JP7011608B2 - 3次元空間内の姿勢推定 - Google Patents
3次元空間内の姿勢推定 Download PDFInfo
- Publication number
- JP7011608B2 JP7011608B2 JP2018566492A JP2018566492A JP7011608B2 JP 7011608 B2 JP7011608 B2 JP 7011608B2 JP 2018566492 A JP2018566492 A JP 2018566492A JP 2018566492 A JP2018566492 A JP 2018566492A JP 7011608 B2 JP7011608 B2 JP 7011608B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- sparse points
- sparse
- group
- points
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 claims description 162
- 230000001052 transient effect Effects 0.000 claims description 27
- 238000013500 data storage Methods 0.000 claims description 23
- 238000005096 rolling process Methods 0.000 claims description 19
- 230000000007 visual effect Effects 0.000 claims description 14
- 238000004422 calculation algorithm Methods 0.000 claims description 12
- 238000013507 mapping Methods 0.000 claims description 11
- 210000003128 head Anatomy 0.000 claims description 4
- 238000000034 method Methods 0.000 description 144
- 238000012545 processing Methods 0.000 description 56
- 230000008569 process Effects 0.000 description 39
- 230000036544 posture Effects 0.000 description 35
- 230000004438 eyesight Effects 0.000 description 15
- 239000000284 extract Substances 0.000 description 13
- 230000003190 augmentative effect Effects 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 230000010354 integration Effects 0.000 description 9
- 230000009471 action Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000002329 infrared spectrum Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 230000001934 delay Effects 0.000 description 4
- 230000005670 electromagnetic radiation Effects 0.000 description 4
- 239000011295 pitch Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 230000000750 progressive effect Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 210000000613 ear canal Anatomy 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000006833 reintegration Effects 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000256837 Apidae Species 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 208000003464 asthenopia Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003565 oculomotor Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
- 201000009482 yaws Diseases 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/332—Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
- H04N13/344—Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/16—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
- G01S5/163—Determination of attitude
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/55—Depth or shape recovery from multiple images
- G06T7/579—Depth or shape recovery from multiple images from motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/24—Aligning, centring, orientation detection or correction of the image
- G06V10/242—Aligning, centring, orientation detection or correction of the image by image rotation, e.g. by 90 degrees
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/20—Scenes; Scene-specific elements in augmented reality scenes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/398—Synchronisation thereof; Control thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/95—Computational photography systems, e.g. light-field imaging systems
- H04N23/951—Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30244—Camera pose
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/462—Salient features, e.g. scale invariant feature transforms [SIFT]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/80—Camera processing pipelines; Components thereof
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Computing Systems (AREA)
- Image Analysis (AREA)
- Studio Devices (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Body Structure For Vehicles (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Image Processing (AREA)
Description
本願は、2016年6月30日に出願され、“ESTIMATING POSE IN 3D SPACE”と題された米国仮特許出願第62/357,285号に対する35 U.S.C. § 119(e)のもとでの優先権の利益を主張するものであり、該米国仮特許出願の内容は、全体的に参照により本明細書中に援用される。
本明細書は、例えば、以下の項目も提供する。
(項目1)
イメージングシステムであって、
レンズおよび画像センサを含む画像捕捉デバイスであって、前記レンズは、前記画像捕捉デバイスを囲繞する環境からの光を前記画像センサに指向するように構成され、前記画像センサは、
前記環境からの光に基づいて、画像の第1の複数の画像セグメントを連続して捕捉することであって、前記画像は、前記画像捕捉デバイスの視野(FOV)を表し、前記FOVは、前記環境の一部を構成し、複数の疎点を含む、ことと
第2の複数の画像セグメントを連続して捕捉することであって、前記第2の複数の画像セグメントは、前記第1の複数の画像セグメントの後に捕捉され、前記画像の少なくとも別の部分を形成する、ことと
を行うように構成される、画像捕捉デバイスと、
前記第1および第2の複数の画像セグメントを前記画像センサから連続して受信し、前記環境内の前記画像捕捉デバイスの位置および配向のうちの少なくとも1つを推定するための命令を記憶するように構成される、非一過性データ記憶装置と、
前記非一過性データ記憶装置に動作可能に結合された少なくとも1つのハードウェアプロセッサであって、前記少なくとも1つのハードウェアプロセッサは、
部分的に、前記第1の複数の画像セグメントの対応するサブセットに基づいて、第1のグループの疎点を識別することであって、前記第1のグループの疎点は、前記第1の複数の画像セグメントが前記非一過性データ記憶装置において受信されるにつれて識別される、ことと、
前記第1のグループの疎点に基づいて、前記環境内の前記イメージングデバイスの位置および配向のうちの少なくとも1つを決定することと、
部分的に、前記第2の複数の画像セグメントの対応するサブセットに基づいて、第2のグループの疎点を識別することであって、前記第2のグループの疎点は、前記第2の複数の画像セグメントが前記非一過性データ記憶装置において受信されるにつれて識別される、ことと、
前記第1および第2のグループの疎点に基づいて、前記環境内の前記イメージングデバイスの位置および配向のうちの少なくとも1つを更新することと
を行うための命令によって構成される、少なくとも1つのハードウェアプロセッサと
を含む、イメージングシステム。
(項目2)
前記画像センサは、ローリングシャッタ画像センサである、項目1に記載のイメージングシステム。
(項目3)
前記非一過性データ記憶装置は、前記画像セグメントが前記画像センサによって捕捉されるにつれて、前記第1および第2の複数の画像セグメントを連続して受信するように構成される、非一過性バッファ記憶装置を含み、前記非一過性バッファ記憶装置は、少なくとも部分的に、画像セグメントの各サブセット内に含まれる画像セグメントの数に基づいて、記憶容量を有する、項目1に記載のイメージングシステム。
(項目4)
前記第1のグループの疎点または前記第2のグループの疎点は、10~20の疎点の疎点の数を含む、項目1に記載のイメージングシステム。
(項目5)
前記ハードウェアプロセッサは、直近で識別された疎点の数に基づいて、前記画像捕捉デバイスの位置および配向のうちの少なくとも1つを更新するように構成され、前記直近で識別された疎点は、前記第1のグループの疎点、前記第2のグループの疎点、および前記第1および第2のグループの疎点のうちの1つ以上のもののうちの少なくとも1つを含む、項目1に記載のイメージングシステム。
(項目6)
前記直近で識別された疎点の数は、前記第1のグループの疎点における疎点の数と等しい、項目5に記載のイメージングシステム。
(項目7)
前記ハードウェアプロセッサは、視覚的同時位置特定およびマッピング(V-SLAM)アルゴリズムを実施するように構成される、項目1に記載のイメージングシステム。
(項目8)
前記複数の疎点は、実世界オブジェクト、仮想画像要素、および前記環境の中に投影された不可視インジケータのうちの少なくとも1つに基づいて識別される、項目1に記載のイメージングシステム。
(項目9)
ユーザの頭部上に装着されるように構成される頭部搭載型ディスプレイ(HMD)であって、前記HMDは、
フレームと、
前記フレームによって支持され、前記ユーザの眼の前方に配置される、ディスプレイと、
前記フレーム上に配置され、レンズおよび画像センサを含む、外向きに面した画像捕捉デバイスであって、前記レンズは、前記HMDを囲繞する環境からの光を前記画像センサに指向するように構成され、前記画像センサは、前記環境からの光に基づいて、画像の複数の画像セグメントを連続して捕捉するように構成され、前記画像は、前記外向きに面した画像捕捉デバイスの視野(FOV)を表し、前記FOVは、環境の一部を構成し、複数の疎点を含み、各疎点は、部分的に、前記複数の画像セグメントの対応するサブセットに基づいて、識別可能である、外向きに面した画像捕捉デバイスと、
前記複数の画像セグメントを前記画像センサから連続して受信し、前記環境内の前記HMDの位置および配向のうちの少なくとも1つを推定するための命令を記憶するように構成される、非一過性データ記憶装置と、
前記非一過性データ記憶装置に動作可能に結合された少なくとも1つのハードウェアプロセッサであって、前記少なくとも1つのハードウェアプロセッサは、
前記1つ以上の疎点に対応する画像セグメントの各サブセットが前記非一過性データ記憶装置において受信されると、前記複数の疎点の1つ以上の疎点を連続して識別することと、
前記識別された1つ以上の疎点に基づいて、前記環境内の前記HMDの位置および配向のうちの少なくとも1つを推定することと
を行うための命令によって構成される、少なくとも1つのハードウェアプロセッサと
を含む、HMD。
(項目10)
前記非一過性データ記憶装置は、循環バッファまたはローリングバッファを含む、項目9に記載のHMD。
(項目11)
前記複数の画像セグメントは、少なくとも第1の複数の画像セグメントおよび第2の複数の画像セグメントを含み、前記画像センサは、前記第1および第2の画像セグメントを前記非一過性データ記憶装置に連続して伝送するように構成される、項目9に記載のHMD。
(項目12)
前記ハードウェアプロセッサは、
第1のグループの1つ以上の疎点に対応する第1の複数の画像セグメントが受信されると、前記第1のグループの1つ以上の疎点を連続して識別することと、
第2のグループの1つ以上の疎点に対応する第2の複数の画像セグメントが受信されると、前記第2のグループの1つ以上の疎点を連続して識別することと
を行うように構成され、前記第2の複数の画像セグメントは、前記第1の複数の画像セグメントの後に受信される、項目11に記載のHMD。
(項目13)
前記ハードウェアプロセッサは、前記識別された第1のグループの1つ以上の疎点に基づいて、前記HMDの位置および配向のうちの少なくとも1つを推定するように構成される、項目12に記載のHMD。
(項目14)
前記第1のグループの疎点または前記第2のグループの疎点は、2~20の疎点の数を含む、項目13に記載のHMD。
(項目15)
前記第1のグループの疎点または前記第2のグループは、10~20の疎点の数を含む、項目13に記載のHMD。
(項目16)
前記ハードウェアプロセッサはさらに、前記識別された第2のグループの1つ以上の疎点に基づいて、前記HMDの位置および配向のうちの少なくとも1つを更新するように構成される、項目13に記載のHMD。
(項目17)
前記ハードウェアプロセッサはさらに、前記連続して識別された1つ以上の疎点の数が識別されると、前記HMDの位置および配向のうちの少なくとも1つを更新するように構成される、項目9に記載のHMD。
(項目18)
連続して識別された1つ以上の疎点の数は、前記第1のグループの1つ以上の疎点の疎点のうちの少なくとも1つを含む、項目17に記載のHMD。
(項目19)
前記複数の疎点は、実世界オブジェクト、仮想画像要素、および前記環境の中に投影された不可視インジケータのうちの少なくとも1つに基づいて識別される、項目9に記載のHMD。
(項目20)
前記ハードウェアプロセッサはさらに、
前記連続して識別された1つ以上の疎点を前記複数の画像セグメントの対応するサブセットから抽出することと、
視覚的同時位置特定マッピング(VSLAM)アルゴリズムを前記連続して識別された1つ以上の疎点に実施し、前記画像捕捉デバイスの位置および配向のうちの少なくとも1つを推定することと
を行うように構成される、項目9に記載のHMD。
3次元(3D)空間内で移動するARデバイスまたは他のデバイスの使用に伴って、デバイスは、3D空間を通してその移動を追跡し、3D空間をマッピングする必要があり得る。例えば、ARデバイスは、ユーザの移動に起因して、またはユーザ(例えば、ロボットまたは他の自律的エンティティ)から独立してのいずれかにおいて、3D空間を動き回り得、仮想画像要素または実世界画像要素の中でもとりわけ仮想画像要素の表示を促進するために、後続処理のために、3D空間をマッピングし、3D空間内のデバイスの場所、位置、または配向のうちの1つ以上のものを決定することが有益であり得る。例えば、仮想および実世界画像要素を正確に提示するために、デバイスは、実世界内に位置する場所およびその配向を把握し、実世界空間内に特定の配向を伴って、仮想画像を特定の場所に正確にレンダリングする必要があり得る。別の実施形態では、3D空間を通してデバイスの軌道を再現することが望ましくあり得る。したがって、デバイスが3D空間を動き回るにつれて、3D空間内のデバイスの位置、場所、または配向(以降、集合的に、「姿勢」と称される)をリアルタイムで決定することが望ましくあり得る。いくつかの実装では、3D空間内の疎姿勢推定が、例えば、ARデバイスの一部として含まれるイメージングデバイスからの画像フレームの連続ストリームから決定されてもよい。連続ストリームの各画像フレームは、処理のために、また、疎姿勢推定に含有するため、デバイスの姿勢をそこから推定するために、記憶されてもよい。しかしながら、これらの技法は、後続処理のためのメモリへの各フレームの全体の転送に起因して、姿勢を推定する際に遅延を生じさせ得る。
3Dディスプレイが、仮想画像要素または実世界画像要素の中でもとりわけ仮想画像要素の快適であって、かつ自然に感じる、豊富な提示を促進するために、ディスプレイを囲繞する実世界をマッピングし、3D空間を通してディスプレイの軌道を再現することが望ましい。例えば、疎姿勢推定プロセスが、3D空間のマップを決定するために実施されてもよい。疎姿勢推定が、最小限の遅延を伴って、リアルタイムで実施されない場合、ユーザは、不安定なイメージング、有害な眼精疲労、頭痛、そして概して不快なVRおよびAR視聴体験を経験し得る。故に、本明細書に説明される種々の実施形態は、ARデバイスの位置、場所、または配向のうちの1つ以上のものを決定または推定するように構成される。
図3は、3D空間300を通して移動するにつれたイメージングデバイス310を図式的に図示する。例えば、図3は、イメージングデバイス310が軌道311を図式的に表す点線に沿って移動するにつれた環境300内の複数の位置312(例えば、312a、312b、312c、および312d)および配向におけるイメージングデバイス310を示す。各位置312では、イメージングデバイス310は、例えば、疎姿勢推定を実施するために、画像フレームの連続ストリームとして使用され得る、特定の場所および配向の環境300の画像フレームを捕捉するように構成されてもよい。軌道311は、環境300を通した移動の任意の軌道またはパスであってもよい。図3は、4つの位置312を図示するが、位置の数は、異なることができる。例えば、位置312の数は、わずか2つの位置または容認可能レベルの確実性を伴って疎姿勢推定を実施するための所望に応じた数(例えば、5、6、7等)であってもよい。いくつかの実施形態では、イメージングデバイス312は、例えば、ビデオにおけるように、一連の画像フレームを捕捉するように構成されてもよく、ビデオの各画像フレームは、本明細書に説明されるコンピュータビジョン技法を介して、疎姿勢推定を実施するために利用されてもよい。
上記に説明されるように、外向きに面したイメージングシステム110は、ローリングシャッタカメラとして実装されてもよい。ローリングシャッタカメラの1つの非限定的利点は、他の部分を捕捉しながら、捕捉された場面の一部(例えば、画像セグメント)を伝送する能力である(例えば、画像フレームの全ての部分が正確に同時に捕捉されるわけではない)。しかしながら、これは、イメージングデバイスが、画像を捕捉する時間全体にわたって、オブジェクトに対して同一位置にない場合があるため、画像フレームが捕捉される間、カメラに対して移動しているオブジェクトの歪曲をもたらし得る。
図6は、ARアーキテクチャ600の実施例のブロック図である。ARアーキテクチャ600は、入力(例えば、外向きに面したイメージングシステム110からの視覚的入力、部屋カメラからの入力等)を1つ以上のイメージングシステムから受信するように構成される。イメージングデバイスは、FOVカメラからの画像を提供するだけではなく、それらはまた、種々のセンサ(例えば、加速度計、ジャイロスコープ、温度センサ、移動センサ、深度センサ、GPSセンサ等)を装備し、ユーザの環境の場所および種々の他の属性を決定してもよい。本情報はさらに、異なる視点からの画像および/または種々のキューを提供し得る、部屋内の定常カメラからの情報で補完されてもよい。
図7は、イメージングデバイスの姿勢に関する座標系の実施例である。デバイス700は、複数の自由度を有し得る。デバイス700が、異なる方向に向かって移動するにつれて、デバイス700の位置、場所、または配向は、開始位置720に対して変化するであろう。図7における座標系は、デバイスの開始位置720に対してデバイス移動を測定し、3D空間内の場所を決定するために使用され得る、移動の3つの平行移動方向(例えば、X、Y、およびZ方向)を示す。図7における座標系はまた、デバイスの開始方向720に対してデバイス配向を測定するために使用され得る、3つの角度自由度(例えば、ヨー、ピッチ、およびロール)を示す。図7に図示されるように、デバイス700はまた、水平(例えば、X方向またはZ方向)または垂直(例えば、Y方向)に移動され得る。デバイス700はまた、前後に傾斜し(例えば、ピッチ)、左右に旋回し(例えば、ヨー)、側方に傾斜する(例えば、ロール)ことができる。他の実装では、頭部姿勢を測定するための他の技法または角度表現、例えば、任意の他のタイプのオイラー角システムも、使用されることができる。
図8は、イメージングデバイスが移動する3D空間(例えば、図3)内のイメージングデバイス(例えば、図2の外向きに面したイメージングシステム110)の姿勢を決定するための例証的ルーチンのプロセスフロー図である。ルーチン800は、複数の疎点が、FOV(例えば、FOV315a、315b、315c、または315d)を表す画像フレームから抽出され、3D空間内のイメージングデバイスの位置、場所、または配向のうちの1つを決定し得る方法を説明する。
図9Aおよび9Bは、複数の画像セグメントを受信することに基づいて、1つ以上の疎点を画像フレームから抽出する実施例を図式的に図示する。いくつかの実装では、図9Aおよび9Bはまた、3D空間を通してイメージングデバイス(例えば、図2の外向きに面したイメージングデバイス110)の姿勢を推定する際の遅延を最小限にする例示的方法を図式的に図示し得る。いくつかの実施形態では、図9Aおよび9Bはまた、画像フレーム900の1つ以上の疎点を識別する実施例を図式的に描写する。いくつかの実装では、図9Aおよび9Bは、上記に説明されるように、ローリングシャッタカメラによって、イメージングデバイスから記憶ユニットの中に読み込まれるにつれた画像フレームを図示する。画像フレーム900は、プログレッシブスキャンイメージングデバイスとして構成される、外向きに面したイメージングシステム110によって捕捉されてもよい。画像フレームは、画像セグメントがイメージングデバイスによって捕捉されるにつれて、イメージングデバイスから記憶ユニット(例えば、ローカル処理およびデータモジュール70)の中に読み込まれる、複数の画像セグメント(時として、走査線とも称される)905a-905nを含み得る。画像セグメントは、水平に配列される(図9Aに示されるように)、または垂直に配列されてもよい(図示せず)。15の画像セグメントが、図示されるが、画像セグメントの数は、そのように限定される必要はなく、所与の用途のための所望に応じて、またはイメージングシステムの能力に基づいて、任意の数の画像セグメント905a-905nであってもよい。いくつかの実装では、画像セグメントは、ラスタ走査パターン内の線(例えば、行または列)であってもよく、例えば、画像セグメントは、外向きに面したイメージングデバイス110によって捕捉された画像のラスタ走査パターン内のピクセルの行または列であってもよい。ラスタ走査パターンは、本開示全体を通して説明されるように、ローリングシャッタカメラによって実施または実行されてもよい。
図10は、イメージングデバイスが移動する、3D空間(例えば、図3)内のイメージングデバイス(例えば、図2の外向きに面したイメージングシステム110)の姿勢を決定するための例証的ルーチンのプロセスフロー図である。ルーチン1000は、第1のグループの疎点の疎点に対応する画像セグメントが受信されるにつれて、第1のグループの疎点が画像フレームから抽出され得る方法の実施例を説明する。種々の実施形態では、対応する画像セグメントは、イメージングデバイスのFOVを表す画像フレーム全体を捕捉することに先立って、捕捉されてもよい。ルーチン1000はまた、後続の疎点または第2のグループの疎点が抽出および統合され、姿勢決定を更新し得る方法を説明する。ルーチン1000は、上記に説明されるように、外向きに面したイメージングシステム(例えば、外向きに面したイメージングシステム110)およびデジタルメモリまたはバッファに動作可能に結合される、ハードウェアプロセッサ(例えば、図2のローカル処理およびデータモジュール70)によって実施されてもよい。外向きに面したイメージングシステム110は、ローリング-シャッタカメラを備えることができる。
第1の側面では、環境内の画像捕捉デバイスの位置を推定するための方法が、開示される。本方法は、第1の複数の画像セグメントを連続して受信するステップであって、第1の複数の画像セグメントは、画像捕捉デバイスの視野(FOV)を表す画像の少なくとも一部を形成し、FOVは、複数の疎点を含む、画像捕捉デバイスの周囲の環境の一部を構成し、各疎点は、画像セグメントのサブセットに対応する、ステップと、第1のグループの疎点を識別するステップであって、第1のグループの疎点は、第1の複数の画像セグメントが受信されるにつれて識別された1つ以上の疎点を含む、ステップと、位置推定システムによって、第1のグループの疎点に基づいて、環境内の画像捕捉デバイスの位置を決定するステップと、第2の複数の画像セグメントを連続して受信するステップであって、第2の複数の画像セグメントは、第1の複数の画像セグメントの後に受信され、画像の少なくとも別の部分を形成する、ステップと、第2のグループの疎点を識別するステップであって、第2のグループの疎点は、第2の複数の画像セグメントが受信されるにつれて識別された1つ以上の疎点を含む、ステップと、位置推定システムによって、第1および第2のグループの疎点に基づいて、環境内の画像捕捉デバイスの位置を更新するステップとを含む。
本明細書に説明される、ならびに/または添付される図に描写されるプロセス、方法、およびアルゴリズムはそれぞれ、具体的かつ特定のコンピュータ命令を実行するように構成される、1つ以上の物理的コンピューティングシステム、ハードウェアコンピュータプロセッサ、特定用途向け回路、および/もしくは電子ハードウェアによって実行される、コードモジュールにおいて具現化され、それによって完全もしくは部分的に自動化され得る。例えば、コンピューティングシステムは、具体的コンピュータ命令とともにプログラムされた汎用コンピュータ(例えば、サーバ)または専用コンピュータ、専用回路等を含むことができる。コードモジュールは、実行可能プログラムにコンパイルおよびリンクされる、動的リンクライブラリ内にインストールされ得る、または解釈されるプログラミング言語において書き込まれ得る。いくつかの実装では、特定の動作および方法が、所与の機能に特有の回路によって実施され得る。
Claims (19)
- イメージングシステムであって、
レンズおよび画像センサを含む画像捕捉デバイスであって、前記レンズは、前記画像捕捉デバイスを囲繞する環境からの光を前記画像センサに指向するように構成され、前記画像センサは、
前記環境からの光に基づいて、画像の第1の複数の画像セグメントを連続して捕捉することであって、前記画像は、前記画像捕捉デバイスの視野(FOV)を表し、前記FOVは、前記環境の一部を構成し、複数の疎点を含む、ことと、
第2の複数の画像セグメントを連続して捕捉することであって、前記第2の複数の画像セグメントは、前記第1の複数の画像セグメントの後に捕捉され、前記画像の少なくとも別の部分を形成する、ことと
を行うように構成される、画像捕捉デバイスと、
前記第1および第2の複数の画像セグメントを前記画像センサから連続して受信し、前記環境内の前記画像捕捉デバイスの位置および配向のうちの少なくとも1つを推定するための命令を記憶するように構成される、非一過性データ記憶装置と、
前記非一過性データ記憶装置に動作可能に結合された少なくとも1つのハードウェアプロセッサであって、前記少なくとも1つのハードウェアプロセッサは、
部分的に、前記第1の複数の画像セグメントの対応するサブセットに基づいて、第1のグループの疎点を識別することであって、前記第1のグループの疎点は、前記第1の複数の画像セグメントが前記非一過性データ記憶装置において受信されるにつれて識別される、ことと、
前記第1のグループの疎点に基づいて、前記環境内の前記画像捕捉デバイスの位置および配向のうちの少なくとも1つを決定することと、
部分的に、前記第2の複数の画像セグメントの対応するサブセットに基づいて、第2のグループの疎点を識別することであって、前記第2のグループの疎点は、前記第2の複数の画像セグメントが前記非一過性データ記憶装置において受信されるにつれて識別される、ことと、
前記第1および第2のグループの疎点に基づいて、前記環境内の前記画像捕捉デバイスの位置および配向のうちの少なくとも1つを更新することと、
直近で識別された疎点の数に基づいて、前記画像捕捉デバイスの位置および配向のうちの少なくとも1つを更新することであって、前記直近で識別された疎点は、前記第1のグループの疎点、前記第2のグループの疎点、および前記第1および第2のグループの疎点のうちの1つ以上のもののうちの少なくとも1つを含む、ことと
を行うための命令によって構成される、少なくとも1つのハードウェアプロセッサと
を含む、イメージングシステム。 - 前記画像センサは、ローリングシャッタ画像センサである、請求項1に記載のイメージングシステム。
- 前記非一過性データ記憶装置は、前記画像セグメントが前記画像センサによって捕捉されるにつれて、前記第1および第2の複数の画像セグメントを連続して受信するように構成される、非一過性バッファ記憶装置を含み、前記非一過性バッファ記憶装置は、少なくとも部分的に、画像セグメントの各サブセット内に含まれる画像セグメントの数に基づいて、記憶容量を有する、請求項1に記載のイメージングシステム。
- 前記第1のグループの疎点または前記第2のグループの疎点は、10~20の疎点の数を含む、請求項1に記載のイメージングシステム。
- 前記直近で識別された疎点の数は、前記第1のグループの疎点における疎点の数と等しい、請求項1に記載のイメージングシステム。
- 前記ハードウェアプロセッサは、視覚的同時位置特定およびマッピング(V-SLAM)アルゴリズムを実施するように構成される、請求項1に記載のイメージングシステム。
- 前記複数の疎点は、実世界オブジェクト、仮想画像要素、および前記環境の中に投影された不可視インジケータのうちの少なくとも1つに基づいて識別される、請求項1に記載のイメージングシステム。
- ユーザの頭部上に装着されるように構成される頭部搭載型ディスプレイ(HMD)であって、前記HMDは、
フレームと、
前記フレームによって支持され、前記ユーザの眼の前方に配置される、ディスプレイと、
前記フレーム上に配置され、レンズおよび画像センサを含む、外向きに面した画像捕捉デバイスであって、前記レンズは、前記HMDを囲繞する環境からの光を前記画像センサに指向するように構成され、前記画像センサは、前記環境からの光に基づいて、画像の複数の画像セグメントを連続して捕捉するように構成され、前記画像は、前記外向きに面した画像捕捉デバイスの視野(FOV)を表し、前記FOVは、環境の一部を構成し、複数の疎点を含み、各疎点は、部分的に、前記複数の画像セグメントの対応するサブセットに基づいて、識別可能であり、前記複数の画像セグメントは、少なくとも第1の複数の画像セグメントおよび第2の複数の画像セグメントを含む、外向きに面した画像捕捉デバイスと、
前記複数の画像セグメントを前記画像センサから連続して受信し、前記環境内の前記HMDの位置および配向のうちの少なくとも1つを推定するための命令を記憶するように構成される、非一過性データ記憶装置と、
前記非一過性データ記憶装置に動作可能に結合された少なくとも1つのハードウェアプロセッサであって、前記少なくとも1つのハードウェアプロセッサは、
前記複数の疎点のうちの第1のグループの1つ以上の疎点に対応する前記第1の複数の画像セグメントが前記非一過性データ記憶装置において受信されると、前記第1のグループの1つ以上の疎点を連続して識別することと、
前記識別された第1のグループの1つ以上の疎点に基づいて、前記環境内の前記HMDの位置および配向のうちの少なくとも1つを推定することと
第2のグループの1つ以上の疎点に対応する前記第2の複数の画像セグメントが前記非一過性データ記憶装置において受信されると、前記第2のグループの1つ以上の疎点を連続して識別することと、
直近で識別された疎点の数に基づいて、前記HMDの位置および配向のうちの少なくとも1つを更新することであって、前記直近で識別された疎点は、前記第1のグループの1つ以上の疎点、前記第2のグループの1つ以上の疎点、および前記第1および第2のグループの1つ以上の疎点のうちの1つ以上のもののうちの少なくとも1つを含む、ことと
を行うための命令によって構成される、少なくとも1つのハードウェアプロセッサと
を含む、HMD。 - 前記非一過性データ記憶装置は、循環バッファまたはローリングバッファを含む、請求項8に記載のHMD。
- 前記画像センサは、前記第1および第2の画像セグメントを前記非一過性データ記憶装置に連続して伝送するように構成される、請求項8に記載のHMD。
- 前記第2の複数の画像セグメントは、前記第1の複数の画像セグメントの後に受信される、請求項10に記載のHMD。
- 前記ハードウェアプロセッサは、前記識別された第1のグループの1つ以上の疎点に基づいて、前記HMDの位置および配向のうちの少なくとも1つを推定するように構成される、請求項11に記載のHMD。
- 前記第1のグループの疎点または前記第2のグループの疎点は、2~20の疎点の数を含む、請求項12に記載のHMD。
- 前記第1のグループの疎点または前記第2のグループは、10~20の疎点の数を含む、請求項12に記載のHMD。
- 前記ハードウェアプロセッサはさらに、前記識別された第2のグループの1つ以上の疎点に基づいて、前記HMDの位置および配向のうちの少なくとも1つを更新するように構成される、請求項12に記載のHMD。
- 前記ハードウェアプロセッサはさらに、前記連続して識別された1つ以上の疎点の数が識別されると、前記HMDの位置および配向のうちの少なくとも1つを更新するように構成される、請求項8に記載のHMD。
- 連続して識別された1つ以上の疎点の数は、前記第1のグループの疎点のうちの少なくとも1つを含む、請求項16に記載のHMD。
- 前記複数の疎点は、実世界オブジェクト、仮想画像要素、および前記環境の中に投影された不可視インジケータのうちの少なくとも1つに基づいて識別される、請求項8に記載のHMD。
- 前記ハードウェアプロセッサはさらに、
前記連続して識別された1つ以上の疎点を前記複数の画像セグメントの対応するサブセットから抽出することと、
視覚的同時位置特定マッピング(VSLAM)アルゴリズムを前記連続して識別された1つ以上の疎点に実施し、前記画像捕捉デバイスの位置および配向のうちの少なくとも1つを推定することと
を行うように構成される、請求項8に記載のHMD。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022004329A JP7576054B2 (ja) | 2016-06-30 | 2022-01-14 | 3次元空間内の姿勢推定 |
JP2023184793A JP2023175052A (ja) | 2016-06-30 | 2023-10-27 | 3次元空間内の姿勢推定 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662357285P | 2016-06-30 | 2016-06-30 | |
US62/357,285 | 2016-06-30 | ||
PCT/US2017/033139 WO2018004863A1 (en) | 2016-06-30 | 2017-05-17 | Estimating pose in 3d space |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022004329A Division JP7576054B2 (ja) | 2016-06-30 | 2022-01-14 | 3次元空間内の姿勢推定 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019522851A JP2019522851A (ja) | 2019-08-15 |
JP7011608B2 true JP7011608B2 (ja) | 2022-01-26 |
Family
ID=60785196
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018566492A Active JP7011608B2 (ja) | 2016-06-30 | 2017-05-17 | 3次元空間内の姿勢推定 |
JP2022004329A Active JP7576054B2 (ja) | 2016-06-30 | 2022-01-14 | 3次元空間内の姿勢推定 |
JP2023184793A Pending JP2023175052A (ja) | 2016-06-30 | 2023-10-27 | 3次元空間内の姿勢推定 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022004329A Active JP7576054B2 (ja) | 2016-06-30 | 2022-01-14 | 3次元空間内の姿勢推定 |
JP2023184793A Pending JP2023175052A (ja) | 2016-06-30 | 2023-10-27 | 3次元空間内の姿勢推定 |
Country Status (10)
Country | Link |
---|---|
US (3) | US10163011B2 (ja) |
EP (1) | EP3479160B1 (ja) |
JP (3) | JP7011608B2 (ja) |
KR (2) | KR20210107185A (ja) |
CN (2) | CN109643373B (ja) |
AU (2) | AU2017291131B2 (ja) |
CA (1) | CA3029541A1 (ja) |
IL (2) | IL280983B (ja) |
NZ (1) | NZ749449A (ja) |
WO (1) | WO2018004863A1 (ja) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210107185A (ko) | 2016-06-30 | 2021-08-31 | 매직 립, 인코포레이티드 | 3d 공간에서의 포즈 추정 |
CN108428242B (zh) * | 2017-02-15 | 2022-02-08 | 宏达国际电子股份有限公司 | 图像处理装置及其方法 |
US10048753B1 (en) * | 2017-04-20 | 2018-08-14 | Robert C. Brooks | Perspective or gaze based visual identification and location system |
IL301087B1 (en) | 2017-05-01 | 2024-08-01 | Magic Leap Inc | Adapting content to a three-dimensional spatial environment |
US10621751B2 (en) * | 2017-06-16 | 2020-04-14 | Seiko Epson Corporation | Information processing device and computer program |
CN108229290B (zh) * | 2017-07-26 | 2021-03-02 | 北京市商汤科技开发有限公司 | 视频物体分割方法和装置、电子设备、存储介质 |
US20190057180A1 (en) * | 2017-08-18 | 2019-02-21 | International Business Machines Corporation | System and method for design optimization using augmented reality |
CA3084149A1 (en) | 2017-12-22 | 2019-06-27 | Magic Leap, Inc. | Methods and system for managing and displaying virtual content in a mixed reality system |
US10970425B2 (en) | 2017-12-26 | 2021-04-06 | Seiko Epson Corporation | Object detection and tracking |
US10742959B1 (en) | 2017-12-29 | 2020-08-11 | Perceive Corporation | Use of machine-trained network for misalignment-insensitive depth perception |
CN108227929B (zh) * | 2018-01-15 | 2020-12-11 | 廖卫东 | 基于bim技术的增强现实放样系统及实现方法 |
AU2019225989A1 (en) | 2018-02-22 | 2020-08-13 | Magic Leap, Inc. | Browser for mixed reality systems |
CN111801641A (zh) | 2018-02-22 | 2020-10-20 | 奇跃公司 | 采用物理操纵的对象创建 |
WO2019236568A1 (en) | 2018-06-05 | 2019-12-12 | Magic Leap, Inc. | Matching content to a spatial 3d environment |
WO2019246044A1 (en) | 2018-06-18 | 2019-12-26 | Magic Leap, Inc. | Head-mounted display systems with power saving functionality |
US11694435B2 (en) | 2018-06-18 | 2023-07-04 | Magic Leap, Inc. | Systems and methods for temporarily disabling user control interfaces during attachment of an electronic device |
JP7378431B2 (ja) * | 2018-06-18 | 2023-11-13 | マジック リープ, インコーポレイテッド | フレーム変調機能性を伴う拡張現実ディスプレイ |
US11141645B2 (en) | 2018-09-11 | 2021-10-12 | Real Shot Inc. | Athletic ball game using smart glasses |
US11103763B2 (en) | 2018-09-11 | 2021-08-31 | Real Shot Inc. | Basketball shooting game using smart glasses |
US10764558B2 (en) * | 2018-09-27 | 2020-09-01 | Valve Corporation | Reduced bandwidth stereo distortion correction for fisheye lenses of head-mounted displays |
WO2020069379A1 (en) * | 2018-09-27 | 2020-04-02 | Google Llc | Training a deep neural network model to generate rich object-centric embeddings of robotic vision data |
US11544320B2 (en) * | 2018-11-29 | 2023-01-03 | Entigenlogic Llc | Image processing utilizing an entigen construct |
CN111489448B (zh) * | 2019-01-24 | 2024-08-20 | 宏达国际电子股份有限公司 | 检测真实世界光源的方法、混合实境系统及记录介质 |
US11386623B2 (en) | 2019-04-03 | 2022-07-12 | Magic Leap, Inc. | Methods, systems, and computer program product for managing and displaying webpages in a virtual three-dimensional space with a mixed reality system |
CN112013844B (zh) * | 2019-05-31 | 2022-02-11 | 北京小米智能科技有限公司 | 建立室内环境地图的方法及装置 |
US10916062B1 (en) * | 2019-07-15 | 2021-02-09 | Google Llc | 6-DoF tracking using visual cues |
JP7327083B2 (ja) * | 2019-10-30 | 2023-08-16 | 富士通株式会社 | 領域切り出し方法および領域切り出しプログラム |
US11367212B2 (en) | 2019-11-21 | 2022-06-21 | Ford Global Technologies, Llc | Vehicle pose detection with fiducial marker |
CN115023743A (zh) * | 2020-02-13 | 2022-09-06 | Oppo广东移动通信有限公司 | 基于稀疏表示在增强现实会话中的表面检测和追踪 |
CN112991414A (zh) * | 2021-02-07 | 2021-06-18 | 浙江欣奕华智能科技有限公司 | Vslam的特征点深度确认装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160035139A1 (en) | 2013-03-13 | 2016-02-04 | The University Of North Carolina At Chapel Hill | Low latency stabilization for head-worn displays |
US20160092735A1 (en) | 2014-09-30 | 2016-03-31 | Qualcomm Incorporated | Scanning window in hardware for low-power object-detection in images |
Family Cites Families (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1073936C (zh) * | 1990-04-20 | 2001-10-31 | 佳能株式会社 | 一种记录装置 |
US6222525B1 (en) | 1992-03-05 | 2001-04-24 | Brad A. Armstrong | Image controllers with sheet connected sensors |
US5670988A (en) | 1995-09-05 | 1997-09-23 | Interlink Electronics, Inc. | Trigger operated electronic device |
CN1650622B (zh) | 2002-03-13 | 2012-09-05 | 图象公司 | 用于数字重新灌录或修改电影或其他图像序列数据的系统和方法 |
USD514570S1 (en) | 2004-06-24 | 2006-02-07 | Microsoft Corporation | Region of a fingerprint scanning device with an illuminated ring |
US7460730B2 (en) * | 2005-08-04 | 2008-12-02 | Microsoft Corporation | Video registration and image sequence stitching |
US8696113B2 (en) | 2005-10-07 | 2014-04-15 | Percept Technologies Inc. | Enhanced optical and perceptual digital eyewear |
US11428937B2 (en) | 2005-10-07 | 2022-08-30 | Percept Technologies | Enhanced optical and perceptual digital eyewear |
US20070081123A1 (en) | 2005-10-07 | 2007-04-12 | Lewis Scott W | Digital eyewear |
US7925049B2 (en) * | 2006-08-15 | 2011-04-12 | Sri International | Stereo-based visual odometry method and system |
NO327279B1 (no) * | 2007-05-22 | 2009-06-02 | Metaio Gmbh | Kamerapositurestimeringsanordning og- fremgangsmate for foroket virkelighetsavbildning |
JP4957807B2 (ja) * | 2007-12-14 | 2012-06-20 | 富士通株式会社 | 移動物検知装置及び移動物検知プログラム |
JP2011043419A (ja) * | 2009-08-21 | 2011-03-03 | Sony Corp | 情報処理装置、および情報処理方法、並びにプログラム |
US8345984B2 (en) | 2010-01-28 | 2013-01-01 | Nec Laboratories America, Inc. | 3D convolutional neural networks for automatic human action recognition |
JP2011192141A (ja) * | 2010-03-16 | 2011-09-29 | Sony Corp | 動体検出装置と動体検出方法およびプログラム |
JP2013141049A (ja) * | 2010-03-24 | 2013-07-18 | Hitachi Ltd | 世界座標系データベースを利用したサーバ及び端末 |
US9001222B2 (en) * | 2010-11-11 | 2015-04-07 | Panasonic Intellectual Property Corporation Of America | Image processing device, image processing method, and program for image processing for correcting displacement between pictures obtained by temporally-continuous capturing |
US9304319B2 (en) | 2010-11-18 | 2016-04-05 | Microsoft Technology Licensing, Llc | Automatic focus improvement for augmented reality displays |
CN102129708A (zh) * | 2010-12-10 | 2011-07-20 | 北京邮电大学 | 增强现实环境中快速多层次虚实遮挡处理方法 |
CN103688208B (zh) | 2010-12-24 | 2017-06-06 | 奇跃公司 | 人体工程学头戴式显示设备和光学系统 |
US10156722B2 (en) | 2010-12-24 | 2018-12-18 | Magic Leap, Inc. | Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality |
BR112013034009A2 (pt) | 2011-05-06 | 2017-02-07 | Magic Leap Inc | mundo de presença digital remota simultânea massiva |
WO2013049861A1 (en) | 2011-09-29 | 2013-04-04 | Magic Leap, Inc. | Tactile glove for human-computer interaction |
CA3207408A1 (en) | 2011-10-28 | 2013-06-13 | Magic Leap, Inc. | System and method for augmented and virtual reality |
JP6250547B2 (ja) | 2011-11-23 | 2017-12-20 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | 3次元仮想現実および拡張現実表示システム |
KR102095330B1 (ko) | 2012-04-05 | 2020-03-31 | 매직 립, 인코포레이티드 | 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들 |
US9671566B2 (en) | 2012-06-11 | 2017-06-06 | Magic Leap, Inc. | Planar waveguide apparatus with diffraction element(s) and system employing same |
US10629003B2 (en) | 2013-03-11 | 2020-04-21 | Magic Leap, Inc. | System and method for augmented and virtual reality |
KR102217788B1 (ko) | 2012-06-11 | 2021-02-18 | 매직 립, 인코포레이티드 | 도파관 리플렉터 어레이 프로젝터를 이용한 다중 깊이면 3차원 디스플레이 |
KR20150054967A (ko) | 2012-09-11 | 2015-05-20 | 매직 립, 인코포레이티드 | 인체공학적 헤드 마운티드 디스플레이 디바이스 및 광학 시스템 |
US9996150B2 (en) | 2012-12-19 | 2018-06-12 | Qualcomm Incorporated | Enabling augmented reality using eye gaze tracking |
JP6434918B2 (ja) | 2013-01-15 | 2018-12-05 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | 超高分解能の走査ファイバディスプレイ |
US9503653B2 (en) * | 2013-02-18 | 2016-11-22 | Tsinghua University | Method for determining attitude of star sensor based on rolling shutter imaging |
US9183746B2 (en) * | 2013-03-12 | 2015-11-10 | Xerox Corporation | Single camera video-based speed enforcement system with a secondary auxiliary RGB traffic camera |
EP4027222A1 (en) | 2013-03-15 | 2022-07-13 | Magic Leap, Inc. | Display system and method |
CN103247045B (zh) * | 2013-04-18 | 2015-12-23 | 上海交通大学 | 一种从多视图中得到人造场景主方向及图像边缘的方法 |
US20140323148A1 (en) * | 2013-04-30 | 2014-10-30 | Qualcomm Incorporated | Wide area localization from slam maps |
US9874749B2 (en) * | 2013-11-27 | 2018-01-23 | Magic Leap, Inc. | Virtual and augmented reality systems and methods |
US10262462B2 (en) | 2014-04-18 | 2019-04-16 | Magic Leap, Inc. | Systems and methods for augmented and virtual reality |
US20140380249A1 (en) | 2013-06-25 | 2014-12-25 | Apple Inc. | Visual recognition of gestures |
US9514571B2 (en) * | 2013-07-25 | 2016-12-06 | Microsoft Technology Licensing, Llc | Late stage reprojection |
US9646384B2 (en) | 2013-09-11 | 2017-05-09 | Google Technology Holdings LLC | 3D feature descriptors with camera pose information |
WO2015036056A1 (en) * | 2013-09-16 | 2015-03-19 | Metaio Gmbh | Method and system for determining a model of at least part of a real object |
EP2851868A1 (en) * | 2013-09-20 | 2015-03-25 | ETH Zurich | 3D Reconstruction |
US20150092048A1 (en) * | 2013-09-27 | 2015-04-02 | Qualcomm Incorporated | Off-Target Tracking Using Feature Aiding in the Context of Inertial Navigation |
KR102547756B1 (ko) | 2013-10-16 | 2023-06-23 | 매직 립, 인코포레이티드 | 조절가능한 동공간 거리를 가지는 가상 또는 증강 현실 헤드셋들 |
IL291010B2 (en) | 2013-11-27 | 2024-01-01 | Magic Leap Inc | Virtual and augmented reality systems and methods |
US9857591B2 (en) | 2014-05-30 | 2018-01-02 | Magic Leap, Inc. | Methods and system for creating focal planes in virtual and augmented reality |
EP3627446B1 (en) * | 2013-12-19 | 2021-06-16 | Apple Inc. | System, method and medium for generating a geometric model |
US20150193971A1 (en) | 2014-01-03 | 2015-07-09 | Motorola Mobility Llc | Methods and Systems for Generating a Map including Sparse and Dense Mapping Information |
CA3089749A1 (en) | 2014-01-31 | 2015-08-06 | Magic Leap, Inc. | Multi-focal display system and method |
CA2938262C (en) | 2014-01-31 | 2021-01-19 | Magic Leap, Inc. | Multi-focal display system and method |
US10203762B2 (en) * | 2014-03-11 | 2019-02-12 | Magic Leap, Inc. | Methods and systems for creating virtual and augmented reality |
WO2015161307A1 (en) * | 2014-04-18 | 2015-10-22 | Magic Leap, Inc. | Systems and methods for augmented and virtual reality |
US9652893B2 (en) | 2014-04-29 | 2017-05-16 | Microsoft Technology Licensing, Llc | Stabilization plane determination based on gaze location |
US9600069B2 (en) | 2014-05-09 | 2017-03-21 | Google Inc. | Systems and methods for discerning eye signals and continuous biometric identification |
USD759657S1 (en) | 2014-05-19 | 2016-06-21 | Microsoft Corporation | Connector with illumination region |
CA3124368C (en) | 2014-05-30 | 2023-04-25 | Magic Leap, Inc. | Methods and systems for generating virtual content display with a virtual or augmented reality apparatus |
USD752529S1 (en) | 2014-06-09 | 2016-03-29 | Comcast Cable Communications, Llc | Electronic housing with illuminated region |
US10484697B2 (en) * | 2014-09-09 | 2019-11-19 | Qualcomm Incorporated | Simultaneous localization and mapping for video coding |
CN104463842A (zh) * | 2014-10-23 | 2015-03-25 | 燕山大学 | 一种基于运动视觉的车祸过程重现方法 |
GB2532194A (en) * | 2014-11-04 | 2016-05-18 | Nokia Technologies Oy | A method and an apparatus for automatic segmentation of an object |
USD758367S1 (en) | 2015-05-14 | 2016-06-07 | Magic Leap, Inc. | Virtual reality headset |
USD805734S1 (en) | 2016-03-04 | 2017-12-26 | Nike, Inc. | Shirt |
USD794288S1 (en) | 2016-03-11 | 2017-08-15 | Nike, Inc. | Shoe with illuminable sole light sequence |
KR20210107185A (ko) | 2016-06-30 | 2021-08-31 | 매직 립, 인코포레이티드 | 3d 공간에서의 포즈 추정 |
-
2017
- 2017-05-17 KR KR1020217027177A patent/KR20210107185A/ko not_active Application Discontinuation
- 2017-05-17 NZ NZ749449A patent/NZ749449A/en unknown
- 2017-05-17 US US15/597,694 patent/US10163011B2/en active Active
- 2017-05-17 JP JP2018566492A patent/JP7011608B2/ja active Active
- 2017-05-17 CN CN201780053000.XA patent/CN109643373B/zh active Active
- 2017-05-17 EP EP17820753.6A patent/EP3479160B1/en active Active
- 2017-05-17 CA CA3029541A patent/CA3029541A1/en active Pending
- 2017-05-17 IL IL280983A patent/IL280983B/en unknown
- 2017-05-17 AU AU2017291131A patent/AU2017291131B2/en active Active
- 2017-05-17 WO PCT/US2017/033139 patent/WO2018004863A1/en unknown
- 2017-05-17 KR KR1020197001409A patent/KR102296267B1/ko active IP Right Grant
- 2017-05-17 CN CN202310724682.XA patent/CN116777994A/zh active Pending
-
2018
- 2018-11-19 US US16/194,688 patent/US11200420B2/en active Active
- 2018-12-20 IL IL263872A patent/IL263872B/en active IP Right Grant
-
2021
- 2021-12-10 US US17/643,801 patent/US11765339B2/en active Active
-
2022
- 2022-01-14 JP JP2022004329A patent/JP7576054B2/ja active Active
- 2022-06-28 AU AU2022204584A patent/AU2022204584A1/en not_active Abandoned
-
2023
- 2023-10-27 JP JP2023184793A patent/JP2023175052A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160035139A1 (en) | 2013-03-13 | 2016-02-04 | The University Of North Carolina At Chapel Hill | Low latency stabilization for head-worn displays |
US20160092735A1 (en) | 2014-09-30 | 2016-03-31 | Qualcomm Incorporated | Scanning window in hardware for low-power object-detection in images |
Also Published As
Publication number | Publication date |
---|---|
EP3479160A1 (en) | 2019-05-08 |
IL263872A (en) | 2019-01-31 |
JP2022051761A (ja) | 2022-04-01 |
CA3029541A1 (en) | 2018-01-04 |
KR20210107185A (ko) | 2021-08-31 |
US11765339B2 (en) | 2023-09-19 |
AU2022204584A1 (en) | 2022-07-21 |
IL263872B (en) | 2021-02-28 |
JP2023175052A (ja) | 2023-12-08 |
CN109643373A (zh) | 2019-04-16 |
JP2019522851A (ja) | 2019-08-15 |
EP3479160B1 (en) | 2024-07-24 |
US20190087659A1 (en) | 2019-03-21 |
US10163011B2 (en) | 2018-12-25 |
US20180005034A1 (en) | 2018-01-04 |
US11200420B2 (en) | 2021-12-14 |
EP3479160A4 (en) | 2020-03-25 |
AU2017291131B2 (en) | 2022-03-31 |
CN116777994A (zh) | 2023-09-19 |
IL280983B (en) | 2022-07-01 |
NZ749449A (en) | 2023-06-30 |
WO2018004863A1 (en) | 2018-01-04 |
JP7576054B2 (ja) | 2024-10-30 |
CN109643373B (zh) | 2023-06-27 |
US20220101004A1 (en) | 2022-03-31 |
KR20190026762A (ko) | 2019-03-13 |
KR102296267B1 (ko) | 2021-08-30 |
AU2017291131A1 (en) | 2019-01-17 |
IL280983A (en) | 2021-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7011608B2 (ja) | 3次元空間内の姿勢推定 | |
US11749025B2 (en) | Eye pose identification using eye features | |
CN109298629A (zh) | 用于为自主和非自主位置意识提供鲁棒跟踪的容错 | |
US10838515B1 (en) | Tracking using controller cameras | |
JP2016099982A (ja) | 行動認識装置、行動学習装置、方法、及びプログラム | |
CN105165004A (zh) | 摄影系统 | |
US20230047470A1 (en) | Information processing apparatus, information processing method, and computer-readable recording medium | |
US20230120092A1 (en) | Information processing device and information processing method | |
WO2023113471A1 (ko) | 복수의 카메라를 이용하여 촬영된 객체의 3차원 골격 데이터를 획득하는 전자 장치 및 방법 | |
CA3143843A1 (en) | Systems and methods for face and object tracking and monitoring | |
KR20220083166A (ko) | 인체 추정 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200515 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210625 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7011608 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |