JP7021608B2 - Method for estimating the central solid phase ratio of continuously cast slabs - Google Patents
Method for estimating the central solid phase ratio of continuously cast slabs Download PDFInfo
- Publication number
- JP7021608B2 JP7021608B2 JP2018123009A JP2018123009A JP7021608B2 JP 7021608 B2 JP7021608 B2 JP 7021608B2 JP 2018123009 A JP2018123009 A JP 2018123009A JP 2018123009 A JP2018123009 A JP 2018123009A JP 7021608 B2 JP7021608 B2 JP 7021608B2
- Authority
- JP
- Japan
- Prior art keywords
- solid phase
- slab
- phase ratio
- reduction
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Continuous Casting (AREA)
Description
本発明は、連続鋳造中において、連続鋳造鋳片の中心固相率を推定する方法に関するものである。 The present invention relates to a method for estimating the central solid phase ratio of a continuously cast slab during continuous casting.
連続鋳造方法によってスラブやブルームなどの鋳片を鋳造する場合に、鋳片の中心部にリンやマンガン等の成分が偏析する、いわゆる中心偏析が発生することがある。また、鋳片中心部にはセンターポロシティと呼ばれる空孔が発生する。 When a slab, bloom, or other slab is cast by a continuous casting method, so-called central segregation may occur in which components such as phosphorus and manganese segregate in the center of the slab. In addition, a hole called center porosity is generated in the center of the slab.
連続鋳造中の凝固末期において、溶鋼の凝固収縮に伴って未凝固溶鋼が最終凝固部の凝固完了点に向かって流動する。溶鋼流動に際して、固液界面の不純物濃化溶鋼が最終凝固部に集積する。これが中心偏析の原因となる。従って、中心偏析を軽減するためには、最終凝固部付近において、溶鋼の凝固収縮量に見合った分だけ凝固シェルを圧下することにより、最終凝固部付近の溶鋼流動を抑えることが有効となる。このような考え方に基づき、連続鋳造末期の凝固完了前においてサポートロールによって鋳片を圧下する軽圧下技術が用いられている。また、ポロシティの圧着を目的とした圧下は、鋳片の厚み中心部の固相率(以下「中心固相率」ともいう。)が0.8以上の領域で有効である。 At the end of solidification during continuous casting, the unsolidified molten steel flows toward the solidification completion point of the final solidified portion as the molten steel solidifies and shrinks. During the flow of molten steel, impurity-concentrated molten steel at the solid-liquid interface accumulates in the final solidified portion. This causes central segregation. Therefore, in order to reduce the central segregation, it is effective to suppress the flow of the molten steel in the vicinity of the final solidified portion by reducing the solidified shell by the amount corresponding to the amount of solidification shrinkage of the molten steel in the vicinity of the final solidified portion. Based on this idea, a light reduction technique is used in which the slab is reduced by a support roll before the completion of solidification at the end of continuous casting. Further, the reduction for the purpose of crimping porosity is effective in the region where the solid phase ratio at the center of the thickness of the slab (hereinafter, also referred to as “central solid phase ratio”) is 0.8 or more.
例えば特許文献1には、凝固末期の軽圧下法について述べられている。中心固相率が0.1~0.3において軽圧下を開始し、中心固相率0.7までの区間で軽圧下を行い、この間において凝固収縮に見合う圧下を加えることで、中心偏析が改善されることが記述されている。また、特許文献2では、固相線のクレーターエンドから上流側に向かって少なくとも2mの範囲を軽圧下する発明が開示されている。「固相線のクレーターエンド」とは、中心固相率が1.0である位置を意味している。
For example,
中心固相率は、連続鋳造中の鋳片厚み方向中心部の温度TCを1次元の伝熱凝固計算によって求めた上で、液相線温度TLiq、固相線温度TSolを用いて下記式で算出されている。伝熱・凝固計算にあたってはエンタルピー法や等価比熱法などが知られている。
中心固相率=(TLiq-TC)/(TLiq-TSol) (A)
For the central solid phase ratio, the temperature T C at the center in the thickness direction of the slab during continuous casting was obtained by one-dimensional heat transfer solidification calculation, and then the liquidus temperature T Liq and the solid phase temperature T Sol were used. It is calculated by the following formula. The enthalpy method and the equivalent specific heat method are known for heat transfer / solidification calculation.
Central solid phase ratio = (T Liq - TC ) / (T Liq -T Sol ) (A)
特許文献3には、鋳片圧下用ロールを所定の圧下力で圧下した時の鋳片圧下量に基づいて、鋳片の凝固完了の有無を検出することを特徴とする連続鋳造の凝固完了検出方法が開示されている。
特許文献4には、ラボ実験に用いることができる、鋳片の圧下が可能な連続鋳造装置が開示されている。
実機連続鋳造において、鋳片の鋳造方向所定部位における中心固相率が推定値に対して変動することは珍しいことではないため、圧下勾配・圧下タイミングが適正値から外れ、鋳片内質が悪化するケースが存在する。このため鋳造中に、鋳片の鋳造方向各部位における、高精度かつ簡便な中心固相率推定手法の開発が求められる。特許文献3に記載の発明では、鋳片の凝固完了の有無を検出するのみであり、鋳片の鋳造方向各部位における中心固相率を正確に計測することはできない。
In actual continuous casting, it is not uncommon for the central solid phase ratio at a predetermined site in the casting direction of the slab to fluctuate with respect to the estimated value. There is a case to do. Therefore, during casting, it is required to develop a highly accurate and simple method for estimating the central solid phase ratio at each part in the casting direction of the slab. In the invention described in
本発明は、連続鋳造において、鋳片の鋳造方向所定部位における中心固相率を正確に推定することのできる、連続鋳造鋳片の中心固相率推定方法を提供することを目的とする。 An object of the present invention is to provide a method for estimating the central solid phase ratio of a continuously cast slab, which can accurately estimate the central solid phase ratio at a predetermined portion in a casting direction of a slab in continuous casting.
即ち、本発明の要旨とするところは以下のとおりである。
(1)連続鋳造中において未凝固鋳片のロール圧下を行い、ロール圧下に際しての圧下力と圧下量を計測し、ロール圧下に伴う鋳片の単位面積当たり平均変形抵抗ARを算出し、鋳造中における鋳片表面温度TSuを計測し、下記(1)式に基づいて、ロール圧下位置における中心固相率fsを算出することを特徴とする、連続鋳造中の中心固相率推定方法。
fs=(AR-β-γ×(TSu-計算表面温度))/α (1)
α、β、γは定数であり、予め、伝熱計算及び変形解析により定める。計算表面温度は平均変形抵抗の関数として、予め、伝熱計算及び変形解析により定める。
(2)連続鋳造中において未凝固鋳片のロール圧下を行い、ロール圧下に際しての圧下力と圧下量を計測し、ロール圧下に伴う鋳片の単位面積当たり平均変形抵抗ARを算出し、鋳造中における鋳片表面温度TSuを計測し、下記(2)式に基づいて、ロール圧下位置における中心固相率fsを算出することを特徴とする、連続鋳造中の中心固相率推定方法。
fs=(AR-β-γ(TSu-(TLiq-ΔT)))/(α-γ・(TLiq-TSol)) (2)
TLiqは液相線温度(℃)、TSolは固相線温度(℃)である。α、β、γは定数であり、予め、伝熱計算及び変形解析により定める。ΔT(℃)は鋳片の中心温度と表面温度の差であり、予め、伝熱計算により定められる定数である。
(3)前記算出したロール圧下位置における中心固相率fsに基づき、凝固が完了する(fs=1.0となる)鋳造方向位置を算出することを特徴とする、上記(1)又は(2)に記載の連続鋳造中の中心固相率推定方法。
(4)前記鋳片形状がブルーム形状であることを特徴とする、上記(1)から(3)までのいずれか1つに記載の連続鋳造中の中心固相率推定方法。
That is, the gist of the present invention is as follows.
(1) Roll reduction of unsolidified slabs is performed during continuous casting, the reduction force and reduction amount at the time of roll reduction are measured, the average deformation resistance AR per unit area of the slabs due to roll reduction is calculated, and casting is in progress. A method for estimating the central solid phase ratio during continuous casting, which comprises measuring the slab surface temperature T Su in the above and calculating the central solid phase ratio fs at the roll reduction position based on the following equation (1).
fs = (AR-β-γ × (T Su -calculated surface temperature)) / α (1)
α, β, and γ are constants and are determined in advance by heat transfer calculation and deformation analysis. The calculated surface temperature is determined in advance by heat transfer calculation and deformation analysis as a function of the average deformation resistance.
(2) Roll reduction of unsolidified slabs is performed during continuous casting, the reduction force and reduction amount at the time of roll reduction are measured, the average deformation resistance AR per unit area of the slabs due to roll reduction is calculated, and casting is in progress. A method for estimating the central solid phase ratio during continuous casting, which comprises measuring the slab surface temperature T Su in the above and calculating the central solid phase ratio fs at the roll reduction position based on the following equation (2).
fs = (AR-β-γ (T Su- (T Liq -ΔT))) / (α-γ ・ (T Liq -T Sol )) (2)
T Liq is the liquidus temperature (° C.), and T Sol is the solidus phase temperature (° C.). α, β, and γ are constants and are determined in advance by heat transfer calculation and deformation analysis. ΔT (° C.) is the difference between the center temperature and the surface temperature of the slab, and is a constant determined in advance by heat transfer calculation.
(3) The casting direction position at which solidification is completed (fs = 1.0) is calculated based on the central solid phase ratio fs at the roll reduction position, which is the above-mentioned (1) or (2). ). The method for estimating the central solid phase ratio during continuous casting.
(4) The method for estimating the central solid phase ratio during continuous casting according to any one of (1) to (3) above, wherein the slab shape is a bloom shape.
本発明は、連続鋳造中において未凝固鋳片のロール圧下を行い、ロール圧下による平均変形抵抗と鋳片表面温度を計測することにより、鋳片の鋳造方向所定部位における中心固相率を正確に推定することができる。 In the present invention, the unsolidified slab is rolled down during continuous casting, and the average deformation resistance and the slab surface temperature due to the roll rolling are measured to accurately determine the central solid phase ratio at a predetermined portion in the casting direction of the slab. Can be estimated.
連続鋳造中において、鋳型内で凝固を開始した鋳片部位は、時間の経過とともに、鋳型(一次冷却)から下方に引き抜かれて所定の鋳造速度で二次冷却帯を通過しつつ冷却を受け、凝固が進行する。図1(A)は鋳造中の未凝固鋳片を示す側面断面図であり、鋳片は図の左から右に進行し、表面側の固相部3、固液共存層4、液相部5が、それぞれ固相線位置6、液相線位置7で区切られている。鋳片の上面側と下面側の固相線位置が合致した位置が、凝固完了位置9となる。このような凝固の進行については、鋳片の形状(幅、厚み)、鋳造速度、一次冷却条件、二次冷却条件を定めることにより、伝熱計算によって、当該鋳片部位の時間経過と鋳片の温度分布を計算することができる。注目した鋳片部位の表面温度、中心温度ともに、時間の経過(鋳造方向での進行)とともに低下する。
During continuous casting, the slab portion that has started solidification in the mold is pulled downward from the mold (primary cooling) over time and is cooled while passing through the secondary cooling zone at a predetermined casting speed. Coagulation progresses. FIG. 1A is a side sectional view showing an unsolidified slab during casting, in which the slab progresses from left to right in the figure, and the
連続鋳造中に、図1に示すように、鋳片1を未凝固段階で圧下ロール2によって圧下することができる。圧下ロール2の圧下力を所定の圧下力としたとき、圧下ロールによる鋳片の厚み減少しろ(圧下量)については、圧下したときの鋳片の変形抵抗によって異なり、鋳片の変形抵抗が大きいほど、同一の圧下力で圧下したときの圧下量が少なくなる。
During continuous casting, as shown in FIG. 1, the
圧下量d(mm)、圧下力F(kgf)、鋳片幅w(mm)、圧下ロールの半径r(mm)から、当該圧下した部位における平均変形抵抗AR(kgf/mm2)を以下のように計算することができる。圧下時におけるロール接触弧長L(mm)は、
L=r・cos-1{(r-d)/r} (3A)
として算出され(三角関数の角度はラジアン表示)、ロール接触面積S(mm2)は、
S=L×w (3B)
となる。このロール接触面積Sに対して圧下力F(kgf)が負荷されているので、単位面積当たりの平均変形抵抗AR(kgf/mm2)は、
AR=F/S (3C)
として求めることができる。
From the reduction amount d (mm), reduction force F (kgf), slab width w (mm), and reduction roll radius r (mm), the average deformation resistance AR (kgf / mm 2 ) at the reduction portion is as follows. Can be calculated as follows. The roll contact arc length L (mm) at the time of reduction is
L = r · cos -1 {(rd) / r} (3A)
(The angle of the trigonometric function is displayed in radians), and the roll contact area S (mm 2 ) is
S = L × w (3B)
Will be. Since the rolling force F (kgf) is applied to the roll contact area S, the average deformation resistance AR (kgf / mm 2 ) per unit area is
AR = F / S (3C)
Can be obtained as.
