resin 11 containing the rubber-modified epoxy resin and containing no curing agent or not detected is within the range of the above physical properties, the resin 11 is tubular in the process of inputting a collision load to the tubular member 3 and crushing the shaft. The buckling resistance is improved without deviating from the member 3 and the closed cross-section space forming wall member 9, and further, the tubular member 3 is repeatedly buckled in a bellows shape without reducing the deformation resistance of the tubular member 3. It is possible to improve the absorption of collision energy.

本発明に係る自動車用衝突エネルギー吸収部品の効果を確認するための実験を行ったので、その結果について以下に説明する。 An experiment for confirming the effect of the collision energy absorbing component for an automobile according to the present invention has been conducted, and the results will be described below.

実験は、本発明に係る自動車用衝突エネルギー吸収部品を試験体として軸圧壊試験を行うものであり、軸圧壊試験は、図3に示すように、試験体31の軸方向に試験速度17.8m/sで荷重を入力して試験体長(試験体31の軸方向長さL0)を200mmから120mmまで80mm軸圧壊変形させたときの荷重と軸圧壊変形量(ストローク)の関係を示す荷重-ストローク曲線の測定及び高速度カメラによる変形状態の撮影を行った。さらに、測定した荷重-ストローク曲線から、ストロークが0~80mmまでの吸収エネルギーを求めた。 In the experiment, a shaft crushing test is performed using the collision energy absorbing component for automobiles according to the present invention as a test body. In the shaft crushing test, as shown in FIG. 3, the test speed is 17.8 m / in the axial direction of the test body 31. Load-stroke showing the relationship between the load and the amount of shaft crush deformation (stroke) when the test piece length (axial length L 0 of the test piece 31) is 80 mm from 200 mm to 120 mm by inputting the load with s. The curve was measured and the deformed state was photographed with a high-speed camera. Furthermore, from the measured load-stroke curve, the absorbed energy with a stroke of 0 to 80 mm was obtained.

図4に、発明例とした試験体31の構造及び形状を示す。
発明例は、前述した本発明の実施の形態に係る自動車用衝突エネルギー吸収部品1(図1及び図2)を試験体31とし、軸圧壊試験を行ったものである。
試験体31は、アウタ部品5とインナ部品7とがスポット溶接により接合された筒状部材3を有し、アウタ部品5と閉断面空間形成壁部材9との間に閉断面空間が形成され、該閉断面空間の全領域に樹脂11が充填されている。そして、アウタ部品5と閉断面空間形成壁部材9との間の隙間高さを1mm、3mm、8mm(図4(a)~(c))とした。
FIG. 4 shows the structure and shape of the test body 31 as an example of the invention.
In the example of the invention, the collision energy absorbing component 1 for automobiles (FIGS. 1 and 2) according to the above-described embodiment of the present invention is used as a test body 31 and a shaft crush test is performed.
The test body 31 has a tubular member 3 in which the outer component 5 and the inner component 7 are joined by spot welding, and a closed cross-section space is formed between the outer component 5 and the closed cross-section space forming wall member 9. The entire region of the closed cross-section space is filled with the resin 11. The gap heights between the outer component 5 and the closed cross-section space forming wall member 9 are set to 1 mm, 3 mm, and 8 mm (FIGS. 4 (a) to 4 (c)).

アウタ部品5には、引張強度590MPa級~1180MPa級、板厚1.2mm又は1.4mmの鋼板を用い、インナ部品7には、引張強度590MPa級、板厚1.2mmの鋼板を用いた。
また、閉断面空間形成壁部材9には、引張強度270MPa級、板厚0.5mmの鋼板を用いた。
A steel plate having a tensile strength of 590 MPa class to 1180 MPa class and a plate thickness of 1.2 mm or 1.4 mm was used for the outer component 5, and a steel plate having a tensile strength of 590 MPa class and a plate thickness of 1.2 mm was used for the inner component 7.
Further, as the closed cross-section space forming wall member 9, a steel plate having a tensile strength of 270 MPa class and a plate thickness of 0.5 mm was used.

樹脂11は、ゴム変性エポキシ樹脂及び硬化剤を所定の加熱温度及び加熱時間で加熱処理したものであり、加熱処理した後の樹脂11の引張破断伸び、接着強度及び圧縮公称応力のそれぞれの値を本発明の範囲内とした。ここで、引張破断伸び、接着強度及び圧縮公称応力は、それぞれ下記の試験方法を別途行うことにより求めた。 The resin 11 is obtained by heat-treating a rubber-modified epoxy resin and a curing agent at a predetermined heating temperature and heating time, and the values of the tensile elongation at break, the adhesive strength, and the nominal compressive stress of the resin 11 after the heat treatment are set. It is within the scope of the present invention. Here, the tensile elongation at break, the adhesive strength, and the nominal compressive stress were obtained by separately performing the following test methods.

<引張破断伸び>
2枚の鋼板の間隙を2mmに調整し、その間に未硬化の樹脂を入れ、180℃×20分保持の条件で加熱硬化させ、鋼板を剥がして厚さ2mmの平板状樹脂を作製した。続いて、当該平板状樹脂をダンベル形状(JIS6号ダンベル)に加工して試験片を作製し、引張速度2mm/minで樹脂が破断するまで引張試験を行い、樹脂破断時の標線間伸び量を測定した。そして、該測定した樹脂破断時の標線間伸び量を初期の標線間距離(=20mm)で除した値を百分率表示し、引張破断伸びとした。
<Tension fracture elongation>
The gap between the two steel plates was adjusted to 2 mm, an uncured resin was placed between them, and the resin was heat-cured under the condition of holding at 180 ° C for 20 minutes, and the steel plates were peeled off to prepare a flat resin having a thickness of 2 mm. Subsequently, the flat plate-shaped resin is processed into a dumbbell shape (JIS No. 6 dumbbell) to prepare a test piece, and a tensile test is performed at a tensile speed of 2 mm / min until the resin breaks. Was measured. Then, the value obtained by dividing the measured amount of elongation between the marked lines at the time of resin break by the initial distance between the marked lines (= 20 mm) was displayed as a percentage, and was used as the tensile elongation at break.

<せん断接着強度>
図5に示すように、被着体23及び被着体25は、幅25mm、厚さ1.6mm、長さ100mmの鋼板(SPCC)とし、接着部(幅25mm、長さ10mm)に未硬化の樹脂27を設置し、厚み0.15mmに調整した状態で、180℃×20分保持の条件で加熱硬化したものを試験片21とした。次いで、試験片21を引張速度5mm/minで被着体23又は被着体25と樹脂27とが破断するまでの引張試験を行い、破断時の荷重を測定した。そして、破断時の荷重を接着部の面積(接着面積:幅25mm×長さ10mm)で除した値をせん断接着強度とした。
<Shear adhesive strength>
As shown in FIG. 5, the adherend 23 and the adherend 25 are made of a steel plate (SPCC) having a width of 25 mm, a thickness of 1.6 mm, and a length of 100 mm, and are uncured on the bonded portion (width 25 mm, length 10 mm). The test piece 21 was obtained by heating and curing the resin 27 under the conditions of holding at 180 ° C. for 20 minutes in a state where the resin 27 was installed and adjusted to a thickness of 0.15 mm. Next, the test piece 21 was subjected to a tensile test at a tensile speed of 5 mm / min until the adherend 23 or the adherend 25 and the resin 27 broke, and the load at the time of breakage was measured. Then, the value obtained by dividing the load at the time of breaking by the area of the bonded portion (bonding area: width 25 mm × length 10 mm) was defined as the shear bonding strength.

<圧縮公称応力>
2枚の鋼板の間隙を3mmに調整し、その間に未硬化の樹脂を入れ、180℃×20分保持の条件で加熱硬化させ、鋼板を剥がして厚さ3mmの平板状樹脂試験片を作製した。次いで、該平板状樹脂試験片から直径20mmの円柱状に切り出したものを試験片とした。そして、当該試験片における直径20mmの円形状面を圧縮面とし、試験速度2mm/minで公称歪10%まで圧縮した時の荷重について、初期の試験片の断面績で除した値を圧縮公称応力とした。
<Compressive nominal stress>
The gap between the two steel plates was adjusted to 3 mm, an uncured resin was placed between them, and the product was heat-cured under the condition of holding at 180 ° C for 20 minutes, and the steel plates were peeled off to prepare a flat resin test piece with a thickness of 3 mm. .. Next, a cylindrical resin test piece having a diameter of 20 mm was cut out from the flat resin test piece and used as a test piece. Then, the circular surface with a diameter of 20 mm in the test piece is used as the compression surface, and the value obtained by dividing the load when compressed to a nominal strain of 10% at a test speed of 2 mm / min by the cross-sectional results of the initial test piece is the compression nominal stress. And said.

本実施例では、比較対象として、発明例の筒状部材3及び閉断面空間形成壁部材9と同一形状であって樹脂が充填されていない試験体33(図6)を用いた場合と、発明例と同一形状の試験体31において樹脂11の物性が本発明の範囲外の場合を比較例とし、発明例と同様に軸圧壊試験を行った。
表1に、発明例及び比較例とした試験体の構造、樹脂の種類、引張破断伸び、接着強度、圧縮公称歪10%における圧縮公称応力の各条件を示す。
In this embodiment, as a comparison target, the case where the test body 33 (FIG. 6) having the same shape as the tubular member 3 and the closed cross-section space forming wall member 9 of the invention example and not filled with resin is used, and the invention. In a test body 31 having the same shape as the example, a case where the physical properties of the resin 11 were outside the range of the present invention was taken as a comparative example, and a shaft crush test was conducted in the same manner as in the invention example.
Table 1 shows the conditions of the structure of the test piece as an example of the invention and the comparative example, the type of resin, the tensile elongation at break, the adhesive strength, and the nominal compressive stress at 10% of the nominal compressive strain.

Figure 0007026088000001
Figure 0007026088000001

表1において、発明例1~発明例7は、筒状部材3を構成するアウタ部品5とインナ部品7に用いた鋼板の引張強度(590MPa級以上1180MPa級以下)、閉断面空間形成壁部材9に用いた鋼板の引張強度(270MPa級)、樹脂11の種類、引張破断伸び、接着強度、圧縮公称応力のいずれもが、前述の実施の形態で示した本発明の範囲内としたものである。 In Table 1, Invention Examples 1 to 7 show the tensile strength (590 MPa class or more and 1180 MPa class or less) of the steel plate used for the outer component 5 and the inner component 7 constituting the tubular member 3, and the closed cross-section space forming wall member 9. The tensile strength (270 MPa class) of the steel sheet used in the above, the type of the resin 11, the tensile elongation at break, the adhesive strength, and the nominal compressive stress are all within the scope of the present invention shown in the above-described embodiment. ..

そして、発明例1~発明例4は、所定の加熱温度及び加熱時間で加熱処理した後に、樹脂11に硬化剤が残留したものである。また、発明例5~発明例7は、発明例1~4に比べて硬化剤の量が少なく、所定の加熱温度及び加熱時間で加熱処理した後、樹脂11に硬化剤が残留しなかった又は検出されなかったものである。 In Invention Examples 1 to 4, the curing agent remains in the resin 11 after being heat-treated at a predetermined heating temperature and heating time. Further, in Invention Examples 5 to 7, the amount of the curing agent was smaller than that in Invention Examples 1 to 4, and the curing agent did not remain in the resin 11 after the heat treatment at a predetermined heating temperature and heating time. It was not detected.

これらに対し、比較例1~比較例4は、樹脂が充填されていない試験体33を用いたもの、比較例5~比較例7は、樹脂11の種類をエポキシ又はウレタンとし、引張破断伸び、接着強度、圧縮公称応力の少なくともいずれか一つが本発明の範囲外である試験体31を用いたものである。 On the other hand, in Comparative Examples 1 to 4, the test piece 33 not filled with the resin was used, and in Comparative Examples 5 to 7, the type of the resin 11 was epoxy or urethane, and the tensile elongation at break occurred. The test piece 31 in which at least one of the adhesive strength and the nominal compressive stress is outside the scope of the present invention is used.

図7及び図8に、それぞれ比較例1に係る試験体33及び発明例1に係る試験体31を用いて軸圧壊試験を行ったときの荷重―ストローク曲線の測定結果を示す。
図7及び図8は、横軸を衝突開始から試験体の軸方向における変形量を表すストローク(mm)とし、縦軸を試験体に入力した荷重(kN)とした荷重―ストローク曲線である。グラフ中に示す吸収エネルギーは、ストロークが0~80mmにおける衝突エネルギーの吸収量である。
7 and 8 show the measurement results of the load-stroke curve when the axial crush test was performed using the test body 33 according to Comparative Example 1 and the test body 31 according to Invention Example 1, respectively.
7 and 8 are load-stroke curves in which the horizontal axis is the stroke (mm) representing the amount of deformation of the test piece in the axial direction from the start of the collision, and the vertical axis is the load (kN) input to the test piece. The absorbed energy shown in the graph is the amount of collision energy absorbed when the stroke is 0 to 80 mm.

図7に示す比較例1は、樹脂が充填されていない試験体33(図6)の結果であり、試験体33に入力する荷重は、入力開始直後に最大値(約300kN)を示し、その後、筒状部材3の周壁部の座屈とともに荷重の値は変動した。そして、ストロークが80mmに達した試験終了時における吸収エネルギーは6.5kJであった。 Comparative Example 1 shown in FIG. 7 is the result of the test body 33 (FIG. 6) not filled with resin, and the load input to the test body 33 shows a maximum value (about 300 kN) immediately after the start of input, and then. , The value of the load fluctuated with the buckling of the peripheral wall portion of the tubular member 3. The absorbed energy at the end of the test when the stroke reached 80 mm was 6.5 kJ.

図8に示す発明例1は、アウタ部品5及び閉断面空間形成壁部材9との間に形成された閉断面空間に樹脂11が充填され、引張破断伸び(=80%)、接着強度(=12MPa)及び圧縮公称歪10%における圧縮公称応力(=6MPa)のいずれもが本発明の範囲内である試験体31の結果である。図8に示す荷重-ストローク曲線から、荷重入力開始直後の最大荷重は約400kNであり、前述の比較例1に比べて大幅に向上した。さらに、ストロークが10mm以降における変形荷重は、比較例1に比べると安定して高い値で推移した。そして、ストロークが0~80mmにおける吸収エネルギーについても、比較例1に比べて大幅に向上して13.1kJとなった。 In Invention Example 1 shown in FIG. 8, the resin 11 is filled in the closed cross-section space formed between the outer component 5 and the closed cross-section space forming wall member 9, and the tensile elongation at break (= 80%) and the adhesive strength (=). Both 12MPa) and the compression nominal stress (= 6MPa) at 10% compression nominal strain are the result of the test piece 31 which is within the scope of the present invention. From the load-stroke curve shown in FIG. 8, the maximum load immediately after the start of load input was about 400 kN, which was significantly improved as compared with Comparative Example 1 described above. Further, the deformation load when the stroke was 10 mm or later remained stable and high as compared with Comparative Example 1. The absorbed energy at a stroke of 0 to 80 mm was also significantly improved as compared with Comparative Example 1 to 13.1 kJ.

このように、発明例1においては、アウタ部品5及び閉断面空間形成壁部材9との間に樹脂11を充填し、その引張破断伸び、接着強度及び圧縮公称応力を本発明の範囲内とすることにより、軸圧壊過程において座屈耐力が増加するとともに樹脂11が剥離せずに変形抵抗が上昇し、蛇腹状の圧縮変形が生じて衝突エネルギーの吸収性が向上したことが分かる。 As described above, in the first invention example, the resin 11 is filled between the outer component 5 and the closed cross-section space forming wall member 9, and the tensile elongation at break, the proof stress, and the nominal compressive stress thereof are within the scope of the present invention. As a result, it can be seen that the buckling strength increases in the shaft crushing process, the deformation resistance increases without the resin 11 peeling off, and bellows-like compression deformation occurs, and the absorption of collision energy is improved.

次に、軸圧壊試験に用いる試験体の構造、樹脂の種類及び接着強度を変更して軸圧壊試験を行い、ストロークが0~80mmにおける吸収エネルギーの測定結果と試験体重量を前掲した表1に示す。 Next, the shaft crushing test was performed by changing the structure of the test piece used for the shaft crushing test, the type of resin, and the adhesive strength, and the measurement results of the absorbed energy and the weight of the test piece at a stroke of 0 to 80 mm are shown in Table 1 above. show.

表1中の試験体重量は、樹脂11が充填された試験体31においてはアウタ部品5、インナ部品7、閉断面空間形成壁部材9及び樹脂11の各重量の総和である。一方、樹脂が充填されていない試験体33においては、アウタ部品5、インナ部品7及び閉断面空間形成壁部材9の各重量の総和である。 The weight of the test piece in Table 1 is the sum of the weights of the outer part 5, the inner part 7, the closed cross-section space forming wall member 9 and the resin 11 in the test body 31 filled with the resin 11. On the other hand, in the test body 33 not filled with resin, it is the total weight of each of the outer component 5, the inner component 7, and the closed cross-section space forming wall member 9.

前述した図8に示したとおり、発明例1における吸収エネルギーは13.1kJであリ、比較例1における吸収エネルギー6.5kJに比べて大幅に向上した。また、比較例1よりも引張強度の高い鋼板(1180MPa級)をアウタ部品5に用いた比較例4における吸収エネルギー(=8.5kJ)と比較しても、発明例1においては吸収エネルギーが大幅に向上した。 As shown in FIG. 8 described above, the absorbed energy in Invention Example 1 was 13.1 kJ, which was significantly improved as compared with the absorbed energy of 6.5 kJ in Comparative Example 1. Further, even when compared with the absorption energy (= 8.5kJ) in Comparative Example 4 in which a steel plate (1180MPa class) having a higher tensile strength than Comparative Example 1 is used for the outer component 5, the absorption energy is significantly higher in Invention Example 1. Improved.

発明例1における試験体重量は1.28kgであり、樹脂を充填していない比較例1における試験体重量(=1.06kg)よりも増加した。しかしながら、発明例1においては、吸収エネルギーを試験体重量で除した単位重量当りの吸収エネルギーは10.2kJ/kgであり、比較例1(=6.1kJ/kg)よりも向上した。 The test piece weight in Invention Example 1 was 1.28 kg, which was larger than the test piece weight (= 1.06 kg) in Comparative Example 1 not filled with resin. However, in Invention Example 1, the absorbed energy per unit weight obtained by dividing the absorbed energy by the weight of the test piece was 10.2 kJ / kg, which was higher than that of Comparative Example 1 (= 6.1 kJ / kg).

発明例2は、樹脂11の厚みが発明例1よりも小さい1mmとした試験体31(図4(c))を用いたものである。
発明例2における吸収エネルギーは9.8kJであり、比較例1(=6.5kJ)に比べて大幅に向上した。
また、発明例2における試験体重量は1.12kgであり、発明例1よりも軽量であった。そして、発明例2における単位重量当たりの吸収エネルギーは8.5kJ/kgであり、比較例1(=6.1kJ/kg)よりも向上した。
Invention Example 2 uses a test body 31 (FIG. 4 (c)) in which the thickness of the resin 11 is 1 mm, which is smaller than that of Invention Example 1.
The absorption energy in Invention Example 2 was 9.8 kJ, which was significantly improved as compared with Comparative Example 1 (= 6.5 kJ).
The weight of the test piece in Invention Example 2 was 1.12 kg, which was lighter than that of Invention Example 1. The absorbed energy per unit weight in Invention Example 2 was 8.5 kJ / kg, which was higher than that of Comparative Example 1 (= 6.1 kJ / kg).

発明例3は、アウタ部品5に用いた鋼板の引張強度1180MPa級、樹脂11の厚み1mmとした試験体31(図4(c))を用いたものである。
発明例3における吸収エネルギーは12.6kJであり、比較例4(=8.5kJ)に比べて大幅に向上した。
また、発明例3における試験体重量は1.13kgであり、発明例1よりも軽量であった。その上、発明例3における単位重量当たりの吸収エネルギーは11.2kJ/kgであり、比較例4(=7.9kJ/kg)よりも向上した。
In the third invention example, the test piece 31 (FIG. 4 (c)) having a tensile strength of 1180 MPa class and a thickness of the resin 11 of 1 mm of the steel plate used for the outer component 5 is used.
The absorption energy in Invention Example 3 was 12.6 kJ, which was significantly improved as compared with Comparative Example 4 (= 8.5 kJ).
The weight of the test piece in Invention Example 3 was 1.13 kg, which was lighter than that of Invention Example 1. Moreover, the absorbed energy per unit weight in Invention Example 3 was 11.2 kJ / kg, which was higher than that of Comparative Example 4 (= 7.9 kJ / kg).

発明例4は、アウタ部品5に用いた鋼板の引張強度590MPa級、樹脂11の厚み3mmとした試験体31(図4(b))を用いたものである。
発明例4における吸収エネルギーは10.1kJであり、比較例1(=6.5kJ)に比べても大幅に向上した。
また、発明例4における試験体重量は1.19kgであり、発明例1よりも軽量となった。そして、発明例4における単位重量当たりの吸収エネルギーは8.5kJ/kgであり、比較例1(=6.1kJ/kg)よりも向上した。
In the fourth aspect of the invention, the test piece 31 (FIG. 4 (b)) having a tensile strength of 590 MPa class and a thickness of the resin 11 of 3 mm of the steel plate used for the outer component 5 is used.
The absorption energy in Invention Example 4 was 10.1 kJ, which was significantly improved as compared with Comparative Example 1 (= 6.5 kJ).
The weight of the test piece in Invention Example 4 was 1.19 kg, which was lighter than that of Invention Example 1. The absorbed energy per unit weight in Invention Example 4 was 8.5 kJ / kg, which was higher than that of Comparative Example 1 (= 6.1 kJ / kg).

発明例5は、アウタ部品5に用いた鋼板の引張強度590MPa級、樹脂11の厚み8mmとした試験体31(図4(a))を用いたものである。
発明例5における吸収エネルギーは13.1kJであリ、比較例1における吸収エネルギー6.5kJに比べて大幅に向上した。また、比較例1よりも引張強度の高い鋼板(1180MPa級)をアウタ部品5に用いた比較例4における吸収エネルギー(=8.5kJ)と比較しても、発明例5においては吸収エネルギーが大幅に向上した。
In the fifth aspect of the invention, the test piece 31 (FIG. 4A) having a tensile strength of 590 MPa class and a thickness of the resin 11 of 8 mm of the steel plate used for the outer component 5 is used.
The absorbed energy in Invention Example 5 was 13.1 kJ, which was significantly improved as compared with the absorbed energy of 6.5 kJ in Comparative Example 1. Further, even when compared with the absorption energy (= 8.5kJ) in Comparative Example 4 in which a steel plate (1180MPa class) having a higher tensile strength than Comparative Example 1 is used for the outer component 5, the absorption energy is significantly higher in Invention Example 5. Improved.

発明例6は、アウタ部品5に用いた鋼板の引張強度1180MPa級、樹脂11の厚み1mmとした試験体31(図4(c))を用いたものである。
発明例6における吸収エネルギーは12.6kJであり、比較例4(=8.5kJ)に比べて大幅に向上した。
また、発明例6における試験体重量は1.12kgであり、発明例1よりも軽量であった。その上、発明例6における単位重量当たりの吸収エネルギーは11.2kJ/kgであり、比較例4(=7.9kJ/kg)よりも向上した。
In the sixth aspect of the invention, the test piece 31 (FIG. 4 (c)) having a tensile strength of 1180 MPa class and a thickness of the resin 11 of 1 mm of the steel plate used for the outer component 5 is used.
The absorbed energy in Invention Example 6 was 12.6 kJ, which was significantly improved as compared with Comparative Example 4 (= 8.5 kJ).
The weight of the test piece in Invention Example 6 was 1.12 kg, which was lighter than that of Invention Example 1. Moreover, the absorbed energy per unit weight in Invention Example 6 was 11.2 kJ / kg, which was higher than that of Comparative Example 4 (= 7.9 kJ / kg).

発明例7は、アウタ部品5に用いた鋼板の引張強度590MPa級、樹脂11の厚み3mmとした試験体31(図4(b))を用いたものである。
発明例7における吸収エネルギーは10.1kJであり、比較例1(=6.5kJ)に比べても大幅に向上した。
また、発明例7における試験体重量は1.19kgであり、発明例1よりも軽量となった。そして、発明例7における単位重量当たりの吸収エネルギーは8.5kJ/kgであり、比較例1(=6.1kJ/kg)よりも向上した。
Inventive Example 7 uses a test piece 31 (FIG. 4 (b)) having a tensile strength of 590 MPa class and a thickness of resin 11 of 3 mm of the steel plate used for the outer component 5.
The absorption energy in Invention Example 7 was 10.1 kJ, which was significantly improved as compared with Comparative Example 1 (= 6.5 kJ).
The weight of the test piece in Invention Example 7 was 1.19 kg, which was lighter than that of Invention Example 1. The absorbed energy per unit weight in Invention Example 7 was 8.5 kJ / kg, which was higher than that of Comparative Example 1 (= 6.1 kJ / kg).

比較例1は、樹脂が充填されていない試験体33(図6)を用いたものであり、試験体重量は1.06kgであった。そして、吸収エネルギーは、前述した図7に示したとおり、6.5kJであり、単位重量当たりの吸収エネルギーは6.1kJ/kgであった。 In Comparative Example 1, a test piece 33 (FIG. 6) not filled with resin was used, and the weight of the test piece was 1.06 kg. The absorbed energy was 6.5 kJ as shown in FIG. 7, and the absorbed energy per unit weight was 6.1 kJ / kg.

比較例2は、比較例1と同一形状の試験体33において、アウタ部品5に板厚1.4mmの鋼板を用いたものであり、試験体重量は1.17kgであった。
比較例2における吸収エネルギーは7.0kJ、単位重量当たりの吸収エネルギーは6.0kJ/kgであり、吸収エネルギーは比較例1よりも増加したものの、発明例1~発明例7には及ばなかった。
In Comparative Example 2, in the test body 33 having the same shape as that of Comparative Example 1, a steel plate having a plate thickness of 1.4 mm was used for the outer component 5, and the weight of the test body was 1.17 kg.
The absorbed energy in Comparative Example 2 was 7.0 kJ, and the absorbed energy per unit weight was 6.0 kJ / kg. Although the absorbed energy was higher than that of Comparative Example 1, it was not as good as that of Invention Examples 1 to 7.

比較例3は、比較例1と同一形状の試験体33において、アウタ部品5に引張強度980MPa級の鋼板を用いたものであり、試験体重量は1.06kgであった。
比較例3における吸収エネルギーは8.1kJ、単位重量当たりの吸収エネルギーは7.6kJ/kgであり、いずれも比較例1よりも増加したものの、発明例1~発明例7には及ばなかった。
In Comparative Example 3, in the test body 33 having the same shape as that of Comparative Example 1, a steel plate having a tensile strength of 980 MPa was used for the outer component 5, and the weight of the test body was 1.06 kg.
The absorbed energy in Comparative Example 3 was 8.1 kJ and the absorbed energy per unit weight was 7.6 kJ / kg, both of which were higher than those of Comparative Example 1 but not as high as those of Invention Examples 1 to 7.

比較例4は、比較例1と同一形状の試験体33において、アウタ部品5に引張強度1180MPa級の鋼板を用いたものであり、試験体重量は1.07kgであった。
比較例4における吸収エネルギーは8.5kJ、単位重量当たりの吸収エネルギーは7.9kJ/kgであり、双方とも比較例1よりも増加したものの、発明例1~発明例7には及ばなかった。
In Comparative Example 4, in the test body 33 having the same shape as that of Comparative Example 1, a steel plate having a tensile strength of 1180 MPa was used for the outer component 5, and the weight of the test body was 1.07 kg.
The absorbed energy in Comparative Example 4 was 8.5 kJ and the absorbed energy per unit weight was 7.9 kJ / kg, both of which were higher than those of Comparative Example 1 but not as high as those of Invention Examples 1 to 7.

比較例5、比較例6及び比較例7は、発明例2に係る試験体31と同一形状であるが、樹脂の種類、又は、樹脂の引張破断伸び、接着強度及び圧縮公称応力の少なくともいずれか一つが本発明の範囲外である試験体31(図4)を用いたものである。
比較例5、比較例6及び比較例7における吸収エネルギー及び単位重量当たりの吸収エネルギーは、発明例1~発明例7のいずれにも及ばなかった。
Comparative Example 5, Comparative Example 6 and Comparative Example 7 have the same shape as the test body 31 according to Invention Example 2, but at least one of the type of resin, the tensile elongation at break of the resin, the adhesive strength and the nominal compressive stress. One is a test body 31 (FIG. 4) which is outside the scope of the present invention.
The absorbed energy and the absorbed energy per unit weight in Comparative Example 5, Comparative Example 6 and Comparative Example 7 did not reach any of Invention Examples 1 to 7.

以上、本発明に係る自動車用衝突エネルギー吸収部品によれば、軸方向に衝突荷重が入力して軸圧壊する場合において、衝突エネルギーの吸収性能を向上できることが示された。 As described above, it has been shown that the collision energy absorbing component for automobiles according to the present invention can improve the collision energy absorption performance when a collision load is input in the axial direction and the shaft is crushed.

1 自動車用衝突エネルギー吸収部品
3 筒状部材
5 アウタ部品
5a 天板部
5b 縦壁部
5c フランジ部
7 インナ部品
9 閉断面空間形成壁部材
11 樹脂
21 試験片
23 被着体
25 被着体
27 樹脂
31 試験体
33 試験体
1 Collision energy absorbing parts for automobiles 3 Cylindrical parts 5 Outer parts 5a Top plate part 5b Vertical wall part 5c Flange part 7 Inner parts 9 Closed cross-section space forming wall member 11 Resin 21 Test piece 23 Adhesive body 25 Adhesive body 27 Resin 31 Specimen 33 Specimen

Claims (2)

車体の前部又は後部に設けられ、該車体の前方又は後方から衝突荷重が入力した際に軸圧壊して衝突エネルギーを吸収する自動車用衝突エネルギー吸収部品であって、
引張強度が590MPa級以上1180MPa級以下の鋼板から形成されてなり、天板部とこれに続く一対の縦壁部を有し、蛇腹状に繰り返し座屈する筒状部材と、
該筒状部材よりも引張強度の低い鋼板から形成されてなり、前記筒状部材の内側に前記天板部を跨ぐように配設された略コ字断面形状の部材であって、両端部が前記一対の縦壁部の内面に接合され、該筒状部材の周壁部の一部である前記天板部と前記縦壁部との間に閉断面空間を形成する閉断面空間形成壁部材と、
前記閉断面空間に充填された樹脂と、を有し、
該樹脂は、ゴム変性エポキシ樹脂と硬化剤とを含んでなり、
引張破断伸びが80%以上、前記筒状部材及び前記閉断面空間形成壁部材との接着強度が12MPa以上、圧縮公称歪10%における圧縮公称応力が6MPa以上、であることを特徴とする自動車用衝突エネルギー吸収部品。
A collision energy absorbing component for automobiles that is provided at the front or rear of a vehicle body and absorbs collision energy by crushing the shaft when a collision load is input from the front or rear of the vehicle body.
A cylindrical member made of steel plate with a tensile strength of 590 MPa class or more and 1180 MPa class or less, having a top plate part and a pair of vertical wall parts following it, and repeatedly buckling in a bellows shape .
It is a member having a substantially U-shaped cross-sectional shape, which is formed of a steel plate having a lower tensile strength than the tubular member and is arranged inside the tubular member so as to straddle the top plate portion, and both ends thereof. With a closed cross-section space forming wall member which is joined to the inner surface of the pair of vertical wall portions and forms a closed cross-section space between the top plate portion and the vertical wall portion which are a part of the peripheral wall portion of the tubular member. ,
With the resin filled in the closed cross-section space,
The resin comprises a rubber-modified epoxy resin and a curing agent.
For automobiles, the tensile elongation at break is 80% or more, the adhesive strength between the tubular member and the closed cross-section space forming wall member is 12 MPa or more, and the compression nominal stress at 10% compression nominal strain is 6 MPa or more. Collision energy absorbing parts.
車体の前部又は後部に設けられ、該車体の前方又は後方から衝突荷重が入力した際に軸圧壊して衝突エネルギーを吸収する自動車用衝突エネルギー吸収部品であって、
引張強度が590MPa級以上1180MPa級以下の鋼板から形成されてなり、天板部とこれに続く一対の縦壁部を有し、蛇腹状に繰り返し座屈するする筒状部材と、
該筒状部材よりも引張強度の低い鋼板から形成されてなり、前記筒状部材の内側に前記天板部を跨ぐように配設された略コ字断面形状の部材であって、両端部が前記一対の縦壁部の内面に接合され、該筒状部材の周壁部の一部である前記天板部と前記縦壁部との間に閉断面空間を形成する閉断面空間形成壁部材と、
前記閉断面空間に充填された樹脂と、を有し、
該樹脂は、ゴム変性エポキシ樹脂を含んでなり、
引張破断伸びが80%以上、前記筒状部材及び前記閉断面空間形成壁部材との接着強度が12MPa以上、圧縮公称歪10%における圧縮公称応力が6MPa以上、であることを特徴とする自動車用衝突エネルギー吸収部品。
A collision energy absorbing component for automobiles that is provided at the front or rear of a vehicle body and absorbs collision energy by crushing the shaft when a collision load is input from the front or rear of the vehicle body.
A cylindrical member made of steel plate with a tensile strength of 590 MPa class or more and 1180 MPa class or less, having a top plate part and a pair of vertical wall parts following it, and repeatedly buckling in a bellows shape .
It is a member having a substantially U-shaped cross-sectional shape, which is formed of a steel plate having a lower tensile strength than the tubular member and is arranged inside the tubular member so as to straddle the top plate portion, and both ends thereof. With a closed cross-section space forming wall member which is joined to the inner surface of the pair of vertical wall portions and forms a closed cross-section space between the top plate portion and the vertical wall portion which are a part of the peripheral wall portion of the tubular member. ,
With the resin filled in the closed cross-section space,
The resin comprises a rubber-modified epoxy resin.
For automobiles, the tensile elongation at break is 80% or more, the adhesive strength between the tubular member and the closed cross-section space forming wall member is 12 MPa or more, and the compression nominal stress at 10% compression nominal strain is 6 MPa or more. Collision energy absorbing parts.
JP2019190730A 2019-02-22 2019-10-18 Collision energy absorbing parts for automobiles Active JP7026088B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980091628.8A CN113423615B (en) 2019-02-22 2019-12-12 Collision energy absorbing member for automobile
EP19916530.9A EP3929037A4 (en) 2019-02-22 2019-12-12 Collision energy absorption component for automobiles
MX2021010052A MX2021010052A (en) 2019-02-22 2019-12-12 Collision energy absorption component for automobiles.
US17/429,101 US11975762B2 (en) 2019-02-22 2019-12-12 Crashworthiness energy absorption parts for automotive
KR1020217025348A KR102547461B1 (en) 2019-02-22 2019-12-12 Collision energy absorbing parts for automobiles
PCT/JP2019/048694 WO2020170569A1 (en) 2019-02-22 2019-12-12 Collision energy absorption component for automobiles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019030116 2019-02-22
JP2019030116 2019-02-22

Publications (2)

Publication Number Publication Date
JP2020138722A JP2020138722A (en) 2020-09-03
JP7026088B2 true JP7026088B2 (en) 2022-02-25

Family

ID=72279812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019190730A Active JP7026088B2 (en) 2019-02-22 2019-10-18 Collision energy absorbing parts for automobiles

Country Status (2)

Country Link
JP (1) JP7026088B2 (en)
KR (1) KR102547461B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039110A1 (en) 2020-08-19 2022-02-24 日本精工株式会社 Ball screw device, mechanical component manufacturing method, mechanical device manufacturing method, vehicle manufacturing method, mechanical component, mechanical device, vehicle, hydraulic forming method, and forming die for hydraulic forming
JP7078146B1 (en) * 2021-02-09 2022-05-31 Jfeスチール株式会社 A method for manufacturing a collision energy absorbing component for an automobile and a collision energy absorbing component for an automobile.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108807A1 (en) 2003-06-04 2004-12-16 Sunstar Giken Kabushiki Kaisha Pasty heat-expandable filler composition and method of sound insulation by filling closed section of car body member
JP2011529817A (en) 2008-07-29 2011-12-15 ダウ グローバル テクノロジーズ エルエルシー Reinforced inflatable epoxy resin to provide strength and dissipate energy in automotive cavities
JP2017159894A (en) 2016-03-03 2017-09-14 新日鐵住金株式会社 Structural member for vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3620340B2 (en) 1999-05-12 2005-02-16 東海ゴム工業株式会社 High rigidity foam filling structure
JP3596373B2 (en) * 1999-09-20 2004-12-02 マツダ株式会社 Body frame structure
JP2006240134A (en) 2005-03-04 2006-09-14 Nissan Motor Co Ltd Structural member for car and its production method
JP6631560B2 (en) * 2017-03-02 2020-01-15 Jfeスチール株式会社 Automotive collision energy absorbing parts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108807A1 (en) 2003-06-04 2004-12-16 Sunstar Giken Kabushiki Kaisha Pasty heat-expandable filler composition and method of sound insulation by filling closed section of car body member
JP2011529817A (en) 2008-07-29 2011-12-15 ダウ グローバル テクノロジーズ エルエルシー Reinforced inflatable epoxy resin to provide strength and dissipate energy in automotive cavities
JP2017159894A (en) 2016-03-03 2017-09-14 新日鐵住金株式会社 Structural member for vehicle

Also Published As

Publication number Publication date
KR20210113334A (en) 2021-09-15
KR102547461B1 (en) 2023-06-23
JP2020138722A (en) 2020-09-03
CN113423615A (en) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2020170569A1 (en) Collision energy absorption component for automobiles
CN113365905B (en) Vehicle body frame member
CN113226893B (en) Collision energy absorbing member for automobile and method for manufacturing the same
JP6631560B2 (en) Automotive collision energy absorbing parts
KR102375069B1 (en) absence of hollow
JP7026088B2 (en) Collision energy absorbing parts for automobiles
EP3670272B1 (en) Bumper beam and vehicle
CN113874202A (en) Collision energy absorbing member for automobile and method for manufacturing the same
US10442468B2 (en) Metal pipe and structural member using metal pipe
KR20180088728A (en) Vehicle rear structure
WO2021256035A1 (en) Automotive impact energy absorptive part
KR20200037390A (en) Hollow member
JP2019158028A (en) Vehicle collision energy absorption component
JP5283405B2 (en) Automotive reinforcement
CN113423615B (en) Collision energy absorbing member for automobile
JP7184064B2 (en) Automobile structural member and manufacturing method thereof
JP6244827B2 (en) Hollow cross-section automotive structural member
WO2022172526A1 (en) Collision energy absorption component for automobile, and method for manufacturing said collision energy absorption component for automobile
Mangalaramanan et al. Application of Cost effective Stainless Steel for Automotive Application

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R150 Certificate of patent or registration of utility model

Ref document number: 7026088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150