[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7020221B2 - 静電チャック装置 - Google Patents

静電チャック装置 Download PDF

Info

Publication number
JP7020221B2
JP7020221B2 JP2018053393A JP2018053393A JP7020221B2 JP 7020221 B2 JP7020221 B2 JP 7020221B2 JP 2018053393 A JP2018053393 A JP 2018053393A JP 2018053393 A JP2018053393 A JP 2018053393A JP 7020221 B2 JP7020221 B2 JP 7020221B2
Authority
JP
Japan
Prior art keywords
electrostatic chuck
base member
filler
particle size
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018053393A
Other languages
English (en)
Other versions
JP2019165184A (ja
Inventor
佳祐 前田
勇貴 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2018053393A priority Critical patent/JP7020221B2/ja
Publication of JP2019165184A publication Critical patent/JP2019165184A/ja
Application granted granted Critical
Publication of JP7020221B2 publication Critical patent/JP7020221B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、静電チャック装置に関する。
従来、IC、LSI、VLSI等の半導体装置を製造する半導体製造工程においては、シリコンウエハ等の板状試料は、静電チャック機能を備えた静電チャック部材に静電吸着により固定されて所定の処理が施される。
例えば、この板状試料にプラズマ雰囲気下にてエッチング処理等を施す場合、プラズマの熱により板状試料の表面が高温になり、表面のレジスト膜が張り裂ける(バーストする)等の問題が生じる。
そこで、この板状試料の温度を所望の一定の温度に維持するために、静電チャック装置が用いられている。静電チャック装置は、上記の静電チャック部材の下面に、金属製の部材の内部に温度制御用の冷却媒体を循環させる流路が形成された温度調整用ベース部材を、シリコーン系接着剤を介して接合・一体化した装置である。
この静電チャック装置では、温度調整用ベース部材の流路に温度調整用の冷却媒体を循環させて熱交換を行い、静電チャック部材の上面に固定された板状試料の温度を望ましい一定の温度に維持しつつ静電吸着し、この板状試料に各種のプラズマ処理を施すようになっている。
ところで、この静電チャック装置では、板状試料の温度を所望の一定の温度に維持するためには、静電チャック部材における板状試料の吸着面の温度ばらつきが小さいことが求められる。そのためには、静電チャック部材と温度調整用ベース部材との間の熱交換効率を高める必要がある。また、静電チャック部材と温度調整用ベース部材とを接合する接合層を形成するシリコーン系接着剤についても熱伝導性を向上させる必要がある。
シリコーン系接着剤の熱伝導性を向上させるために、シリコーン系接着剤に各種の高熱伝導性のフィラー、例えば、アルミナ(Al)、酸化ケイ素(SiO)、窒化アルミニウム(AlN)等のセラミックス粉末や、アルミニウム(Al)等の金属粉末を混入することが行われている。
接合層に含まれるフィラーの粒子径のばらつきが大きくなると、接合層内でフィラーの偏りが生じる。これにより、接合層の特性や接合層の厚さが場所によって変化し、吸着面の温度ばらつきが大きくなる。
このような課題を解決するために、例えば、セラミック板と温調プレートとの間に、主剤と、無定形フィラーと、球形フィラーと、を有する接合剤を設け、球形フィラーの平均直径が、全ての無定形フィラーの短径の最大値よりも大きく、接合剤の厚さを、球形フィラーの平均直径と同じか、もしくは大きくした静電チャック装置が知られている(例えば、特許文献1参照)。また、セラミック誘電体とセラミック基板とを接合する接合剤を備え、接合剤は、有機材料を含む主剤と、無機材料を含む無定形フィラーと、無機材料を含む球形フィラーと、を有し、主剤中には、無定形フィラーと、球形フィラーと、が分散配合されてなり、主剤、無定形フィラー、および球形フィラーは、電気絶縁性材料からなり、球形フィラーの平均直径は、無定形フィラーの短径の最大値よりも大きく、接合剤の厚さが、球形フィラーの平均直径と同じか、もしくは大きい静電チャック装置が知られている(例えば、特許文献2参照)。
特許第5557164号公報 特許第5267603号公報
特許文献1および特許文献2に記載された発明では、球形フィラーの平均直径を、全ての無定形フィラーの短径の最大値よりも大きくし、接合剤の厚さを、球形フィラーの平均直径と同じか、もしくは大きくすることにより、球形フィラーをスペーサとして用い、接合剤の厚さを均一にしようとしている。しかしながら、球形フィラーの平均直径と無定形フィラーの短径の関係を規定しても、セラミック板と温調プレートとの間や、セラミック誘電体とセラミック基板との間の熱交換効率を高めるとともに、吸着面の場所によって、その熱交換効率がばらつくことを抑制することが難しかった。
本発明は、上記事情に鑑みてなされたものであって、静電チャック部材と温度調整用ベース部材とを接合する接合層の厚さのばらつきを抑え、静電チャック部材と温度調整用ベース部材との間の熱交換効率を高めた静電チャック装置を提供することを目的とする。
上記の課題を解決するため、本発明の一態様は、セラミックスからなる静電チャック部材と、金属からなる温度調整用ベース部材とを、接合層を介して接合してなる静電チャック装置であって、前記温度調整用ベース部材の前記静電チャック部材側の面、または前記静電チャック部材の前記温度調整用ベース部材側の面のいずれか一方に、前記静電チャック部材を平面視した場合に多角形状のスペーサが複数個配設され、前記接合層に含まれるフィラーの最大粒子径が10μm以下である静電チャック装置を提供する。
本発明の一態様においては、前記フィラーの粒度分布の累積体積百分率が90%のときの粒子径(D90)を10μm以下としてもよい。
本発明の一態様においては、前記フィラーの粒度分布の累積体積百分率が90%のときの粒子径(D90)と前記フィラーの粒度分布の累積体積百分率が10%のときの粒子径(D10)の差(D90-D10)を5μm以下としてもよい。
本発明の一態様においては、前記フィラーを、窒化アルミニウム粒子の表面に酸化ケイ素からなる被覆層が形成された表面被覆窒化アルミニウム粒子としてもよい。
本発明によれば、静電チャック部材と温度調整用ベース部材とを接合する接合層の厚さのばらつきを抑え、静電チャック部材と温度調整用ベース部材との間の熱交換効率を高めた静電チャック装置を提供することができる。
本発明の一実施形態の静電チャック装置を示す断面図である。 本発明の一実施形態の静電チャック装置の接合層を示す横断面図である。 本発明の一実施形態の静電チャック装置を示す断面図である。 実施例1、2および比較例1における表面被覆窒化アルミニウム(AlN)粉末の粒度分布を示す図である。 実施例1、2および比較例1、2において、接合層の熱伝導性を評価するために用いられる切断加工体を示す平面図である。
本発明の静電チャック装置およびその製造方法の実施の形態について説明する。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
<静電チャック装置>
以下、図1を参照しながら、本実施形態に係る静電チャック装置について説明する。
なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率等は適宜異ならせてある。
図1は、本発明の一実施形態の静電チャック装置を示す断面図である。図1に示すように、静電チャック装置1は、円板状の静電チャック部材2と、静電チャック部材2を所望の温度に調整する円板状の温度調節用ベース部材3と、これら静電チャック部材2および温度調整用ベース部材3を接合・一体化する接合層4と、を有している。
以下の説明においては、載置板11の載置面11a側を「上」、温度調整用ベース部材3側を「下」として記載し、各構成の相対位置を表すことがある。
[静電チャック部材]
静電チャック部材2は、上面が半導体ウエハ等の板状試料を載置する載置面11aとされたセラミックスからなる載置板11と、載置板11の載置面11aとは反対の面側に設けられた支持板12と、これら載置板11と支持板12との間に挟持された静電吸着用電極13と、載置板11と支持板12とに挟持され静電吸着用電極13の周囲を囲む環状の絶縁材14と、静電吸着用電極13に接するように支持板12の固定孔15内に設けられた給電端子16と、を有している。
これら載置板11、支持板12および静電吸着用電極13には、その厚さ方向に貫通する冷却ガス導入孔17が中心軸に対して回転対称となる位置に計4個形成されている。
[載置板]
載置板11の載置面11aには、半導体ウエハ等の板状試料を支持するための多数の突起が立設され(図示略)ている。さらに、載置板11の載置面11aの周縁部には、ヘリウム(He)等の冷却ガスが漏れないように、幅が1mm以上かつ5mm以下、高さが上記の突起と同じ高さの周縁壁が形成され(図示省略)ている。この周縁壁の内側は、板状試料を静電吸着する吸着領域とされている。上記の冷却ガス導入孔17を介して、載置板11の載置面11aと突起頂面に載置された板状試料との隙間に、冷却ガスが供給されるようになっている。
載置板11を構成するセラミックスとしては、体積固有抵抗値が1013Ω・cm以上かつ1015Ω・cm以下程度であり、機械的な強度を有し、しかも腐食性ガスおよびそのプラズマに対する耐久性を有するものであれば特に制限されるものではない。このようなセラミックスとしては、例えば、酸化アルミニウム(Al)焼結体、窒化アルミニウム(AlN)焼結体、酸化アルミニウム(Al)-炭化ケイ素(SiC)複合焼結体等が好適に用いられる。
載置板11の厚さは、0.3mm以上かつ3.0mm以下であることが好ましく、0.5mm以上かつ1.5mm以下であることがより好ましい。載置板11の厚さが0.3mm以上であれば、耐電圧性に優れる。一方、載置板11の厚さが3.0mm以下であれば、静電チャック部材2の静電吸着力が低下することがなく、載置板11の載置面11aに載置される板状試料と温度調整用ベース部材3との間の熱伝導性が低下することもなく、処理中の板状試料の温度を好ましい一定の温度に保つことができる。
[支持板]
支持板12は、載置板11と静電吸着用電極13を下側から支持している。
支持板12は、載置板11を構成するセラミックスと同様の材料からなる。
支持板12の厚さは、0.3mm以上かつ3.0mm以下であることが好ましく、0.5mm以上かつ1.5mm以下であることがより好ましい。支持板12の厚さが0.3mm以上であれば、充分な耐電圧を確保することができる。一方、支持板12の厚さが3.0mm以下であれば、静電チャック部材2の静電吸着力が低下することがなく、載置板11の載置面11aに載置される板状試料と温度調整用ベース部材3との間の熱伝導性が低下することもなく、処理中の板状試料の温度を好ましい一定の温度に保つことができる。
[静電吸着用電極]
静電吸着用電極13では、電圧を印加することにより、載置板11の載置面11aに板状試料を保持する静電吸着力が生じる。
静電吸着用電極13を構成する材料としては、チタン、タングステン、モリブデン、白金等の高融点金属、グラファイト、カーボン等の炭素材料、炭化ケイ素、窒化チタン、炭化チタン等の導電性セラミックス等が好適に用いられる。これらの材料の熱膨張係数は、載置板11の熱膨張係数に出来るだけ近似していることが望ましい。
静電吸着用電極13の厚さは、5μm以上かつ200μm以下であることが好ましく、10μm以上かつ100μm以下であることがより好ましい。静電吸着用電極13の厚さが5μm以上であれば、充分な導電性を確保することができる。一方、静電吸着用電極13の厚さが200μm以下でれば、載置板11の載置面11aに載置される板状試料と温度調整用ベース部材3との間の熱伝導性が低下することがなく、処理中の板状試料の温度を望ましい一定の温度に保つことができる。また、プラズマ透過性が低下することがなく、安定にプラズマを発生させることができる。
静電吸着用電極13は、スパッタ法や蒸着法等の成膜法、あるいはスクリーン印刷法等の塗工法により容易に形成することができる。
[絶縁材]
絶縁材14は、静電吸着用電極13を囲繞して腐食性ガスおよびそのプラズマから静電吸着用電極13を保護するためのものである。
絶縁材14は、載置板11および支持板12と同一組成、または主成分が同一の絶縁性材料から構成されている。絶縁材14により、載置板11と支持板12とが、静電吸着用電極13を介して接合一体化されている。
[給電端子]
給電端子16は、静電吸着用電極13に電圧を印加するためのものである。
給電端子16の数、形状等は、静電吸着用電極13の形態、すなわち単極型か、双極型かにより決定される。
給電端子16の材料は、耐熱性に優れた導電性材料であれば特に制限されるものではない。給電端子16の材料としては、熱膨張係数が静電吸着用電極13および支持板12の熱膨張係数に近似したものであることが好ましく、例えば、コバール合金、ニオブ(Nb)等の金属材料、各種の導電性セラミックスが好適に用いられる。
[温度調整用ベース部材]
温度調整用ベース部材3は、金属およびセラミックスの少なくとも一方からなる厚みのある円板状のものである。温度調整用ベース部材3の躯体は、プラズマ発生用内部電極を兼ねた構成とされている。温度調整用ベース部材3の躯体の内部には、水、Heガス、Nガス等の冷却媒体を循環させる流路21が形成されている。また、温度調整用ベース部材3の躯体の内部には、冷却ガス導入孔17および固定孔15も、静電チャック部材2と同様に形成されている。
温度調整用ベース部材3の躯体は、外部の高周波電源22に接続されている。また、温度調整用ベース部材3の固定孔15内には、その外周が絶縁材料23により囲繞された給電端子16が、絶縁材料23を介して固定されている。給電端子16は、外部の直流電源24に接続されている。
温度調整用ベース部材3を構成する材料は、熱伝導性、導電性、加工性に優れた金属、またはこれらの金属を含む複合材であれば特に制限されるものではない。温度調整用ベース部材3を構成する材料としては、例えば、アルミニウム(Al)、銅(Cu)、ステンレス鋼(SUS)、チタン(Ti)等が好適に用いられる。
温度調整用ベース部材3における少なくともプラズマに曝される面は、アルマイト処理またはポリイミド系樹脂による樹脂コーティングが施されていることが好ましい。また、温度調整用ベース部材3の全面が、前記のアルマイト処理または樹脂コーティングが施されていることがより好ましい。
温度調整用ベース部材3にアルマイト処理または樹脂コーティングを施すことにより、温度調整用ベース部材3の耐プラズマ性が向上するとともに、異常放電が防止される。したがって、温度調整用ベース部材3の耐プラズマ安定性が向上し、また、温度調整用ベース部材3の表面傷の発生も防止することができる。
[接合層]
接合層4は、図2に示すように、硬化体であるシリコーン系樹脂組成物と、フィラーとを含有する複合材料31に、静電チャック部材2を平面視した場合に多角形状のセラミックスからなるスペーサ32が複数個、同一平面内に略一定の密度で略規則的に配列されている。静電チャック部材2を平面視するとは、静電チャック部材2を載置板11の載置面11a側から視ることである。
図2では、スペーサ32が、最外周の同心円上に等間隔に8個、それよりも内側の同心円上に等間隔に8個、最内周の同心円上に等間隔に4個配置されている。これらのスペーサ32は、直線状に並ばないように配置されている。
図3に示すように、スペーサ32は、粘着層33を介して、温度調整用ベース部材3の一方の面(上面)3aに設けられている。また、図3に示すように、接合層4はフィラー34を含む。フィラー34は、スペーサ32と静電チャック部材2の間にも介在している。
スペーサ32は、静電チャック部材2と温度調整用ベース部材3とを一定の厚さで接合するためのものである。スペーサ32の材料としては、高い誘電体損失(tanδ)を有しない材料、例えば、アルミナ(Al)、窒化ケイ素(Si)、ジルコニア(ZrO)等の焼結体が好適に用いられる。なお、炭化ケイ素(SiC)焼結体、アルミニウム(Al)等の金属板、フェライト(Fe)等の磁性材料といった高い誘電体損失を有する材料は放電の原因となるので好ましくない。
以下、接合層4について、詳細に説明する。
シリコーン系樹脂組成物としては、公知文献(特開平4-287344号公報)に記載されているシリコーン樹脂を用いることができる。
このシリコーン樹脂は、耐熱性、弾性に優れた樹脂であり、シロキサン結合(Si-O-Si)を有するケイ素化合物重合体である。このシリコーン樹脂は、例えば、下記の化学式(1)、化学式(2)で表すことができる。
Figure 0007020221000001
(但し、Rは、Hまたはアルキル基(C2n+1-:nは整数)である。)
Figure 0007020221000002
(但し、Rは、Hまたはアルキル基(C2n+1-:nは整数)である。)
このようなシリコーン樹脂としては、特に、熱硬化温度が70℃以上かつ140℃以下のシリコーン樹脂を用いることが好ましい。シリコーン樹脂の熱硬化温度が70℃以上であれば、静電チャック部材2の支持板12と温度調整用ベース部材3とを接合する際に、接合過程の途中でシリコーン樹脂の硬化が始まることがなく、接合作業に支障を来すことがない。一方、シリコーン樹脂の熱硬化温度が140℃以下であれば、支持板12と温度調整用ベース部材3との熱膨張差を吸収することができるため、載置板11の載置面11aの平坦度が低下することがない。また、支持板12と温度調整用ベース部材3との間の接合力が低下することがなく、これらの間で剥離が生じることもない。
シリコーン樹脂としては、硬化後のヤング率が8MPa以下のものを用いることが好ましい。硬化後のヤング率が8MPa以下であれば、接合層4に昇温、降温の熱サイクルが負荷された際にも支持板12と温度調整用ベース部材3との熱膨張差を吸収することができるため、接合層4の耐久性が低下することを防止できる。
フィラー34としては、高熱伝導性の材料であれば特に制限されるものではない。高熱伝導性のフィラー34としては、例えば、アルミナ(Al)、酸化ケイ素(SiO)、窒化アルミニウム(AlN)等のセラミックス粉末や、アルミニウム(Al)等の金属粉末が挙げられる。フィラー34としては、熱伝導性に優れている点から、窒化アルミニウム(AlN)粒子の表面に酸化ケイ素(SiO)からなる被覆層が形成された表面被覆窒化アルミニウム(AlN)粒子が好ましい。
また、表面被覆窒化アルミニウム(AlN)粒子は、窒化アルミニウム(AlN)粒子の表面に酸化ケイ素(SiO)からなる被覆層が形成されているため、表面被覆が施されていない単なる窒化アルミニウム(AlN)粒子と比較して、優れた耐水性を有している。したがって、シリコーン系樹脂組成物を主成分とする接合層4の耐久性を確保することができ、よって静電チャック装置1の耐久性を飛躍的に向上させることができる。
表面被覆が施されていない窒化アルミニウム(AlN)粒子は、下記の化学反応式(3)で示されるように、例えば、大気中の水により加水分解されて水酸化アルミニウム(Al(OH))とアンモニア(NH)を生成する。この水酸化アルミニウム(Al(OH))により、窒化アルミニウム(AlN)の熱伝導性が低下する。
AlN+3HO→Al(OH)+NH (3)
一方、表面被覆窒化アルミニウム(AlN)粒子は、窒化アルミニウム(AlN)粒子の表面が、優れた耐水性を有する酸化ケイ素(SiO)からなる被覆層により被覆されているため、窒化アルミニウム(AlN)が大気中の水により加水分解されることがなく、窒化アルミニウム(AlN)の熱伝導性が低下することもない。したがって、接合層4の耐久性が向上し、また、半導体ウエハ等の板状試料への汚染源となることもない。
表面被覆窒化アルミニウム(AlN)粒子は、被覆層中のケイ素(Si)とシリコーン系樹脂組成物とにより強固な結合状態を得ることが可能であるから、接合層4の伸び性を向上させることが可能である。これにより、静電チャック部材2の支持板12の熱膨張率と温度調整用ベース部材3の熱膨張率との差に起因する熱応力を緩和することができ、静電チャック部材2と温度調整用ベース部材3とを精度よく、強固に接合することができる。また、使用時の熱サイクル負荷に対する耐性が充分なものとなり、静電チャック装置の耐久性が向上する。
この表面被覆窒化アルミニウム(AlN)粒子の被覆層の厚さは0.005μm以上かつ0.05μm以下であることが好ましく、0.005μm以上かつ0.03μm以下であることがより好ましい。
被覆層の厚さが0.005μm以上であれば、窒化アルミニウム(AlN)の耐水性(耐湿性)を充分に発現することができる。一方、被覆層の厚さが0.05μm以下であれば、表面被覆窒化アルミニウム(AlN)粒子の熱伝導性が低下することがなく、ひいては載置板11の載置面11aに載置される板状試料と温度調整用ベース部材3との間の熱伝導性が低下することがない。したがって、処理中の板状試料の温度を好ましい一定の温度に保つことができる。
フィラー34の最大粒子径は、10μm以下であることが好ましく、7μm以下であることがより好ましく、5μm以下であることがさらに好ましい。また、フィラー34の最大粒子径の下限は、1μm以上であってもよく、2μm以上であってもよく、3μm以上であってもよい。
フィラー34の最大粒子径が10μm以下であれば、硬化前の接着剤中のフィラー34の沈降がなくなる。また、スペーサ32下のフィラー34の有無による接合層4のバラツキが低減する。
なお、本実施形態において、接合層4に含まれる「フィラー34の粒子径」とは、以下の方法で求められる数値である。すなわち、本実施形態におけるフィラー34を、走査型電子顕微鏡(SEM)等を用いて観察した場合に、フィラー34を所定数、例えば、200個、あるいは100個を選び出す。そして、これらフィラー34各々の最長の直線部分(最大長径)を測定し、これらの測定値を加重平均する。
フィラー34の粒度分布の累積体積百分率が90%のときの粒子径(D90)は、8μm以下であることが好ましく、6.5μm以下であることがより好ましく、5μm以下であることがさらに好ましい。また、D90の下限は、1μm以上であってもよく、2μm以上であってもよく、3μm以上であってもよい。
D90が8μm以下であれば、硬化前の接着剤中のフィラー34の沈降がなくなる。また、スペーサ32下のフィラー34の有無による接合層4のバラツキが低減する。
フィラー34の粒度分布の累積体積百分率が10%のときの粒子径(D10)は、3.5μm以下であることが好ましく、3μm以下であることがより好ましい。また、D10の下限は、1μm以上であってもよく、1.5μm以上であってもよい。
D10が3.5μm以下であれば、硬化前の接着剤中のフィラー34の沈降がなくなる。また、スペーサ32下のフィラー34の有無による接合層4のバラツキが低減する。
フィラー34の粒度分布の累積体積百分率が90%のときの粒子径(D90)とフィラー34の粒度分布の累積体積百分率が10%のときの粒子径(D10)の差(D90-D10)が4.5μm以下であることが好ましく、4μm以下であることがより好ましく、3μm以下であることがさらに好ましい。また、D90-D10の下限は、0.1μm以上であってもよく、0.5μm以上であってもよく、1μm以上であってもよい。
D90-D10が4.5μm以下であれば、接着剤中へフィラー34が均一に分散される。また、接着剤中のフィラー34の含有量が10vol%以上の場合、接合層4のバラツキが低減する。
フィラー34の粒度分布は、次のようにして測定される。分散媒であるヘキサメタリン酸ナトリウムにフィラー34を加え、これらヘキサメタリン酸ナトリウムとフィラー34に超音波を印加することにより、ヘキサメタリン酸ナトリウム中にフィラー34を均一に分散させて、分散液を調製する。その分散液に含まれるフィラー34の粒度分布を、粒度分布測定装置(商品名:マイクロトラックHRA9320-X100、日機装株式会社製)により測定する。
接合層4におけるフィラー34の含有量は、10vol%以上かつ40vol%以下であることが好ましい。
フィラー34の含有量が10vol%以上であれば、接合層4の熱伝導性が低下することがなく、ひいては載置板11の載置面11aに載置される板状試料と温度調整用ベース部材3との間の熱伝導性が低下することがなく、処理中の板状試料の温度を好ましい一定の温度に保つことができる。一方、フィラー34の含有量が40vol%以下であれば、接合層4の伸び性が低下することがなく、熱応力緩和が充分であり、載置板11の載置面11aの平坦度、平行度が劣化することがない。したがって、支持板12と温度調整用ベース部材3との間の接合力が低下することがなく、両者間で剥離が生じることもない。
接合層4の厚さは、10μm以上かつ500μm以下であることが好ましい。
接合層4の厚さが10μm以上であれば、静電チャック部材2と温度調整用ベース部材3との間の熱伝導性が良好となるとともに、熱応力緩和が充分となる。一方、接合層4の厚さが500μm以下であれば、静電チャック部材2と温度調整用ベース部材3との間の熱伝導性を十分に確保することができ、プラズマ透過性も向上する。
接合層4では、静電チャック部材2との接合面内および温度調整用ベース部材3との接合面内における、それらの接合面と垂直な方向の厚さのばらつきが、その厚さの最大値と最小値の差で表わされる。接合層4は、静電チャック部材2との接合面内および温度調整用ベース部材3との接合面内における、それらの接合面と垂直な方向の厚さの最大値と最小値の差が10μm以下である。
また、接合層4では、静電チャック部材2との接合面内および温度調整用ベース部材3との接合面内における、それらの接合面と垂直な方向(厚さ方向)の熱伝導率のばらつきが、その厚さ方向の熱伝導率の最大値(熱伝導率Max)と熱伝導率の最小値(熱伝導率Min)との差(熱伝導率Max-熱伝導率Min)で表わされる。接合層4は、静電チャック部材2との接合面内および温度調整用ベース部材3との接合面内における、その厚さ方向の熱伝導率の最大値(熱伝導率Max)と熱伝導率の最小値(熱伝導率Min)との差(熱伝導率Max-熱伝導率Min)が、前記の厚さ方向の熱伝導率の平均値±3%以下である。
本実施形態の静電チャック装置1によれば、静電チャック部材2と温度調整用ベース部材3とを接合する接合層4に含まれるフィラー34の最大粒子径を10μm以下としたので、接合層4の厚さのばらつきを抑え、静電チャック部材2と温度調整用ベース部材3との間の熱交換効率を高めることができる。
以下、本実施形態の静電チャック装置1の製造方法を、静電チャック部材2と温度調整用ベース部材3との接合方法に重点をおいて説明する。
まず、公知の方法により、静電チャック部材2と、温度調整用ベース部材3とを作製する。
一方、シリコーン系樹脂組成物と、フィラー34とを、所定の比率で混合し、この混合物に攪拌脱泡処理を施し、シリコーン系樹脂組成物とフィラー34との混合物を調製する。この場合、シリコーン系樹脂組成物の粘度が塗布に適する範囲内、例えば、50Pa・s以上かつ300Pa・s以下となるように、混合物に、トルエン、キシレン等の有機溶剤を加えてもよい。
次いで、温度調整用ベース部材3の接合面を、例えば、アセトンを用いて脱脂、洗浄し、この接合面上に、幅1mm、長さ1mm、厚さ0.1mmのセラミックス製のスペーサ31を、常温硬化型シリコーン接着剤を用いて接着する。
スペーサ31は、静電チャック部材2と温度調整用ベース部材3とを一定の間隔をおいて接合するためのものである。スペーサ31の個数、配置する位置は適宜でよい。例えば、直径298mmの静電チャック部材2と直径298mmの温度調整用ベース部材3とを接合する場合には、温度調整用ベース部材3上に最外周の同心円上に8個、さらに適度に中心方向に寄った同心円上に8個、さらに中心方向に寄った同心円上に8個配置する。これらのスペーサ31は、直線状に並ばないように配置する。さらに、中心方向の同心円上に4個、最内周の同心円上に4個配置する。
次いで、常温に所定時間放置して、常温硬化型シリコーン接着剤を十分に硬化させた後、スペーサ31の上に、接合層4を形成するシリコーン系樹脂組成物を塗布する。シリコーン系樹脂組成物の塗布量は、静電チャック部材2と温度調整用ベース部材3とを一定の間隔を置いて接合するため所定の範囲内にする。
例えば、直径298mmの静電チャック部材2と直径298mmの温度調整用ベース部材3とを接合する場合には、温度調整用ベース部材3の接合面に20g~22g、静電チャック部材2の接合面に15g~17g、それぞれ塗布する。
このシリコーン系樹脂組成物の塗布方法としては、ヘラ等を用いて手動で塗布する他、バーコート法、スクリーン印刷法等を用いることができる。
塗布後、静電チャック部材2と温度調整用ベース部材3とをシリコーン系樹脂組成物を介して重ね合わせ、静電チャック部材2と温度調整用ベース部材3との間隔がスペーサ31の厚さになるまで、静電チャック部材2と温度調整用ベース部材3の積層体を押し潰して、余分なシリコーン系樹脂組成物を押し出して、除去する。押し潰す際の温度は、シリコーン系樹脂組成物の流動性が最も高くなる温度が好ましい。
また、シリコーン系樹脂組成物中の気泡を除去するために、静電チャック部材2と温度調整用ベース部材3とを重ね合わせた後に真空脱泡処理を施すことも、強固かつ均一な組織を有する接合層4を得るうえで有効である。
その後、シリコーン系樹脂組成物を硬化させる。硬化条件は、用いるシリコーン系樹脂の最適硬化条件に従えばよく、また、硬化時に加圧してもよい。
このようにして静電チャック部材2の支持板12と温度調整用プレート部材3とを接合し、支持板12と温度調整用プレート部材3の間に形成された接合層4の熱伝導率の平均値は0.35W/mK以上であり、熱伝導性に優れている。
なお、本実施形態に係る板状試料としては、半導体ウエハに限るものではなく、例えば、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、有機ELディスプレイ等の平板型ディスプレイ(FPD)用ガラス基板等であってもよい。また、その基板の形状や大きさに合わせて本実施形態の静電チャック装置を設計すればよい。
以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
まず、実施例1、2および比較例1、2に共通して用いる静電チャック部材を次のようにして作製した。
「支持板の作製」
平均粒子径0.06μmの炭化ケイ素超微粉末をプラズマCVD法により気相合成し、この炭化ケイ素超微粉末5質量部と、平均粒子径0.15μmの酸化アルミニウム粉末95質量部とを均一に混合した。
次いで、この混合粉末を円盤状に成形し、次いで、アルゴン雰囲気中、1800℃にて4時間、加圧焼成することにより、直径298mm、厚さ1.5mmの円盤状のアルミナ基複合焼結体を作製した。加圧力は40MPaとした。
次いで、この円盤状のアルミナ基焼結体に、給電用端子を組み込み固定するための固定孔(直径2.5mm)を、ダイヤモンドドリルによって孔あけ加工することによって穿設し、支持板を得た。
「載置板の作製」
上記の支持板の作製方法に準じて、直径298mm、厚さ1.5mmの円盤状のアルミナ基焼結体を得た。
次いで、この円盤状のアルミナ基焼結体の一面(板状試料の載置面)を平坦度が10μm以下となるように研磨し、アルミナ基焼結体製の載置板を得た。
「給電用端子の作製」
アルミナ粉末(平均粒子径0.15μm)40質量部、タンタルカーバイド(TaC)粉末(平均粒子径1μm)60質量部からなる混合粉末を成形、焼成し、上記の支持板の固定孔に固定可能な棒状のアルミナ-タンタルカーバイド複合導電性焼結体を得て、これを給電用端子とした。焼結条件は、支持板の場合と同様とした。
「一体化」
支持板の固定孔に給電用端子を押し込み、組み込み固定した。
次いで、この給電用端子が組み込まれ固定された支持板上に、アルミナ粉末(平均粒子径0.15μm)40質量部とタンタルカーバイド粉末(平均粒子径1μm)60質量部を含む塗布剤をスクリーン印刷法にて塗布し、乾燥して、静電吸着用電極形成層とした。
そして、この静電吸着用電極形成層を挟み込むように、また、載置板の研磨面が上面となるように、支持板と載置板とを重ね合わせた。その後、ホットプレスにて加圧・熱処理することにより、これらを一体化し、静電チャック部材を作製した。このときの加圧・熱処理条件は、温度1750℃、圧力7.5MPaであった。この加圧・熱処理時に静電吸着用電極形成層が焼成されて静電吸着用電極(厚さ80μm)となった。
「温度調整用ベース部材の作製」
直径298mm、高さ20mmのアルミニウム製の温度調整用ベース部材を、砂型に鋳込んで作製した。この温度調整用ベース部材の内部には冷媒を循環させる流路が形成されている。
「スペーサの作製」
幅1mm、長さ1mm、厚さ0.1mmの角形状スペーサを、アルミナ(Al)焼結体にて作製した。
「実施例1」
シリコーン樹脂 TSE3221(東芝シリコーン株式会社製)に、表面が酸化ケイ素(SiO)により被覆された表面被覆窒化アルミニウム(AlN)粉末 TOYALNITE(東洋アルミニウム株式会社製)を、上記のシリコーン樹脂および表面被覆窒化アルミニウム(AlN)粉末の体積の合計量に対して20vol%となるように混合し、この混合物に攪拌脱泡処理を施し、シリコーン系樹脂組成物を調製した。
表面被覆窒化アルミニウム(AlN)粉末としては、表1および図4に示す粒度分布を有するものを用いた。なお、表1において、「D50」は、表面被覆窒化アルミニウム(AlN)粉末の粒度分布の累積体積百分率が50%のときの粒子径を示す。
また、表面被覆窒化アルミニウム(AlN)粉末の粒度分布を、次のようにして測定した。ヘキサメタリン酸ナトリウムに表面被覆窒化アルミニウム(AlN)粉末を加え、これらヘキサメタリン酸ナトリウムと表面被覆窒化アルミニウム(AlN)粉末に超音波を印加することにより、ヘキサメタリン酸ナトリウム中に表面被覆窒化アルミニウム(AlN)粉末を均一に分散させて、分散液を調製した。その分散液に含まれる表面被覆窒化アルミニウム(AlN)粉末の粒度分布を、粒度分布測定装置(商品名:マイクロトラックHRA9320-X100、日機装株式会社製)により測定した。
次いで、温度調整用プレート部材の接合面を、アセトンを用いて充分脱脂・洗浄し、この接合面に、幅1mm、長さ1mm、厚さ0.1mmの酸化アルミニウム(Al)からなるスペーサを、常温硬化型シリコーン接着剤 信越シリコーン KE4895T(信越化学工業株式会社製)を用いて接着した。スペーサの配置は、最外周の同心円上に等間隔に8個、さらに内側の同心円上に等間隔に8個、さらに内側の同心円上に等間隔に8個配置、さらに内側の同心円上に等間隔に4個、最内周の同心円上に等間隔に4個、それぞれ配置した。
次いで、この温度調整用プレート部材を大気中に5時間静置して、常温硬化型シリコーン接着剤を十分硬化させた後、上記のシリコーン系樹脂組成物を、ヘラを用いて静電チャック部材の接合面に17g、温度調整用ベース部材の接合面に22g、それぞれ塗布した。
シリコーン系樹脂組成物の塗布後、50℃、1Pa以下の条件下にて30分間保持し、真空脱泡処理を行った。その後、静電チャック部材と温度調整用ベース部材とを重ね合わせ、再度、50℃、1Pa以下の条件下にて30分間保持し、シリコーン系樹脂組成物に真空脱泡処理を施した。
次いで、50℃、大気中にて、静電チャック部材と温度調整用ベース部材との間隔が120μmとなるまで、静電チャック部材と温度調整用ベース部材の積層体を押し潰した。
次いで、大気中、115℃にて12時間保持してシリコーン系樹脂組成物を硬化させ、静電チャック部材と温度調整用ベース部材とを接合させ、実施例1の静電チャック装置を作製した。
また、接合層の熱伝導性を評価するために、図5に示す静電チャック装置を面内の箇所で切断加工して、縦20mm×横20mmの正方形の切断加工体を作製した。
「実施例2」
表1および図4に示す粒度分布を有する表面被覆窒化アルミニウム(AlN)粉末を用いたこと以外は実施例1と同様にして、実施例2の静電チャック装置を作製した。
また、実施例1と同様にして、実施例2の切断加工体を作製した。
「比較例1」
表1および図4に示す粒度分布を有する表面被覆窒化アルミニウム(AlN)粉末を用いたこと以外は実施例1と同様にして、比較例1の静電チャック装置を作製した。
また、実施例1と同様にして、比較例1の切断加工体を作製した。
「比較例2」
シリコーン系樹脂組成物に表面被覆窒化アルミニウム(AlN)粉末を混合しなかったこと以外は実施例1と同様にして、比較例2の静電チャック装置を作製した。
また、実施例1と同様にして、比較例2の切断加工体を作製した。
Figure 0007020221000003
「評価」
実施例1、実施例2および比較例1、比較例2の静電チャック装置を用いて接合層の厚さのばらつきと、接合層の熱伝導性を評価した。
(接合層の厚さのばらつき)
接合層について、静電チャック部材との接合面内および温度調整用ベース部材との接合面内における、それらの接合面と垂直な方向の厚さを測定し、その厚さの最大値と最小値から、接合層の厚さのばらつきを算出した。
接合層の厚さの測定箇所を、接合層の中心、中心から半径10mmの位置(R10)、中心から半径20mmの位置(R20)、中心から半径30mmの位置(R30)、中心から半径40mmの位置(R40)、中心から半径50mmの位置(R50)、中心から半径60mmの位置(R60)、中心から半径70mmの位置(R70)、中心から半径80mmの位置(R80)、中心から半径90mmの位置(R90)、中心から半径100mmの位置(R100)、中心から半径110mmの位置(R110)、中心から半径120mmの位置(R120)、中心から半径130mmの位置(R130)、中心から半径140mmの位置(R140)、中心から半径147.3mmの位置(R147.3)とした。
接合層の厚さの測定方法は、次の通りとした。
三次元測定機(商品名:ザイザックスSVA NEX、東京精密株式会社製)により、静電チャック部材の厚さと温度調整用ベース部材の厚さをそれぞれ測定した。
接合層を介して、静電チャック部材と温度調整用ベース部材を接合してなる静電チャック装置全体の厚さを測定した。
静電チャック装置全体の厚さから、静電チャック部材の厚さと温度調整用ベース部材の厚さの合計を差し引いて、接合層の厚さを算出した。
結果を表2に示す。
Figure 0007020221000004
表2の結果から、実施例1および実施例2の静電チャック装置を構成する接合層は、比較例1の静電チャック装置を構成する接合層の厚さのばらつきが少ないことが分かった。
なお、比較例2の静電チャック装置を構成する接合層の厚さのばらつきが少ないのは、接合層が表面被覆窒化アルミニウム(AlN)粉末を含まないことによると思われる。
(接合層の熱伝導性)
上記の切断加工体を用いて、カートリッジ方式一方向熱流定常比較法(ISO16525-3)により、接合層の熱伝導率を測定した。
結果を表3に示す。
Figure 0007020221000005
表3の結果から、実施例1の切断加工体は、熱伝導率の最大値と熱伝導率の最小値との差が0.008W/mKであり、その差が熱伝導率の平均値0.353W/mKの2.27%であった。すなわち、実施例1の切断加工体は、熱伝導率のばらつきが小さいことが分かった。また、実施例2の切断加工体は、熱伝導率の最大値と熱伝導率の最小値との差が0.011W/mKであり、その差が熱伝導率の平均値0.369W/mKの2.98%であった。すなわち、実施例2の切断加工体は、熱伝導率のばらつきが小さいことが分かった。
一方、表3の結果から、比較例1の切断加工体は、熱伝導率の最大値と熱伝導率の最小値との差が0.026W/mKであり、その差が熱伝導率の平均値0.372W/mKの6.99%であった。すなわち、比較例1の切断加工体は、熱伝導率のばらつきが大きいことが分かった。また、比較例2の切断加工体は、熱伝導率の最大値と熱伝導率の最小値との差が0.005W/mKであり、その差が熱伝導率の平均値0.171W/mKの0.03%であった。しかしながら、比較例2の切断加工体は、熱伝導率が、実施例1の切断加工体および実施例2の切断加工体の半分以下であった。
本発明の静電チャック装置は、セラミックスからなる静電チャック部材と、金属および/またはセラミックスからなる温度調整用ベース部材とを、シリコーン系樹脂組成物と、表面が酸化ケイ素(SiO)により被覆された表面被覆窒化アルミニウム(AlN)粒子とを含有する接合層により接合、一体化したものであるから、静電チャック装置以外の、セラミックスからなる部材と、金属およびセラミックスの少なくとも一方からなる部材との接合・一体化に対しても適用可能であり、その有用性は非常に大きいものである。
1 静電チャック装置
2 静電チャック部材
3 温度調整用ベース部材
4 接合層
11 載置板
11a 載置面
12 支持板
13 静電吸着用電極
14 絶縁材
15 固定孔
16 給電端子
17 冷却ガス導入孔
21 流路
22 高周波電源
23 絶縁材料
24 直流電源
31 複合材料
32 スペーサ
33 粘着層
34 フィラー

Claims (3)

  1. セラミックスからなる静電チャック部材と、金属からなる温度調整用ベース部材とを、接合層を介して接合してなる静電チャック装置であって、
    前記温度調整用ベース部材の前記静電チャック部材側の面、または前記静電チャック部材の前記温度調整用ベース部材側の面のいずれか一方に、前記静電チャック部材を平面視した場合に多角形状のスペーサが複数個配設され、
    前記接合層に含まれるフィラーの最大粒子径が10μm以下であり、
    前記フィラーの粒度分布の累積体積百分率が90%のときの粒子径(D90)と前記フィラーの粒度分布の累積体積百分率が10%のときの粒子径(D10)の差(D90-D10)は4.5μm以下である静電チャック装置。
  2. 前記フィラーの粒度分布の累積体積百分率が90%のときの粒子径(D90)は8μm以下である請求項1に記載の静電チャック装置。
  3. 前記フィラーは、窒化アルミニウム粒子の表面に酸化ケイ素からなる被覆層が形成された表面被覆窒化アルミニウム粒子である請求項1又は2に記載の静電チャック装置。
JP2018053393A 2018-03-20 2018-03-20 静電チャック装置 Active JP7020221B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018053393A JP7020221B2 (ja) 2018-03-20 2018-03-20 静電チャック装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018053393A JP7020221B2 (ja) 2018-03-20 2018-03-20 静電チャック装置

Publications (2)

Publication Number Publication Date
JP2019165184A JP2019165184A (ja) 2019-09-26
JP7020221B2 true JP7020221B2 (ja) 2022-02-16

Family

ID=68066139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018053393A Active JP7020221B2 (ja) 2018-03-20 2018-03-20 静電チャック装置

Country Status (1)

Country Link
JP (1) JP7020221B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111060223A (zh) * 2019-12-26 2020-04-24 北京北方华创微电子装备有限公司 卡盘校温装置及卡盘校温方法
KR20220154736A (ko) * 2020-03-13 2022-11-22 램 리써치 코포레이션 기판 프로세싱 시스템들을 위한 스터드 어레이들을 갖는 본딩 층들을 포함하는 기판 지지부들
WO2024185800A1 (ja) * 2023-03-06 2024-09-12 住友大阪セメント株式会社 静電チャック装置、および静電チャック装置の製造方法
JP7537585B1 (ja) 2023-10-10 2024-08-21 Toto株式会社 静電チャック
JP7545603B1 (ja) 2024-03-07 2024-09-04 日本特殊陶業株式会社 保持部材

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129539A (ja) 2008-02-26 2012-07-05 Kyocera Corp ウエハ支持部材
JP2015205955A (ja) 2014-04-17 2015-11-19 日本特殊陶業株式会社 ウェハ加熱装置用の接着剤及びこれを用いたウェハ加熱装置
JP2016153500A (ja) 2016-03-29 2016-08-25 グンゼ株式会社 絶縁性熱伝導ポリイミド樹脂組成物
JP2017059771A (ja) 2015-09-18 2017-03-23 住友大阪セメント株式会社 静電チャック装置及びその製造方法
JP2017101243A (ja) 2008-12-19 2017-06-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高温静電チャック接着剤
JP2017135111A (ja) 2015-03-24 2017-08-03 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129539A (ja) 2008-02-26 2012-07-05 Kyocera Corp ウエハ支持部材
JP2017101243A (ja) 2008-12-19 2017-06-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高温静電チャック接着剤
JP2015205955A (ja) 2014-04-17 2015-11-19 日本特殊陶業株式会社 ウェハ加熱装置用の接着剤及びこれを用いたウェハ加熱装置
JP2017135111A (ja) 2015-03-24 2017-08-03 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2017059771A (ja) 2015-09-18 2017-03-23 住友大阪セメント株式会社 静電チャック装置及びその製造方法
JP2016153500A (ja) 2016-03-29 2016-08-25 グンゼ株式会社 絶縁性熱伝導ポリイミド樹脂組成物

Also Published As

Publication number Publication date
JP2019165184A (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
JP4727434B2 (ja) 静電チャック装置
JP7020221B2 (ja) 静電チャック装置
US8284538B2 (en) Electrostatic chuck device
JP4008230B2 (ja) 静電チャックの製造方法
JP4417197B2 (ja) サセプタ装置
US20080062609A1 (en) Electrostatic chuck device
JP7020238B2 (ja) 静電チャック装置
JP4943086B2 (ja) 静電チャック装置及びプラズマ処理装置
JP2008042141A (ja) 静電チャック装置
KR102675440B1 (ko) 정전 척 장치 및 그 제조 방법
JP5011736B2 (ja) 静電チャック装置
JP7322922B2 (ja) セラミックス接合体の製造方法
WO2020066237A1 (ja) 静電チャック装置
JP2008042140A (ja) 静電チャック装置
JP7415732B2 (ja) 静電チャック装置
JP6424563B2 (ja) 静電チャック装置およびその製造方法
JP6531693B2 (ja) 静電チャック装置、静電チャック装置の製造方法
JP6503689B2 (ja) 静電チャック装置およびその製造方法
JP2021158236A (ja) 静電チャック装置
JP4241571B2 (ja) 双極型静電チャックの製造方法
WO2021153154A1 (ja) セラミックス接合体、静電チャック装置、セラミックス接合体の製造方法
JP7388575B2 (ja) セラミックス接合体、静電チャック装置
JP4789416B2 (ja) セラミック抵抗体及びその製造方法並びに静電チャック
JP7487572B2 (ja) 静電チャック装置
WO2024204733A1 (ja) 静電チャック装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117

R150 Certificate of patent or registration of utility model

Ref document number: 7020221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150