前述のように、伝熱計算によって鋳片内の温度分布を算出した上で、所定の経過時間又は鋳造方向位置における算出した鋳片C断面内温度分布に基づいて、変形解析を用いることにより、上記定義した平均変形抵抗ARを計算で求めることができる。ここでC断面とは、鋳造方向に垂直な断面を意味する。変形解析手法としては、例えば汎用有限要素解析コードであるABAQUSを用いることができる。時間経過に対応して、鋳片断面内の中心温度TCが低下するとともに平均変形抵抗ARが上昇することから、中心温度TCと平均変形抵抗ARが1対1で対応することになる。なお、表面温度TSuも同時に1対1対応となる。そして、中心温度TCと平均変形抵抗ARの関係が一次式の関係になることが、変形解析及びラボ実験の結果から明らかとなった。また、中心固相率と中心温度TCとの関係も、前記(A)式にあるように一次式の関係にある。以上から、中心固相率と平均変形抵抗ARの関係を下記(4)式のように表現することができる。ここで中心固相率をfsと表現する。α、βは定数である。
AR=α・fs+β (4)
As described above, after calculating the temperature distribution in the slab by heat transfer calculation, deformation analysis is used based on the calculated temperature distribution in the slab C cross section at a predetermined elapsed time or the position in the casting direction. The average deformation resistance AR defined above can be calculated. Here, the C cross section means a cross section perpendicular to the casting direction. As the deformation analysis method, for example, ABAQUS, which is a general-purpose finite element analysis code, can be used. Since the center temperature T C in the cross section of the slab decreases and the average deformation resistance AR increases with the passage of time, the center temperature T C and the average deformation resistance AR have a one-to-one correspondence. The surface temperature T Su also has a one-to-one correspondence at the same time. Then, it became clear from the results of deformation analysis and laboratory experiments that the relationship between the center temperature TC and the average deformation resistance AR is a linear relationship. Further, the relationship between the central solid phase ratio and the central temperature TC is also a linear relationship as shown in the above equation (A). From the above, the relationship between the central solid phase ratio and the average deformation resistance AR can be expressed as the following equation (4). Here, the central solid phase ratio is expressed as fs. α and β are constants.
AR = α ・ fs + β (4)
そこで、ラボ実験を行うことにより、上記(4)式での中心固相率fsの予測精度を確認することとした。ラボ実験は、幅400mm、厚み200mmの鋳片を鋳造する鋳型内に溶鋼を注入し、初期凝固シェルが形成されたところで凝固シェルを鋳型から引き抜き、鋳型の下方を二次冷却帯として凝固を進行させ、所定の時間経過後に圧下ロールによって鋳片の未凝固圧下を行うものである(特許文献4参照)。溶鋼成分は、C:0.55質量%、Mn:1.0質量%である。ラボ実験に際しては、鋳片の厚み中心部相当部位に熱電対を挿入し、中心温度TCの時間経過を測定した。ラボ実験の条件で計算した伝熱計算及び変形解析(ABAQUS)の結果に基づいて、(4)式の定数α、βの値を定めた。α=0.45、β=-0.6と算出された。ラボ実験で圧下力Fで圧下ロールによる圧下を行ったときの圧下量dを計測し、(3A)~(3C)式に基づいて平均変形抵抗ARを求め、さらにARから(4)式で中心固相率fsを求め、「予測中心固相率」とした。
一方、圧下ロールで圧下を行った時点において鋳片の中心温度TCを計測し、(A)式に基づいて中心固相率fsを求め、「実測中心固相率」とした。実測中心固相率と予測中心固相率の相関を図示したところ、図2に示すとおりとなった。相関係数Rは0.78であり、両者の関係はばらつきが大きく、このままでは精度の高い中心固相率の予測は難しいことが分かった。
Therefore, it was decided to confirm the prediction accuracy of the central solid phase ratio fs by the above equation (4) by conducting a laboratory experiment. In the laboratory experiment, molten steel was injected into a mold for casting slabs with a width of 400 mm and a thickness of 200 mm, the solidified shell was pulled out from the mold when the initial solidified shell was formed, and solidification proceeded with the lower part of the mold as the secondary cooling zone. Then, after a lapse of a predetermined time, the slab is unsolidified and reduced by a reduction roll (see Patent Document 4). The molten steel component is C: 0.55% by mass and Mn: 1.0% by mass. In the laboratory experiment, a thermocouple was inserted into the part corresponding to the center of the thickness of the slab, and the time course of the center temperature TC was measured. Based on the results of heat transfer calculation and deformation analysis (ABAQUS) calculated under the conditions of the laboratory experiment, the values of the constants α and β in Eq. (4) were determined. It was calculated as α = 0.45 and β = −0.6. In the laboratory experiment, the reduction amount d when the reduction was performed by the reduction roll with the reduction force F was measured, the average deformation resistance AR was obtained based on the equations (3A) to (3C), and the center was further calculated from the AR by the equation (4). The solid phase ratio fs was obtained and used as the "predicted central solid phase ratio".
On the other hand, the central temperature TC of the slab was measured at the time when the reduction was performed with the reduction roll, and the central solid phase ratio fs was obtained based on the formula (A), which was used as the “measured central solid phase ratio”. The correlation between the measured central solid phase ratio and the predicted central solid phase ratio is shown in FIG. The correlation coefficient R is 0.78, and the relationship between the two varies widely, and it was found that it is difficult to predict the central solid phase ratio with high accuracy as it is.
伝熱計算と変形解析を組み合わせて行った計算結果では、平均変形抵抗、中心温度、表面温度の3つが一つの組み合わせとして定まっている。換言すれば、中心温度、表面温度が平均変形抵抗の関数として定まる。従って、平均変形抵抗ARの実測値から鋳片の中心温度TCを定めるに際し、自動的に表面温度も定まる。そこで、ラボ実験において、ロール圧下を行う際における鋳片表面温度の測定を行った。その結果、実測した平均変形抵抗に基づいて計算で求めた計算表面温度と、実測表面温度との間に差異が生じていることが判明した。そして、計算表面温度と実測表面温度との間の差異と、上記予測中心固相率と実測中心固相率との間の差異とを対比すると、両者の間に相関関係があることが明らかとなった。 In the calculation result obtained by combining the heat transfer calculation and the deformation analysis, the average deformation resistance, the center temperature, and the surface temperature are determined as one combination. In other words, the center temperature and surface temperature are determined as a function of the average deformation resistance. Therefore, when determining the center temperature TC of the slab from the measured value of the average deformation resistance AR, the surface temperature is also automatically determined. Therefore, in the laboratory experiment, the surface temperature of the slab was measured when the roll was reduced. As a result, it was found that there was a difference between the calculated surface temperature calculated based on the measured average deformation resistance and the measured surface temperature. Then, when the difference between the calculated surface temperature and the measured surface temperature and the difference between the predicted central solid phase ratio and the measured central solid phase ratio are compared, it is clear that there is a correlation between the two. became.
そこで、前記(4)式に、さらに鋳片表面温度の実測と計算との差異に基づく補正項を追加することとし、下記(5)式を導いた。
AR=α・fs+β+γ×(実測表面温度-計算表面温度) (5)
γは定数であり、伝熱計算と変形解析との組み合わせによって算出することができる。表面温度の実測は、圧下ロールによる圧下の直前又は直後、あるいは圧下後完全復熱後などの位置で行うことができ、計算表面温度は、当該表面温度実測位置における計算表面温度を意味する。圧下ロールによる圧下の直前又は直後に表面温度の実測を行うことが好ましい。以下、圧下ロールによる圧下の直前又は直後に表面温度を実測した場合について説明する。鋳片外周における表面温度測定部位については、長辺の幅中央で計測することが好ましいが、長辺における幅中央以外の部位、あるいは短辺において表面温度を計測することとしても良い。いずれの部位で表面温度を計測するにあたっても、計算表面温度については、表面温度計測位置に対応する部分の表面温度を計算することとなる。
Therefore, it was decided to add a correction term based on the difference between the actual measurement and the calculation of the slab surface temperature to the above equation (4), and the following equation (5) was derived.
AR = α ・ fs + β + γ × (measured surface temperature-calculated surface temperature) (5)
γ is a constant and can be calculated by combining heat transfer calculation and deformation analysis. The actual measurement of the surface temperature can be performed at a position immediately before or immediately after the reduction by the rolling roll, or after the complete reheat after the reduction, and the calculated surface temperature means the calculated surface temperature at the actual measurement position of the surface temperature. It is preferable to actually measure the surface temperature immediately before or immediately after the reduction by the reduction roll. Hereinafter, a case where the surface temperature is actually measured immediately before or immediately after the reduction by the reduction roll will be described. The surface temperature measurement portion on the outer periphery of the slab is preferably measured at the center of the width of the long side, but the surface temperature may be measured at a portion other than the center of the width on the long side or at the short side. When measuring the surface temperature at any part, the surface temperature of the part corresponding to the surface temperature measurement position is calculated for the calculated surface temperature.
計算表面温度については、前記伝熱計算と変形解析との組み合わせでは、平均変形抵抗、中心温度、表面温度の3つが一つの組み合わせとして定まっているので、平均変形抵抗を実測し、当該実測値との組み合わせで定まっている表面温度を計算表面温度としてもよい。 Regarding the calculated surface temperature, in the combination of the heat transfer calculation and the deformation analysis, the average deformation resistance, the center temperature, and the surface temperature are determined as one combination, so the average deformation resistance is actually measured and the measured value is used. The surface temperature determined by the combination of may be used as the calculated surface temperature.
より簡便には、以下のような計算をすることができる。まず、鋳片の計算中心温度と計算表面温度との差異をΔTとする。ΔTについては伝熱計算から定数として求めることができる。鋳片の計算中心温度を、(A)式によって中心固相率fsで
計算中心温度=TLiq-(TLiq-TSol)fs (6A)
と表現する。次にΔTを用いて、
計算表面温度=計算中心温度-ΔT (6B)
=TLiq-(TLiq-TSol)fs-ΔT (6)
を導く。実測表面温度をTSuと表現した上で、(5)式に(6)式を代入すると、
AR=α・fs+β+γ(TSu-(TLiq-(TLiq-TSol)fs-ΔT))
=(α-γ・(TLiq-TSol))・fs+β+γ(TSu-(TLiq-ΔT)) (7)
となる。(7)式をfsについての式に置き換えると、
fs=(AR-β-γ(TSu-(TLiq-ΔT)))/(α-γ・(TLiq-TSol)) (2)
が導かれる。(2)式において、TLiq、TSolは鋼成分から定まる物性値、α、β、γ、ΔTは予め伝熱計算と変形解析から求める定数であるから、圧下による平均変形抵抗ARと実測表面温度TSuを実測することにより、圧下部位における中心固相率fsが定まることとなる。
More simply, the following calculations can be performed. First, let ΔT be the difference between the calculated center temperature and the calculated surface temperature of the slab. ΔT can be obtained as a constant from the heat transfer calculation. The calculated center temperature of the slab is calculated by the central solid phase ratio fs according to the formula (A). Center temperature = T Liq- (T Liq - T Sol ) fs (6A)
It is expressed as. Then, using ΔT,
Calculated surface temperature = Calculated center temperature-ΔT (6B)
= T Liq-(T Liq - T Sol ) fs-ΔT (6)
To guide. After expressing the measured surface temperature as T Su , substituting equation (6) into equation (5),
AR = α ・ fs + β + γ (T Su-(T Liq- (T Liq - T Sol ) fs-ΔT))
= (Α-γ ・ (T Liq -T Sol )) ・ fs + β + γ (T Su - (T Liq -ΔT)) (7)
Will be. Replacing the equation (7) with the equation for fs,
fs = (AR-β-γ (T Su- (T Liq -ΔT))) / (α-γ ・ (T Liq -T Sol )) (2)
Is guided. In equation (2), T Liq and T Sol are physical property values determined from the steel composition, and α, β, γ, and ΔT are constants obtained in advance from heat transfer calculation and deformation analysis. By actually measuring the temperature T Su , the central solid phase ratio fs at the reduction site can be determined.
そこで、前記と同様のラボ実験において、検証を行った。α、β、γ、ΔTは予め伝熱計算と変形解析から定めた。α=0.45、β=-0.6、γ=0.0086と算出された。また、ΔTは、中心固相率=1.0となる位置(固相のクレーターエンド)における中心温度と表面温度の差を用い、ΔT=380℃と求まった。これらの値を(2)式に代入して求めた中心固相率を「改善予測中心固相率」とし、ラボ実験で計測した実測中心温度に基づく実測中心固相率との相関について評価した。その結果を図3に示す。相関係数Rは0.92である。図2との対比から明らかなように、実測中心固相率と改善予測中心固相率との間の相関は良好であることが判明した。 Therefore, verification was performed in the same laboratory experiment as above. α, β, γ, and ΔT were determined in advance from heat transfer calculation and deformation analysis. It was calculated as α = 0.45, β = −0.6, and γ = 0.0086. Further, ΔT was determined to be ΔT = 380 ° C. using the difference between the center temperature and the surface temperature at the position where the central solid phase ratio = 1.0 (the crater end of the solid phase). The central solid phase ratio obtained by substituting these values into Eq. (2) was defined as the "improved predicted central solid phase ratio", and the correlation with the measured central solid phase ratio based on the measured center temperature measured in the laboratory experiment was evaluated. .. The results are shown in FIG. The correlation coefficient R is 0.92. As is clear from the comparison with FIG. 2, it was found that the correlation between the measured central solid phase ratio and the predicted improvement central solid phase ratio was good.
実機の連続鋳造中において本発明を適用することができる。連続鋳造のサポートロール帯において、中心固相率fsを求めたい位置(中心固相率評価位置8)、あるいは当該位置の近くに、図1に示すように圧下ロール2を設け、連続鋳造中の鋳片1をロール圧下する。圧下ロール2には圧下力Fを計測する計測器を設ける。ピンチロール油圧からロール圧下力Fを計測することができる。また、圧下ロールの上流側と下流側に歪センサーを設け、ロール圧下による圧下量dを計測することができる。圧下ロール半径をr、鋳片幅をwとして、前記(3A)~(3C)式により、平均変形抵抗ARを求めることができる。また、圧下ロールの直前又は直後に、鋳片の表面温度を計測する温度計を設け、表面温度TSuを計測する。
The present invention can be applied during continuous casting of an actual machine. In the support roll band for continuous casting, a
予め、鋳片の形状(幅、厚み)、鋳造速度、一次冷却条件、二次冷却条件に基づいて伝熱計算を行い、メニスカスからの経過時間あるいは鋳造方向位置との関係で、鋳片C断面の温度分布を計算し、計算表面温度、計算中心温度を算出する。また、計算した温度分布に基づいて、変形解析により、鋳造方向の未凝固部任意位置において圧下ロールで圧下したときの計算平均変形抵抗ARを算出しておく。(5)式の定数であるα、β、γ、(6)式の定数であるΔTについても、伝熱計算、変形解析から求めておく。 Heat transfer calculation is performed in advance based on the shape (width, thickness) of the slab, casting speed, primary cooling conditions, and secondary cooling conditions. Calculate the temperature distribution of, and calculate the calculated surface temperature and the calculated center temperature. Further, based on the calculated temperature distribution, the calculated average deformation resistance AR when the unsolidified portion is reduced by the reduction roll at an arbitrary position in the unsolidified portion in the casting direction is calculated by deformation analysis. The constants α, β, γ in equation (5) and ΔT, which is the constant in equation (6), are also obtained from heat transfer calculation and deformation analysis.
まず、(5)式に基づいて中心固相率fsを求める方法について説明する。(5)式の実測表面温度をTSuとした上で(5)式を変形し、
fs=(AR-β-γ×(TSu-計算表面温度))/α (1)
とする。
First, a method of obtaining the central solid phase ratio fs based on the equation (5) will be described. After setting the measured surface temperature of Eq. (5) to T Su , the Eq. (5) is modified.
fs = (AR-β-γ × (T Su -calculated surface temperature)) / α (1)
And.
上記予め行っている変形解析の結果として、計算平均変形抵抗と計算鋳片表面温度の関係が判明している。換言すると、計算表面温度が平均変形抵抗の関数として定まっている。そこで、実測した平均変形抵抗ARと等しくなる計算変形抵抗が得られる場合における計算鋳片表面温度を導き出し、その値を(1)式の計算表面温度として用いる。その結果、(1)式に基づいて中心固相率fsが算出される。
本発明の上記(1)式を使う場合について、前記と同様のラボ実験において、検証を行った。α、β、γは上記(2)式を用いた場合と同様である。予め、伝熱計算及び変形解析により定めた中心固相率=1.0となる位置(固相のクレーターエンド)における計算表面温度は1026℃と求まった。これらの値を(1)式に代入して求めた中心固相率を「改善予測中心固相率」とし、ラボ実験で計測した実測中心温度に基づく実測中心固相率との相関について評価した。その結果を図4に示す。相関係数Rは0.88である。(2)式を用いた場合(図3)の相関係数には及ばないものの、図2との対比から明らかなように、実測中心固相率と改善予測中心固相率との間の相関は良好であることが判明した。
As a result of the deformation analysis performed in advance, the relationship between the calculated average deformation resistance and the calculated slab surface temperature has been clarified. In other words, the calculated surface temperature is determined as a function of the average deformation resistance. Therefore, the calculated slab surface temperature when the calculated deformation resistance equal to the measured average deformation resistance AR is obtained is derived, and the value is used as the calculated surface temperature in Eq. (1). As a result, the central solid phase ratio fs is calculated based on the equation (1).
The case of using the above equation (1) of the present invention was verified in the same laboratory experiment as above. α, β, and γ are the same as when the above equation (2) is used. The calculated surface temperature at the position (solid phase crater end) where the central solid phase ratio = 1.0 determined in advance by heat transfer calculation and deformation analysis was determined to be 1026 ° C. The central solid phase ratio obtained by substituting these values into Eq. (1) was defined as the "improved predicted central solid phase ratio", and the correlation with the measured central solid phase ratio based on the measured center temperature measured in the laboratory experiment was evaluated. .. The results are shown in FIG. The correlation coefficient R is 0.88. Although it does not reach the correlation coefficient of (Fig. 3) when Eq. (2) is used, as is clear from the comparison with Fig. 2, the correlation between the measured central solid phase ratio and the predicted improvement central solid phase ratio. Turned out to be good.
次に、(2)式に基づいて中心固相率fsを求める方法について説明する。(2)式で用いる変数、定数は上記のように求まっているので、これら数値を(2)式に代入することにより、中心固相率fsが算出される(前記図3参照)。上記で算出したロール圧下位置における中心固相率fsは、図2に示すように0.4以上1.0以下の条件で(5)式の近似として求めたので、この中心固相率範囲内で使うのが好ましい。 Next, a method of obtaining the central solid phase ratio fs based on the equation (2) will be described. Since the variables and constants used in the equation (2) are obtained as described above, the central solid phase ratio fs is calculated by substituting these numerical values into the equation (2) (see FIG. 3 above). As shown in FIG. 2, the central solid phase ratio fs calculated above at the roll reduction position was obtained as an approximation of Eq. (5) under the conditions of 0.4 or more and 1.0 or less. It is preferable to use it in.
本発明では、上記のようにロール圧下位置における中心固相率fsを算出した上で、算出した中心固相率fsに基づき、凝固が完了する(fs=1.0となる)鋳造方向位置(クレーターエンド位置)を算出することができる。この場合、クレーターエンド位置であると予想される位置の前後において、鋳造方向に複数のロール対でロール圧下を行い、上記本発明の中心固相率の推定を行う。ロール圧下を行うそれぞれのロール対では、圧下量、圧下力、鋳片表面温度の測定を行い、測定値に基づいて中心固相率を推定する。そして、推定した中心固相率が1.0よりも小さくて1.0に最も近い位置のロール対をクレーターエンド上流側直近ロール対とし、推定した中心固相率が1.0よりも大きくて1.0に最も近い位置のロール対をクレーターエンド下流側直近ロール対とする。さらに、クレーターエンド位置の平均変形抵抗は予め変形解析から求めて定数を決定した(7)式でfs=1.0とし、伝熱計算結果から求めた、fs=1.0になった瞬間(中心温度が固相線温度TSol)の表面温度TSuから求めておく。
その上で、クレーターエンド上流側直近ロール対の位置の平均変形抵抗とクレーターエンド下流側直近ロール対の位置の平均変形抵抗との差と、クレーターエンド位置の変形抵抗とクレーターエンド上流側直近ロール対の位置の変形抵抗との差の比率で両ロール間ピッチを補間することにより、クレーターエンド上流側直近ロール対の位置からのクレーターエンド位置を推定することができる。
なお、上記ロール対の位置の平均変形抵抗は、圧下反力と圧下量を直接測定することで、(3)式により平均変形抵抗を直接決定する。
In the present invention, after calculating the central solid phase ratio fs at the roll reduction position as described above, solidification is completed (fs = 1.0) based on the calculated central solid phase ratio fs. Crater end position) can be calculated. In this case, before and after the position expected to be the crater end position, roll reduction is performed with a plurality of roll pairs in the casting direction, and the central solid phase ratio of the present invention is estimated. For each roll pair under roll reduction, the reduction amount, reduction force, and slab surface temperature are measured, and the central solid phase ratio is estimated based on the measured values. Then, the roll pair at the position where the estimated central solid phase ratio is smaller than 1.0 and is closest to 1.0 is defined as the nearest roll pair on the upstream side of the crater end, and the estimated central solid phase ratio is larger than 1.0. The roll pair at the position closest to 1.0 is defined as the nearest roll pair on the downstream side of the crater end. Further, the average deformation resistance at the crater end position is fs = 1.0 in the equation (7) in which the constant is determined in advance by the deformation analysis, and the moment when fs = 1.0 obtained from the heat transfer calculation result ( It is obtained from the surface temperature T Su whose center temperature is the solidus temperature T Sol ).
On top of that, the difference between the average deformation resistance at the position of the nearest roll pair on the upstream side of the crater end and the average deformation resistance at the position of the latest roll pair on the downstream side of the crater end, and the deformation resistance at the crater end position and the latest roll pair on the upstream side of the crater end. By interpolating the pitch between both rolls by the ratio of the difference from the deformation resistance of the position of, the crater end position can be estimated from the position of the nearest roll pair on the upstream side of the crater end.
The average deformation resistance at the position of the roll pair is directly determined by the equation (3) by directly measuring the rolling reaction force and the rolling amount.
本発明で、未凝固鋳片にロール圧下を行うための圧下ロールとしては、ロールの長手方向で直径が一定であるフラットロール(図1(B)参照)の他、ロールの長手方向中心の半径がその両端部側の半径よりも大きいディスクロールを用いることができる。圧下ロールとしてフラットロール、ディスクロールのいずれを用いる場合でも、変形解析を行うに際し、圧下ロールの形状を入力して解析がなされる。ロール圧下を行う部位における未凝固鋳片は、幅方向両端の短辺部はすでに厚み中心まで凝固が完了している。圧下ロールとしてディスクロールを用いる場合、ロール半径の大きい部分の長さを未凝固領域長さと等しくすることができ、未凝固部分のみを圧下するので、特定の圧下力Fにおいて圧下量dが大きくなる。それに対して、圧下ロールとしてフラットロールを用いる場合には、短辺側の凝固完了部位を含めて圧下を行うので、同じ圧下力Fで圧下を行ったとき、ディスクロールに比較して圧下量dが小さくなる。そのため、中心固相率fsの推定精度を上げるためには、ディスクロールを用いることとすると好ましい。圧下ロール対の一方のロールをディスクロール、他方のロールをフラットロールとする場合における圧下量dは、圧下ロールの直前の上下ロール対のロール間隔から、上下圧下ロールのロール間隔の差によって求めることができる。 In the present invention, the reduction roll for performing roll reduction on the unsolidified slab includes a flat roll (see FIG. 1 (B)) having a constant diameter in the longitudinal direction of the roll and a radius of the center in the longitudinal direction of the roll. A disc roll larger than the radius on both ends can be used. Regardless of whether a flat roll or a disc roll is used as the rolling roll, the shape of the rolling roll is input and analyzed when performing the deformation analysis. In the unsolidified slab at the site where the roll is reduced, the short sides at both ends in the width direction have already been solidified to the center of the thickness. When a disc roll is used as the reduction roll, the length of the portion having a large roll radius can be made equal to the length of the unsolidified region, and only the unsolidified portion is compressed, so that the reduction amount d becomes large at a specific reduction force F. .. On the other hand, when a flat roll is used as the reduction roll, the reduction is performed including the solidification complete portion on the short side. Therefore, when the reduction is performed with the same reduction force F, the reduction amount d as compared with the disc roll. Becomes smaller. Therefore, in order to improve the estimation accuracy of the central solid phase ratio fs, it is preferable to use a disk roll. When one roll of the reduction roll pair is a disc roll and the other roll is a flat roll, the reduction amount d is obtained from the roll interval of the upper and lower roll pairs immediately before the reduction roll by the difference in the roll interval of the upper and lower reduction rolls. Can be done.
本発明が対象とする鋳片形状は、スラブ、ブルームのいずれも対象とすることができる。中でも、ブルームを対象とすると好ましい。ブルームはクレーターエンド形状が鋳造方向に向かって凸形状で安定しており、鋳片厚み中心部の幅方向温度勾配は鋳片中心から鋳片短辺表面に向かう負の関数となる。これは中心温度と表面温度の相関が大きいことを意味し、固相率推定に有利となる。一方でスラブ鋳片は凝固遅れ等により幅方向温度分布が複雑となり、中心ではない箇所に2つの温度ピークを持つケースがあり、圧下反力と表面温度の2変数だけで中心固相率を決定すると、精度不十分となる可能性がある。また、スラブの場合は、同じ連続鋳造装置において鋳片の幅が狭幅から広幅まで多種混在しているが、ブルームであれば同じ連続鋳造装置において鋳片の幅が一定であることから、上記ディスクロールを用いるに際しても単一のディスクロールで対応することができ、好ましい。 The slab shape targeted by the present invention can be either a slab or a bloom. Above all, it is preferable to target Bloom. Bloom has a stable crater end shape that is convex toward the casting direction, and the temperature gradient in the width direction at the center of the slab thickness is a negative function from the center of the slab toward the surface of the short side of the slab. This means that the correlation between the center temperature and the surface temperature is large, which is advantageous for estimating the solid phase ratio. On the other hand, in slab slabs, the temperature distribution in the width direction becomes complicated due to solidification delay, etc., and there are cases where there are two temperature peaks at locations other than the center, and the central solid phase ratio is determined only by the two variables of rolling reaction force and surface temperature. Then, the accuracy may be insufficient. Further, in the case of a slab, the width of the slab is mixed from narrow to wide in the same continuous casting device, but in the case of Bloom, the width of the slab is constant in the same continuous casting device. Even when a disk roll is used, a single disk roll can be used, which is preferable.
1 鋳片
2 圧下ロール
3 固相部
4 固液共存層
5 液相部
6 固相線位置
7 液相線位置
8 中心固相率評価位置
9 凝固完了位置
1
Claims (4)
fs=(AR-β-γ×(TSu-計算表面温度))/α (1)
α、β、γは定数であり、予め、伝熱計算及び変形解析により定める。計算表面温度は平均変形抵抗の関数として、予め、伝熱計算及び変形解析により定める。 Roll reduction of unsolidified slab during continuous casting is performed, the reduction force and reduction amount at the time of roll reduction are measured, the average deformation resistance AR per unit area of the slab due to roll reduction is calculated, and the slab during casting is calculated. A method for estimating the central solid phase ratio during continuous casting, which comprises measuring the surface temperature T Su and calculating the central solid phase ratio fs at the roll reduction position based on the following equation (1).
fs = (AR-β-γ × (T Su -calculated surface temperature)) / α (1)
α, β, and γ are constants and are determined in advance by heat transfer calculation and deformation analysis. The calculated surface temperature is determined in advance by heat transfer calculation and deformation analysis as a function of the average deformation resistance.
fs=(AR-β-γ(TSu-(TLiq-ΔT)))/(α-γ・(TLiq- TSol)) (2)
TLiqは液相線温度(℃)、TSolは固相線温度(℃)である。α、β、γは定数であり、予め、伝熱計算及び変形解析により定める。ΔT(℃)は鋳片の中心温度と表面温度の差であり、予め、伝熱計算により定められる定数である。 Roll reduction of unsolidified slab during continuous casting is performed, the reduction force and reduction amount at the time of roll reduction are measured, the average deformation resistance AR per unit area of the slab due to roll reduction is calculated, and the slab during casting is calculated. A method for estimating the central solid phase ratio during continuous casting, which comprises measuring the surface temperature T Su and calculating the central solid phase ratio fs at the roll reduction position based on the following equation (2).
fs = (AR-β-γ (T Su- (T Liq -ΔT))) / (α-γ ・ (T Liq -T Sol )) (2)
T Liq is the liquidus temperature (° C.), and T Sol is the solidus phase temperature (° C.). α, β, and γ are constants and are determined in advance by heat transfer calculation and deformation analysis. ΔT (° C.) is the difference between the center temperature and the surface temperature of the slab, and is a constant determined in advance by heat transfer calculation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018123009A JP7021608B2 (en) | 2018-06-28 | 2018-06-28 | Method for estimating the central solid phase ratio of continuously cast slabs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018123009A JP7021608B2 (en) | 2018-06-28 | 2018-06-28 | Method for estimating the central solid phase ratio of continuously cast slabs |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020001064A JP2020001064A (en) | 2020-01-09 |
JP7021608B2 true JP7021608B2 (en) | 2022-02-17 |
Family
ID=69098036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018123009A Active JP7021608B2 (en) | 2018-06-28 | 2018-06-28 | Method for estimating the central solid phase ratio of continuously cast slabs |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7021608B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112765535B (en) * | 2020-12-10 | 2024-04-19 | 江阴兴澄特种钢铁有限公司 | Continuous casting roller array position solid phase rate calculation method |
CN113426973B (en) * | 2021-06-23 | 2023-03-03 | 中冶南方连铸技术工程有限责任公司 | Method for determining optimal position under single roller weight on line |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000015409A (en) | 1998-06-29 | 2000-01-18 | Sumitomo Metal Ind Ltd | Continuous casting method |
JP2002066704A (en) | 2000-08-22 | 2002-03-05 | Nkk Corp | Method for detecting and controlling fully solidified position of continuously cast slab |
JP2007245168A (en) | 2006-03-14 | 2007-09-27 | Jfe Steel Kk | Method and apparatus for detecting completion of solidification in continuous casting, and method and apparatus for continuous casting |
CN102416454A (en) | 2011-11-29 | 2012-04-18 | 天津钢铁集团有限公司 | Method for controlling dynamic soft reduction of continuous casting slab |
CN104148605A (en) | 2014-08-27 | 2014-11-19 | 中冶南方工程技术有限公司 | Online setting method and device for continuous casting sheet billet soft press force |
CN104493121A (en) | 2014-11-28 | 2015-04-08 | 东北大学 | Online detection method for solidified bottom end position in bloom continuous casting production process |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5017329A (en) * | 1973-06-20 | 1975-02-24 | ||
JPS5918146B2 (en) * | 1978-06-29 | 1984-04-25 | 新日本製鐵株式会社 | Method for manufacturing hot rolled steel materials |
JPH01271047A (en) * | 1988-04-20 | 1989-10-30 | Sumitomo Metal Ind Ltd | Light rolling reduction method in continuous casting machine |
-
2018
- 2018-06-28 JP JP2018123009A patent/JP7021608B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000015409A (en) | 1998-06-29 | 2000-01-18 | Sumitomo Metal Ind Ltd | Continuous casting method |
JP2002066704A (en) | 2000-08-22 | 2002-03-05 | Nkk Corp | Method for detecting and controlling fully solidified position of continuously cast slab |
JP2007245168A (en) | 2006-03-14 | 2007-09-27 | Jfe Steel Kk | Method and apparatus for detecting completion of solidification in continuous casting, and method and apparatus for continuous casting |
CN102416454A (en) | 2011-11-29 | 2012-04-18 | 天津钢铁集团有限公司 | Method for controlling dynamic soft reduction of continuous casting slab |
CN104148605A (en) | 2014-08-27 | 2014-11-19 | 中冶南方工程技术有限公司 | Online setting method and device for continuous casting sheet billet soft press force |
CN104493121A (en) | 2014-11-28 | 2015-04-08 | 东北大学 | Online detection method for solidified bottom end position in bloom continuous casting production process |
Also Published As
Publication number | Publication date |
---|---|
JP2020001064A (en) | 2020-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104493121B (en) | A kind of solidification end position online test method of bloom continuous casting production process | |
JP5413289B2 (en) | Center segregation judgment method for continuous cast slabs | |
Chen et al. | Study on the interfacial heat transfer coefficient between AZ91D magnesium alloy and silica sand | |
JP7021608B2 (en) | Method for estimating the central solid phase ratio of continuously cast slabs | |
CN104698030A (en) | Determination method for interface heat transfer coefficient in casting process | |
JP5962625B2 (en) | Steel continuous casting method | |
Ridolfi | Hot tearing modeling: a microstructural approach applied to steel solidification | |
JP4704980B2 (en) | Center segregation improvement method of bearing steel in large section bloom continuous casting. | |
JP4704982B2 (en) | Center segregation improvement method of spring steel in large section bloom continuous casting. | |
JP4704981B2 (en) | Center segregation improvement method for machine structural steel in large section bloom continuous casting. | |
JP2664572B2 (en) | Temperature prediction method for unsolidified part of slab in continuous casting | |
JP7284394B2 (en) | Steel continuous casting method | |
JP2008264830A (en) | Method for improving central segregation of high-carbon chromium bearing steel in continuous casting | |
JP6435988B2 (en) | Breakout prediction method, breakout prevention method, solidified shell thickness measurement method, breakout prediction device and breakout prevention device in continuous casting | |
JP5476959B2 (en) | Continuous casting method under light pressure | |
Singh et al. | Prediction and control of center-line segregation in continuously cast slabs | |
de Barcellos et al. | Analysis of metal mould heat transfer coefficients during continuous casting of steel | |
JP6816523B2 (en) | Continuous steel casting method | |
JP2008073748A (en) | Method for detecting longitudinal cracking based on thermal flux of mold, and continuous casting method | |
Chen et al. | High-precision numerical simulation for effect of casting speed on solidification of 40Cr during continuous billet casting | |
JP2004082150A (en) | Continuous casting method | |
KR101545937B1 (en) | Method for determining the occurence of surface crack of slab | |
JP5742601B2 (en) | Solidification completion position calculation method and solidification completion position calculation device | |
JP7560733B2 (en) | Estimation device, method, and program, and continuous casting control device and method | |
JP4460493B2 (en) | Calculation method of thermal crown of work roll in rolling mill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220118 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7021608 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |