JP7010264B2 - Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet - Google Patents
Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet Download PDFInfo
- Publication number
- JP7010264B2 JP7010264B2 JP2019065909A JP2019065909A JP7010264B2 JP 7010264 B2 JP7010264 B2 JP 7010264B2 JP 2019065909 A JP2019065909 A JP 2019065909A JP 2019065909 A JP2019065909 A JP 2019065909A JP 7010264 B2 JP7010264 B2 JP 7010264B2
- Authority
- JP
- Japan
- Prior art keywords
- polished
- polishing
- steel sheet
- grain
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、方向性電磁鋼板の製造方法および方向性電磁鋼板に関する。 The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet and a grain-oriented electrical steel sheet.
一般的に、方向性電磁鋼板は、次のように製造する。
まず、4.5質量%以下程度のSiと、MnS、MnSe、AlNなどのインヒビター成分とを含有する鋼スラブを加熱して、インヒビター成分を一旦固溶させる。加熱した鋼スラブを熱間圧延して熱延鋼板を得る。熱延鋼板には、必要に応じて熱延板焼鈍を施す。次いで、熱延鋼板に、1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚の冷延鋼板を得る。得られた冷延鋼板に、湿潤水素雰囲気中で、一次再結晶焼鈍を施して、一次再結晶および脱炭を行なう。その後、一次再結晶焼鈍後の冷延鋼板に、酸化マグネシウム(MgO)を主成分とする焼鈍分離剤を塗布してから、二次再結晶およびインヒビター成分の純化のために、1200℃で5時間程度の最終仕上焼鈍を行なう。
このような工程を経て、方向性電磁鋼板は製造される(特許文献1を参照)。
Generally, grain-oriented electrical steel sheets are manufactured as follows.
First, a steel slab containing Si of about 4.5% by mass or less and an inhibitor component such as MnS, MnSe, and AlN is heated to temporarily dissolve the inhibitor component. The heated steel slab is hot-rolled to obtain a hot-rolled steel sheet. The hot-rolled steel sheet is annealed by hot-rolled sheet if necessary. Next, the hot-rolled steel sheet is subjected to cold rolling once or two or more times with intermediate annealing sandwiched between them to obtain a cold-rolled steel sheet having a final plate thickness. The obtained cold-rolled steel sheet is subjected to primary recrystallization annealing in a wet hydrogen atmosphere to perform primary recrystallization and decarburization. Then, an annealed separator containing magnesium oxide (MgO) as a main component is applied to the cold-rolled steel sheet after primary recrystallization annealing, and then the secondary recrystallization and purification of the inhibitor component are carried out at 1200 ° C. for 5 hours. Perform some final finish annealing.
Through such a process, the grain-oriented electrical steel sheet is manufactured (see Patent Document 1).
焼鈍分離剤として塗布されるMgOは、鋼板(冷延鋼板)表面のSiO2と反応し、鋼板表面に、酸化物層であるフォルステライト被膜を形成する。フォルステライト被膜は、鋼板との界面にアンカーと呼ばれる凹凸を形成し、鋼板との良好な密着性を示す。 MgO applied as an annealing separator reacts with SiO 2 on the surface of a steel sheet (cold-rolled steel sheet) to form a forsterite film, which is an oxide layer, on the surface of the steel sheet. The forsterite film forms irregularities called anchors at the interface with the steel sheet, and exhibits good adhesion to the steel sheet.
特許文献1には、二次再結晶後の鋼板の表面を、フォルステライト被膜などの酸化物層を除去し、平滑化することが開示されている。表面を平滑化した鋼板に更に張力を付与することにより、良好な磁気特性が得られるとされている。 Patent Document 1 discloses that the surface of a steel sheet after secondary recrystallization is smoothed by removing an oxide layer such as a forsterite film. It is said that good magnetic properties can be obtained by further applying tension to a steel sheet with a smoothed surface.
鋼板の表面を平滑化する手法としては、機械的な研磨(機械研磨)および電気化学的な研磨(電解研磨)が挙げられる。
しかし、機械研磨では、良好な磁気特性が得られない場合がある。これは、機械研磨に用いる研磨用工具から鋼板にかかる応力によって、鋼板の結晶組織が塑性変形するためと考えられる。
これに対して、電解液を用いる電解研磨では、鋼板に応力はかからないが、機械研磨と比較して、十分な研磨速度が得られない。これは、電解液中に溶けだした鉄イオンが鋼板の表面近傍に存在し、鋼板の表面近傍では局所的にFe+2e-→Fe2+の右辺の鉄イオン濃度が高まり、電解が進みにくくなるためと考えられる。研磨速度を高めるためには、高電圧の印加などが必要となる場合がある。
Examples of the method for smoothing the surface of a steel sheet include mechanical polishing (mechanical polishing) and electrochemical polishing (electrolytic polishing).
However, mechanical polishing may not provide good magnetic properties. It is considered that this is because the crystal structure of the steel sheet is plastically deformed by the stress applied to the steel sheet from the polishing tool used for mechanical polishing.
On the other hand, in electrolytic polishing using an electrolytic solution, stress is not applied to the steel sheet, but a sufficient polishing rate cannot be obtained as compared with mechanical polishing. It is thought that this is because iron ions dissolved in the electrolytic solution exist near the surface of the steel sheet, and the iron ion concentration on the right side of Fe + 2e- → Fe 2+ locally increases near the surface of the steel sheet, making it difficult for electrolysis to proceed. Be done. In order to increase the polishing speed, it may be necessary to apply a high voltage or the like.
そこで、本発明者らは、二次再結晶後の鋼板を被研磨材として、試験的に、砥粒を含む電解液を用いて、電解研磨と機械研磨とを同時に行なうこと(以下、「複合電解研磨」ともいい、単に「研磨」という場合もある)を試みた。
その結果、砥粒を含む電解液(pH:6)を用いて複合電解研磨を施した場合、研磨後に被研磨材を電解液から取り出して乾燥させるまでの極短時間の間に、被研磨材の表面に、褐色の酸化物層が形成され、良好な表面状態が得られなかった(図1を参照)。具体的には、研磨後の被研磨材は、表面粗さRaが0.43μm、酸素目付量が0.08g/m2であった。
もっとも、本発明者が、この研磨後の被研磨材を更に調査したところ、研磨用工具を用いて機械研磨を施しているにも拘わらず、被研磨材の内部には、ほとんど塑性変形領域がないことが分かった。
このため、良好な表面状態が得られる条件を見出せば、複合電解研磨は、良好な磁気特性が得られる手法となり得ると判断した。
Therefore, the present inventors simultaneously perform electrolytic polishing and mechanical polishing using a steel plate after secondary recrystallization as a material to be polished and an electrolytic solution containing abrasive grains on a trial basis (hereinafter, "composite"). It is also called "electrolytic polishing" and may be simply called "polishing").
As a result, when composite electrolytic polishing is performed using an electrolytic solution containing abrasive grains (pH: 6), the material to be polished is taken out from the electrolytic solution and dried in a very short time after polishing. A brown oxide layer was formed on the surface of the surface, and a good surface condition could not be obtained (see FIG. 1). Specifically, the material to be polished after polishing had a surface roughness Ra of 0.43 μm and an oxygen basis weight of 0.08 g / m 2 .
However, when the present inventor further investigated the material to be polished after polishing, almost all plastic deformation regions were found inside the material to be polished, even though the material was mechanically polished using a polishing tool. It turned out not.
Therefore, if the conditions for obtaining a good surface condition are found, it is judged that the composite electrolytic polishing can be a method for obtaining good magnetic properties.
本発明は、以上の点を鑑みてなされたものであり、表面状態および磁気特性が良好な方向性電磁鋼板を効率良く製造する方法を提供することを目的とする。
また、本発明は、上記方法により得られる方向性電磁鋼板の提供も目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method for efficiently manufacturing grain-oriented electrical steel sheets having good surface conditions and magnetic properties.
Another object of the present invention is to provide a grain-oriented electrical steel sheet obtained by the above method.
本発明者らは、鋭意検討した。具体的には、例えば、砥粒を含む電解液(pH:9)を用いて複合電解研磨を施したところ、研磨後の被研磨材は、表面粗さRaが0.093μm、酸素目付量が0.01g/m2であった(図2を参照)。このような結果、砥粒を含む電解液のpHを特定の範囲にすることにより、上記目的が達成されることを見出し、本発明を完成させた。 The present inventors have diligently studied. Specifically, for example, when composite electrolytic polishing was performed using an electrolytic solution (pH: 9) containing abrasive grains, the material to be polished after polishing had a surface roughness Ra of 0.093 μm and an oxygen grain amount. It was 0.01 g / m 2 (see FIG. 2). As a result, it was found that the above object can be achieved by setting the pH of the electrolytic solution containing the abrasive grains to a specific range, and the present invention has been completed.
すなわち、本発明は、以下の[1]~[4]を提供する。
[1]表面粗さRaが0.30μm以下であり、かつ、酸素目付量が0.05g/m2以下である方向性電磁鋼板を製造する方法であって、二次再結晶後の鋼板を被研磨材とし、上記被研磨材に対して、砥粒を含むpH7超の電解液を供給し、電圧を印加することにより電解研磨を行ないつつ、機械研磨を行なう、方向性電磁鋼板の製造方法。
[2]上記被研磨材の表面に3mA/cm2以上160mA/cm2以下の電流が流れるように上記電圧を印加する、上記[1]に記載の方向性電磁鋼板の製造方法。
[3]上記被研磨材に上記電解研磨および上記機械研磨を行なう前に、あらかじめ、上記被研磨材の酸素目付量を0.5g/m2以下にする、上記[1]または[2]に記載の方向性電磁鋼板の製造方法。
[4]表面粗さRaが0.30μm以下であり、酸素目付量が0.05g/m2以下であり、かつ、励磁磁束密度1.7Tでのヒステリシス損が0.26W/kg以下である方向性電磁鋼板。
That is, the present invention provides the following [1] to [4].
[1] A method for producing a directional electromagnetic steel sheet having a surface roughness Ra of 0.30 μm or less and an oxygen grain amount of 0.05 g / m 2 or less, wherein the steel sheet after secondary recrystallization is produced. A method for manufacturing a directional electromagnetic steel plate, which is used as a material to be polished, and mechanical polishing is performed while performing electrolytic polishing by supplying an electrolytic solution containing abrasive grains and having a pH of more than 7 to the material to be polished. ..
[2] The method for manufacturing a grain-oriented electrical steel sheet according to the above [1], wherein the voltage is applied so that a current of 3 mA / cm 2 or more and 160 mA / cm 2 or less flows on the surface of the material to be polished.
[3] Before performing the electrolytic polishing and the mechanical polishing on the material to be polished, the oxygen grain amount of the material to be polished is set to 0.5 g / m 2 or less in advance in the above [1] or [2]. The method for manufacturing a directional electromagnetic steel plate according to the description.
[4] The surface roughness Ra is 0.30 μm or less, the oxygen grain amount is 0.05 g / m 2 or less, and the hysteresis loss at an exciting magnetic flux density of 1.7 T is 0.26 W / kg or less. Directional electrical steel sheet.
本発明によれば、表面状態および磁気特性が良好な方向性電磁鋼板を効率良く製造できる。 According to the present invention, a grain-oriented electrical steel sheet having a good surface condition and magnetic properties can be efficiently manufactured.
本発明の方向性電磁鋼板の製造方法(以下、「本発明の製造方法」ともいう)では、複合電解研磨を行なう。
より詳細には、本発明の製造方法は、表面粗さRaが0.30μm以下であり、かつ、酸素目付量が0.05g/m2以下である方向性電磁鋼板を製造する方法であって、二次再結晶後の鋼板を被研磨材とし、上記被研磨材に対して、砥粒を含むpH7超の電解液を供給し、電圧を印加することにより電解研磨を行ないつつ、研磨用工具を用いて機械研磨を行なう、方向性電磁鋼板の製造方法である。
In the method for manufacturing grain-oriented electrical steel sheets of the present invention (hereinafter, also referred to as "manufacturing method of the present invention"), composite electrolytic polishing is performed.
More specifically, the manufacturing method of the present invention is a method for manufacturing a directional electromagnetic steel plate having a surface roughness Ra of 0.30 μm or less and an oxygen grain amount of 0.05 g / m 2 or less. The steel plate after secondary recrystallization is used as the material to be polished, and an electrolytic solution containing abrasive grains having a pH of more than 7 is supplied to the material to be polished, and the polishing tool is used to perform electrolytic polishing by applying a voltage. This is a method for manufacturing a directional electromagnetic steel plate, which is mechanically polished using.
<被研磨材(二次再結晶後の鋼板)の準備>
二次再結晶までの工程は、特に限定されず、従来公知の工程どおりに行なえばよい。具体的には、例えば、以下のような工程が多い。
まず、C:0.08質量%以下、Si:2.0~5.0質量%、Mn:0.005~0.5質量%、Al、N、Cu、S、Seなどのインヒビター形成元素、補助インヒビター等として機能するNi、Sn、Sb、Cr、P、Bi、B、Nb、Teなどの成分を含有する鋼スラブを熱間圧延して、熱延鋼板を得る。得られた熱延鋼板に、必要に応じて熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延を施して、冷延鋼板を得る。次いで、得られた冷延鋼板(鋼板)に、脱炭を伴う一次再結晶を行ない、その後、MgOを含有する焼鈍分離剤を塗布してから、二次再結晶のために最終仕上焼鈍を施す。
このようにして、二次再結晶後の鋼板(被研磨材)を得る。
<Preparation of abrasive material (steel plate after secondary recrystallization)>
The process up to the secondary recrystallization is not particularly limited, and may be performed according to a conventionally known process. Specifically, for example, there are many steps as follows.
First, inhibitor-forming elements such as C: 0.08% by mass or less, Si: 2.0 to 5.0% by mass, Mn: 0.005 to 0.5% by mass, Al, N, Cu, S, Se, etc. A steel slab containing components such as Ni, Sn, Sb, Cr, P, Bi, B, Nb, and Te that function as an auxiliary inhibitor is hot-rolled to obtain a hot-rolled steel sheet. The obtained hot-rolled steel sheet is subjected to hot-rolled sheet annealing, if necessary, and then cold-rolled once or two or more times with intermediate annealing sandwiched between them to obtain a cold-rolled steel sheet. Next, the obtained cold-rolled steel sheet (steel sheet) is subjected to primary recrystallization accompanied by decarburization, and then an annealing separator containing MgO is applied, and then final finish annealing is performed for secondary recrystallization. ..
In this way, a steel sheet (abrasive material) after secondary recrystallization is obtained.
ここで、複合電解研磨を行なう前に、被研磨材の表面に過剰に酸化物層が形成されている場合を考える。この場合、酸化物層で覆われた部分と鋼板(地鉄)部分とでは抵抗が異なるため、電解研磨のために電圧を印加すると、流れる電流密度に不均一が生じ、局部的に電解が進みやすい。その結果、被研磨材の表面凹凸の形成が助長されたり、研磨後の被研磨材の酸化が進みやすくなったりする場合がある。 Here, consider a case where an oxide layer is excessively formed on the surface of the material to be polished before performing the composite electrolytic polishing. In this case, the resistance differs between the portion covered with the oxide layer and the steel plate (base iron) portion, so when a voltage is applied for electrolytic polishing, the current density that flows becomes non-uniform, and electrolysis proceeds locally. Cheap. As a result, the formation of surface irregularities on the material to be polished may be promoted, or the material to be polished may be easily oxidized after polishing.
このため、複合電解研磨を行なう前における、被研磨材の酸素目付量は、0.5g/m2以下が好ましく、0.4g/m2以下がより好ましく、0.3g/m2以下が更に好ましく、0.2g/m2以下が特に好ましい。なお、この酸素目付量は、低いほど好ましく、0.0g/m2でもよいのは言うまでもない。 Therefore, the oxygen grain amount of the material to be polished before performing the composite electrolytic polishing is preferably 0.5 g / m 2 or less, more preferably 0.4 g / m 2 or less, and further preferably 0.3 g / m 2 or less. It is preferable, and 0.2 g / m 2 or less is particularly preferable. It is needless to say that the lower the oxygen basis weight is, the more preferable it is, and 0.0 g / m 2 may be used.
酸素目付量は、被研磨材全体(全厚)の酸素量を化学分析により求め、単位面積あたりの目付量に換算した値である(以下、同様)。 The oxygen basis weight is a value obtained by obtaining the oxygen amount of the entire material to be polished (total thickness) by chemical analysis and converting it into the basis weight per unit area (hereinafter, the same applies).
複合電解研磨を行なう前に、あらかじめ被研磨材の酸素目付量を低減する方法としては、特に限定されないが、例えば、焼鈍分離剤の塗布から二次再結晶にかけて、被研磨材となる鋼板の酸素目付量を低減する方法が挙げられ、その具体例としては、特開昭64-62476号公報に記載された焼鈍分離剤を用いて、フォルステライト被膜を形成しないようにする方法が挙げられる。 The method for reducing the oxygen content of the material to be polished before performing the composite electrolytic polishing is not particularly limited, but for example, oxygen of the steel plate to be polished is applied from the application of the annealing separator to the secondary recrystallization. Examples thereof include a method of reducing the amount of graining, and specific examples thereof include a method of preventing the formation of a forsterite film by using an annealing separator described in JP-A No. 64-62476.
このような焼鈍分離剤は、例えば、酸化マグネシウム(MgO)と、アルカリ金属の塩化物およびアルカリ土類金属の塩化物からなる群から選ばれる少なくとも1種の塩化物とを含有する。
塩化物の含有量は、酸化マグネシウム100質量部に対して、例えば、0.5~50質量部であり、2~40質量部が好ましく、3~20質量部がより好ましい。
焼鈍分離剤には、更に、酸化チタン(TiO2)などの添加剤を、酸化マグネシウム100質量部に対して、0.5~5質量部配合してもよい。
Such a quenching separator contains, for example, magnesium oxide (MgO) and at least one chloride selected from the group consisting of alkali metal chlorides and alkaline earth metal chlorides.
The chloride content is, for example, 0.5 to 50 parts by mass, preferably 2 to 40 parts by mass, and more preferably 3 to 20 parts by mass with respect to 100 parts by mass of magnesium oxide.
The annealing separator may further contain an additive such as titanium oxide (TiO 2 ) in an amount of 0.5 to 5 parts by mass with respect to 100 parts by mass of magnesium oxide.
また、機械研磨によって酸化物層を除去することにより、被研磨材の酸素目付量をあらかじめ低減してもよい。この場合、被研磨材の深部に歪みが導入されないようにするため、スコッチペーパーを用いて機械研磨を行なうことが好ましい。
この機械研磨を行なう場合、機械研磨後における被研磨材の酸素目付量は0.5g/m2以下に低減されることが好ましい。
Further, the oxygen basis weight of the material to be polished may be reduced in advance by removing the oxide layer by mechanical polishing. In this case, it is preferable to perform mechanical polishing using Scotch paper in order to prevent strain from being introduced into the deep part of the material to be polished.
When this mechanical polishing is performed, it is preferable that the oxygen basis weight of the material to be polished after the mechanical polishing is reduced to 0.5 g / m 2 or less.
<複合電解研磨>
次に、準備した被研磨材(二次再結晶後の鋼板)に複合電解研磨を行なう。具体的には、被研磨材に対して、砥粒を含むpH7超の電解液を供給する。そして、被研磨材の表面に所定量の電流が流れるようにして、研磨用工具と被研磨材との間に電圧を付加する。これにより、電気化学的な研磨(電解研磨)を行なう。この電解研磨と同時に、研磨用工具を用いて、被研磨材に対して機械的な研磨(機械研磨)も行なう。複合電解研磨では、機械研磨も行なうため、電解研磨のみを行なう場合と比較して、効率が良い。
<Composite electrolytic polishing>
Next, composite electrolytic polishing is performed on the prepared material to be polished (steel plate after secondary recrystallization). Specifically, an electrolytic solution having a pH of more than 7 containing abrasive grains is supplied to the material to be polished. Then, a voltage is applied between the polishing tool and the material to be polished so that a predetermined amount of current flows on the surface of the material to be polished. As a result, electrochemical polishing (electrolytic polishing) is performed. At the same time as this electrolytic polishing, mechanical polishing (mechanical polishing) is also performed on the material to be polished using a polishing tool. Since the composite electrolytic polishing also performs mechanical polishing, it is more efficient than the case where only electrolytic polishing is performed.
このとき、電解液としては、一般的に使用される中性または酸性の電解液を用いるのではなく、pHが7を超えるアルカリ性の電解液を用いる。
これにより、研磨後に被研磨材を電解液から取り出して乾燥させるまでの間に、被研磨材の表面に酸化物層が形成されず、良好な表面状態が得られる。この理由は明らかではないが、被研磨材の表面にヒドロキシ基が付き、表面が保護されるためと考えられる。
電解液から取り出した後の被研磨材は、十分に水洗し、表面に残る電解液および砥粒を除去する。その後、十分に乾燥させる。
At this time, as the electrolytic solution, an alkaline electrolytic solution having a pH of more than 7 is used instead of the generally used neutral or acidic electrolytic solution.
As a result, an oxide layer is not formed on the surface of the material to be polished until the material to be polished is taken out from the electrolytic solution and dried after polishing, and a good surface condition can be obtained. The reason for this is not clear, but it is thought that the surface of the material to be polished has hydroxy groups to protect the surface.
The material to be polished after being taken out from the electrolytic solution is thoroughly washed with water to remove the electrolytic solution and abrasive grains remaining on the surface. After that, it is sufficiently dried.
こうして得られる複合電解研磨後の被研磨材(すなわち、本発明の製造方法により得られる方向性電磁鋼板)は、表面状態が良好である。具体的には、表面粗さRaが0.30μm以下であり、かつ、酸素目付量が0.05g/m2以下である。 The material to be polished (that is, the grain-oriented electrical steel sheet obtained by the production method of the present invention) after the composite electrolytic polishing thus obtained has a good surface condition. Specifically, the surface roughness Ra is 0.30 μm or less, and the oxygen basis weight is 0.05 g / m 2 or less.
表面粗さRaは、JIS B 0601:2013に準拠して測定される、算術平均粗さ(Ra)である(以下、同様)。 The surface roughness Ra is an arithmetic mean roughness (Ra) measured in accordance with JIS B 0601: 2013 (hereinafter, the same applies).
また、本発明の製造方法により得られる方向性電磁鋼板は、その表面に歪がほとんど入っていない。このため、磁気特性が良好である。具体的には、励磁磁束密度1.7Tでのヒステリシス損(履歴損)として、0.26W/kg以下を達成できる。 Further, the grain-oriented electrical steel sheet obtained by the manufacturing method of the present invention has almost no strain on its surface. Therefore, the magnetic characteristics are good. Specifically, 0.26 W / kg or less can be achieved as a hysteresis loss (history loss) at an exciting magnetic flux density of 1.7 T.
上述した効果がより優れるという理由から、電解液のpHは8以上が好ましい。上限は特に限定されないが、電解液のpHは10以下が好ましい。
電解液の種類は、pHが上記範囲内であれば特に限定されないが、硝酸ナトリウムを主な液組成とする電解液が好ましい。
電解液に含ませる砥粒の成分としては、例えば、Al2O3、SiO2等が挙げられる。このような砥粒を電解液中に分散させて用いる。
The pH of the electrolytic solution is preferably 8 or more because the above-mentioned effects are more excellent. The upper limit is not particularly limited, but the pH of the electrolytic solution is preferably 10 or less.
The type of the electrolytic solution is not particularly limited as long as the pH is within the above range, but an electrolytic solution containing sodium nitrate as a main liquid composition is preferable.
Examples of the components of the abrasive grains contained in the electrolytic solution include Al 2 O 3 and SiO 2 . Such abrasive grains are dispersed in the electrolytic solution and used.
電圧印加のために被研磨材の表面に流す電流量は、少なすぎると、電解研磨の速度が十分に得られず、その結果、所望する表面状態が得られない場合がある。
このため、所望する表面状態が得られやすいという理由から、被研磨材の表面に流す電流量は、3mA/cm2以上が好ましく、4mA/cm2以上がより好ましく、5mA/cm2以上が更に好ましい。
一方、この電流量が多すぎると、被研磨材の表面の鉄イオン濃度が上昇し、効率が低下する場合がある。また、酸化物層が形成されることにより、研磨後に被研磨材を電解液から取り出して乾燥させるまでの間に、表面状態が不十分になる場合がある。
このため、所望する表面状態が得られやすいという理由から、被研磨材の表面に流す電流量は、160mA/cm2以下が好ましく、130mA/cm2以下がより好ましく、100mA/cm2以下が更に好ましい。
If the amount of current flowing on the surface of the material to be polished for applying a voltage is too small, the speed of electrolytic polishing may not be sufficient, and as a result, the desired surface condition may not be obtained.
Therefore, the amount of current flowing through the surface of the material to be polished is preferably 3 mA / cm 2 or more, more preferably 4 mA / cm 2 or more, and further preferably 5 mA / cm 2 or more because the desired surface condition can be easily obtained. preferable.
On the other hand, if this amount of current is too large, the iron ion concentration on the surface of the material to be polished may increase and the efficiency may decrease. Further, due to the formation of the oxide layer, the surface condition may be insufficient before the material to be polished is taken out from the electrolytic solution and dried after polishing.
Therefore, the amount of current flowing through the surface of the material to be polished is preferably 160 mA / cm 2 or less, more preferably 130 mA / cm 2 or less, and further preferably 100 mA / cm 2 or less because the desired surface condition can be easily obtained. preferable.
複合電解研磨におけるその他の条件、装置等については、従来公知の電解研磨および機械研磨における条件、装置等を適宜採用できる。 As for other conditions, devices, etc. in composite electrolytic polishing, conventionally known conditions, devices, etc. in electrolytic polishing and mechanical polishing can be appropriately adopted.
以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
<被研磨材(二次再結晶後の鋼板)の準備>
まず、Si:3.2質量%、Mn:0.03質量%、Al:0.02質量%、N:0.006質量%、および、Se:0.005質量%を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを準備した。準備した鋼スラブを、1350℃に加熱した後、熱間圧延して、板厚2.0mmの熱延鋼板を得た。
得られた熱延鋼板に、1000℃で60秒の熱延板焼鈍を施してから、酸洗を施し、次いで、1回の冷間圧延を施して、板厚0.23mmの冷延鋼板を得た。
得られた冷延鋼板に、均熱温度830℃、均熱時間2分間とする一次再結晶焼鈍を施した。一次再結晶焼鈍は、全工程で、水素50体積%+窒素50体積%、露点55℃の湿潤雰囲気中で行なった。脱炭も同時に行なった。
一次再結晶焼鈍後の冷延鋼板(鋼板)に、焼鈍分離剤を塗布した。焼鈍分離剤としては、酸化マグネシウム(MgO)100質量部に、2質量部の酸化チタン(TiO2)と、所定量の塩化マグネシウム(MgCl2)とを配合した焼鈍分離剤を用いた。酸化マグネシウム(MgO)100質量部に対する塩化マグネシウム(MgCl2)の量(単位:質量部)を、下記表1に示す。
その後、二次再結晶のために、1150℃で5時間の均熱を行なう最終仕上焼鈍を施した。こうして、被研磨材である二次再結晶後の鋼板を得た。
得られた被研磨材の酸素目付量(研磨前の酸素目付量、単位:g/m2)を上述した方法により測定した。測定結果を下記表1に示す。
<Preparation of abrasive material (steel plate after secondary recrystallization)>
First, Si: 3.2% by mass, Mn: 0.03% by mass, Al: 0.02% by mass, N: 0.006% by mass, and Se: 0.005% by mass are contained, and the balance is Fe. And prepared a steel slab consisting of unavoidable impurities. The prepared steel slab was heated to 1350 ° C. and then hot-rolled to obtain a hot-rolled steel sheet having a plate thickness of 2.0 mm.
The obtained hot-rolled steel sheet is annealed at 1000 ° C. for 60 seconds, then pickled, and then cold-rolled once to obtain a cold-rolled steel sheet having a thickness of 0.23 mm. Obtained.
The obtained cold-rolled steel sheet was subjected to primary recrystallization annealing with a soaking temperature of 830 ° C. and a soaking time of 2 minutes. The primary recrystallization annealing was carried out in a moist atmosphere with 50% by volume of hydrogen + 50% by volume of nitrogen and a dew point of 55 ° C. in all steps. Decarburization was also performed at the same time.
An annealing separator was applied to the cold-rolled steel sheet (steel sheet) after primary recrystallization annealing. As the annealing separator, an annealing separator in which 2 parts by mass of titanium oxide (TiO 2 ) and a predetermined amount of magnesium chloride (MgCl 2 ) were mixed with 100 parts by mass of magnesium oxide (MgO) was used. The amount (unit: parts by mass) of magnesium chloride (MgCl 2 ) with respect to 100 parts by mass of magnesium oxide (MgO) is shown in Table 1 below.
Then, for secondary recrystallization, final finish annealing was performed at 1150 ° C. for 5 hours of soaking. In this way, a steel sheet after secondary recrystallization, which is the material to be polished, was obtained.
The oxygen basis weight of the obtained material to be polished (oxygen basis weight before polishing, unit: g / m 2 ) was measured by the above-mentioned method. The measurement results are shown in Table 1 below.
<研磨>
例Aでは、得られた被研磨材に対して、スコッチペーパーを用いて、単なる機械研磨を行なった。
一方、例B~例Gでは、得られた被研磨材に対して、砥粒を含む電解液を用いて、複合電解研磨を行なった。より詳細には、硝酸ナトリウムを含有する電解液中に、Al2O3砥粒を分散させたものを用いた。更に、下記表1には、電解液のpHおよび電流密度(被研磨材の表面に流した電流量、単位:mA/cm2)を記載した。
<Polishing>
In Example A, the obtained material to be polished was simply mechanically polished using Scotch paper.
On the other hand, in Examples B to G, the obtained material to be polished was subjected to composite electrolytic polishing using an electrolytic solution containing abrasive grains. More specifically, an electrolytic solution containing sodium nitrate in which Al 2 O 3 abrasive grains were dispersed was used. Further, Table 1 below shows the pH and current density of the electrolytic solution (the amount of current applied to the surface of the material to be polished, unit: mA / cm 2 ).
<評価>
研磨後における被研磨材について、外観を観察した。例A~例Gの外観写真を、それぞれ、図3~図9に示す。外観の状態(「鏡面」など)を下記表1に記載した。
また、研磨後における被研磨材について、表面粗さRa(単位:μm)および酸素目付量(単位:g/m2)を上述した方法により測定した。測定結果を下記表1に示す。
更に、ヒステリシスループから、励磁磁束密度1.7Tでのヒステリシス損(単位:W/kg)を求めた。この結果も下記表1に示す。
<Evaluation>
The appearance of the material to be polished after polishing was observed. The external photographs of Examples A to G are shown in FIGS. 3 to 9, respectively. The appearance state (“mirror surface”, etc.) is shown in Table 1 below.
Further, the surface roughness Ra (unit: μm) and the oxygen basis weight (unit: g / m 2 ) of the material to be polished after polishing were measured by the above-mentioned method. The measurement results are shown in Table 1 below.
Further, the hysteresis loss (unit: W / kg) at an exciting magnetic flux density of 1.7 T was obtained from the hysteresis loop. This result is also shown in Table 1 below.
<評価結果のまとめ>
まず、複合電解研磨を行なった例B~例Gを対比する。例B~例Gは、機械研磨を伴う複合電解研磨を行なっているため、単なる電解研磨と比較して、効率は良好である。
もっとも、電解液のpHが7である例Gにおいては、研磨後の被研磨材は、外観が「再酸化」しており、表面粗さRaが0.5μmであり、酸素目付量が0.08g/m2であった。ヒステリシス損は0.30W/kgであった。すなわち、表面状態および磁気特性が不十分であった。
<Summary of evaluation results>
First, the examples B to G in which the composite electrolytic polishing is performed are compared. In Examples B to G, since composite electrolytic polishing accompanied by mechanical polishing is performed, the efficiency is better than that of simple electrolytic polishing.
However, in Example G in which the pH of the electrolytic solution is 7, the material to be polished after polishing has an appearance of "reoxidation", a surface roughness Ra of 0.5 μm, and an oxygen basis weight of 0. It was 08 g / m 2 . The hysteresis loss was 0.30 W / kg. That is, the surface condition and magnetic properties were insufficient.
これに対して、電解液のpHが7より高い例B~例Fにおいては、研磨後の被研磨材は、表面粗さRaが0.30μm以下であり、かつ、酸素目付量が0.05g/m2以下であった。また、ヒステリシス損は0.26W/kg以下であった。すなわち、表面状態および磁気特性がいずれも良好であった。 On the other hand, in Examples B to F in which the pH of the electrolytic solution is higher than 7, the surface roughness Ra of the material to be polished after polishing is 0.30 μm or less, and the oxygen basis weight is 0.05 g. It was less than / m 2 . The hysteresis loss was 0.26 W / kg or less. That is, both the surface condition and the magnetic characteristics were good.
例B~例Fを対比すると、研磨前の酸素目付量が0.5g/m2以下であり、かつ、電流密度が3mA/cm2以上160mA/cm2以下である例C、例Eおよび例Fは、これらの条件を満たさない例Bおよび例Dと比較して、表面粗さRaの値がより小さく、かつ、酸素目付量がより少なかった。ヒステリシス損の値もより小さかった。 Comparing Examples B to F, Examples C, E and Examples have an oxygen roughness before polishing of 0.5 g / m 2 or less and a current density of 3 mA / cm 2 or more and 160 mA / cm 2 or less. F had a smaller surface roughness Ra value and a smaller oxygen content than Example B and Example D, which did not satisfy these conditions. The value of hysteresis loss was also smaller.
機械研磨を行なった例Aは、ヒステリシス損が0.35W/kgであった。これは、機械研磨の応力によって、結晶組織が塑性変形したためと考えられる。 In Example A in which mechanical polishing was performed, the hysteresis loss was 0.35 W / kg. It is considered that this is because the crystal structure was plastically deformed by the stress of mechanical polishing.
Claims (3)
二次再結晶後の鋼板を被研磨材とし、
前記被研磨材に対して、砥粒を含むpH7超の電解液を供給し、電圧を印加することにより電解研磨を行ないつつ、機械研磨を行なう、方向性電磁鋼板の製造方法。 A method for manufacturing grain-oriented electrical steel sheets having a surface roughness Ra of 0.30 μm or less and an oxygen basis weight of 0.05 g / m 2 or less.
The steel plate after secondary recrystallization is used as the material to be polished.
A method for manufacturing a directional electromagnetic steel plate, in which an electrolytic solution containing abrasive grains having a pH of more than 7 is supplied to the material to be polished, and mechanical polishing is performed while performing electrolytic polishing by applying a voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019065909A JP7010264B2 (en) | 2019-03-29 | 2019-03-29 | Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019065909A JP7010264B2 (en) | 2019-03-29 | 2019-03-29 | Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020164918A JP2020164918A (en) | 2020-10-08 |
JP7010264B2 true JP7010264B2 (en) | 2022-02-10 |
Family
ID=72717068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019065909A Active JP7010264B2 (en) | 2019-03-29 | 2019-03-29 | Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7010264B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023238608A1 (en) * | 2022-06-08 | 2023-12-14 | 株式会社デンソー | Surface treatment method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004211145A (en) | 2002-12-27 | 2004-07-29 | Jfe Steel Kk | Method for producing low core loss grain-oriented magnetic steel sheet and method for finish-annealing the same |
JP2013020692A (en) | 2011-05-20 | 2013-01-31 | Ohara Inc | Manufacturing method of substrate for information recording medium |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6269501A (en) * | 1985-09-21 | 1987-03-30 | Kawasaki Steel Corp | Manufacture of low iron loss grain oriented silicon steel plate |
JP2602621B2 (en) * | 1993-12-27 | 1997-04-23 | 日立造船株式会社 | Electropolishing method for stainless steel members |
JPH1161261A (en) * | 1997-08-08 | 1999-03-05 | Kawasaki Steel Corp | Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic |
JP3386717B2 (en) * | 1998-05-26 | 2003-03-17 | 川崎製鉄株式会社 | Method for producing oriented silicon steel sheet with low hysteresis loss |
-
2019
- 2019-03-29 JP JP2019065909A patent/JP7010264B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004211145A (en) | 2002-12-27 | 2004-07-29 | Jfe Steel Kk | Method for producing low core loss grain-oriented magnetic steel sheet and method for finish-annealing the same |
JP2013020692A (en) | 2011-05-20 | 2013-01-31 | Ohara Inc | Manufacturing method of substrate for information recording medium |
Also Published As
Publication number | Publication date |
---|---|
JP2020164918A (en) | 2020-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6168173B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
KR101921401B1 (en) | Method for producing grain-oriented electrical steel sheet | |
CN109477186B (en) | Hot-rolled steel sheet for grain-oriented electrical steel sheet, method for producing same, and method for producing grain-oriented electrical steel sheet | |
WO2014017591A1 (en) | Oriented electromagnetic steel plate production method | |
KR20160138253A (en) | Method for producing oriented electromagnetic steel sheet | |
KR20160081955A (en) | Non-directional electromagnetic steel sheet having excellent magnetic properties | |
JP6825681B2 (en) | Electrical steel sheet and its manufacturing method | |
JP2679944B2 (en) | Method for manufacturing mirror-oriented electrical steel sheet with low iron loss | |
JPH10298653A (en) | Manufacture of grain oriented silicon steel sheet with extremely low iron loss | |
JP2009228117A (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JP7010264B2 (en) | Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet | |
JP4280004B2 (en) | Semi-processed non-oriented electrical steel sheet with extremely excellent iron loss and magnetic flux density and method for producing the same | |
JP2020084303A (en) | Production process of grain-oriented electromagnetic steel sheet | |
JPH07278670A (en) | Manufacture of grain-oriented silicon steel sheet with low iron loss | |
JP5287641B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2016060953A (en) | Manufacturing method of oriented magnetic steel sheet | |
JP4608562B2 (en) | Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density | |
JP2003293101A (en) | Nonoriented silicon steel sheet having excellent magnetic property and corrosion resistance after stress relieving annealing | |
JP4457835B2 (en) | SOFT MAGNETIC STEEL FOR LOW TEMPERATURE OXIDE FILM FORMATION, SOFT MAGNETIC STEEL, AND METHOD FOR PRODUCING THEM | |
JP2003049250A (en) | Grain-oriented electrical steel sheet with excellent bendability, and its manufacturing method | |
JP7295394B2 (en) | Non-oriented electrical steel sheet | |
JPH086135B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties | |
JP4790151B2 (en) | Non-oriented electrical steel sheet with extremely excellent iron loss and magnetic flux density and method for producing the same | |
JP3182666B2 (en) | Method for producing ultra-low iron loss unidirectional silicon steel sheet | |
CN113302317A (en) | Method for producing grain-oriented electromagnetic steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201026 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210713 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210720 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20211012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211117 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20211117 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20211124 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20211130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7010264 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |