[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7018299B2 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
JP7018299B2
JP7018299B2 JP2017224593A JP2017224593A JP7018299B2 JP 7018299 B2 JP7018299 B2 JP 7018299B2 JP 2017224593 A JP2017224593 A JP 2017224593A JP 2017224593 A JP2017224593 A JP 2017224593A JP 7018299 B2 JP7018299 B2 JP 7018299B2
Authority
JP
Japan
Prior art keywords
heat transfer
region
flow path
regions
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017224593A
Other languages
Japanese (ja)
Other versions
JP2019095124A (en
Inventor
功 樋渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP2017224593A priority Critical patent/JP7018299B2/en
Publication of JP2019095124A publication Critical patent/JP2019095124A/en
Application granted granted Critical
Publication of JP7018299B2 publication Critical patent/JP7018299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

特許法第30条第2項適用 1.展示日(展示開始日) 平成29年6月22日 展示した場所 株式会社日阪製作所 鴻池事業所Application of Article 30, Paragraph 2 of the Patent Law 1. Exhibition date (exhibition start date) June 22, 2017 Exhibition location Hisaka Works Co., Ltd. Koike Plant

本発明は、重ね合わされた複数の伝熱プレートを備え、伝熱プレートを境にして、第一流体を流通させる第一流路と、第二流体を流通させる第二流路とが交互に形成されたプレート式熱交換器に関する。 In the present invention, a plurality of superposed heat transfer plates are provided, and a first flow path through which the first fluid flows and a second flow path through which the second fluid flows are alternately formed with the heat transfer plates as boundaries. Regarding plate-type heat exchangers.

従来から、第一流体と第二流体とを熱交換させる熱交換器の一つとして、プレート式熱交換器が公知である。 Conventionally, a plate type heat exchanger is known as one of the heat exchangers that exchange heat between the first fluid and the second fluid.

かかるプレート式熱交換器は、第一方向に重ね合わされた複数の伝熱プレートを備え、伝熱プレートを境にして、第一流体を流通させる第一流路と、第二流体を流通させる第二流路とが交互に形成されている(例えば、特許文献1参照)。 Such a plate-type heat exchanger is provided with a plurality of heat transfer plates stacked in the first direction, and has a first flow path through which the first fluid flows and a second flow path through which the second fluid flows, with the heat transfer plates as boundaries. The flow paths are formed alternately (see, for example, Patent Document 1).

これを前提に、図12及び図13に示す如く、伝熱プレート100は、第一流路Raを画定する第一流路画定領域101を含む第一面Saと、該第一面Saの反対側の第二面Sbであって、第二流路Rbを画定する第二流路画定領域102を含む第二面Sbとを有する。また、伝熱プレート100は、それぞれが第一流路画定領域101内で第一方向に貫通した一対の第一貫通孔103であって、第一方向と直交する第二方向に間隔をあけて配置された一対の第一貫通孔103と、それぞれが第二流路画定領域102内で第一方向に貫通した一対の第二貫通孔104であって、第二方向に間隔をあけて配置された一対の第二貫通孔104とを有する。 On the premise of this, as shown in FIGS. 12 and 13, the heat transfer plate 100 has a first surface Sa including the first flow path defining region 101 defining the first flow path Ra and a side opposite to the first surface Sa. The second surface Sb has a second surface Sb including a second flow path defining region 102 that defines the second flow path Rb. Further, the heat transfer plates 100 are a pair of first through holes 103 each penetrating in the first direction in the first flow path demarcation region 101, and are arranged at intervals in the second direction orthogonal to the first direction. A pair of first through holes 103 and a pair of second through holes 104, each of which penetrated in the first direction in the second flow path demarcation region 102, were arranged at intervals in the second direction. It has a pair of second through holes 104.

一対の第一貫通孔103のうちの一方の第一貫通孔103は、一対の第二貫通孔104のうちの一方の第二貫通孔104に対して第一方向及び第二方向と直交する第三方向に間隔をあけて配置されている。これに対し、一対の第一貫通孔103のうちの他方の第一貫通孔103は、一対の第二貫通孔104のうちの他方の第二貫通孔104に対して第三方向に間隔をあけて配置されている。 The first through hole 103 of the pair of first through holes 103 is orthogonal to the first and second directions with respect to the second through hole 104 of one of the pair of second through holes 104. They are arranged at intervals in three directions. On the other hand, the other first through hole 103 of the pair of first through holes 103 is spaced apart from the other second through hole 104 of the pair of second through holes 104 in the third direction. Are arranged.

これに伴い、第一流路画定領域101及び第二流路画定領域102は、第一流体と第二流体とを熱交換させる伝熱領域105,106であって、第一方向で互いに重なる伝熱領域105,106を含む。第一流路画定領域101及び第二流路画定領域102のそれぞれにおいて、伝熱領域105,106は、伝熱プレート100の第二方向に延びる縦中心線CL1と第三方向に延びる横中心線CL2との交点を含む主伝熱領域105a,106aと、第二方向で主伝熱領域105a,106aを挟む一対の副伝熱領域105b,106bであって、主伝熱領域105a,106aから遠ざかるにつれて第三方向の寸法が小さくなる一対の副伝熱領域105b,106bとを含む。 Along with this, the first flow path demarcation area 101 and the second flow path demarcation area 102 are heat transfer areas 105 and 106 for heat exchange between the first fluid and the second fluid, and heat transfer areas overlapping each other in the first direction. Includes regions 105, 106. In each of the first flow path demarcation area 101 and the second flow path demarcation area 102, the heat transfer areas 105 and 106 are the vertical center line CL1 extending in the second direction and the horizontal center line CL2 extending in the third direction of the heat transfer plate 100. The main heat transfer regions 105a, 106a including the intersection with the main heat transfer regions 105a, 106a and the pair of sub heat transfer regions 105b, 106b sandwiching the main heat transfer regions 105a, 106a in the second direction, as the distance from the main heat transfer regions 105a, 106a increases. Includes a pair of sub-heat transfer regions 105b, 106b with smaller dimensions in the third direction.

そして、第一流体と第二流体との熱交換効率を高めるべく、伝熱プレート100の第一面Sa及び第二面Sbのそれぞれの伝熱領域105,106(主伝熱領域105a,106a及び副伝熱領域105b,106b)は、凹凸面にされる。 Then, in order to increase the heat exchange efficiency between the first fluid and the second fluid, the heat transfer regions 105 and 106 (main heat transfer regions 105a and 106a and each of the first surface Sa and the second surface Sb of the heat transfer plate 100) The sub-heat transfer regions 105b and 106b) are made uneven.

具体的には、伝熱プレート100の第一面Sa及び第二面Sbのそれぞれにおいて、主伝熱領域105a,106aには、それぞれが所定方向に延びる凹条107a,108a及び凸条107b,108bが自身の延びる方向と直交する方向に交互に形成される。また、一対の副伝熱領域105b,106bには、それぞれが所定の方向に延びる凹条107a,108a及び凸条107b,108bが、自身の延びる方向と直交する方向に交互に形成される。 Specifically, in the first surface Sa and the second surface Sb of the heat transfer plate 100, the concave portions 107a, 108a and the convex portions 107b, 108b, respectively, extending in a predetermined direction in the main heat transfer regions 105a, 106a, respectively. Are formed alternately in a direction orthogonal to the direction in which they extend. Further, in the pair of sub-heat transfer regions 105b and 106b, concave grooves 107a, 108a and convex grooves 107b, 108b, each extending in a predetermined direction, are alternately formed in a direction orthogonal to the extending direction thereof.

かかるプレート式熱交換器において、複数の伝熱プレート100のそれぞれは、第一面Saを第一方向の一方側で隣り合う伝熱プレート100の第一面Saと対向させるとともに、第二面Sbを第一方向の他方側で隣り合う伝熱プレート100の第二面Sbと対向させて配置される。この状態において、図14及び図15に示す如く、隣り合う伝熱プレート100の主伝熱領域105a,106aにある凸条107b,108b同士が互いに交差衝合するとともに、隣り合う伝熱プレート100の副伝熱領域105b,106bにある凸条107b,108b同士が互いに交差衝合する。 In such a plate heat exchanger, each of the plurality of heat transfer plates 100 faces the first surface Sa of the adjacent heat transfer plates 100 on one side in the first direction, and the second surface Sb. Is arranged so as to face the second surface Sb of the adjacent heat transfer plates 100 on the other side of the first direction. In this state, as shown in FIGS. 14 and 15, the ridges 107b and 108b in the main heat transfer regions 105a and 106a of the adjacent heat transfer plates 100 intersect with each other and the adjacent heat transfer plates 100 The ridges 107b and 108b in the secondary heat transfer regions 105b and 106b intersect each other.

そして、第一面Sa同士を対向させた伝熱プレート100(隣り合う伝熱プレート100)の間が第一流路画定領域101の輪郭に沿って封止されるとともに、第二面Sb同士を対向させた伝熱プレート100(隣り合う伝熱プレート100)の間が第二流路画定領域102の輪郭に沿って封止される。 Then, the heat transfer plates 100 (adjacent heat transfer plates 100) with the first surfaces Sa facing each other are sealed along the contour of the first flow path defining region 101, and the second surfaces Sb face each other. The space between the heat transfer plates 100 (adjacent heat transfer plates 100) that have been made is sealed along the contour of the second flow path defining region 102.

これより、プレート式熱交換器において、隣り合う伝熱プレート100の第一流路画定領域101間に第一流路Raが形成されるとともに、隣り合う伝熱プレート100の第二流路画定領域102間に第二流路Rbが形成される。また、第一流路画定領域101内にある第一貫通孔103が第一方向に連なって、第一流路Raのみに連通する一対の第一連通路Ra1,Ra2が形成されるとともに、第二流路画定領域102内にある第二貫通孔104が第一方向に連なって、第二流路Rbのみに連通する一対の第二連通路Rb1,Rb2が形成される。 As a result, in the plate heat exchanger, the first flow path Ra is formed between the first flow path demarcation regions 101 of the adjacent heat transfer plates 100, and the second flow path demarcation area 102 of the adjacent heat transfer plates 100 is formed. A second flow path Rb is formed in. Further, the first through holes 103 in the first flow path defining region 101 are connected in the first direction to form a pair of first series passages Ra1 and Ra2 communicating only with the first flow path Ra, and the second flow. The second through holes 104 in the road demarcation region 102 are connected in the first direction to form a pair of second passages Rb1 and Rb2 communicating only with the second flow path Rb.

かかるプレート式熱交換器では、一方の第一連通路Ra1に第一流体Aが供給されることで、第一流体Aは、一方の第一連通路Ra1から第一流路Raに流入し、第一流路Raにおいて他方の第一連通路Ra2に向けて流通する。これに対し、一方の第二連通路Rb1に第二流体Bが供給されることで、第二流体Bは、一方の第二連通路Rb1から第二流路Rbに流入し、第二流路Rbにおいて他方の第二連通路Rb2に向けて流通する。 In such a plate heat exchanger, the first fluid A is supplied to one of the first series passages Ra1, so that the first fluid A flows into the first flow path Ra from one of the first series passages Ra1. In one flow path Ra, it circulates toward the other series of passage Ra2. On the other hand, when the second fluid B is supplied to one of the second passages Rb1, the second fluid B flows into the second passage Rb from one of the second passages Rb1 and flows into the second passage Rb. In Rb, it circulates toward the other second passage Rb2.

このとき、第一流体A及び第二流体Bは、伝熱プレート100の伝熱領域105,106を介して熱交換を行う。そして、この種のプレート式熱交換器では、伝熱領域105,106(主伝熱領域105a,106a、副伝熱領域105b,106b)に複数の凹条107a,108a及び凸条107b,108bが存在するため、第一流路Raにおける第一流体Aの流れ及び第二流路Rbにおける第二流体Bの流れが乱され、高い熱伝達効率が得られる。 At this time, the first fluid A and the second fluid B exchange heat via the heat transfer regions 105 and 106 of the heat transfer plate 100. In this type of plate heat exchanger, a plurality of recesses 107a, 108a and ridges 107b, 108b are formed in the heat transfer regions 105, 106 (main heat transfer regions 105a, 106a, sub heat transfer regions 105b, 106b). Since it exists, the flow of the first fluid A in the first flow path Ra and the flow of the second fluid B in the second flow path Rb are disturbed, and high heat transfer efficiency can be obtained.

ところで、第一流路画定領域101の伝熱領域105に含まれる副伝熱領域105bは、第一流体Aを流出入させる第一連通路Ra1,Ra2(第一貫通孔103)を含む領域に対して直近で隣り合い、第二流路画定領域102の伝熱領域106に含まれる副伝熱領域106bは、第二流体Bを流出入させる第二連通路Rb1,Rb2(第二貫通孔104)を含む領域に対して直近で隣り合う。 By the way, the sub-heat transfer region 105b included in the heat transfer region 105 of the first flow path demarcation region 101 with respect to the region including the first series passages Ra1 and Ra2 (first through hole 103) through which the first fluid A flows in and out. The sub-heat transfer regions 106b, which are adjacent to each other and are included in the heat transfer region 106 of the second flow path demarcation region 102, are the second continuous passages Rb1 and Rb2 (second through holes 104) through which the second fluid B flows in and out. Closely adjacent to the area containing.

これに伴い、第一流路Raに対する第一流体Aの流出入の効率性を高めるために、第一流路画定領域101の伝熱領域105に含まれる副伝熱領域105b全域にある凸条107b同士の間隔(単一の凹条107aを挟んで隣り合う凸条107b同士の間隔)が、第一流路画定領域101の伝熱領域105に含まれる主伝熱領域105a全域にある凸条107b同士の間隔(単一の凹条107aを挟んで隣り合う凸条107b同士の間隔)よりも広く設定され、第一流路Raの副伝熱領域105bと対応する範囲(第一流路Raの出入口となる第一連通路の周辺)での第一流体Aの流通抵抗が小さくされる。 Along with this, in order to improve the efficiency of the inflow and outflow of the first fluid A to the first flow path Ra, the ridges 107b in the entire sub-heat transfer region 105b included in the heat transfer region 105 of the first flow path demarcation region 101 are connected to each other. The distance between the ridges 107b in the entire main heat transfer region 105a included in the heat transfer region 105 of the first flow path demarcation region 101 is such that the distance between the ridges 107b adjacent to each other with a single dent 107a in between A range that is set wider than the spacing (distance between adjacent convex strips 107b with a single concave strip 107a in between) and corresponds to the secondary heat transfer region 105b of the first flow path Ra (the entrance / exit of the first flow path Ra). The flow resistance of the first fluid A in the vicinity of the series passage) is reduced.

また、第二流路Rbに対する第二流体Bの流出入の効率性を高めるために、第二流路画定領域102の伝熱領域106に含まれる副伝熱領域106b全域にある凸条108b同士の間隔(単一の凹条108aを挟んで隣り合う凸条108b同士の間隔)が、第二流路画定領域102の伝熱領域106に含まれる主伝熱領域106a全域にある凸条108b同士の間隔(単一の凹条108aを挟んで隣り合う凸条108b同士の間隔)よりも広く設定され、第二流路Rbの副伝熱領域106bと対応する範囲(第二流路Rbの出入口となる第二連通路の周辺)での第二流体Bの流通抵抗が小さくされる。 Further, in order to improve the efficiency of the inflow and outflow of the second fluid B to and from the second flow path Rb, the ridges 108b in the entire sub-heat transfer region 106b included in the heat transfer region 106 of the second flow path demarcation region 102 are connected to each other. The distance between the ridges 108b located in the entire main heat transfer region 106a included in the heat transfer region 106 of the second flow path demarcation region 102 is such that the distance between the ridges 108b adjacent to each other with the single dent 108a interposed therebetween is the same. Is set wider than the distance between the protrusions 108b adjacent to each other with a single concave line 108a in between), and the range corresponding to the subheat transfer region 106b of the second flow path Rb (the entrance / exit of the second flow path Rb). The flow resistance of the second fluid B in the vicinity of the second continuous passage) is reduced.

しかしながら、第一流路Raにおける副伝熱領域105bと対応する範囲の流通抵抗が小さいと、一方の第一連通路Ra1から第一流路Raに流入した第一流体Aは、第一流路Raにおける副伝熱領域105bと対応する範囲において、最短距離で主伝熱領域105aと対応する範囲に到達しようとする傾向にある。これに伴い、第一流路Raにおける主伝熱領域105aと対応する範囲に到達した第一流体Aは、該主伝熱領域105aと対応する範囲においても最短距離で出口(他方の第一連通路)に向けて流通する。そのため、第一流路Raにおいて、第一流体Aが主伝熱領域105aと対応する範囲全域に広がりにくくなる傾向にある。この点、第二流路Rbにおいても同様である。 However, if the flow resistance in the range corresponding to the secondary heat transfer region 105b in the first flow path Ra is small, the first fluid A flowing into the first flow path Ra from one of the first series passages Ra is a secondary in the first flow path Ra. In the range corresponding to the heat transfer region 105b, there is a tendency to reach the range corresponding to the main heat transfer region 105a in the shortest distance. Along with this, the first fluid A that has reached the range corresponding to the main heat transfer region 105a in the first flow path Ra exits at the shortest distance even in the range corresponding to the main heat transfer region 105a (the other first series passage). ) To be distributed. Therefore, in the first flow path Ra, the first fluid A tends to be difficult to spread over the entire range corresponding to the main heat transfer region 105a. In this respect, the same applies to the second flow path Rb.

従って、従来のプレート式熱交換器では、第一流路Ra及び第二流路Rbの流路幅が最大となる主伝熱領域105a,106aと対応する範囲での熱交換効率が低くなってしまう。 Therefore, in the conventional plate heat exchanger, the heat exchange efficiency in the range corresponding to the main heat transfer regions 105a and 106a where the flow path widths of the first flow path Ra and the second flow path Rb are maximum becomes low. ..

特開2012―122688号公報Japanese Unexamined Patent Publication No. 2012-12268

そこで、本発明は、第一流路及び第二流路の流路幅が最大となる範囲での熱交換効率を高めることのできるプレート式熱交換器を提供することを課題とする。 Therefore, it is an object of the present invention to provide a plate type heat exchanger capable of increasing the heat exchange efficiency in the range where the flow path widths of the first flow path and the second flow path are maximized.

本発明に係るプレート式熱交換器は、第一方向に重ね合わされた複数の伝熱プレートを備え、複数の伝熱プレートのそれぞれは、第一流体を流通させる第一流路を画定する第一流路画定領域を含む第一面と、該第一面の反対側の第二面であって、第二流体を流通させる第二流路を画定する第二流路画定領域を含む第二面とを有するとともに、それぞれが第一流路画定領域内で第一方向に貫通し且つ第一方向と直交する第二方向に間隔をあけて配置された一対の第一貫通孔であって、それぞれが第一方向に延びて第一流路のみに連通する第一連通路を形成する一対の第一貫通孔と、それぞれが第二流路画定領域内で第一方向に貫通し且つ第二方向に間隔をあけて配置された一対の第二貫通孔であって、それぞれが第一方向に延びて第二流路のみに連通する第二連通路を形成する一対の第二貫通孔とを有し、第一流路画定領域及び第二流路画定領域は、第一流体と第二流体とを熱交換させる伝熱領域であって、第一方向で互いに重なる伝熱領域を含み、伝熱領域は、伝熱プレートの第二方向に延びる縦中心線と第一方向及び第二方向と直交する第三方向に延びる横中心線との交点を含む主伝熱領域と、第二方向で主伝熱領域を挟む一対の副伝熱領域であって、主伝熱領域から遠ざかるにつれて第三方向の寸法が小さくなる一対の副伝熱領域とを含み、一対の副伝熱領域のそれぞれは、第二方向で主伝熱領域に繋がる第一領域と、第二方向で第一領域に繋がる第二領域であって、第一領域から遠ざかるにつれて第三方向の寸法が小さくなる第二領域とを含み、第一流路及び第二流路のそれぞれにおいて、第二領域と対応する範囲での流通抵抗よりも第一領域と対応する範囲での流通抵抗が大きく、且つ第一領域と対応する範囲での流通抵抗よりも主伝熱領域と対応する範囲での流通抵抗が大きくなるように構成されることを特徴とする。 The plate heat exchanger according to the present invention includes a plurality of heat transfer plates stacked in the first direction, and each of the plurality of heat transfer plates defines a first flow path through which the first fluid flows. The first surface including the demarcation region and the second surface on the opposite side of the first surface and including the second flow path demarcation region defining the second flow path through which the second fluid flows. A pair of first through holes, each of which penetrates in the first direction within the first flow path demarcation region and is spaced apart in the second direction orthogonal to the first direction, each of which is first. A pair of first through holes that extend in the direction and form a first series of passages that communicate only with the first flow path, each of which penetrates in the first direction and is spaced in the second direction within the second flow path demarcation region. A pair of second through holes arranged above each other, each of which has a pair of second through holes extending in the first direction and forming a second through hole that communicates only with the second flow path. The path demarcation region and the second flow path demarcation region are heat transfer regions that exchange heat between the first fluid and the second fluid, and include heat transfer regions that overlap each other in the first direction, and the heat transfer region is a heat transfer region. The main heat transfer region including the intersection of the vertical center line extending in the second direction of the plate and the horizontal center line extending in the first direction and the third direction orthogonal to the second direction sandwiches the main heat transfer region in the second direction. A pair of sub-heat transfer regions, including a pair of sub-heat transfer regions whose dimensions in the third direction decrease as the distance from the main heat transfer region increases, and each of the pair of sub-heat transfer regions is main in the second direction. The first flow path includes a first region connected to the heat transfer region and a second region connected to the first region in the second direction, the dimension of which decreases in the third direction as the distance from the first region increases. In each of the second flow path and the second flow path, the flow resistance in the range corresponding to the first region is larger than the flow resistance in the range corresponding to the second region, and is larger than the flow resistance in the range corresponding to the first region. It is characterized in that it is configured so that the distribution resistance in the range corresponding to the main heat transfer region becomes large.

上記構成によれば、一対の第一連通路のうちの何れか一方の第一連通路から第一流路に流入した第一流体は、流通抵抗の小さな第二領域と対応した範囲を優先的に流通する。そして、第一流体は、第一領域の流通抵抗によって、最短ルートで第一領域に進入しにくくなるため、後続の第一流体は、第二方向に広がったり、最短ルートよりも距離が長い別ルートを通ったりすることになる結果、第一流路における第二領域と対応する範囲に充満し、第一領域と対応する範囲全域又は略全域に進入する。 According to the above configuration, the first fluid flowing into the first flow path from the first series passage of any one of the pair of first series passages preferentially covers the range corresponding to the second region having a small flow resistance. To circulate. Then, since the first fluid is difficult to enter the first region by the shortest route due to the flow resistance of the first region, the subsequent first fluid spreads in the second direction or has a longer distance than the shortest route. As a result of passing through the route, the area corresponding to the second area in the first flow path is filled, and the entire range corresponding to the first area or substantially the entire area is entered.

そして、最短ルートを通る第一流体が、最短ルートよりも距離が長い別ルートを通る第一流体よりも先行していたとしても、先行して主伝熱領域と対応する範囲に到達した第一流体は、主伝熱領域と対応する範囲での流通抵抗により、そのまま最短ルートを通過して主伝熱領域に進入しにくくなる。 Then, even if the first fluid passing through the shortest route precedes the first fluid passing through another route having a longer distance than the shortest route, the first fluid that reaches the range corresponding to the main heat transfer region in advance. Due to the flow resistance in the range corresponding to the main heat transfer region, the fluid passes through the shortest route as it is and becomes difficult to enter the main heat transfer region.

その結果、最短ルートよりも距離が長い別ルートを通った第一流体が、最短ルートを通る第一流体に対して追いついた或いは略追いついた状態になり、第一流路における第一領域と対応する範囲にある第一流体は、主伝熱領域と対応する範囲全域又は略全域に対してバランスをとった状態で進入した後、主伝熱領域と対応する範囲を第二方向に流通し、他方の副伝熱領域と対応した範囲を介して何れか他方の第一連通路に排出される。 As a result, the first fluid that has passed through another route that is longer than the shortest route has caught up with or has almost caught up with the first fluid that has passed through the shortest route, and corresponds to the first region in the first flow path. The first fluid in the range enters in a balanced state with respect to the entire range or substantially the entire range corresponding to the main heat transfer region, and then flows in the second direction in the range corresponding to the main heat transfer region, and the other. It is discharged to one of the other first series passages through the range corresponding to the sub-heat transfer region of.

また、一対の第二連通路のうちの何れか一方の第二連通路から第二流路に流入した第二流体は、流通抵抗の小さな第二領域と対応した範囲を優先的に流通する。そして、第二流体は、第二領域の流通抵抗によって、最短ルートで第二領域に進入しにくくなるため、後続の第二流体は、第二方向に広がったり、最短ルートよりも距離が長い別ルートを通ったりすることになる結果、第二流路における第二領域と対応する範囲に充満し、第二領域と対応する範囲全域又は略全域に進入する。 Further, the second fluid flowing into the second flow path from any one of the second communication passages preferentially flows in the range corresponding to the second region having a small flow resistance. Then, since the second fluid is difficult to enter the second region by the shortest route due to the flow resistance of the second region, the subsequent second fluid spreads in the second direction or has a longer distance than the shortest route. As a result of passing through the route, the area corresponding to the second area in the second flow path is filled, and the entire range corresponding to the second area or substantially the entire area is entered.

そして、最短ルートを通る第二流体が、最短ルートよりも距離が長い別ルートを通る第二流体よりも先行していたとしても、先行して主伝熱領域と対応する範囲に到達した第二流体は、主伝熱領域と対応する範囲での流通抵抗により、そのまま最短ルートを通過して主伝熱領域に進入しにくくなる。 Then, even if the second fluid passing through the shortest route precedes the second fluid passing through another route having a longer distance than the shortest route, the second fluid reaches the range corresponding to the main heat transfer region in advance. Due to the flow resistance in the range corresponding to the main heat transfer region, the fluid passes through the shortest route as it is and becomes difficult to enter the main heat transfer region.

その結果、最短ルートよりも距離が長い別ルートを通った第二流体が、最短ルートを通る第二流体に対して追いついた或いは略追いついた状態になり、第二流路における第二領域と対応する範囲にある第二流体は、主伝熱領域と対応する範囲全域又は略全域に対してバランスをとった状態で進入した後、主伝熱領域と対応する範囲を第二方向に流通し、他方の副伝熱領域と対応した範囲を介して何れか他方の第二連通路に排出される。 As a result, the second fluid that has passed through another route that is longer than the shortest route has caught up with or has almost caught up with the second fluid that has passed through the shortest route, and corresponds to the second region in the second flow path. After entering the second fluid in the range corresponding to the main heat transfer region in a balanced state with respect to the entire range or substantially the entire range, the second fluid circulates in the second direction in the range corresponding to the main heat transfer region. It is discharged to any other secondary passage through the range corresponding to the other sub-heat transfer region.

これにより、上記構成のプレート式熱交換器では、流路幅が最大となる範囲(主伝熱領域と対応する範囲)での熱交換効率を高めることができるという優れた効果を奏し得る。 As a result, the plate heat exchanger having the above configuration can exert an excellent effect that the heat exchange efficiency can be increased in the range where the flow path width is maximum (the range corresponding to the main heat transfer region).

本発明の一態様として、第一流路画定領域の伝熱領域には、複数の凹部及び凸部が形成されるとともに、第二流路画定領域の伝熱領域には、第一流路画定領域における伝熱領域の凹部と表裏の関係にある凸部及び第一流路画定領域における伝熱領域の凸部と表裏の関係にある凹部が形成され、第一流路画定領域及び第二流路画定領域のそれぞれの伝熱領域において、凹部と凸部とが所定方向で交互に配置され、第二領域内の凹部を挟んで隣り合う凸部同士の間隔が、第一領域内の凹部を挟んで隣り合う凸部同士の間隔よりも広く、第一領域内の凹部を挟んで隣り合う凸部同士の間隔が、主伝熱領域内の凹部を挟んで隣り合う凸部同士の間隔よりも広く設定されてもよい。 As one aspect of the present invention, a plurality of recesses and protrusions are formed in the heat transfer region of the first flow path demarcation region, and the heat transfer region of the second flow path demarcation region is formed in the first flow path demarcation region. A convex portion having a front-back relationship with the concave portion of the heat transfer region and a concave portion having a front-back relationship with the convex portion of the heat transfer region in the first flow path demarcation region are formed, and the first flow path demarcation region and the second flow path demarcation region are formed. In each heat transfer region, the concave portions and the convex portions are alternately arranged in a predetermined direction, and the distance between the convex portions adjacent to each other across the concave portion in the second region is adjacent to each other across the concave portion in the first region. It is wider than the distance between the convex parts, and the distance between the convex parts adjacent to each other across the concave portion in the first region is set wider than the distance between the convex parts adjacent to each other across the concave portion in the main heat transfer region. May be good.

このようにすれは、第一流路及び第二流路のそれぞれにおいて、主伝熱領域及び副伝熱領域(第一領域及び第二領域)のそれぞれの領域と対応する範囲に対し、凸条同士の間隔と対応した流通抵抗を付与することができる。 In this way, in each of the first flow path and the second flow path, the protrusions correspond to the respective regions of the main heat transfer region and the sub heat transfer region (first region and second region). It is possible to impart a distribution resistance corresponding to the interval of.

この場合、主伝熱領域、副伝熱領域の第一領域、及び副伝熱領域の第二領域の少なくとも何れか一つの領域にある凹部及び凸部は、該凹部と該凸部とが交互に並ぶ所定方向と直交する方向に延びる凹条及び凸条であり、隣り合う伝熱プレートの前記何れか一つの領域にある凸条同士が交差衝合してもよい。 In this case, the concave portions and the convex portions in at least one of the main heat transfer region, the first region of the secondary heat transfer region, and the second region of the secondary heat transfer region alternate between the concave portions and the convex portions. Concavities and ridges extending in a direction orthogonal to a predetermined direction arranged in line with each other, and the ridges in any one of the adjacent heat transfer plates may intersect with each other.

このようにすれば、第一流路で第一流体の流れが乱れるとともに、第二流路で第二流体の流れが乱れる。これにより、第一流体と第二流体との熱交換効率が高められる。 By doing so, the flow of the first fluid is disturbed in the first flow path, and the flow of the second fluid is disturbed in the second flow path. This enhances the heat exchange efficiency between the first fluid and the second fluid.

本発明の他態様として、一対の第一貫通孔と一対の第二貫通孔とは、第三方向に間隔をあけて配置され、第二領域は、第三方向で隣り合う第一貫通孔と第二貫通孔との間に配置され、第一領域は、第三方向で隣り合う第一貫通孔及び第二貫通孔と主伝熱領域との間に配置されることが好ましい。 As another aspect of the present invention, the pair of first through holes and the pair of second through holes are arranged at intervals in the third direction, and the second region is the first through holes adjacent to each other in the third direction. It is preferably arranged between the second through hole and the first through hole and the second through hole adjacent to each other in the third direction and the main heat transfer region.

このようにすれば、第一貫通孔から第一流路に流入した第一流体を、第一流路における上流域となる第二領域に向けて優先的に流通させることができ、最短ルートだけでなく最短ルートよりも距離の長い別のルートにも第一流体を流通させることができる。これにより、第一流路における第二領域と対応する範囲の全域又は略全域に第一流体を充満させ、この第一流体を下流側に流通させることができる。また、第二貫通孔から第二流路に流入した第二流体を、第二流路における上流域となる第二領域に向けて優先的に流通させることができ、最短ルートだけでなく最短ルートよりも距離の長い別のルートにも第二流体を流通させることができる。これにより、第二流路における第二領域と対応する範囲の全域又は略全域に第二流体を充満させ、この第二流体を下流側に流通させることができる。 By doing so, the first fluid flowing into the first flow path from the first through hole can be preferentially circulated toward the second region, which is the upstream region in the first flow path, and not only the shortest route but also the shortest route can be circulated. The first fluid can be circulated to another route that is longer than the shortest route. As a result, the first fluid can be filled in the entire range or substantially the entire range corresponding to the second region in the first flow path, and the first fluid can be circulated to the downstream side. In addition, the second fluid flowing into the second flow path from the second through hole can be preferentially circulated toward the second region, which is the upstream region in the second flow path, and not only the shortest route but also the shortest route. The second fluid can be circulated to another route that is longer than that. As a result, the second fluid can be filled in the entire range or substantially the entire range corresponding to the second region in the second flow path, and the second fluid can be circulated to the downstream side.

本発明によれば、第一流路及び第二流路の流路幅が最大となる範囲での熱交換効率を高めることができるという優れた効果を奏し得る。 According to the present invention, it is possible to obtain an excellent effect that the heat exchange efficiency can be increased in the range where the flow path widths of the first flow path and the second flow path are maximized.

図1は、本発明の一実施形態に係るプレート式熱交換器の概略分解斜視図である。FIG. 1 is a schematic exploded perspective view of a plate heat exchanger according to an embodiment of the present invention. 図2は、同実施形態に係るプレート式熱交換器の伝熱プレート(第一伝熱プレート)を第一面側から見た図である。FIG. 2 is a view of the heat transfer plate (first heat transfer plate) of the plate heat exchanger according to the same embodiment as viewed from the front surface side. 図3は、同実施形態に係るプレート式熱交換器の伝熱プレート(第一伝熱プレート)を第二面側から見た図である。FIG. 3 is a view of the heat transfer plate (first heat transfer plate) of the plate heat exchanger according to the same embodiment as viewed from the second surface side. 図4は、同実施形態に係るプレート式熱交換器の伝熱プレート(第二伝熱プレート)を第一面側から見た図である。FIG. 4 is a view of the heat transfer plate (second heat transfer plate) of the plate heat exchanger according to the same embodiment as viewed from the front surface side. 図5は、同実施形態に係るプレート式熱交換器の伝熱プレート(第二伝熱プレート)を第二面側から見た図である。FIG. 5 is a view of the heat transfer plate (second heat transfer plate) of the plate heat exchanger according to the same embodiment as viewed from the second surface side. 図6は、図2のVI部の拡大図である。FIG. 6 is an enlarged view of the VI portion of FIG. 図7は、図3のVII部の拡大図である。FIG. 7 is an enlarged view of the VII portion of FIG. 図8は、図4のVIII部の拡大図である。FIG. 8 is an enlarged view of the VIII portion of FIG. 図9は、図5のIX部の拡大図である。FIG. 9 is an enlarged view of the IX portion of FIG. 図10は、同実施形態に係るプレート式熱交換器の第一流路での第一流体の流れを説明するための図である。FIG. 10 is a diagram for explaining the flow of the first fluid in the first flow path of the plate heat exchanger according to the embodiment. 図11は、同実施形態に係るプレート式熱交換器の第二流路での第二流体の流れを説明するための図である。FIG. 11 is a diagram for explaining the flow of the second fluid in the second flow path of the plate heat exchanger according to the embodiment. 図12は、従来のプレート式熱交換器の伝熱プレートを第一面側から見た図である。FIG. 12 is a view of the heat transfer plate of the conventional plate heat exchanger as viewed from the front surface side. 図13は、従来のプレート式熱交換器の伝熱プレートを第二面側から見た図である。FIG. 13 is a view of the heat transfer plate of the conventional plate heat exchanger as viewed from the second surface side. 図14は、従来のプレート式熱交換器の第一流路での第一流体の流れを説明するための図である。FIG. 14 is a diagram for explaining the flow of the first fluid in the first flow path of the conventional plate heat exchanger. 図15は、従来のプレート式熱交換器の第二流路での第二流体の流れを説明するための図である。FIG. 15 is a diagram for explaining the flow of the second fluid in the second flow path of the conventional plate heat exchanger.

以下、本発明の一実施形態について、添付図面を参照しつつ説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1に示す如く、プレート式熱交換器1は、第一方向に重ね合わされた複数の伝熱プレート2,3を備える。本実施形態において、プレート式熱交換器1は、複数の伝熱プレート2,3に加え、第一方向で隣り合う伝熱プレート2,3間に介装されるガスケット4(4a,4b,4c,4d)と、重ね合わされた複数の伝熱プレート2,3を第一方向から挟み込む一対のエンドプレート5,6とを備える。 As shown in FIG. 1, the plate heat exchanger 1 includes a plurality of heat transfer plates 2 and 3 stacked in the first direction. In the present embodiment, the plate heat exchanger 1 includes a plurality of heat transfer plates 2 and 3 and gaskets 4 (4a, 4b, 4c) interposed between adjacent heat transfer plates 2 and 3 in the first direction. , 4d) and a pair of end plates 5 and 6 that sandwich the plurality of superposed heat transfer plates 2 and 3 from the first direction.

複数の伝熱プレート2,3のそれぞれは、図2乃至図5に示す如く、第一方向から見て四角形状に形成される。本実施形態において、伝熱プレート2,3は、第一方向と直交する第二方向の外寸が第一方向及び第二方向と直交する第三方向の外寸よりも大きく設定され、第二方向に長手の長方形状に形成される。 As shown in FIGS. 2 to 5, each of the plurality of heat transfer plates 2 and 3 is formed in a rectangular shape when viewed from the first direction. In the present embodiment, the heat transfer plates 2 and 3 are set so that the outer dimensions of the second direction orthogonal to the first direction are larger than the outer dimensions of the first direction and the third direction orthogonal to the second direction. It is formed in a rectangular shape that is long in the direction.

複数の伝熱プレート2,3のそれぞれは、第一流体Aを流通させる第一流路Ra(図1参照)を画定する第一流路画定領域20,30を含む第一面Saと、該第一面Saの反対側の第二面Sbであって、第二流体Bを流通させる第二流路Rb(図1参照)を画定する第二流路画定領域21,31を含む第二面Sbとを有する。また、複数の伝熱プレート2,3は、それぞれが第一流路画定領域20,30内で第一方向に貫通し且つ第二方向に間隔をあけて配置された一対の第一貫通孔22,32であって、それぞれが第一方向に延びて第一流路Raのみに連通する第一連通路Ra1,Ra2(図1参照)を形成する一対の第一貫通孔22,32と、それぞれが第二流路画定領域21,31内で第一方向に貫通し且つ第二方向に間隔をあけて配置された一対の第二貫通孔23,33であって、それぞれが第一方向に延びて第二流路Rbのみに連通する第二連通路Rb1,Rb2(図1参照)を形成する一対の第二貫通孔23,33とを有する。 Each of the plurality of heat transfer plates 2 and 3 has a first surface Sa including first flow path defining regions 20 and 30 defining a first flow path Ra (see FIG. 1) through which the first fluid A flows, and the first surface Sa. A second surface Sb on the opposite side of the surface Sa, including the second flow path defining regions 21 and 31 that define the second flow path Rb (see FIG. 1) through which the second fluid B flows. Has. Further, the plurality of heat transfer plates 2, 3 are a pair of first through holes 22, each of which penetrates in the first flow path demarcation region 20 and 30 in the first direction and is arranged at intervals in the second direction. 32, a pair of first through holes 22 and 32, each of which extends in the first direction and forms a first series of passages Ra1 and Ra2 (see FIG. 1) that extend in the first direction and communicate only with the first passage Ra, respectively. A pair of second through holes 23, 33 penetrating in the first direction and spaced apart in the second direction within the two flow path demarcation regions 21, 31, each extending in the first direction. It has a pair of second through holes 23, 33 forming second passages Rb1 and Rb2 (see FIG. 1) that communicate only with the two passages Rb.

これに伴い、本実施形態に係る伝熱プレート2,3は、第一面Sa上で第一流路画定領域20,30の輪郭に沿った無端環状の第一シール予定領域24,34であって、ガスケット4(後述する第一ガスケット4a(図1参照))が配置される第一シール予定領域24,34と、第二面Sb上で第二流路画定領域21,31の輪郭に沿った無端環状の第二シール予定領域25,35であって、ガスケット4(後述する第二ガスケット4b(図1参照))が配置される第二シール予定領域25,35と、第一面Sa上で第一流路画定領域20,30から外れた二つの第二貫通孔23,33のそれぞれを取り囲む一対の第三シール予定領域26,36であって、それぞれにガスケット4(後述する第三ガスケット4c(図1参照))が配置される一対の第三シール予定領域26,36と、第二面Sb上で第二流路画定領域21,31から外れた二つの第一貫通孔22,32のそれぞれを取り囲む一対の第四シール予定領域27,37であって、それぞれにガスケット4(後述する第四ガスケット4d(図1参照))が配置される一対の第四シール予定領域27,37とを有する。 Along with this, the heat transfer plates 2 and 3 according to the present embodiment are endless annular first seal planned regions 24 and 34 along the contours of the first flow path defining regions 20 and 30 on the first surface Sa. , Along the contours of the first sealed planned areas 24 and 34 in which the gasket 4 (first gasket 4a (see FIG. 1) described later) is arranged and the second flow path defining areas 21 and 31 on the second surface Sb. Endless annular second sealed planned areas 25 and 35, on the second sealed planned areas 25 and 35 on which the gasket 4 (second gasket 4b described later (see FIG. 1)) is arranged, and on the first surface Sa. A pair of third seal planned areas 26 and 36 surrounding each of the two second through holes 23 and 33 deviating from the first flow path demarcation areas 20 and 30, respectively, and each of the gasket 4 (the third gasket 4c described later). (See FIG. 1))) is arranged in the pair of planned third seal regions 26 and 36, and the two first through holes 22 and 32 deviated from the second flow path demarcation regions 21 and 31 on the second surface Sb, respectively. It has a pair of fourth-sealed planned areas 27 and 37 surrounding the above, and each has a pair of fourth-sealed planned areas 27 and 37 in which a gasket 4 (fourth gasket 4d described later (see FIG. 1)) is arranged. ..

第一流路画定領域20,30及び第二流路画定領域21,31は、第一流体Aと第二流体Bとを熱交換させる伝熱領域200,210,300,310であって、第一方向で相互に重複した伝熱領域200,210,300,310を含む。 The first flow path demarcation areas 20 and 30 and the second flow path demarcation areas 21 and 31 are heat transfer areas 200, 210, 300 and 310 for heat exchange between the first fluid A and the second fluid B, and are the first. Includes heat transfer regions 200, 210, 300, 310 that overlap each other in the direction.

第一流路画定領域20,30の伝熱領域200,300は、第一貫通孔22,32を躱した領域であり、第二流路画定領域21,31の伝熱領域210,310は、第二貫通孔23,33を躱した領域である。 The heat transfer regions 200 and 300 of the first flow path demarcation regions 20 and 30 are regions where the first through holes 22 and 32 are hesitated, and the heat transfer regions 210 and 310 of the second flow path demarcation regions 21 and 31 are the first. (2) This is a region where the through holes 23 and 33 are hesitated.

より詳しくは、第一流路画定領域20,30は、伝熱領域200,300と、第二方向で伝熱領域200,300を挟んで配置された二つの第一貫通孔形成領域201,301であって、それぞれが第一貫通孔22,32を有する二つの第一貫通孔形成領域201,301とを含む。これに対し、第二流路画定領域21,31は、伝熱領域210,310と、第二方向で伝熱領域210,310を挟んで配置された二つの第二貫通孔形成領域211,311であって、それぞれが第二貫通孔23,33を有する二つの第二貫通孔形成領域211,311とを含む。 More specifically, the first flow path demarcation regions 20 and 30 are the heat transfer regions 200 and 300 and the two first through hole forming regions 201 and 301 arranged so as to sandwich the heat transfer regions 200 and 300 in the second direction. It includes two first through hole forming regions 201, 301, each having first through holes 22, 32. On the other hand, the second flow path demarcating regions 21 and 31 are the heat transfer regions 210 and 310 and the two second through hole forming regions 211 and 311 arranged so as to sandwich the heat transfer regions 210 and 310 in the second direction. It includes two second through hole forming regions 211, 311 each having second through holes 23, 33.

伝熱領域200,210,300,310は、第二方向に延びる縦中心線CL1又は第三方向に延びる横中心線CL2を含む領域である。これに対し、第一貫通孔形成領域201,301及び第二貫通孔形成領域211,311のそれぞれは、縦中心線CL1及び横中心線CL2から外れた領域である。すなわち、第一貫通孔形成領域201,301は、伝熱プレート2,3を縦中心線CL1と横中心線CL2とによって区切った四つの領域のうちの二つの領域であって、第二方向に並ぶ二つの領域に配置され、第二貫通孔形成領域211,311は、伝熱プレート2,3を縦中心線CL1と横中心線CL2とによって区切った四つの領域のうちの第一貫通孔形成領域201,301の配置された領域とは異なる二つの領域であって、第二方向に並ぶ二つの領域に配置される。 The heat transfer regions 200, 210, 300, 310 are regions including the vertical center line CL1 extending in the second direction or the horizontal center line CL2 extending in the third direction. On the other hand, each of the first through hole forming regions 201, 301 and the second through hole forming regions 211, 311 is a region deviating from the vertical center line CL1 and the horizontal center line CL2. That is, the first through hole forming regions 201 and 301 are two regions of the four regions in which the heat transfer plates 2 and 3 are separated by the vertical center line CL1 and the horizontal center line CL2, and are in the second direction. The second through-hole forming regions 211 and 311 are arranged in two side-by-side regions, and the second through-hole forming regions 211 and 311 form the first through-hole among the four regions in which the heat transfer plates 2 and 3 are separated by the vertical center line CL1 and the horizontal center line CL2. The two regions are different from the regions where the regions 201 and 301 are arranged, and are arranged in the two regions arranged in the second direction.

本実施形態において、二つの第一貫通孔形成領域201,301(第一貫通孔22,32)は、伝熱プレート2,3を縦中心線CL1と横中心線CL2とによって区切った四つの領域のうち、第三方向において伝熱プレート2,3の縦中心線CL1よりも一端側にある二つの領域に配置され、二つの第二貫通孔形成領域211,311(第二貫通孔23,33)は、伝熱プレート2,3を縦中心線CL1と横中心線CL2とによって区切った四つの領域のうち、第三方向において伝熱プレート2,3の縦中心線CL1よりも他端側にある二つの領域に配置される。 In the present embodiment, the two first through hole forming regions 201, 301 (first through holes 22, 32) are four regions in which the heat transfer plates 2 and 3 are separated by the vertical center line CL1 and the horizontal center line CL2. Of these, two regions are arranged on one end side of the vertical center line CL1 of the heat transfer plates 2 and 3 in the third direction, and the two second through hole forming regions 211 and 311 (second through holes 23 and 33) are arranged. ) Is located on the other end side of the vertical center line CL1 of the heat transfer plates 2 and 3 in the third direction among the four regions of the heat transfer plates 2 and 3 separated by the vertical center line CL1 and the horizontal center line CL2. It is placed in two areas.

本実施形態において、第一流路画定領域20,30の第二方向におけるサイズは、縦中心線CL1によって区切られた二つの領域のうちの自身が包含する第一貫通孔形成領域201,301(第一貫通孔22,32)の存在する一方の領域側から他方の領域に向うにつれて小さくなっている。 In the present embodiment, the size of the first flow path demarcating regions 20 and 30 in the second direction is the first through hole forming region 201, 301 (the first through hole forming region 201, 301) included by itself among the two regions separated by the vertical center line CL1. It becomes smaller from one region side where one through hole 22, 32) exists toward the other region.

これに伴い、第一流路画定領域20,30は、台形状に形成される。すなわち、第一流路画定領域20,30は、第三方向の一端に沿った第一辺(第二方向に延びる第一辺)と、第三方向の他端に沿った第二辺(第二方向に延びる第二辺)であって、第二方向において第一辺よりも短い第二辺と、第一辺の両端と第二辺との両端とを繋ぐ一対の傾斜辺とによって画定される。 Along with this, the first flow path demarcation regions 20 and 30 are formed in a trapezoidal shape. That is, the first flow path demarcation regions 20 and 30 have a first side along one end in the third direction (first side extending in the second direction) and a second side along the other end in the third direction (second side). A second side extending in the direction), which is defined by a second side shorter than the first side in the second direction and a pair of inclined sides connecting both ends of the first side and both ends of the second side. ..

本実施形態において、第二流路画定領域21,31の第二方向におけるサイズは、縦中心線CL1によって区切られた二つの領域のうちの自身が包含する第二貫通孔形成領域211,311(第二貫通孔23,33)の存在する一方の領域側から他方の領域に向うにつれて小さくなっている。 In the present embodiment, the size of the second flow path demarcating regions 21 and 31 in the second direction is the second through hole forming region 211, 311 included by itself among the two regions separated by the vertical center line CL1 ( It becomes smaller from one region side where the second through holes 23, 33) are present toward the other region.

これに伴い、第二流路画定領域21,31は、台形状に形成される。第三方向の他端に沿った第一辺(第二方向に延びる第一辺)と、第三方向の一端に沿った第二辺(第二方向に延びる第二辺)であって、第二方向において第一辺よりも短い第二辺と、第一辺の両端と第二辺との両端とを繋ぐ一対の傾斜辺とによって画定される。 Along with this, the second flow path demarcation regions 21 and 31 are formed in a trapezoidal shape. The first side along the other end of the third direction (the first side extending in the second direction) and the second side along one end of the third direction (the second side extending in the second direction). It is defined by a second side, which is shorter than the first side in two directions, and a pair of inclined sides connecting both ends of the first side and both ends of the second side.

第一流路画定領域20,30を画定する第一辺と、第二流路画定領域21,31を画定する第一辺とは、縦中心線CL1を基準に対称に配置され、第一流路画定領域20,30を画定する第二辺と、第二流路画定領域21,31を画定する第二辺とは、縦中心線CL1を基準に対称に配置される。すなわち、第一流路画定領域20,30と第二流路画定領域21,31とは、縦中心線CL1を基準に対称に配置され、第一流路画定領域20,30を画定する傾斜辺と第二流路画定領域21,31を画定する傾斜辺とは、第一方向から見て交差する。 The first side that defines the first flow path demarcation areas 20 and 30 and the first side that defines the second flow path demarcation areas 21 and 31 are arranged symmetrically with respect to the vertical center line CL1 and demarcate the first flow path. The second side defining the areas 20 and 30 and the second side defining the second flow path defining areas 21 and 31 are arranged symmetrically with respect to the vertical center line CL1. That is, the first flow path demarcation areas 20 and 30 and the second flow path demarcation areas 21 and 31 are arranged symmetrically with respect to the vertical center line CL1, and the inclined sides and the first flow path defining the first flow path demarcation areas 20 and 30 are defined. The inclined sides defining the two flow path demarcation regions 21 and 31 intersect with each other when viewed from the first direction.

これに伴い、第一流路画定領域20,30の伝熱領域200,300と、第二流路画定領域21,31の伝熱領域210,310とは、第一方向から見て重複する。すなわち、第一流路画定領域20,30の伝熱領域200,300と、第二流路画定領域21,31の伝熱領域210,310とは、第一方向から見て一致する。 Along with this, the heat transfer regions 200 and 300 of the first flow path demarcation regions 20 and 30 and the heat transfer regions 210 and 310 of the second flow path demarcation regions 21 and 31 overlap when viewed from the first direction. That is, the heat transfer regions 200 and 300 of the first flow path demarcation regions 20 and 30 and the heat transfer regions 210 and 310 of the second flow path demarcation regions 21 and 31 coincide with each other when viewed from the first direction.

第一流路画定領域20,30及び第二流路画定領域21,31のそれぞれにおいて、伝熱領域200,210,300,310は、伝熱プレート2,3の縦中心線CL1と横中心線CL2との交点を含む主伝熱領域202,212,302,312と、第二方向で主伝熱領域202,212,302,312を挟む一対の副伝熱領域203,213,303,313であって、主伝熱領域202,212,302,312から遠ざかるにつれて第三方向の寸法が小さくなる一対の副伝熱領域203,213,303,313とを含む。 In the first flow path demarcation areas 20 and 30 and the second flow path demarcation areas 21 and 31, the heat transfer areas 200, 210, 300 and 310 are the vertical center lines CL1 and the horizontal center lines CL2 of the heat transfer plates 2 and 3, respectively. The main heat transfer regions 202, 212, 302, 312 including the intersection with and the pair of sub heat transfer regions 203, 213, 303, 313 sandwiching the main heat transfer regions 202, 212, 302, 312 in the second direction. It includes a pair of sub-heat transfer regions 203, 213, 303, 313 whose dimensions in the third direction decrease as the distance from the main heat transfer regions 202, 212, 302, 312 increases.

本実施形態において、第一流路画定領域20,30及び第二流路画定領域21,31の伝熱領域200,210,300,310は、四角形状の主伝熱領域202,212,302,312と、それぞれが三角形状をなす一対の副伝熱領域203,213,303,313であって、主伝熱領域202,212,302,312を挟んで配置される一対の副伝熱領域203,213,303,313とを含む。これに伴い、本実施形態に係る伝熱領域200,210,300,310は、第一流路画定領域20,30及び第二流路画定領域21,31のそれぞれを画定する互いの第一辺と斜辺の一部によって画定される略六角状の領域とされる。これに伴い、本実施形態において、第一貫通孔形成領域201,301は、三角形状の副伝熱領域203,303を画定する二つの斜辺のうちの一方の斜辺に接続され、第二貫通孔形成領域211,311は、第三角形状の副伝熱領域213,313を画定する二つの斜辺のうちの他方の斜辺に接続されている。 In the present embodiment, the heat transfer regions 200, 210, 300, 310 of the first flow path demarcation area 20, 30 and the second flow path demarcation area 21, 31 are the square main heat transfer areas 202, 212, 302, 312. And a pair of sub-heat transfer regions 203, 213, 303, 313, each of which has a triangular shape, and a pair of sub-heat transfer regions 203, which are arranged so as to sandwich the main heat transfer regions 202, 212, 302, 312. 213, 303, 313 and so on. Along with this, the heat transfer regions 200, 210, 300, 310 according to the present embodiment are the first sides of each other that define the first flow path demarcation areas 20, 30 and the second flow path demarcation areas 21, 31 respectively. It is a substantially hexagonal area defined by a part of the hypotenuse. Along with this, in the present embodiment, the first through hole forming regions 201 and 301 are connected to one of the two hypotenuses defining the triangular subheat transfer regions 203 and 303, and the second through hole is formed. The formation regions 211 and 311 are connected to the other hypotenuse of the two hypotenuses defining the triangular sub-heat transfer regions 213 and 313.

一対の副伝熱領域203,213,303,313は、第二方向で主伝熱領域202,212,302,312に繋がる第一領域203a,213a,303a,313aと、第二方向で第一領域203a,213a,303a,313aに繋がる第二領域203b,213b,303b,313bであって、第一領域203a,213a,303a,313aから遠ざかるにつれて第三方向の寸法が小さくなる第二領域203b,213b,303b,313bとを含む。 The pair of sub-heat transfer regions 203, 213, 303, 313 are the first regions 203a, 213a, 303a, 313a connected to the main heat transfer regions 202, 212, 302, 312 in the second direction, and the first in the second direction. The second regions 203b, 213b, 303b, 313b connected to the regions 203a, 213a, 303a, 313a, and the second region 203b, whose dimensions in the third direction become smaller as the distance from the first regions 203a, 213a, 303a, 313a increases. 213b, 303b, 313b and the like.

図2乃至図9に示す如く、第一流路画定領域20,30の伝熱領域200,300には、第一流路Raを流通する第一流体Aに流通抵抗を付与するための複数の凹部204a,205a,206a,304a,305a,306a及び凸部204b,205b,206b,304b,305b,306bが形成され、第二流路画定領域21,31の伝熱領域210,310には、第二流路Rbを流通する第二流体Bに流通抵抗を付与するための複数の凹部214a,215a,216a,314a,315a,316a及び凸部214b,215b,216b,314b,315b,316bが形成される。 As shown in FIGS. 2 to 9, in the heat transfer regions 200 and 300 of the first flow path demarcation regions 20 and 30, a plurality of recesses 204a for imparting flow resistance to the first fluid A flowing through the first flow path Ra. , 205a, 206a, 304a, 305a, 306a and convex portions 204b, 205b, 206b, 304b, 305b, 306b are formed, and the second flow is formed in the heat transfer regions 210 and 310 of the second flow path demarcation regions 21 and 31. A plurality of recesses 214a, 215a, 216a, 314a, 315a, 316a and convex portions 214b, 215b, 216b, 314b, 315b, 316b for imparting flow resistance to the second fluid B flowing through the path Rb are formed.

第一流路画定領域20,30の伝熱領域200,300及び第二流路画定領域21,31の伝熱領域210,310のそれぞれにおいて、凹部204a,205a,206a,214a,215a,216a,304a,305a,306a,314a,315a,316a及び凸部204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bは、所定方向に交互に配置される。 Recesses 204a, 205a, 206a, 214a, 215a, 216a, 304a in the heat transfer regions 200, 300 of the first flow path demarcation areas 20 and 30 and the heat transfer areas 210, 310 of the second flow path demarcation areas 21, 31 respectively. , 305a, 306a, 314a, 315a, 316a and the protrusions 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b, 316b are alternately arranged in a predetermined direction.

伝熱プレート2,3は、金属プレートをプレス成型したものである。これに伴い、第一流路画定領域20,30の伝熱領域200,300の凹部204a,205a,206a,304a,305a,306aと、第二流路画定領域21,31の伝熱領域210,310の凸部214b,215b,216b,314b,315b,316bとは、表裏の関係にある。また、第一流路画定領域20,30の伝熱領域200,300の凸部204b,205b,206b,304b,305b,306bと、第二流路画定領域21,31の伝熱領域210,310の凹部214a,215a,216a,314a,315a,316aとは表裏の関係にある。 The heat transfer plates 2 and 3 are press-molded metal plates. Along with this, the recesses 204a, 205a, 206a, 304a, 305a, 306a of the heat transfer regions 200 and 300 of the first flow path demarcation areas 20 and 30 and the heat transfer areas 210 and 310 of the second flow path demarcation areas 21 and 31 The convex portions 214b, 215b, 216b, 314b, 315b, and 316b are in a front-to-back relationship. Further, the convex portions 204b, 205b, 206b, 304b, 305b, 306b of the heat transfer regions 200 and 300 of the first flow path demarcation regions 20 and 30 and the heat transfer regions 210 and 310 of the second flow path demarcation regions 21 and 31. The recesses 214a, 215a, 216a, 314a, 315a, and 316a are in a front-to-back relationship.

本実施形態に係るプレート式熱交換器1は、第一流路Ra及び第二流路Rbのそれぞれにおいて、第一領域203a,213a,303a,313aと対応する範囲での流通抵抗よりも第二領域203b,213b,303b,313bと対応する範囲での流通抵抗が大きく、且つ第二領域203b,213b,303b,313bと対応する範囲での流通抵抗よりも主伝熱領域202,212,302,312と対応する範囲での流通抵抗が大きくなるように構成される。 In the plate heat exchanger 1 according to the present embodiment, in each of the first flow path Ra and the second flow path Rb, the second region is larger than the flow resistance in the range corresponding to the first region 203a, 213a, 303a, 313a. The distribution resistance in the range corresponding to 203b, 213b, 303b, 313b is large, and the main heat transfer region 202, 212, 302, 312 is larger than the distribution resistance in the range corresponding to the second regions 203b, 213b, 303b, 313b. It is configured to increase the distribution resistance in the range corresponding to.

具体的には、各伝熱プレート2,3において、第二領域203b,213b,303b,313b内で凹部205a,215a,305a,315aを挟んで隣り合う凸部205b,215b,305b,315b同士の間隔が、第一領域203a,213a,303a,313a内で凹部204a,214a,304a,314aを挟んで隣り合う凸部204b,214b,304b,314b同士の間隔よりも広く、第一領域203a,213a,303a,313a内で凹部204a,214a,304a,314aを挟んで隣り合う凸部204b,214b,304b,314b同士の間隔が、主伝熱領域202,212,302,312内で凹部206a,216a,306a,316aを挟んで隣り合う凸部206b,216b,306b,316b同士の間隔よりも広く設定されている。 Specifically, in each of the heat transfer plates 2 and 3, the convex portions 205b, 215b, 305b, 315b adjacent to each other with the recesses 205a, 215a, 305a, 315a sandwiched in the second regions 203b, 213b, 303b, 313b. The distance is wider than the distance between the convex portions 204b, 214b, 304b, 314b adjacent to each other across the recesses 204a, 214a, 304a, 314a in the first region 203a, 213a, 303a, 313a, and the distance is wider than the distance between the first regions 203a, 213a. , 303a, 313a, the distance between the convex portions 204b, 214b, 304b, 314b adjacent to each other with the concave portions 204a, 214a, 304a, 314a sandwiched between them, and the distance between the concave portions 206a, 216a in the main heat transfer regions 202, 212, 302, 312a. , 306a, 316a are set wider than the distance between the adjacent convex portions 206b, 216b, 306b, 316b.

本実施形態において、主伝熱領域202,212,302,312、第一領域203a,213a,303a,313a、及び第二領域203b,213b,303b,313bにある凹部204a,205a,206a,214a,215a,216a,304a,305a,306a,314a,315a,316a及び凸部204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bは、該凹部204a,205a,206a,214a,215a,216a,304a,305a,306a,314a,315a,316aと該凸部204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bとが交互に並ぶ所定方向と直交する方向に延びる凹条及び凸条である。 In the present embodiment, the recesses 204a, 205a, 206a, 214a in the main heat transfer regions 202, 212, 302, 312, the first region 203a, 213a, 303a, 313a, and the second regions 203b, 213b, 303b, 313b, 215a, 216a, 304a, 305a, 306a, 314a, 315a, 316a and the convex portions 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b, 316b are the recesses 204a, 205a, 206a. , 214a, 215a, 216a, 304a, 305a, 306a, 314a, 315a, 316a and the convex portions 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b, 316b are arranged alternately. Concave and convex lines extending in a direction orthogonal to a predetermined direction.

従って、第二領域203b,213b,303b,313b内で凹条205a,215a,305a,315aを挟んで隣り合う凸条205b,215b,305b,315b同士の間隔が、第一領域203a,213a,303a,313a内で凹条204a,214a,304a,314aを挟んで隣り合う凸条204b,214b,304b,314b同士の間隔よりも広く、第一領域203a,213a,303a,313a内で凹条204a,214a,304a,314aを挟んで隣り合う凸条204b,214b,304b,314b同士の間隔が、主伝熱領域202,212,302,312内で凹条206a,216a,306a,316aを挟んで隣り合う凸条206b,216b,306b,316b同士の間隔よりも広く設定されている。 Therefore, the distance between the ridges 205b, 215b, 305b, 315b adjacent to each other with the concave portions 205a, 215a, 305a, 315a in the second region 203b, 213b, 303b, 313b is the distance between the first regions 203a, 213a, 303a. , 313a, wider than the distance between the adjacent protrusions 204b, 214b, 304b, 314b with the concave portions 204a, 214a, 304a, 314a in between, and the concave portions 204a, in the first region 203a, 213a, 303a, 313a. The distance between the convex strips 204b, 214b, 304b, 314b adjacent to each other across the 214a, 304a, 314a is adjacent to the concave strips 206a, 216a, 306a, 316a in the main heat transfer regions 202, 212, 302, 312. It is set wider than the distance between the matching ridges 206b, 216b, 306b, and 316b.

主伝熱領域202,212,302,312、第一領域203a,213a,303a,313a、及び第二領域203b,213b,303b,313bにある凹条204a,205a,206a,214a,215a,216a,304a,305a,306a,314a,315a,316a及び凸条204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bは、縦中心線CL1及び横中心線CL2のそれぞれに対して交差する方向に延びている。これにより、隣り合う伝熱プレート2,3の主伝熱領域202,212,302,312及び副伝熱領域203,213,303,313(第一領域203a,213a,303a,313a、第二領域203b,213b,303b,313b)にある凸条204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316b同士が交差衝合するようになっている。 Recesses 204a, 205a, 206a, 214a, 215a, 216a in the main heat transfer regions 202, 212, 302, 312, the first region 203a, 213a, 303a, 313a, and the second regions 203b, 213b, 303b, 313b, 304a, 305a, 306a, 314a, 315a, 316a and ridges 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b, 316b are the vertical center line CL1 and the horizontal center line CL2, respectively. It extends in the direction of intersection with respect to. As a result, the main heat transfer regions 202, 212, 302, 312 and the sub heat transfer regions 203, 213, 303, 313 (first region 203a, 213a, 303a, 313a, second region) of the adjacent heat transfer plates 2, 3 The ridges 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b, 316b in 203b, 213b, 303b, 313b) intersect each other.

本実施形態において、複数の伝熱プレート2,3には、伝熱領域200,210,300,310の凹部(凹条)204a,205a,206a,214a,215a,216a,304a,305a,306a,314a,315a,316a、及び凸部(凸条)204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bの形態(配置)を異にする二種類の伝熱プレート2,3が含まれる。 In the present embodiment, the plurality of heat transfer plates 2 and 3 have recesses (recesses) 204a, 205a, 206a, 214a, 215a, 216a, 304a, 305a, 306a, in the heat transfer regions 200, 210, 300, 310. Two types of heat transfer with different forms (arrangements) of 314a, 315a, 316a, and convex portions (convex) 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b, 316b. Plates 2 and 3 are included.

具体的には、複数の伝熱プレート2,3には、第一伝熱プレート2と、第一伝熱プレート2よりも熱交換性能の高い第二伝熱プレート3とが含まれる。 Specifically, the plurality of heat transfer plates 2 and 3 include a first heat transfer plate 2 and a second heat transfer plate 3 having higher heat exchange performance than the first heat transfer plate 2.

第一伝熱プレート2は、主伝熱領域202,212の凹条206a,216a及び凸条206b,216bの横中心線CL2に対する傾斜角度が、第二伝熱プレート3における主伝熱領域302,312の凹条306a,316a及び凸条306b,316bの横中心線CL2に対する傾斜角度よりも大きく設定されている。すなわち、熱交換性能の高い第二伝熱プレート3における主伝熱領域302,312の凹条306a,316a及び凸条306b,316bは、第一伝熱プレート2における主伝熱領域202,212の凹条206a,216a及び凸条206b,216bよりも流体の流れを遮るように配置される。 In the first heat transfer plate 2, the inclination angle of the concave portions 206a, 216a and the convex portions 206b, 216b of the main heat transfer regions 202 and 212 with respect to the horizontal center line CL2 is set to the main heat transfer regions 302 in the second heat transfer plate 3. It is set to be larger than the inclination angle of the concave grooves 306a, 316a and the convex grooves 306b, 316b of 312 with respect to the lateral center line CL2. That is, the concave grooves 306a, 316a and the convex 306b, 316b of the main heat transfer regions 302, 312 in the second heat transfer plate 3 having high heat exchange performance are the main heat transfer regions 202, 212 in the first heat transfer plate 2. It is arranged so as to block the flow of fluid more than the recesses 206a, 216a and the protrusions 206b, 216b.

本実施形態において、主伝熱領域202,212,302,312は、第三方向において四つの領域に区画されている。すなわち、縦中心線CL1を境にした二つの領域のそれぞれが、さらに二つの領域に区画されている。これにより、主伝熱領域202,212,302,312は、縦中心線CL1を境にした二つの領域のそれぞれにおいて、縦中心線CL1側の中心側領域(採番しない)と、これよりも第三方向において外側にある外側領域(採番しない)とを含む。 In the present embodiment, the main heat transfer regions 202, 212, 302, 312 are divided into four regions in the third direction. That is, each of the two regions with the vertical center line CL1 as a boundary is further divided into two regions. As a result, the main heat transfer regions 202, 212, 302, 312 are the center side region (not numbered) on the vertical center line CL1 side and the center side region (not numbered) in each of the two regions bordered by the vertical center line CL1. Includes the outer region (not numbered) that is outer in the third direction.

主伝熱領域202,212,302,312内の四つの領域(中心側領域、外側領域)のそれぞれには、凹条206a,216a,306a,316a及び凸条206b,216b,306b,316bが縦中心線CL1に対して傾斜方向に延びている。 In each of the four regions (central region and outer region) in the main heat transfer regions 202, 212, 302, 312, concave grooves 206a, 216a, 306a, 316a and convex grooves 206b, 216b, 306b, 316b are vertically formed. It extends in the inclined direction with respect to the center line CL1.

具体的には、主伝熱領域202,212,302,312内の縦中心線CL1を境にした二つの領域のそれぞれにおいて、中心側領域にある凹条206a,216a,306a,316a及び凸条206b,216b,306b,316bは、外側領域にある凹条206a,216a,306a,316a及び凸条206b,216b,306b,316bの傾斜方向に対して逆方向に傾斜している。 Specifically, in each of the two regions in the main heat transfer regions 202, 212, 302, 312 with the vertical center line CL1 as a boundary, the concave grooves 206a, 216a, 306a, 316a and the convex stripes in the central region. The 206b, 216b, 306b, 316b are inclined in the direction opposite to the inclination direction of the concave portions 206a, 216a, 306a, 316a and the convex portions 206b, 216b, 306b, 316b in the outer region.

そして、主伝熱領域202,212,302,312内の縦中心線CL1を境にした二つの領域のそれぞれの凹条206a,216a,306a,316a及び凸条206b,216b,306b,316bは、縦中心線CL1を基準に対称に配置されている。 The concave grooves 206a, 216a, 306a, 316a and the convex grooves 206b, 216b, 306b, 316b of the two regions in the main heat transfer regions 202, 212, 302, 312 with the vertical center line CL1 as the boundary are formed. They are arranged symmetrically with respect to the vertical center line CL1.

一方の副伝熱領域203,213,303,313の第一領域203a,213a,303a,313aの凹条204a,214a,304a,314a及び凸条204b,214b,304b,314bは、いずれも主伝熱領域202,212,302,312における縦中心線CL1を境にした一方の領域にある中心側領域の凹条206a,216a,306a,316a及び凸条206b,216b,306b,316bと同方向に延び、他方の副伝熱領域203,213,303,313の第一領域203a,213a,303a,313aの凹条204a,214a,304a,314a及び凸条204b,214b,304b,314bは、いずれも主伝熱領域202,212,302,312における縦中心線CL1を境にした他方の領域にある中心側領域の凹条206a,216a,306a,316a及び凸条206b,216b,306b,316bと同方向に延びている。 The concave grooves 204a, 214a, 304a, 314a and the convex grooves 204b, 214b, 304b, 314b of the first regions 203a, 213a, 303a, 313a of one of the secondary heat transfer regions 203, 213, 303, 313 are all main heat transfer regions. In the same direction as the recesses 206a, 216a, 306a, 316a and the protrusions 206b, 216b, 306b, 316b in the central region in one region of the thermal regions 202, 212, 302, 312 with the vertical center line CL1 as the boundary. The dents 204a, 214a, 304a, 314a and the ridges 204b, 214b, 304b, 314b of the first regions 203a, 213a, 303a, 313a of the other sub-heat transfer regions 203, 213, 303, 313 are all extended. Same as the concave lines 206a, 216a, 306a, 316a and the convex lines 206b, 216b, 306b, 316b in the center side region in the other region of the main heat transfer regions 202, 212, 302, 312 with the vertical center line CL1 as the boundary. It extends in the direction.

第一シール予定領域24,34は、第一面Sa上で第一流路画定領域20,30の輪郭に沿って形成される。すなわち、第一シール予定領域24,34は、第一流路画定領域20,30を画定する第一辺、第二辺、及び一対の傾斜辺に沿って形成される。これに対し、第二シール予定領域25,35は、第二面Sb上で第二流路画定領域21,31の輪郭に沿って形成される。すなわち、第二シール予定領域25,35は、第二流路画定領域21,31を画定する第一辺、第二辺、及び一対の傾斜辺に沿って形成される。本実施形態において、第二シール予定領域25,35は、第一シール予定領域24,34の形成される面とは反対側の面に形成されるが、第一方向に延びる仮想軸を基準にして、第一シール予定領域24,34に対して回転対称となるように形成される。すなわち、第一流路画定領域20,30と第二流路画定領域21,31は、第一方向に延びる仮想軸を基準に回転対称となる形状である。 The first sealing planned areas 24 and 34 are formed along the contours of the first flow path demarcating areas 20 and 30 on the first surface Sa. That is, the first sealed planned areas 24 and 34 are formed along the first side, the second side, and the pair of inclined sides that define the first flow path defining areas 20 and 30. On the other hand, the second seal planned regions 25 and 35 are formed along the contours of the second flow path demarcation regions 21 and 31 on the second surface Sb. That is, the second seal planned regions 25 and 35 are formed along the first side, the second side, and the pair of inclined sides that define the second flow path demarcation regions 21 and 31. In the present embodiment, the second sealed planned areas 25 and 35 are formed on the surface opposite to the surface on which the first sealed planned areas 24 and 34 are formed, but the virtual axis extending in the first direction is used as a reference. Therefore, it is formed so as to be rotationally symmetric with respect to the planned first seal regions 24 and 34. That is, the first flow path demarcation areas 20 and 30 and the second flow path demarcation areas 21 and 31 have shapes that are rotationally symmetric with respect to the virtual axis extending in the first direction.

第三シール予定領域26,36は、第一シール予定領域24,34と同一面上に形成され、第一シール予定領域24,34によって包囲される第一流路画定領域20,30から外れた第二貫通孔23,33の外周を包囲する。本実施形態において、第三シール予定領域26,36は、第一方向から見て、裏側にある第二シール予定領域25,35と部分的に重複して形成される。 The third sealed planned areas 26 and 36 are formed on the same surface as the first sealed planned areas 24 and 34, and are deviated from the first flow path demarcated areas 20 and 30 surrounded by the first sealed planned areas 24 and 34. (Ii) Surround the outer circumferences of the through holes 23 and 33. In the present embodiment, the third seal planned area 26, 36 is formed so as to partially overlap with the second seal planned area 25, 35 on the back side when viewed from the first direction.

第四シール予定領域27,37は、第二シール予定領域25,35と同一面上に形成され、第二シール予定領域25,35によって包囲される第二流路画定領域21,31から外れた第一貫通孔22,32の外周を包囲する。本実施形態において、第四シール予定領域27,37は、第一方向から見て、裏側にある第一シール予定領域24,34と部分的に重複して形成される。 The fourth sealed planned areas 27 and 37 are formed on the same surface as the second sealed planned areas 25 and 35, and deviate from the second flow path demarcating areas 21 and 31 surrounded by the second sealed planned areas 25 and 35. Surround the outer periphery of the first through holes 22 and 32. In the present embodiment, the fourth sealed planned areas 27 and 37 are formed so as to partially overlap with the first sealed planned areas 24 and 34 on the back side when viewed from the first direction.

本実施形態において、第一貫通孔22,32及び第二貫通孔23,33は、円形状に形成される。これに伴い、第三シール予定領域26,36及び第四シール予定領域27,37のそれぞれは、円環状に形成される。 In the present embodiment, the first through holes 22, 32 and the second through holes 23, 33 are formed in a circular shape. Along with this, each of the third seal planned area 26, 36 and the fourth seal planned area 27, 37 is formed in an annular shape.

第一シール予定領域24,34、第二シール予定領域25,35、第三シール予定領域26,36、及び第四シール予定領域27,37は、第一方向における第一流路画定領域20,30の伝熱領域200,210,300,310にある凸条204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bの頂部と第二流路画定領域21,31の伝熱領域200,210,300,310にある凸条204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bの頂部との中間位置にある中段部である。 The first sealed planned area 24,34, the second sealed planned area 25,35, the third sealed planned area 26,36, and the fourth sealed planned area 27,37 are the first flow path demarcated areas 20, 30 in the first direction. Tops of ridges 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b, 316b and second flow path demarcation regions 21, 31 in the heat transfer regions 200, 210, 300, 310. It is a middle stage portion in the middle position with the top of the protrusions 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b, 316b in the heat transfer regions 200, 210, 300, 310. ..

本実施形態において、プレート式熱交換器1は、ガスケット4として、図1、図10及び図11に示す如く、第一シール予定領域24,34に配置される無端環状の第一ガスケット4aと、第二シール予定領域25,35に配置される無端環状の第二ガスケット4bと、第三シール予定領域26,36に配置される無端環状の第三ガスケット4cと、第四シール予定領域27,37に配置される無端環状の第四ガスケット4dとを備える。 In the present embodiment, as the gasket 4, the plate heat exchanger 1 includes an endless annular first gasket 4a arranged in the first sealing planned areas 24 and 34 as shown in FIGS. 1, 10 and 11. An endless annular second gasket 4b arranged in the second sealed planned area 25, 35, an endless annular third gasket 4c arranged in the third sealed planned area 26, 36, and a fourth sealed planned area 27,37. It is provided with an endless annular fourth gasket 4d arranged in.

第一シール予定領域24,34と第三シール予定領域26,36は、同一面上に配置されるため、本実施形態において、第一ガスケット4aと第二ガスケット4bとは部分的に繋がって一体成型される。また、第二シール予定領域25,35と第四シール予定領域27,37は、同一面上に配置されるため、本実施形態において、第二ガスケット4bと第四ガスケット4dとは部分的に繋がって一体成型される。 Since the first seal planned area 24,34 and the third seal planned area 26, 36 are arranged on the same surface, in the present embodiment, the first gasket 4a and the second gasket 4b are partially connected and integrated. It is molded. Further, since the second seal planned area 25, 35 and the fourth seal planned area 27, 37 are arranged on the same surface, the second gasket 4b and the fourth gasket 4d are partially connected in the present embodiment. Is integrally molded.

図1に戻り、一対のエンドプレート5,6のうち、一方のエンドプレート5は、伝熱プレート2,3の第一貫通孔22,32及び第二貫通孔23,33と対応した位置に貫通孔(図示しない)を有するプレート本体50と、貫通孔に対応して設けられた筒状のノズル51であって、配管を接続可能にプレート本体50の外面から突出したノズル51とを有する。これに対し、一対のエンドプレート5,6のうちの他方のエンドプレート6は、貫通孔のないプレートで構成される。 Returning to FIG. 1, one of the pair of end plates 5 and 6 has one end plate 5 penetrating at a position corresponding to the first through holes 22 and 32 and the second through holes 23 and 33 of the heat transfer plates 2 and 3. It has a plate body 50 having a hole (not shown), and a tubular nozzle 51 provided corresponding to the through hole and protruding from the outer surface of the plate body 50 so that a pipe can be connected. On the other hand, the other end plate 6 of the pair of end plates 5 and 6 is composed of a plate having no through hole.

プレート式熱交換器1において、上記構成の複数の伝熱プレート2,3が第一方向に重ね合わされことで、複数の伝熱プレート2,3は、自身の第一面Saを第一方向の一方側で隣り合う伝熱プレート2,3の第一面Saと対向させるとともに、自身の第二面Sbを第一方向の他方側で隣り合う伝熱プレート2,3の第二面Sbと対向させる。 In the plate heat exchanger 1, the plurality of heat transfer plates 2 and 3 having the above configuration are superposed in the first direction, so that the plurality of heat transfer plates 2 and 3 have their first surface Sa in the first direction. While facing the first surface Sa of the adjacent heat transfer plates 2 and 3 on one side, the second surface Sb of itself faces the second surface Sb of the adjacent heat transfer plates 2 and 3 on the other side in the first direction. Let me.

本実施形態に係るプレート式熱交換器1において、第一伝熱プレート2と第二伝熱プレート3とが第一方向において交互に配置される。 In the plate heat exchanger 1 according to the present embodiment, the first heat transfer plate 2 and the second heat transfer plate 3 are alternately arranged in the first direction.

これに伴い、第一ガスケット4a及び第二ガスケット4bは、伝熱プレート2,3を境にして第一方向で交互に配置される。また、第三ガスケット4c及び第四ガスケット4dも同様である。すなわち、図10及び図11に示す如く、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2の第一面Sa上にある第一シール予定領域24と他方の伝熱プレート3の第一面Sa上にある第一シール予定領域34との間に、第一ガスケット4aが配置され、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2の第二面Sb上にある第二シール予定領域25と他方の伝熱プレート3の第二面Sb上にある第二シール予定領域35との間に、第二ガスケット4bが配置される。 Along with this, the first gasket 4a and the second gasket 4b are alternately arranged in the first direction with the heat transfer plates 2 and 3 as boundaries. The same applies to the third gasket 4c and the fourth gasket 4d. That is, as shown in FIGS. 10 and 11, the first sealed region 24 on the first surface Sa of one of the adjacent heat transfer plates 2 and 3 and the other heat transfer plate 3 A first gasket 4a is arranged between the first surface Sa and the planned first seal area 34, and is placed on the second surface Sb of one of the adjacent heat transfer plates 2 and 3 of the heat transfer plate 2. A second gasket 4b is arranged between a certain second seal scheduled area 25 and a second sealed planned area 35 on the second surface Sb of the other heat transfer plate 3.

また、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2の第一面Sa上にある第三シール予定領域26と他方の伝熱プレート3の第一面Sa上にある第三シール予定領域36との間に、第三ガスケット4cが配置され、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2の第二面Sb上にある第四シール予定領域27,37と他方の伝熱プレート3の第二面Sb上にある第四シール予定領域37との間に、第四ガスケット4dが配置される。 Further, the third seal planned region 26 on the first surface Sa of one of the adjacent heat transfer plates 2 and 3 and the third surface Sa on the first surface Sa of the other heat transfer plate 3. A third gasket 4c is arranged between the planned sealing area 36 and the fourth planned sealing area 27, 37 on the second surface Sb of one of the adjacent heat transfer plates 2 and 3. A fourth gasket 4d is arranged between and the fourth sealed area 37 on the second surface Sb of the other heat transfer plate 3.

これにより、本実施形態に係るプレート式熱交換器1において、図1に示す如く、第一流体Aを流通させる第一流路Raと、第二流体Bを流通させる第二流路Rbとが伝熱プレート2,3を境にして第一方向に交互に形成される。また、プレート式熱交換器1において、複数の伝熱プレート2,3の四つの貫通孔のそれぞれが第一方向に連なり、第一流路Raに第一流体Aを流出入させる一対の第一連通路Ra1,Ra2と、第二流路Rbに第一流体Aを流出入させる一対の第二連通路Rb1,Rb2とが形成される。 As a result, in the plate heat exchanger 1 according to the present embodiment, as shown in FIG. 1, the first flow path Ra through which the first fluid A is circulated and the second flow path Rb through which the second fluid B is circulated are transmitted. It is formed alternately in the first direction with the heat plates 2 and 3 as boundaries. Further, in the plate heat exchanger 1, each of the four through holes of the plurality of heat transfer plates 2 and 3 is connected in the first direction, and a pair of first series for allowing the first fluid A to flow in and out of the first flow path Ra. The passages Ra1 and Ra2 and a pair of second continuous passages Rb1 and Rb2 that allow the first fluid A to flow in and out of the second flow path Rb are formed.

本実施形態に係るプレート式熱交換器1は、以上の通りであり、図10に示す如く、一方の第一連通路Ra1に第一流体Aが供給されると、第一流体Aは、第一流路Raに流入し、他方の第一連通路Ra2に向けて流通しようとする。 The plate heat exchanger 1 according to the present embodiment is as described above, and as shown in FIG. 10, when the first fluid A is supplied to one of the first series passages Ra1, the first fluid A becomes the first fluid A. It flows into one passage Ra and tries to circulate toward the other first series passage Ra2.

そうすると、従来であれば、第一流体Aは、一方の第一連通路Ra1から主伝熱領域202,302までの距離が最短距離となる最短ルートを通って主伝熱領域202,302と対応する範囲に到達し、主伝熱領域202,302と対応する範囲を流通することになるが、本実施形態に係るプレート式熱交換器1では、第一流路Raに流入した第一流体Aは、第二方向、第三方向、及び第二方向と第三方向との合成方向に広がり、第二方向における主伝熱領域202,302と対応する範囲全域に到達する。 Then, conventionally, the first fluid A corresponds to the main heat transfer regions 202 and 302 through the shortest route where the distance from one of the first series passages Ra1 to the main heat transfer regions 202 and 302 is the shortest distance. In the plate heat exchanger 1 according to the present embodiment, the first fluid A flowing into the first flow path Ra is circulated in the range corresponding to the main heat transfer regions 202 and 302. , The second direction, the third direction, and the combined direction of the second direction and the third direction, and reach the entire range corresponding to the main heat transfer regions 202 and 302 in the second direction.

具体的には、第一流路Raを画定する第一流路画定領域20,30の副伝熱領域203,303は、第一領域203a,303aと第二領域203b,303bとを含み、第一領域203a,303aと対応する範囲での流通抵抗が第二領域203b,303bと対応する範囲での流通抵抗よりも大きい。 Specifically, the sub-heat transfer regions 203 and 303 of the first flow path demarcation regions 20 and 30 that define the first flow path Ra include the first regions 203a and 303a and the second regions 203b and 303b, and the first region. The distribution resistance in the range corresponding to 203a and 303a is larger than the distribution resistance in the range corresponding to the second regions 203b and 303b.

そのため、第一流路Raに流入した第一流体Aは、流通抵抗の小さな第二領域203b,303bと対応した範囲を優先的に流通し、第二領域203b,303bと対応する範囲全域又は略全域に広がる。 Therefore, the first fluid A that has flowed into the first flow path Ra preferentially flows in the range corresponding to the second regions 203b and 303b having a small flow resistance, and the entire range or substantially the entire range corresponding to the second regions 203b and 303b. Spread to.

特に、本実施形態において、第二領域203b,303bは、第二方向に間隔をあけて配置される第一貫通孔22,32と第二貫通孔23,33との間(第一連通路Ra1と第二連通路Rb2との間)にあるため、第一連通路Ra1から流入した第一流体Aは、第一連通路Ra1に対して第二方向側にある第一領域203a,303a(第二領域203b,303bと対応する範囲よりも流通抵抗の大きな第一領域203a,303aと対応する範囲)よりも、第一流路Raにおける第二領域203b,303bと対応する範囲(第三方向又は第二方向と第三方向との合成方向)に向けて優先的に流通する。 In particular, in the present embodiment, the second regions 203b and 303b are located between the first through holes 22 and 32 and the second through holes 23 and 33 (first series passage Ra1) arranged at intervals in the second direction. The first fluid A flowing in from the first series passage Ra1 is located in the first region 203a, 303a (the first region 203a, 303a) on the second direction side with respect to the first series passage Ra1. The range corresponding to the second regions 203b and 303b in the first flow path Ra (the third direction or the third direction) rather than the range corresponding to the first regions 203a and 303a having a larger distribution resistance than the range corresponding to the two regions 203b and 303b). Priority is given to distribution in the direction of combination of the two directions and the third direction).

この場合においても、最短ルートを通ろうと第一流体Aも存在するが、本実施形態においては、第一領域203a,303aと対応する範囲での流通抵抗が第二領域203b,303bと対応する範囲での流通抵抗よりも大きいため、最先で第一領域203a,303aと対応する範囲に到達した第一流体Aは、第一流路Raの第一領域203a,303aと対応する範囲での流通抵抗を受ける。これにより、第一流体Aは、そのまま最短ルートを通過して第一領域203a,303aに進入しにくくなるため、後続の第一流体Aは、第二方向に広がったり、最短ルートよりも距離が長い別ルートを通ったりすることになる。 In this case as well, the first fluid A also exists to pass through the shortest route, but in the present embodiment, the distribution resistance in the range corresponding to the first regions 203a and 303a corresponds to the second regions 203b and 303b. Since it is larger than the flow resistance in, the first fluid A that reaches the range corresponding to the first regions 203a and 303a first has the flow resistance in the range corresponding to the first regions 203a and 303a of the first flow path Ra. Receive. As a result, the first fluid A passes through the shortest route as it is and is difficult to enter the first regions 203a and 303a. Therefore, the subsequent first fluid A spreads in the second direction or has a longer distance than the shortest route. You will have to take another long route.

その結果、第一流体Aは、第一流路Raにおける第二領域203b,303bと対応する範囲に充満し、第一領域203a,303aと対応する範囲全域又は略全域に進入する。 As a result, the first fluid A fills the range corresponding to the second regions 203b and 303b in the first flow path Ra, and enters the entire range or substantially the entire range corresponding to the first regions 203a and 303a.

この状態において、一方の第一連通路Ra1から主伝熱領域202,302までの距離が最短となる最短ルートを通る第一流体Aが、最短ルートよりも距離が長い別ルートを通る第一流体Aよりも先行していたとしても、本実施形態においては、主伝熱領域202,302と対応する範囲での流通抵抗が第一領域203a,303aと対応する範囲での流通抵抗よりも大きいため、先行して主伝熱領域202,302と対応する範囲に到達した第一流体Aは、第一流路Raの主伝熱領域202,302での流通抵抗を受け、そのまま最短ルートを通過して主伝熱領域202,302に進入しにくくなる。 In this state, the first fluid A passing through the shortest route having the shortest distance from one of the first series passages Ra1 to the main heat transfer regions 202 and 302 passes through another route having a longer distance than the shortest route. Even if it precedes A, in the present embodiment, the flow resistance in the range corresponding to the main heat transfer regions 202 and 302 is larger than the flow resistance in the range corresponding to the first regions 203a and 303a. The first fluid A, which has reached the range corresponding to the main heat transfer regions 202 and 302 in advance, receives the flow resistance in the main heat transfer regions 202 and 302 of the first flow path Ra and passes through the shortest route as it is. It becomes difficult to enter the main heat transfer areas 202 and 302.

これにより、最短ルートよりも距離が長い別ルートを通った第一流体Aが、最短ルートを通る第一流体Aに対して追いついた状態になり、第一流路Raにおける第一領域203a,303aと対応する範囲にある第一流体Aは、主伝熱領域202,302と対応する範囲全域又は略全域に対してバランスをとった状態で進入する。 As a result, the first fluid A passing through another route having a longer distance than the shortest route is in a state of catching up with the first fluid A passing through the shortest route, and becomes the first regions 203a and 303a in the first flow path Ra. The first fluid A in the corresponding range enters in a balanced state with respect to the entire range or substantially the entire range corresponding to the main heat transfer regions 202 and 302.

そして、第一流体Aは、主伝熱領域202,302の対応する範囲で第二方向に流通し、他方の副伝熱領域203,303の第二領域203b,303bに到達する。上述の如く、第一領域203a,303aと対応する範囲の流通抵抗よりも主伝熱領域202,302と対応する範囲の流通抵抗の方が大きい(主伝熱領域202,302と対応する範囲の流通抵抗よりも第一領域203a,303aと対応する範囲の流通抵抗の方が小さい)ため、主伝熱領域202,302と対応する範囲を通過した第一流体Aは、他方の副伝熱領域203,303の第一領域203a,303aと対応する範囲を円滑に流通する。 Then, the first fluid A flows in the second direction within the corresponding range of the main heat transfer regions 202 and 302, and reaches the second regions 203b and 303b of the other sub heat transfer regions 203 and 303. As described above, the distribution resistance in the range corresponding to the main heat transfer regions 202 and 302 is larger than the distribution resistance in the range corresponding to the first regions 203a and 303a (the range corresponding to the main heat transfer regions 202 and 302). Since the flow resistance in the range corresponding to the first regions 203a and 303a is smaller than the flow resistance), the first fluid A that has passed through the range corresponding to the main heat transfer regions 202 and 302 is in the other sub-heat transfer region. The range corresponding to the first regions 203a and 303a of 203 and 303 is smoothly distributed.

また、第二領域203b,303bと対応する範囲の流通抵抗よりも第一領域203a,303aと対応する範囲の流通抵抗の方が大きい(第一領域203a,303aと対応する範囲の流通抵抗よりも第二領域203b,303bと対応する範囲の流通抵抗の方が小さい)ため、ここでも第一流体Aは、円滑に第二領域203b,303bと対応する範囲を通過して他方の第一連通路Ra2に流出する。 Further, the distribution resistance in the range corresponding to the first regions 203a and 303a is larger than the distribution resistance in the range corresponding to the second regions 203b and 303b (more than the distribution resistance in the range corresponding to the first regions 203a and 303a). Since the flow resistance in the range corresponding to the second regions 203b and 303b is smaller), the first fluid A smoothly passes through the range corresponding to the second regions 203b and 303b and the other first series passage. It flows out to Ra2.

この点、第二流体Bにおいても同様である。具体的に説明すると、図11に示す如く、一方の第二連通路Rb1に第二流体Bが供給されると、第二流体Bは、第二流路Rbに流入し、他方の第二連通路Rb2に向けて流通しようとする。 The same applies to the second fluid B in this respect. Specifically, as shown in FIG. 11, when the second fluid B is supplied to one of the second passages Rb1, the second fluid B flows into the second passage Rb and the other second passage Rb. Attempts to circulate toward passage Rb2.

そうすると、従来であれば、第二流体Bは、一方の第二連通路Rb1から主伝熱領域212,312までの距離が最短距離となる最短ルートを通って主伝熱領域212,312に到達し、主伝熱領域212,312を流通することになるが、本実施形態に係るプレート式熱交換器1では、第二流路Rbに流入した第二流体Bは、第二方向、第三方向、及び第二方向と第三方向との合成方向に広がり、第二方向における主伝熱領域212,312と対応する範囲全域に到達する。 Then, conventionally, the second fluid B reaches the main heat transfer regions 212 and 312 through the shortest route where the distance from one of the second continuous passages Rb1 to the main heat transfer regions 212 and 312 is the shortest distance. However, in the plate heat exchanger 1 according to the present embodiment, the second fluid B flowing into the second flow path Rb is in the second direction and the third. It spreads in the direction and in the combined direction of the second direction and the third direction, and reaches the entire range corresponding to the main heat transfer regions 212 and 312 in the second direction.

具体的には、第二流路Rbを画定する第二流路画定領域21,31の副伝熱領域213,313は、第一領域213a,313aと第二領域213b,313bとを含み、第二領域213b,313bと対応する範囲での流通抵抗よりも第一領域213a,313aと対応する範囲での流通抵抗が大きい。 Specifically, the sub-heat transfer regions 213 and 313 of the second flow path demarcation regions 21 and 31 that define the second flow path Rb include the first regions 213a and 313a and the second regions 213b and 313b, and are the first. The distribution resistance in the range corresponding to the first regions 213a and 313a is larger than the distribution resistance in the range corresponding to the two regions 213b and 313b.

そのため、第二流路Rbに流入した第二流体Bは、流通抵抗の小さな第二領域213b,313bと対応した範囲を優先的に流通し、第二領域213b,313bと対応する範囲全域又は略全域に広がる。 Therefore, the second fluid B flowing into the second flow path Rb preferentially flows in the range corresponding to the second regions 213b and 313b having a small flow resistance, and the entire range corresponding to the second regions 213b and 313b or abbreviated. Spreads over the entire area.

特に、本実施形態において、第一領域213a,313aは、第二方向に間隔をあけて配置される第一貫通孔22,32と第二貫通孔23,33との間(第一連通路Ra2と第二連通路Rb1との間)にあるため、第二連通路Rb1から流入した第二流体Bは、第二連通路Rb1に対して第二方向側にある第一領域213a,313a(第二領域213b,313bと対応する範囲よりも流通抵抗の大きな第一領域213a,313aと対応する範囲)よりも、第二流路Rbにおける第二領域213b,313bと対応する範囲(第三方向又は第二方向と第三方向との合成方向)に向けて優先的に流通する。 In particular, in the present embodiment, the first regions 213a and 313a are located between the first through holes 22 and 32 and the second through holes 23 and 33 (first series passage Ra2) arranged at intervals in the second direction. Since it is located between the second passage Rb1 and the second passage Rb1, the second fluid B flowing in from the second passage Rb1 has the first regions 213a and 313a (the first) on the second direction side with respect to the second passage Rb1. The range corresponding to the second regions 213b and 313b in the second flow path Rb (the third direction or the range corresponding to the first regions 213a and 313a) having a larger distribution resistance than the ranges corresponding to the two regions 213b and 313b). Priority is given to distribution toward the combined direction of the second direction and the third direction).

この場合においても、最短ルートを通ろうとする第二流体Bも存在するが、本実施形態においては、第一領域213a,313aと対応する範囲での流通抵抗が第二領域213b,313bと対応する範囲での流通抵抗よりも大きいため、最先で第一領域213a,313aと対応する範囲に到達した第二流体Bは、第二流路Rbの第一領域213a,313aでの流通抵抗を受ける。これにより、第二流体Bは、そのまま最短ルートを通過して第一領域213a,313aに進入しにくくなるため、後続の第二流体Bは、第二方向に広がったり、最短ルートよりも距離が長い別ルートを通ったりすることになる。 In this case as well, there is a second fluid B that tries to pass through the shortest route, but in the present embodiment, the flow resistance in the range corresponding to the first regions 213a and 313a corresponds to the second regions 213b and 313b. Since it is larger than the flow resistance in the range, the second fluid B that reaches the range corresponding to the first regions 213a and 313a first receives the flow resistance in the first regions 213a and 313a of the second flow path Rb. .. As a result, the second fluid B passes through the shortest route as it is, and it becomes difficult to enter the first regions 213a and 313a. Therefore, the subsequent second fluid B spreads in the second direction or has a longer distance than the shortest route. You will have to take another long route.

その結果、第二流体Bは、第二流路Rbにおける第二領域213b,313bと対応する範囲に充満し、第一領域213a,313aと対応する範囲全域又は略全域に進入する。 As a result, the second fluid B fills the range corresponding to the second regions 213b and 313b in the second flow path Rb, and enters the entire range or substantially the entire range corresponding to the first regions 213a and 313a.

この状態において、一方の第二連通路Rb1から主伝熱領域212,312までの距離が最短となる最短ルートを通る第二流体Bが、最短ルートよりも距離が長い別ルートを通る第二流体Bよりも先行していたとしても、本実施形態においては、主伝熱領域212,312と対応する範囲での流通抵抗が第一領域213a,313aと対応する範囲での流通抵抗よりも大きいため、先行して主伝熱領域212,312と対応する範囲に到達した第二流体Bは、第二流路Rbの主伝熱領域212,312での流通抵抗を受け、そのまま最短ルートを通過して主伝熱領域212,312に進入しにくくなる。 In this state, the second fluid B passing through the shortest route having the shortest distance from one of the second communication passages Rb1 to the main heat transfer regions 212 and 312 passes through another route having a longer distance than the shortest route. Even if it precedes B, in the present embodiment, the flow resistance in the range corresponding to the main heat transfer regions 212 and 312 is larger than the flow resistance in the range corresponding to the first regions 213a and 313a. The second fluid B, which has reached the range corresponding to the main heat transfer regions 212 and 312 in advance, receives the flow resistance in the main heat transfer regions 212 and 312 of the second flow path Rb and passes through the shortest route as it is. Therefore, it becomes difficult to enter the main heat transfer areas 212 and 312.

これにより、最短ルートよりも距離が長い別ルートを通った第二流体Bが、最短ルートを通る第二流体Bに対して追いついた状態になり、第二流路Rbにおける第一領域213a,313aと対応する範囲にある第二流体Bは、主伝熱領域212,312と対応する範囲全域又は略全域に対してバランスをとった状態で進入する。 As a result, the second fluid B passing through another route having a longer distance than the shortest route has caught up with the second fluid B passing through the shortest route, and the first regions 213a and 313a in the second flow path Rb are in a state of catching up. The second fluid B in the range corresponding to the above is entered in a balanced state with respect to the entire range or substantially the entire range corresponding to the main heat transfer regions 212 and 312.

そして、第二流体Bは、主伝熱領域212,312と対応する範囲で第二方向に流通し、他方の副伝熱領域213,313の第一領域213a,313aに到達する。上述の如く、第一領域213a,313aと対応する範囲の流通抵抗よりも主伝熱領域212,312と対応する範囲の流通抵抗の方が大きい(主伝熱領域212,312と対応する範囲の流通抵抗よりも第一領域213a,313aと対応する範囲の流通抵抗の方が小さい)ため、主伝熱領域212,312と対応する範囲を通過した第二流体Bは、他方の副伝熱領域213,313の第一領域213a,313aと対応する範囲を円滑に流通する。 Then, the second fluid B flows in the second direction within a range corresponding to the main heat transfer regions 212 and 312, and reaches the first regions 213a and 313a of the other sub heat transfer regions 213 and 313. As described above, the distribution resistance in the range corresponding to the main heat transfer regions 212 and 312 is larger than the distribution resistance in the range corresponding to the first regions 213a and 313a (the range corresponding to the main heat transfer regions 212 and 312). Since the flow resistance in the range corresponding to the first regions 213a and 313a is smaller than the flow resistance), the second fluid B passing through the range corresponding to the main heat transfer regions 212 and 312 is in the other sub heat transfer region. The range corresponding to the first regions 213a and 313a of 213 and 313 is smoothly distributed.

また、第二領域213b,313bと対応する範囲の流通抵抗よりも第一領域213a,313aと対応する範囲の流通抵抗の方が大きい(第一領域213a,313aと対応する範囲の流通抵抗よりも第二領域213b,313bと対応する範囲の流通抵抗の方が小さい)ため、ここでも第二流体Bは、円滑に第二領域213b,313bと対応する範囲を通過して他方の第二連通路Rb2に流出する。 Further, the distribution resistance in the range corresponding to the first regions 213a and 313a is larger than the distribution resistance in the range corresponding to the second regions 213b and 313b (compared to the distribution resistance in the range corresponding to the first regions 213a and 313a). Since the flow resistance in the range corresponding to the second regions 213b and 313b is smaller), the second fluid B also smoothly passes through the range corresponding to the second regions 213b and 313b and the other second continuous passage. It flows out to Rb2.

このように、第一流路Raを流通する第一流体Aと、第二流路Rbを流通する第二流体Bとは、伝熱プレート2,3(伝熱領域200,210,300,310)を挟んで間接的に対向するため、伝熱プレート2,3(伝熱領域200,210,300,310)を介して互いに熱交換する。 As described above, the first fluid A flowing through the first flow path Ra and the second fluid B flowing through the second flow path Rb are the heat transfer plates 2 and 3 (heat transfer regions 200, 210, 300, 310). Since they indirectly face each other with the heat transfer plate 2, 3 (heat transfer regions 200, 210, 300, 310), they exchange heat with each other.

本実施形態において、第一流路Raを画定する伝熱プレート2,3(第一面Sa同士を対向させて隣り合う伝熱プレート2,3)は、伝熱領域200,300全域で互いの凸条204b,205b,206b,304b,305b,306b同士を交差衝合させ、第二流路Rbを画定する伝熱プレート2,3(第二面Sb同士を対向させて隣り合う伝熱プレート2,3)は、伝熱領域210,310全域で互いの凸条214b,215b,216b,314b,315b,316b同士を交差衝合させる。 In the present embodiment, the heat transfer plates 2 and 3 (the heat transfer plates 2 and 3 adjacent to each other with the first surfaces Sa facing each other) defining the first flow path Ra are convex to each other over the entire heat transfer regions 200 and 300. Heat transfer plates 2 and 3 (second surface Sbs facing each other and adjacent to each other) 2 and 3 for crossing and colliding the strips 204b, 205b, 206b, 304b, 305b and 306b to define the second flow path Rb In 3), the protrusions 214b, 215b, 216b, 314b, 315b, and 316b cross each other over the entire heat transfer regions 210 and 310.

すなわち、第一流路Raを画定する伝熱プレート2,3(第一面Sa同士を対向させて隣り合う伝熱プレート2,3)は、伝熱領域200,300の主伝熱領域202,302の凸条206b,306b同士、副伝熱領域203,303の凸条204b,205b,304b,305b同士(第一領域203a,303aの凸条204b,304b同士、第二領域203b,303bの凸条205b,305b同士)を交差衝合させ、第二流路Rbを画定する伝熱プレート2,3(第二面Sb同士を対向させて隣り合う伝熱プレート2,3)は、伝熱領域210,310の主伝熱領域212,312の凸条216b,316b同士、副伝熱領域213,313の凸条214b,215b,314b,315b同士(第一領域213a,313aの凸条214b,314b同士、第二領域213b,313bの凸条215b,315b同士)を交差衝合させる。 That is, the heat transfer plates 2 and 3 (the heat transfer plates 2 and 3 adjacent to each other with the first surfaces Sa facing each other) defining the first flow path Ra are the main heat transfer regions 202 and 302 of the heat transfer regions 200 and 300. Convex 206b, 306b, and convexes 204b, 205b, 304b, 305b of the sub-heat transfer regions 203, 303 (convex 204b, 304b of the first regions 203a, 303a, convex strips 204b, 304b of the second region 203b, 303b). The heat transfer plates 2 and 3 (the heat transfer plates 2 and 3 adjacent to each other with the second surfaces Sb facing each other) are the heat transfer regions 210. , 310 ridges 216b, 316b of the main heat transfer regions 212, 312, ridges 214b, 215b, 314b, 315b of the sub heat transfer regions 213, 313 (between the ridges 214b, 314b of the first regions 213a, 313a). , The ridges 215b, 315b of the second region 213b, 313b) are crossed and collided.

これにより、第一流路Ra内を流通する第一流体Aの流れを伝熱領域200,300と対応する範囲全域で乱すとともに、第二流路Rb内を流通する第二流体Bの流れを伝熱領域210,310と対応する範囲全域で乱すことになり、第一流体Aと第二流体Bとの熱交換性能が高まる。 As a result, the flow of the first fluid A flowing in the first flow path Ra is disturbed in the entire range corresponding to the heat transfer regions 200 and 300, and the flow of the second fluid B flowing in the second flow path Rb is transmitted. It will be disturbed in the entire range corresponding to the thermal regions 210 and 310, and the heat exchange performance between the first fluid A and the second fluid B will be improved.

以上のように、プレート式熱交換器1は、第一方向に重ね合わされた複数の伝熱プレート2,3を備え、複数の伝熱プレート2,3のそれぞれは、第一流体Aを流通させる第一流路Raを画定する第一流路画定領域20,30を含む第一面Saと、該第一面Saの反対側の第二面Sbであって、第二流体Bを流通させる第二流路Rbを画定する第二流路画定領域21,31を含む第二面Sbとを有するとともに、それぞれが第一流路画定領域20,30内で第一方向に貫通し且つ第一方向と直交する第二方向に間隔をあけて配置された一対の第一貫通孔22,32であって、それぞれが第一方向に延びて第一流路Raのみ連通する第一連通路Ra1,Ra2を形成する一対の第一貫通孔22,32と、それぞれが第二流路画定領域21,31内で第一方向に貫通し且つ第二方向に間隔をあけて配置された一対の第二貫通孔23,33であって、それぞれが第一方向に延びて第二流路Rbのみ連通する第二連通路Rb1,Rb2を形成する一対の第二貫通孔23,33とを有し、第一流路画定領域20,30及び第二流路画定領域21,31は、第一流体Aと第二流体Bとを熱交換させる伝熱領域200,210,300,310であって、第一方向で互いに重なる伝熱領域200,210,300,310を含み、伝熱領域200,210,300,310は、伝熱プレート2,3の第二方向に延びる縦中心線CL1と第一方向及び第二方向と直交する第三方向に延びる横中心線CL2との交点を含む主伝熱領域202,212,302,312と、第二方向で主伝熱領域202,212,302,312を挟む一対の副伝熱領域203,213,303,313であって、主伝熱領域202,212,302,312から遠ざかるにつれて第三方向の寸法が小さくなる一対の副伝熱領域203,213,303,313とを含み、一対の副伝熱領域203,213,303,313のそれぞれは、第二方向で主伝熱領域202,212,302,312に繋がる第一領域203a,213a,303a,313aと、第二方向で第一領域203a,213a,303a,313aに繋がる第二領域203b,213b,303b,313bであって、第一領域203a,213a,303a,313aから遠ざかるにつれて第三方向の寸法が小さくなる第二領域203b,213b,303b,313bとを含み、第一流路Ra及び第二流路Rbのそれぞれにおいて、第二領域203b,213b,303b,313bと対応する範囲での流通抵抗よりも第一領域203a,213a,303a,313aと対応する範囲での流通抵抗が大きく、且つ第一領域203a,213a,303a,313aと対応する範囲での流通抵抗よりも主伝熱領域202,212,302,312と対応する範囲での流通抵抗が大きくなるように構成される。 As described above, the plate heat exchanger 1 includes a plurality of heat transfer plates 2 and 3 stacked in the first direction, and each of the plurality of heat transfer plates 2 and 3 circulates the first fluid A. A first surface Sa including the first flow path defining areas 20 and 30 defining the first flow path Ra, and a second surface Sb on the opposite side of the first surface Sa, through which the second fluid B flows. It has a second surface Sb including the second flow path demarcation areas 21 and 31 that demarcate the path Rb, and each penetrates the first flow path demarcation area 20 and 30 in the first direction and is orthogonal to the first direction. A pair of first through holes 22 and 32 arranged at intervals in the second direction, each forming a first series of passages Ra1 and Ra2 extending in the first direction and communicating only with the first flow path Ra. The first through holes 22, 32 of the above, and a pair of second through holes 23, 33, each of which penetrates in the first direction and is spaced apart in the second direction within the second flow path demarcation regions 21, 31. The first flow path defining region 20 has a pair of second through holes 23, 33, each of which extends in the first direction and forms the second communication passages Rb1 and Rb2 communicating with only the second flow path Rb. , 30 and the second flow path demarcating regions 21, 31 are heat transfer regions 200, 210, 300, 310 for heat exchange between the first fluid A and the second fluid B, and heat transfer regions overlapping each other in the first direction. The heat transfer regions 200, 210, 300, 310 include the regions 200, 210, 300, 310, and the heat transfer regions 200, 210, 300, 310 are orthogonal to the vertical center line CL1 extending in the second direction of the heat transfer plates 2 and 3 in the first and second directions. A pair of sub-heat transfer regions sandwiching the main heat transfer region 202, 212, 302, 312 including the intersection with the horizontal center line CL2 extending in the third direction and the main heat transfer region 202, 212, 302, 312 in the second direction. 203,213,303,313, including a pair of sub-heat transfer regions 203,213,303,313 whose dimensions in the third direction decrease as the distance from the main heat transfer regions 202,212, 302,312 increases. Each of the pair of sub-heat transfer regions 203, 213, 303, 313 is the first region 203a, 213a, 303a, 313a connected to the main heat transfer regions 202, 212, 302, 312 in the second direction, and in the second direction. The second regions 203b, 213b, 303b, 313b connected to the first regions 203a, 213a, 303a, 313a, and the second region whose dimensions in the third direction become smaller as the distance from the first regions 203a, 213a, 303a, 313a increases. Including 203b, 213b, 303b, 313b, first-class In each of the road Ra and the second flow path Rb, the distribution resistance in the range corresponding to the first region 203a, 213a, 303a, 313a is higher than the distribution resistance in the range corresponding to the second region 203b, 213b, 303b, 313b. Is large, and the distribution resistance in the range corresponding to the main heat transfer regions 202, 212, 302, 312 is larger than the distribution resistance in the range corresponding to the first regions 203a, 213a, 303a, 313a. To.

上記構成によれば、一方の第一連通路Ra1から第一流路Raに流入した第一流体Aは、流通抵抗の小さな第二領域203b,303bと対応した範囲を優先的に流通し、第二領域203b,303bと対応する範囲全域又は略全域に広がる。そして、第一流体Aは、第一領域203a,303aの流通抵抗によって、最短ルートで第一領域203a,303aに進入しにくくなるため、後続の第一流体Aは、第二方向に広がったり、最短ルートよりも距離が長い別ルートを通ったりすることになる結果、第一流路Raにおける第二領域203b,303bと対応する範囲に充満し、第一領域203a,303aと対応する範囲全域又は略全域に流入する。 According to the above configuration, the first fluid A flowing into the first flow path Ra from one of the first series passages Ra preferentially circulates in the range corresponding to the second regions 203b and 303b having a small flow resistance, and the second It extends to the entire range or substantially the entire range corresponding to the regions 203b and 303b. Then, the first fluid A is less likely to enter the first regions 203a and 303a by the shortest route due to the flow resistance of the first regions 203a and 303a, so that the subsequent first fluid A spreads in the second direction. As a result of passing through another route having a longer distance than the shortest route, the range corresponding to the second regions 203b and 303b in the first flow path Ra is filled, and the entire range corresponding to the first regions 203a and 303a or abbreviated. It flows into the whole area.

そして、最短ルートを通る第一流体Aが、最短ルートよりも距離が長い別ルートを通る第一流体Aよりも先行していたとしても、主伝熱領域202,302と対応する範囲での流通抵抗により、先行して主伝熱領域202,302と対応する範囲に到達した第一流体Aは、第一流路Raの主伝熱領域202,302での流通抵抗を受け、そのまま最短ルートを通過して主伝熱領域202,302と対応した範囲に流入しにくくなる。 Even if the first fluid A passing through the shortest route precedes the first fluid A passing through another route having a longer distance than the shortest route, it is distributed within the range corresponding to the main heat transfer regions 202 and 302. The first fluid A, which has reached the range corresponding to the main heat transfer regions 202 and 302 in advance due to the resistance, receives the flow resistance in the main heat transfer regions 202 and 302 of the first flow path Ra and passes through the shortest route as it is. Therefore, it becomes difficult for the fluid to flow into the range corresponding to the main heat transfer regions 202 and 302.

その結果、最短ルートよりも距離が長い別ルートを通った第一流体Aが、最短ルートを通る第一流体Aに対して追いついた或いは略追いついた状態になり、第一流路Raにおける第一領域203a,303aと対応する範囲にある第一流体Aは、主伝熱領域202,302と対応する範囲全域又は略全域に対してバランスをとった状態で進入し、該主伝熱領域202,302と対応する範囲を第二方向に流通し、他方の副伝熱領域203,303と対応した範囲を介して他方の第一連通路Ra2に流出する。 As a result, the first fluid A passing through another route having a longer distance than the shortest route has caught up with or has almost caught up with the first fluid A passing through the shortest route, and the first region in the first flow path Ra. The first fluid A in the range corresponding to 203a and 303a enters in a balanced state with respect to the entire range or substantially the entire range corresponding to the main heat transfer regions 202 and 302, and enters the main heat transfer regions 202 and 302 in a balanced state. It circulates in the second direction in the range corresponding to the above, and flows out to the other first series passage Ra2 through the range corresponding to the other sub-heat transfer regions 203 and 303.

また、一方の第二連通路Rb1から第二流路Rbに流入した第二流体Bは、流通抵抗の小さな第二領域213b,313bと対応した範囲を優先的に流通し、第二領域213b,313bと対応する範囲全域又は略全域に広がる。そして、第二流体Bは、第一領域213a,313aの流通抵抗によって、最短ルートで第一領域213a,313aに進入しにくくなるため、後続の第二流体Bは、第二方向に広がったり、最短ルートよりも距離が長い別ルートを通ったりすることになる結果、第二流路Rbにおける第二領域213b,313bと対応する範囲に充満し、第一領域213a,313aと対応する範囲全域又は略全域に流入する。 Further, the second fluid B flowing into the second flow path Rb from one of the second continuous passages Rb1 preferentially flows in the range corresponding to the second regions 213b and 313b having a small flow resistance, and the second region 213b, It extends to the entire range or substantially the entire range corresponding to 313b. Then, the second fluid B is less likely to enter the first region 213a, 313a by the shortest route due to the flow resistance of the first region 213a, 313a, so that the subsequent second fluid B spreads in the second direction. As a result of passing through another route having a longer distance than the shortest route, the range corresponding to the second regions 213b and 313b in the second flow path Rb is filled, and the entire range corresponding to the first regions 213a and 313a or the entire range or It flows into almost the entire area.

そして、最短ルートを通る第二流体Bが、最短ルートよりも距離が長い別ルートを通る第二流体Bよりも先行していたとしても、主伝熱領域212,312と対応する範囲での流通抵抗により、先行して主伝熱領域212,312と対応する範囲に到達した第二流体Bは、第二流路Rbの主伝熱領域212,312での流通抵抗を受け、そのまま最短ルートを通過して主伝熱領域212,312に流入しにくくなる。 Then, even if the second fluid B passing through the shortest route precedes the second fluid B passing through another route having a longer distance than the shortest route, it is distributed within the range corresponding to the main heat transfer regions 212 and 312. The second fluid B, which has reached the range corresponding to the main heat transfer regions 212 and 312 in advance due to the resistance, receives the flow resistance in the main heat transfer regions 212 and 312 of the second flow path Rb and takes the shortest route as it is. It becomes difficult to pass through and flow into the main heat transfer regions 212 and 312.

その結果、最短ルートよりも距離が長い別ルートを通った第二流体Bが、最短ルートを通る第二流体Bに対して追いついた或いは略追いついた状態になり、第二流路Rbにおける第一領域213a,313aと対応する範囲にある第二流体Bは、主伝熱領域212,312と対応する範囲全域又は略全域に対してバランスをとった状態で進入し、該主伝熱領域212,312と対応する範囲を第二方向に流通し、他方の副伝熱領域213,313と対応した範囲を介して他方の第二連通路Rb2に流出する。 As a result, the second fluid B passing through another route having a longer distance than the shortest route has caught up with or has almost caught up with the second fluid B passing through the shortest route, and the first in the second flow path Rb. The second fluid B in the range corresponding to the regions 213a and 313a enters in a balanced state with respect to the entire range or substantially the entire range corresponding to the main heat transfer regions 212 and 312, and the main heat transfer regions 212, It circulates in the second direction in the range corresponding to 312, and flows out to the other second communication passage Rb2 through the range corresponding to the other sub-heat transfer regions 213 and 313.

これにより、本実施形態に係るプレート式熱交換器1では、流路幅が最大となる範囲(主伝熱領域202,212,302,312と対応する範囲)での熱交換効率を高めることができるという優れた効果を奏し得る。 As a result, in the plate heat exchanger 1 according to the present embodiment, the heat exchange efficiency can be improved in the range where the flow path width is maximum (the range corresponding to the main heat transfer regions 202, 212, 302, 312). It can have an excellent effect of being able to do it.

本実施形態において、第一流路画定領域20,30の伝熱領域200,300には、複数の凹部204a,205a,206a,304a,305a,306a及び凸部204b,205b,206b,304b,305b,306bが形成されるとともに、第二流路画定領域21,31の伝熱領域210,310には、第一流路画定領域20,30における伝熱領域200,300の凹部204a,205a,206a,304a,305a,306aと表裏の関係にある凸部214b,215b,216b,314b,315b,316b及び第一流路画定領域20,30における伝熱領域200,300の凸部204b,205b,206b,304b,305b,306bと表裏の関係にある凹部214a,215a,216a,314a,315a,316aが形成され、第一流路画定領域20,30及び第二流路画定領域21,31のそれぞれの伝熱領域200,210,300,310において、凹部204a,205a,206a,214a,215a,216a,304a,305a,306a,314a,315a,316aと凸部204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bとが所定方向で交互に配置され、第二領域203b,213b,303b,313b内の凹部205a,215a,305a,315aを挟んで隣り合う凸部205b,215b,305b,315b同士の間隔が、第一領域203a,213a,303a,313a内の凹部204a,214a,304a,314aを挟んで隣り合う凸部204b,214b,304b,314b同士の間隔よりも広く、第一領域203a,213a,303a,313a内の凹部204a,214a,304a,314aを挟んで隣り合う凸部204b,214b,304b,314b同士の間隔が、主伝熱領域202,212,302,312内の凹部206a,216a,306a,316aを挟んで隣り合う凸部206b,216b,306b,316b同士の間隔よりも広く設定されている。 In the present embodiment, the heat transfer regions 200 and 300 of the first flow path demarcation regions 20 and 30 have a plurality of recesses 204a, 205a, 206a, 304a, 305a, 306a and protrusions 204b, 205b, 206b, 304b, 305b, Along with the formation of 306b, the heat transfer regions 210 and 310 of the second flow path demarcation areas 21 and 31 have recesses 204a, 205a, 206a and 304a of the heat transfer areas 200 and 300 in the first flow path demarcation areas 20 and 30. , 305a, 306a and the convex portions 214b, 215b, 216b, 314b, 315b, 316b and the convex portions 204b, 205b, 206b, 304b of the heat transfer regions 200, 300 in the first flow path demarcation regions 20, 30. Recesses 214a, 215a, 216a, 314a, 315a, 316a, which are in a front-to-back relationship with 305b and 306b, are formed, and heat transfer regions 200 of the first flow path demarcation areas 20 and 30 and the second flow path demarcation areas 21 and 31 are formed. , 210, 300, 310, concave portions 204a, 205a, 206a, 214a, 215a, 216a, 304a, 305a, 306a, 314a, 315a, 316a and convex portions 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b. , 306b, 314b, 315b, 316b are alternately arranged in a predetermined direction, and the convex portions 205b, 215b, 305b adjacent to each other with the recesses 205a, 215a, 305a, 315a in the second regions 203b, 213b, 303b, 313b interposed therebetween. , 315b are wider than the distance between the convex portions 204b, 214b, 304b, 314b adjacent to each other with the recesses 204a, 214a, 304a, 314a in the first region 203a, 213a, 303a, 313a sandwiched between the concave portions 204a, 214a, 304a, 314a. The distance between the convex portions 204b, 214b, 304b, 314b adjacent to each other across the recesses 204a, 214a, 304a, 314a in the regions 203a, 213a, 303a, 313a is within the main heat transfer regions 202, 212, 302, 312. It is set wider than the distance between the convex portions 206b, 216b, 306b, and 316b adjacent to each other with the concave portions 206a, 216a, 306a, and 316a interposed therebetween.

これにより、第一流路Ra及び第二流路Rbのそれぞれにおいて、主伝熱領域202,212,302,312及び副伝熱領域203,213,303,313(第一領域203a,213a,303a,313a及び第二領域203b,213b,303b,313b)のそれぞれの領域と対応する範囲に対し、凸条204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316b同士の間隔と対応した流通抵抗を付与することができる。 As a result, in each of the first flow path Ra and the second flow path Rb, the main heat transfer regions 202, 212, 302, 312 and the sub heat transfer regions 203, 213, 303, 313 (first region 203a, 213a, 303a, Convex lines 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b, 316b with respect to the respective regions of 313a and the second regions 203b, 213b, 303b, 313b). It is possible to impart a distribution resistance corresponding to the interval of.

特に、本実施形態において、主伝熱領域202,212,302,312、副伝熱領域203,213,303,313の第一領域203a,213a,303a,313a、及び副伝熱領域203,213,303,313の第二領域203b,213b,303b,313bにある凹部204a,205a,206a,214a,215a,216a,304a,305a,306a,314a,315a,316a及び凸部204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bは、該凹部204a,205a,206a,214a,215a,216a,304a,305a,306a,314a,315a,316aと該凸部204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bとが交互に並ぶ所定方向と直交する方向に延びる凹条及び凸条であり、隣り合う伝熱プレート2,3の各領域にある凸条204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316b同士が交差衝合しているため、第一流路Raで第一流体Aの流れが乱れるとともに、第二流路Rbで第二流体Bの流れが乱れる。これにより、第一流体Aと第二流体Bとの熱交換効率が高められる。 In particular, in the present embodiment, the main heat transfer regions 202, 212, 302, 312, the first regions 203a, 213a, 303a, 313a of the sub heat transfer regions 203, 213, 303, 313, and the sub heat transfer regions 203, 213. , 303, 313, second regions 203b, 213b, 303b, 313b, recesses 204a, 205a, 206a, 214a, 215a, 216a, 304a, 305a, 306a, 314a, 315a, 316a and convex portions 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b, 316b are the recesses 204a, 205a, 206a, 214a, 215a, 216a, 304a, 305a, 306a, 314a, 315a, 316a and the protrusions 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b, 316b are concave and convex extending in a direction orthogonal to a predetermined direction in which they are alternately arranged, and adjacent heat transfer plates 2, 3 Since the ridges 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b, 316b in each region of the above intersect and collide with each other, the first fluid A in the first flow path Ra As the flow is disturbed, the flow of the second fluid B is disturbed in the second flow path Rb. As a result, the heat exchange efficiency between the first fluid A and the second fluid B is enhanced.

本実施形態において、一対の第一貫通孔22,32と一対の第二貫通孔23,33とは、第三方向に間隔をあけて配置され、第二領域203b,213b,303b,313bは、第三方向で隣り合う第一貫通孔22,32と第二貫通孔23,33との間に配置され、第一領域203a,213a,303a,313aは、第三方向で隣り合う第一貫通孔22,32及び第二貫通孔23,33と主伝熱領域202,212,302,312との間に配置される。 In the present embodiment, the pair of first through holes 22, 32 and the pair of second through holes 23, 33 are arranged at intervals in the third direction, and the second regions 203b, 213b, 303b, 313b are formed. The first through holes 203a, 213a, 303a, 313a are arranged between the first through holes 22, 32 adjacent to each other in the third direction and the second through holes 23, 33, and the first through holes 203a, 213a, 303a, 313a are adjacent to each other in the third direction. It is arranged between 22, 32 and the second through holes 23, 33 and the main heat transfer regions 202, 212, 302, 312.

かかる構成によれば、第一貫通孔22,32(第一連通路Ra1)から第一流路Raに流入した第一流体Aを、第一流路Raにおける上流域となる第二領域203b,303bに向けて優先的に流通させることができ、最短ルートだけでなく最短ルートよりも距離の長い別のルートにも第一流体Aを流通させることができる。これにより、第一流路Raにおける第二領域203b,303bと対応する範囲に第一流体Aを充満させ、この第一流体Aを下流側に流通させることができる。また、第二貫通孔23,33(第二連通路Rb1)から第二流路Rbに流入した第二流体Bを、第二流路Rbにおける上流域となる第二領域213b,313bに向けて優先的に流通させることができ、最短ルートだけでなく最短ルートよりも距離の長い別のルートにも第二流体Bを流通させることができる。これにより、第二流路Rbにおける第二領域213b,313bの範囲に第二流体Bを充満させ、この第二流体Bを下流側に流通させることができる。 According to such a configuration, the first fluid A flowing into the first flow path Ra from the first through holes 22 and 32 (first series passage Ra1) is transferred to the second regions 203b and 303b which are upstream regions in the first flow path Ra. The first fluid A can be circulated not only to the shortest route but also to another route having a longer distance than the shortest route. As a result, the first fluid A can be filled in the range corresponding to the second regions 203b and 303b in the first flow path Ra, and the first fluid A can be circulated to the downstream side. Further, the second fluid B flowing into the second flow path Rb from the second through holes 23, 33 (second continuous passage Rb1) is directed toward the second regions 213b and 313b, which are upstream regions in the second flow path Rb. The second fluid B can be circulated preferentially, and the second fluid B can be circulated not only to the shortest route but also to another route having a longer distance than the shortest route. As a result, the second fluid B can be filled in the range of the second regions 213b and 313b in the second flow path Rb, and the second fluid B can be circulated to the downstream side.

なお、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で、適宜変更を加え得ることは勿論である。 It should be noted that the present invention is not limited to the above embodiment, and it is needless to say that modifications can be made as appropriate without departing from the gist of the present invention.

上記実施形態において、複数の伝熱プレート2,3が凹条204a,205a,206a,214a,215a,216a,304a,305a,306a,314a,315a,316a及び凸条204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bの形態(傾斜角度)を異にする二種類の伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)を含んだが、これに限定されない。例えば、複数の伝熱プレート2,3は、同一のもの(凹条204a,205a,206a,214a,215a,216a,304a,305a,306a,314a,315a,316a及び凸条204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bの形態(傾斜角度)が同一のもの)であってもよい。 In the above embodiment, the plurality of heat transfer plates 2, 3 have concave portions 204a, 205a, 206a, 214a, 215a, 216a, 304a, 305a, 306a, 314a, 315a, 316a and convex portions 204b, 205b, 206b, 214b, Two types of heat transfer plates 2, 3 (first heat transfer plate 2 and second heat transfer plate 3) having different forms (tilt angles) of 215b, 216b, 304b, 305b, 306b, 314b, 315b, 316b Included, but not limited to this. For example, the plurality of heat transfer plates 2, 3 are the same (concave lines 204a, 205a, 206a, 214a, 215a, 216a, 304a, 305a, 306a, 314a, 315a, 316a and convex lines 204b, 205b, 206b, The forms (inclination angles) of 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b, and 316b may be the same).

上記実施形態において、第一流路画定領域20,30及び第二流路画定領域21,31のそれぞれに含まれる主伝熱領域202,212,302,312、副伝熱領域203,213,303,313の第一領域203a,213a,303a,313a、及び第二領域203b,213b,303b,313bのそれぞれの凹部204a,205a,206a,214a,215a,216a,304a,305a,306a,314a,315a,316a及び凸部204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bが所定方向に延びる凹条及び凸条とされたが、これに限定されない。主伝熱領域202,212,302,312、副伝熱領域203,213,303,313の第一領域203a,213a,303a,313a、及び第二領域203b,213b,303b,313bの少なくとも何れか一つの領域の凹部204a,205a,206a,214a,215a,216a,304a,305a,306a,314a,315a,316a及び凸部204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bが、所定方向に延びる凹条及び凸条であってもよい。 In the above embodiment, the main heat transfer regions 202, 212, 302, 312 and the sub heat transfer regions 203, 213, 303, which are included in the first flow path demarcation areas 20 and 30 and the second flow path demarcation areas 21 and 31, respectively. Recesses 204a, 205a, 206a, 214a, 215a, 216a, 304a, 305a, 306a, 314a, 315a, respectively of the first region 203a, 213a, 303a, 313a and the second region 203b, 213b, 303b, 313b of 313, respectively. The 316a and the convex portions 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b, 316b are defined as concave and convex extending in a predetermined direction, but the present invention is not limited thereto. At least one of the first regions 203a, 213a, 303a, 313a of the main heat transfer regions 202, 212, 302, 312, the sub heat transfer regions 203, 213, 303, 313, and the second regions 203b, 213b, 303b, 313b. Recesses 204a, 205a, 206a, 214a, 215a, 216a, 304a, 305a, 306a, 314a, 315a, 316a and protrusions 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b in one area. , 315b, 316b may be concave and convex extending in a predetermined direction.

すなわち、主伝熱領域202,212,302,312、副伝熱領域203,213,303,313の第一領域203a,213a,303a,313a、及び第二領域203b,213b,303b,313bの何れかの凹部204a,205a,206a,214a,215a,216a,304a,305a,306a,314a,315a,316a及び凸部204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bが、所定方向の長さを有さない(所定方向に延びていない)窪み及び突起であってもよいし、主伝熱領域202,212,302,312、副伝熱領域203,213,303,313の第一領域203a,213a,303a,313a、及び第二領域203b,213b,303b,313bのそれぞれの凹部204a,205a,206a,214a,215a,216a,304a,305a,306a,314a,315a,316a及び凸部204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bが、所定方向の長さを有さない(所定方向に延びていない)窪み及び突起であってもよい。 That is, any of the main heat transfer regions 202, 212, 302, 312, the first regions 203a, 213a, 303a, 313a of the sub heat transfer regions 203, 213, 303, 313, and the second regions 203b, 213b, 303b, 313b. The recesses 204a, 205a, 206a, 214a, 215a, 216a, 304a, 305a, 306a, 314a, 315a, 316a and the protrusions 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b. , 316b may be recesses and protrusions having no length in a predetermined direction (not extending in a predetermined direction), main heat transfer regions 202, 212, 302, 312, sub heat transfer regions 203, 213. , 303, 313 first regions 203a, 213a, 303a, 313a, and second regions 203b, 213b, 303b, 313b, respectively, recesses 204a, 205a, 206a, 214a, 215a, 216a, 304a, 305a, 306a, 314a. , 315a, 316a and convex portions 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b, 316b do not have a length in a predetermined direction (do not extend in a predetermined direction). And may be protrusions.

これらの何れの場合においても、第一流路Ra及び第二流路Rbのそれぞれにおいて、上記実施形態と同様に、各領域と対応する範囲での流通抵抗を異ならせるために、第二領域203b,213b,303b,313bにある凹部205a,215a,305a,315aを挟んで隣り合う凸部205b,215b,305b,315b同士の間隔が、第一領域203a,213a,303a,313aにある凹部204a,214a,304a,314aを挟んで隣り合う凸部204b,214b,304b,314b同士の間隔よりも広く、第一領域203a,213a,303a,313aにある凹部204a,214a,304a,314aを挟んで隣り合う凸部204b,214b,304b,314b同士の間隔が、主伝熱領域202,212,302,312内にある凹部206a,216a,306a,316aを挟んで隣り合う凸部206b,216b,306b,316b同士の間隔よりも広く設定されることは勿論である。 In any of these cases, in each of the first flow path Ra and the second flow path Rb, as in the above embodiment, in order to make the flow resistance in the range corresponding to each region different, the second region 203b, The distance between the convex portions 205b, 215b, 305b, 315b adjacent to each other across the concave portions 205a, 215a, 305a, 315a in the recesses 205a, 303b, 313b is the recesses 204a, 214a in the first region 203a, 213a, 303a, 313a. , 304a, 314a are wider than the distance between the convex portions 204b, 214b, 304b, 314b adjacent to each other, and the concave portions 204a, 214a, 304a, 314a in the first regions 203a, 213a, 303a, 313a are adjacent to each other. The distance between the convex portions 204b, 214b, 304b, 314b is adjacent to each other with the concave portions 206a, 216a, 306a, 316a in the main heat transfer regions 202, 212, 302, 312 sandwiched between the convex portions 206b, 216b, 306b, 316b. Of course, it is set wider than the distance between them.

上記実施形態において、第一流路Ra及び第二流路Rbのそれぞれにおいて、各領域と対応する範囲での流通抵抗を異ならせるために、伝熱プレート2,3の伝熱領域200,210,300,310に含まれる主伝熱領域202,212,302,312、副伝熱領域203,213,303,313(第一領域203a,213a,303a,313a、第二領域203b,213b,303b,313b)に複数の凹部(凹条)204a,205a,206a,214a,215a,216a,304a,305a,306a,314a,315a,316a及び複数の凸部(凸条)204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316bが形成されたが、これに限定されない。例えば、隣り合う伝熱プレート2,3の各領域同士の間隔(主伝熱領域202,212,302,312同士の間隔、第一領域203a,213a,303a,313a同士の間隔、第二領域203b,213b,303b,313b同士の間隔)を異ならせ、第一流路Ra及び第二流路Rbのそれぞれにおいて、各領域と対応する範囲での流通抵抗を異ならしてもよい。また、各領域間に流体の流通抵抗を付与する抵抗部材を配置してもよい。 In the above embodiment, in order to make the flow resistance in the range corresponding to each region different in each of the first flow path Ra and the second flow path Rb, the heat transfer regions 200, 210, 300 of the heat transfer plates 2 and 3 are used. , 310, main heat transfer regions 202, 212, 302, 312, sub heat transfer regions 203, 213, 303, 313 (first region 203a, 213a, 303a, 313a, second region 203b, 213b, 303b, 313b). ) Into a plurality of recesses (concave) 204a, 205a, 206a, 214a, 215a, 216a, 304a, 305a, 306a, 314a, 315a, 316a and a plurality of protrusions (convex) 204b, 205b, 206b, 214b, 215b. , 216b, 304b, 305b, 306b, 314b, 315b, 316b were formed, but not limited to this. For example, the spacing between the regions of the adjacent heat transfer plates 2 and 3 (the spacing between the main heat transfer regions 202, 212, 302, 312, the spacing between the first regions 203a, 213a, 303a, 313a, the second region 203b). , 213b, 303b, 313b) may be different, and the flow resistance in the range corresponding to each region may be different in each of the first flow path Ra and the second flow path Rb. Further, a resistance member that imparts fluid flow resistance may be arranged between the regions.

上記実施形態において、第三方向の一端側に一対の第一連通路Ra1,Ra2を形成し、第三方向の他端側に一対の第二連通路Rb1,Rb2を形成することで、第一流路Ra及び第二流路Rbのそれぞれにおいて流体(第一流体A、第二流体B)の流れを台形流にしたが、これに限定されない。例えば、四角形状の伝熱プレート2,3の対角位置に一対の第一貫通孔22,32(第一連通路Ra1,Ra2となる貫通孔)を形成し、該伝熱プレート2,3の異なる対角位置に一対の第二貫通孔23,33(第二連通路Rb1,Rb2となる貫通孔)を形成することで、第一流路Ra及び第二流路Rbのそれぞれにおいて流体(第一流体A、第二流体B)の流れを斜交流にしてもよい。 In the above embodiment, a pair of first series passages Ra1 and Ra2 are formed on one end side in the third direction, and a pair of second series passages Rb1 and Rb2 are formed on the other end side in the third direction. The flow of the fluid (first fluid A, second fluid B) is trapezoidal in each of the path Ra and the second flow path Rb, but the flow is not limited to this. For example, a pair of first through holes 22 and 32 (through holes serving as the first series passages Ra1 and Ra2) are formed at diagonal positions of the square heat transfer plates 2 and 3, and the heat transfer plates 2 and 3 are formed. By forming a pair of second through holes 23, 33 (through holes that form the second continuous passages Rb1 and Rb2) at different diagonal positions, the fluid (first) is formed in each of the first flow path Ra and the second flow path Rb. The flow of the fluid A and the second fluid B) may be oblique alternating current.

上記実施形態において、隣り合う伝熱プレート2,3間にガスケット4を配置することで、伝熱プレート2,3間を封止し、第一流路Ra、第二流路Rb、第一連通路Ra1,Ra2、及び第二連通路Rb1,Rb2を形成したが、これに限定されない。例えば、隣り合う伝熱プレート2,3間をロウ付け或いは溶接によって封止し、第一流路Ra、第二流路Rb、第一連通路Ra1,Ra2、及び第二連通路Rb1,Rb2を形成してもよい。 In the above embodiment, by arranging the gasket 4 between the adjacent heat transfer plates 2 and 3, the heat transfer plates 2 and 3 are sealed, and the first flow path Ra, the second flow path Rb, and the first series passage are sealed. Ra1, Ra2, and the second communication passages Rb1 and Rb2 are formed, but the present invention is not limited thereto. For example, the adjacent heat transfer plates 2 and 3 are sealed by brazing or welding to form the first flow path Ra, the second flow path Rb, the first series passages Ra1 and Ra2, and the second series passages Rb1 and Rb2. You may.

上記実施形態において、一対の第一貫通孔22,32と一対の第二貫通孔23,33とが第三方向に間隔をあけて配置され、その間に副伝熱領域203,213,303,313の第二領域203b,213b,303b,313bが配置されたが、これに限定されない。例えば、一対の第一貫通孔22,32と一対の第二貫通孔23,33とが第三方向に間隔が狭い場合には、副伝熱領域203,213,303,313全域(第一領域203a,213a,303a,313a及び第二領域203b,213b,303b,313b)が第三方向に並ぶ第一貫通孔22,32と第二貫通孔23,33に対して第三方向で並ぶように配置されてもよい。 In the above embodiment, the pair of first through holes 22, 32 and the pair of second through holes 23, 33 are arranged at intervals in the third direction, and the subheat transfer regions 203, 213, 303, 313 are arranged between them. The second regions 203b, 213b, 303b, 313b of the above are arranged, but the present invention is not limited to this. For example, when the pair of first through holes 22, 32 and the pair of second through holes 23, 33 are closely spaced in the third direction, the entire sub-heat transfer regions 203, 213, 303, 313 (first region). 203a, 213a, 303a, 313a and the second regions 203b, 213b, 303b, 313b) are arranged in the third direction with respect to the first through holes 22, 32 and the second through holes 23, 33. It may be arranged.

1…プレート式熱交換器、2…第一伝熱プレート(伝熱プレート)、3…第二伝熱プレート(伝熱プレート)、4…ガスケット、4a…第一ガスケット、4b…第二ガスケット、4c…第三ガスケット、4d…第四ガスケット、5,6…エンドプレート、20,30…第一流路画定領域、21,31…第二流路画定領域、22,32…第一貫通孔、23,33…第二貫通孔、24,34…第一シール予定領域、25,35…第二シール予定領域、26,36…第三シール予定領域、27,37…第四シール予定領域、50…プレート本体、51…ノズル、200,210,300,310…伝熱領域、201,301…第一貫通孔形成領域、202,212,302,312…主伝熱領域、203,213,303,313…副伝熱領域、203a,213a,303a,313a…第一領域、203b,213b,303b,313b…第二領域、204a,205a,206a,214a,215a,216a,304a,305a,306a,314a,315a,316a…凹条(凹部)、204b,205b,206b,214b,215b,216b,304b,305b,306b,314b,315b,316b…凸条(凸部)、211,311…第二貫通孔形成領域、A…第一流体、B…第二流体、CL1…縦中心線、CL2…横中心線、Ra…第一流路、Ra1,Ra2…第一連通路、Rb…第二流路、Rb1,Rb2…第二連通路、Sa…第一面、Sb…第二面 1 ... Plate type heat exchanger, 2 ... First heat transfer plate (heat transfer plate), 3 ... Second heat transfer plate (heat transfer plate), 4 ... Gasket, 4a ... First gasket, 4b ... Second gasket, 4c ... Third gasket, 4d ... Fourth gasket, 5, 6 ... End plate, 20, 30 ... First flow path demarcation area, 21, 31 ... Second flow path demarcation area, 22, 32 ... First through hole, 23 , 33 ... 2nd through hole, 24,34 ... 1st seal planned area, 25,35 ... 2nd seal planned area, 26,36 ... 3rd seal planned area, 27,37 ... 4th sealed planned area, 50 ... Plate body, 51 ... Nozzle, 200, 210, 300, 310 ... Heat transfer region, 201, 301 ... First through hole forming region, 202, 212, 302, 312 ... Main heat transfer region, 203, 213, 303, 313 ... Secondary heat transfer region, 203a, 213a, 303a, 313a ... First region, 203b, 213b, 303b, 313b ... Second region, 204a, 205a, 206a, 214a, 215a, 216a, 304a, 305a, 306a, 314a, 315a, 316a ... Concave (concave), 204b, 205b, 206b, 214b, 215b, 216b, 304b, 305b, 306b, 314b, 315b, 316b ... Convex (convex), 211, 311 ... Second through hole formation Region, A ... first fluid, B ... second fluid, CL1 ... vertical center line, CL2 ... horizontal center line, Ra ... first flow path, Ra1, Ra2 ... first series passage, Rb ... second flow path, Rb1, Rb2 ... 2nd passage, Sa ... 1st surface, Sb ... 2nd surface

Claims (4)

第一方向に重ね合わされた複数の伝熱プレートを備え、
複数の伝熱プレートのそれぞれは、
第一流体を流通させる第一流路を画定する第一流路画定領域を含む第一面と、
該第一面の反対側の第二面であって、第二流体を流通させる第二流路を画定する第二流路画定領域を含む第二面とを有するとともに、
それぞれが第一流路画定領域内で第一方向に貫通し且つ第一方向と直交する第二方向に間隔をあけて配置された一対の第一貫通孔であって、それぞれが第一方向に延びて第一流路のみに連通する第一連通路を形成する一対の第一貫通孔と、
それぞれが第二流路画定領域内で第一方向に貫通し且つ第二方向に間隔をあけて配置された一対の第二貫通孔であって、それぞれが第一方向に延びて第二流路のみに連通する第二連通路を形成する一対の第二貫通孔とを有し、
第一流路画定領域及び第二流路画定領域は、第一流体と第二流体とを熱交換させる伝熱領域であって、第一方向で互いに重なる伝熱領域を含み、
伝熱領域は、
伝熱プレートの第二方向に延びる縦中心線と第一方向及び第二方向と直交する第三方向に延びる横中心線との交点を含む主伝熱領域と、
第二方向で主伝熱領域を挟む一対の副伝熱領域であって、主伝熱領域から遠ざかるにつれて第三方向の寸法が小さくなる一対の副伝熱領域とを含み、
一対の副伝熱領域のそれぞれは、
第二方向で主伝熱領域に繋がる第一領域と、
第二方向で第一領域に繋がる第二領域であって、第一領域から遠ざかるにつれて第三方向の寸法が小さくなる第二領域とを含み、
第一領域において、
凹条と凸条とが交互に配置されている凹凸列が第三方向に延び、
該凹凸列を構成する凹条と凸条とのそれぞれは、第二方向と第三方向のそれぞれに対して交差する方向に延び、
該凹凸列において隣り合う凹条と凸条とは互いに平行であり、
第二領域において、
凹条と凸条とが交互に配置されている凹凸列が第三方向に延び、
該凹凸列を構成する凹条と凸条とのそれぞれは、第二方向と第三方向のそれぞれに対して交差する方向に延び、
該凹凸列において隣り合う凹条と凸条とは互いに平行であり、
第一流路及び第二流路のそれぞれにおいて、第二領域と対応する範囲での流通抵抗よりも第一領域と対応する範囲での流通抵抗が大きく、且つ第一領域と対応する範囲での流通抵抗よりも主伝熱領域と対応する範囲での流通抵抗が大きくなるように構成されることを特徴とするプレート式熱交換器。
Equipped with multiple heat transfer plates stacked in the first direction
Each of the multiple heat transfer plates
A first surface containing a first flow path defining region that defines the first flow path through which the first fluid flows, and
It has a second surface opposite to the first surface, and has a second surface including a second flow path defining region that defines the second flow path through which the second fluid flows, and also has a second surface.
Each is a pair of first through holes that penetrate the first direction within the first flow path demarcation region and are spaced apart in the second direction that is orthogonal to the first direction, each extending in the first direction. A pair of first through holes forming a first series of passages communicating only with the first flow path,
Each is a pair of second through holes that penetrate in the first direction and are spaced apart in the second direction within the second flow path demarcation region, each extending in the first direction and the second flow path. It has a pair of second through holes that form a second passage that communicates only with
The first flow path demarcation region and the second flow path demarcation region are heat transfer regions that exchange heat between the first fluid and the second fluid, and include heat transfer regions that overlap each other in the first direction.
The heat transfer area is
The main heat transfer region including the intersection of the vertical center line extending in the second direction of the heat transfer plate and the horizontal center line extending in the first direction and the third direction orthogonal to the second direction,
A pair of sub-heat transfer regions sandwiching the main heat transfer region in the second direction, including a pair of sub-heat transfer regions whose dimensions in the third direction decrease as the distance from the main heat transfer region increases.
Each of the pair of secondary heat transfer areas
The first region, which connects to the main heat transfer region in the second direction,
A second region connected to the first region in the second direction, including a second region in which the dimension in the third direction becomes smaller as the distance from the first region increases.
In the first area
Concavo-convex rows in which concave and convex stripes are arranged alternately extend in the third direction,
Each of the concave and convex stripes constituting the uneven row extends in a direction intersecting with each of the second direction and the third direction.
In the uneven row, the concave and convex stripes adjacent to each other are parallel to each other.
In the second area
Concavo-convex rows in which concave and convex stripes are arranged alternately extend in the third direction,
Each of the concave and convex stripes constituting the uneven row extends in a direction intersecting with each of the second direction and the third direction.
In the uneven row, the concave and convex stripes adjacent to each other are parallel to each other.
In each of the first flow path and the second flow path, the distribution resistance in the range corresponding to the first region is larger than the distribution resistance in the range corresponding to the second region, and the distribution in the range corresponding to the first region. A plate-type heat exchanger characterized in that the distribution resistance in the range corresponding to the main heat transfer region is larger than the resistance.
第一流路画定領域の伝熱領域には、複数の凹及び凸が形成されるとともに、第二流路画定領域の伝熱領域には、第一流路画定領域における伝熱領域の凹と表裏の関係にある凸及び第一流路画定領域における伝熱領域の凸と表裏の関係にある凹が形成され、第一流路画定領域及び第二流路画定領域のそれぞれの伝熱領域において、凹と凸とが所定方向で交互に配置され、これら伝熱領域の複数の凹と複数の凸とは、第一領域に形成される複数の凹条及び複数の凸条と、第二領域に形成される複数の凹条及び複数の凸条と、主伝熱領域に形成される複数の凹条及び複数の凸条と、を含み、第二領域内の凹条を挟んで隣り合う凸条同士の間隔が、第一領域内の凹条を挟んで隣り合う凸条同士の間隔よりも広く、第一領域内の凹条を挟んで隣り合う凸条同士の間隔が、主伝熱領域内の凹条を挟んで隣り合う凸条同士の間隔よりも広く設定されている請求項1に記載のプレート式熱交換器。 A plurality of recesses and ridges are formed in the heat transfer region of the first flow path demarcation region, and the heat transfer region of the second flow path demarcation region has the recesses of the heat transfer region in the first flow path demarcation region. The ridges on the front and back and the ridges in the heat transfer region in the first flow path demarcation area are formed, and the heat transfer in the first flow path demarcation area and the second flow path demarcation area is formed. In the region, the concaves and convexes are alternately arranged in a predetermined direction, and the plurality of concaves and the plurality of convexes in these heat transfer regions are the plurality of concaves and the plurality of convexes formed in the first region. Concavities in the second region, including strips , a plurality of ridges and ridges formed in the second region, and a plurality of ridges and ridges formed in the main heat transfer region. The distance between adjacent ridges sandwiching the However, the plate-type heat exchanger according to claim 1, wherein the distance between the ridges adjacent to each other across the concave ridges in the main heat transfer region is set wider than the distance between the ridges. 主伝熱領域、副伝熱領域の第一領域、及び副伝熱領域の第二領域の少なくとも何れか一つの領域にある凹及び凸は、該凹と該凸とが交互に並ぶ所定方向と直交する方向に延び、隣り合う伝熱プレートの前記何れか一つの領域にある凸条同士が交差衝合している請求項2に記載のプレート式熱交換器。 Concavities and ridges in at least one of the main heat transfer region, the first region of the sub heat transfer region, and the second region of the sub heat transfer region have the dents and the ridges alternately. The plate heat exchanger according to claim 2, wherein the ridges extending in a direction orthogonal to a predetermined direction in which they are lined up and having protrusions in any one of the adjacent heat transfer plates intersect with each other. 一対の第一貫通孔と一対の第二貫通孔とは、第三方向に間隔をあけて配置され、第二領域は、第三方向で隣り合う第一貫通孔と第二貫通孔との間に配置され、第一領域は、第三方向で隣り合う第一貫通孔及び第二貫通孔と主伝熱領域との間に配置される請求項1乃至3の何れか1項に記載のプレート式熱交換器。 The pair of first through holes and the pair of second through holes are arranged at intervals in the third direction, and the second region is located between the first through holes and the second through holes adjacent to each other in the third direction. The plate according to any one of claims 1 to 3, wherein the first region is arranged between the first through hole and the second through hole adjacent to each other in the third direction and the main heat transfer region. Type heat exchanger.
JP2017224593A 2017-11-22 2017-11-22 Plate heat exchanger Active JP7018299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017224593A JP7018299B2 (en) 2017-11-22 2017-11-22 Plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017224593A JP7018299B2 (en) 2017-11-22 2017-11-22 Plate heat exchanger

Publications (2)

Publication Number Publication Date
JP2019095124A JP2019095124A (en) 2019-06-20
JP7018299B2 true JP7018299B2 (en) 2022-02-10

Family

ID=66971312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017224593A Active JP7018299B2 (en) 2017-11-22 2017-11-22 Plate heat exchanger

Country Status (1)

Country Link
JP (1) JP7018299B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3828489A1 (en) * 2019-11-26 2021-06-02 Alfa Laval Corporate AB Heat transfer plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022374A (en) 2000-07-07 2002-01-23 Hitachi Ltd Plate type heat exchanger and freezing air conditioning apparatus
JP2009500588A (en) 2005-07-04 2009-01-08 アルファ ラヴァル コーポレイト アクチボラゲット Heat exchange plate for plate-type heat exchanger, one set of heat exchange plate, and plate package
US20090025918A1 (en) 2007-07-25 2009-01-29 Hemant Kumar Flow moderator
JP2015536437A (en) 2012-10-30 2015-12-21 アルファ−ラヴァル・コーポレート・アーベー Heat transfer plate and flat plate heat exchanger comprising such a heat transfer plate
JP2017003173A (en) 2015-06-09 2017-01-05 株式会社日阪製作所 Heat transfer plate for plate type heat exchanger, and plate type heat exchanger having the same
JP2017518477A (en) 2014-06-18 2017-07-06 アルファ−ラヴァル・コーポレート・アーベー Heat transfer plate and plate heat exchanger including such a heat transfer plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE415928B (en) * 1979-01-17 1980-11-10 Alfa Laval Ab PLATTVERMEVEXLARE
JP3285243B2 (en) * 1993-02-22 2002-05-27 株式会社日阪製作所 Plate heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022374A (en) 2000-07-07 2002-01-23 Hitachi Ltd Plate type heat exchanger and freezing air conditioning apparatus
JP2009500588A (en) 2005-07-04 2009-01-08 アルファ ラヴァル コーポレイト アクチボラゲット Heat exchange plate for plate-type heat exchanger, one set of heat exchange plate, and plate package
US20090025918A1 (en) 2007-07-25 2009-01-29 Hemant Kumar Flow moderator
JP2015536437A (en) 2012-10-30 2015-12-21 アルファ−ラヴァル・コーポレート・アーベー Heat transfer plate and flat plate heat exchanger comprising such a heat transfer plate
JP2017518477A (en) 2014-06-18 2017-07-06 アルファ−ラヴァル・コーポレート・アーベー Heat transfer plate and plate heat exchanger including such a heat transfer plate
JP2017003173A (en) 2015-06-09 2017-01-05 株式会社日阪製作所 Heat transfer plate for plate type heat exchanger, and plate type heat exchanger having the same

Also Published As

Publication number Publication date
JP2019095124A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
KR102293517B1 (en) Heat exchanger with improved flow
US11118848B2 (en) Heat-exchanging plate, and plate heat exchanger using same
WO2015113496A1 (en) Board-type heat exchanger
KR102300848B1 (en) A plate heat exchanger comprising a heat transfer plate and a plurality of such heat transfer plates
US10113814B2 (en) Double dimple pattern heat exchanger
JP6823200B2 (en) Heat transfer plates, and heat exchangers with multiple such heat transfer plates
JP6121550B2 (en) Plate heat exchanger plate and plate heat exchanger
CN103868380A (en) Plate heat exchanger
WO2014155839A1 (en) Plate-type heat exchanger
JP7018299B2 (en) Plate heat exchanger
JP5947959B1 (en) Heat transfer plate for plate heat exchanger and plate heat exchanger equipped with the same
CN107525429A (en) For the heat exchanger plates of plate type heat exchanger and the plate type heat exchanger
KR20070061448A (en) Heat exchange plate
KR102514787B1 (en) heat transfer plate
JP6069425B2 (en) Plate heat exchanger
JP7100074B2 (en) Plate heat exchanger
WO2020045595A1 (en) Plate heat exchanger
JP7280798B2 (en) plate mixer
JP6118847B2 (en) Plate heat exchanger
JP6268045B2 (en) Plate heat exchanger
KR102638063B1 (en) heat transfer plate
KR102637998B1 (en) heat transfer plate
CN105026870B (en) Plate-type heat exchanger
JP5244162B2 (en) Plate heat exchanger
JP6235645B2 (en) Plate heat exchanger

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20171213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R150 Certificate of patent or registration of utility model

Ref document number: 7018299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150