[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7009541B2 - Power system using photovoltaic device - Google Patents

Power system using photovoltaic device Download PDF

Info

Publication number
JP7009541B2
JP7009541B2 JP2020063020A JP2020063020A JP7009541B2 JP 7009541 B2 JP7009541 B2 JP 7009541B2 JP 2020063020 A JP2020063020 A JP 2020063020A JP 2020063020 A JP2020063020 A JP 2020063020A JP 7009541 B2 JP7009541 B2 JP 7009541B2
Authority
JP
Japan
Prior art keywords
light
battery
panel
power generation
photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020063020A
Other languages
Japanese (ja)
Other versions
JP2021164251A (en
Inventor
健 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020063020A priority Critical patent/JP7009541B2/en
Publication of JP2021164251A publication Critical patent/JP2021164251A/en
Application granted granted Critical
Publication of JP7009541B2 publication Critical patent/JP7009541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Coin-Freed Apparatuses For Hiring Articles (AREA)
  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明はバッテリを提供する電源システムに係り、特に光起電力を用いたバッテリ充電が可能な電源システムに関する。 The present invention relates to a power supply system that provides a battery, and more particularly to a power supply system capable of battery charging using photovoltaics.

バッテリの充電に太陽光発電を利用した電源システムは数多く提案されている。たとえば、特許文献1には太陽光発電と商用電源を利用した電気自動車用バッテリの充電システムが記載されており、特許文献2には色素増感太陽電池を用いてモバイル機器を充電するソーラー充電器が開示されている。 Many power supply systems that use photovoltaic power generation to charge the battery have been proposed. For example, Patent Document 1 describes a charging system for a battery for an electric vehicle using solar power generation and a commercial power source, and Patent Document 2 describes a solar charger that charges a mobile device using a dye-sensitized solar cell. Is disclosed.

また、特許文献3に開示された太陽電池パネルは、異なる波長域の集光性染料を含有した複数の透明樹脂を積層し、各層のエッジに太陽電池を設け、さらに最下層に太陽電池を配置した構成を有する。 Further, in the solar cell panel disclosed in Patent Document 3, a plurality of transparent resins containing light-collecting dyes in different wavelength ranges are laminated, a solar cell is provided at the edge of each layer, and a solar cell is further arranged at the bottom layer. Has the same configuration.

また充電されたバッテリをレンタルする電源システムも提案されている。たとえば、特許文献4には電気自動車用バッテリのレンタルシステムが開示されている。 A power supply system that rents a charged battery has also been proposed. For example, Patent Document 4 discloses a rental system for a battery for an electric vehicle.

特開2014-054022号公報Japanese Unexamined Patent Publication No. 2014-054022 特開2019-149583号公報Japanese Unexamined Patent Publication No. 2019-149583 特開平7-131051号公報Japanese Unexamined Patent Publication No. 7-131051 特開2002-291110号公報Japanese Unexamined Patent Publication No. 2002-291110

しかしながら、上述した特許文献1および2では、太陽電池パネルにより太陽光を電力に変換して取り出すだけである。このために、発電効率は太陽電池パネル自体の光電変換効率にのみ依存しており、光発電効率をさらに向上させることが容易ではなかった。 However, in the above-mentioned Patent Documents 1 and 2, only the sunlight is converted into electric power by the solar cell panel and taken out. For this reason, the power generation efficiency depends only on the photoelectric conversion efficiency of the solar cell panel itself, and it has not been easy to further improve the photovoltaic power generation efficiency.

また、特許文献3に開示された太陽電池パネルは、入射する太陽光の電力変換効率を最大限に高めることを企図したものである。したがって、特許文献3の太陽電池パネルも太陽光のみに依存しており、発電効率は太陽電池パネル自体の光電変換効率にのみ依存している。 Further, the solar cell panel disclosed in Patent Document 3 is intended to maximize the power conversion efficiency of incident sunlight. Therefore, the solar cell panel of Patent Document 3 also depends only on sunlight, and the power generation efficiency depends only on the photoelectric conversion efficiency of the solar cell panel itself.

また、特許文献4に開示された電源システムは商用電源による充電を前提としており、このために災害等の発生により停電した場合、サービスを提供することができない。 Further, the power supply system disclosed in Patent Document 4 is premised on charging by a commercial power source, and therefore, in the event of a power failure due to the occurrence of a disaster or the like, it is not possible to provide a service.

そこで、本発明の目的は、環境に存在する光を無駄なく利用することで商用電源に依存することなく効率的なバッテリ充電およびバッテリ提供を可能にする電源システムを提供することにある。 Therefore, an object of the present invention is to provide a power supply system that enables efficient battery charging and battery provision without depending on a commercial power source by utilizing the light existing in the environment without waste.

本発明の一態様によれば、複数のバッテリ(30)を受入/取出可能に収納するバッテリ収納手段(402)と、第1光発電パネル(11)と第2光発電パネル(12)とを重ねた光発電デバイス(10)と、前記第1光発電パネル(11)の光起電力と前記第2光発電パネル(12)の光起電力とを用いて前記バッテリ(30)の充電を行う充電回路(401)と、前記充電回路(401)により前記複数のバッテリ(30)を充電し、登録済みのユーザに前記バッテリ収納手段(402)から前記バッテリ(30)を提供する管理手段(404)と、を有し、前記第1光発電パネル(11)側から第1の光を入射させ、前記第2光発電パネル(12)側から第2の光を入射させ、前記第1光発電パネル(11)が前記第1の光と前記第2光発電パネル(12)を透過した前記第2の光とから光発電を行い、前記第2光発電パネル(12)が前記第2の光と前記第1光発電パネル(11)を透過した前記第1の光とから光発電を行う。これにより、光発電デバイスの両側から第1の光と第2の光とが入射することで、第1光発電パネルは第1の光の光電変換を行い、さらに第2光発電パネルを透過した第2の光の光電変換も行う。同時に、第2光発電パネルは第2の光の光電変換を行い、さらに第1光発電パネルを透過した第1の光の光電変換も行う。このように、光発電デバイスの両面から入射する光を発電に利用することができ、簡単な構成で環境に存在する光を無駄なく利用して発電効率を向上させることができる。また、バッテリの貸与など種々のサービスを光発電だけで提供することが可能となる。
前記第1光発電パネル(11)が透明あるいは半透明の第1太陽電池パネル(101)からなり、前記第2光発電パネル(12)が集光性パネル(102)と前記集光性パネル(102)のエッジ面に設けられた第2太陽電池パネル(103)から構成することができる。これにより、第1太陽電池パネル(101)は第1の光を全面で受けることで効率的な光電変換が可能となり、第2太陽電池パネル(103)は所望の波長域で光電変換が可能となる。
前記集光性パネル(102)は、透明媒質に所定波長域の光を吸収し前記所定波長域の光を再放出する蛍光染料を分散させた透明板にすることができる。これにより所定波長域の光を効率的に集光して発電に利用することができる。
前記第2太陽電池パネル(103)は光を透過しない太陽電池パネルであってもよい。たとえば、第2太陽電池パネルは基板実装された太陽電池パネルである。
前記充電回路(401)により充電可能であり、前記管理手段(404)に電源を供給するシステムバッテリと、をさらに有することもできる。また前記充電回路(401)が前記複数のバッテリ(30)から前記システムバッテリへの充電あるいはその逆方向の充電を行ってもよい。これにより、光発電された電力を互いに融通して効率的な利用が可能となる。
According to one aspect of the present invention, the battery accommodating means (402) for accommodating and retracting a plurality of batteries (30), and the first optical power generation panel (11) and the second optical power generation panel (12) are provided. The battery (30) is charged using the stacked photovoltaic power generation device (10), the photovoltaic power generation of the first photovoltaic power generation panel (11), and the photovoltaic power generation of the second photovoltaic power generation panel (12). A management means (404) that charges the plurality of batteries (30) by the charging circuit (401) and the charging circuit (401), and provides the registered user with the battery (30) from the battery accommodating means (402). ), And the first light is incident from the first photopower generation panel (11) side, the second light is incident from the second photopower generation panel (12) side, and the first photopower generation is performed. The panel (11) generates photoelectric power from the first light and the second light transmitted through the second photopower generation panel (12), and the second photopower generation panel (12) causes the second light. And the first light that has passed through the first photopower generation panel (11), photopower generation is performed. As a result, the first light and the second light are incident from both sides of the photovoltaic device, so that the first photovoltaic panel performs photoelectric conversion of the first light and further passes through the second photovoltaic panel. The photoelectric conversion of the second light is also performed. At the same time, the second photovoltaic panel performs photoelectric conversion of the second light, and further performs photoelectric conversion of the first light transmitted through the first photovoltaic panel. In this way, the light incident from both sides of the photovoltaic power generation device can be used for power generation, and the light existing in the environment can be used without waste with a simple configuration to improve the power generation efficiency. In addition, various services such as battery rental can be provided only by photovoltaic power generation.
The first photovoltaic panel (11) is a transparent or translucent first solar cell panel (101), and the second photovoltaic panel (12) is a condensing panel (102) and a condensing panel (102). It can be composed of a second solar cell panel (103) provided on the edge surface of 102). As a result, the first solar cell panel (101) can perform efficient photoelectric conversion by receiving the first light on the entire surface, and the second solar cell panel (103) can perform photoelectric conversion in a desired wavelength range. Become.
The light-collecting panel (102) can be a transparent plate in which a fluorescent dye that absorbs light in a predetermined wavelength range and re-emits the light in a predetermined wavelength range is dispersed in a transparent medium. As a result, light in a predetermined wavelength range can be efficiently collected and used for power generation.
The second solar cell panel (103) may be a solar cell panel that does not transmit light. For example, the second solar cell panel is a substrate-mounted solar cell panel.
It may further have a system battery that is rechargeable by the charging circuit (401) and supplies power to the management means (404). Further, the charging circuit (401) may charge the system battery from the plurality of batteries (30) or charge the system battery in the opposite direction. As a result, the photovoltaic power generation can be interchanged with each other for efficient use.

上述したように、本発明によれば、環境に存在する光を無駄なく利用することで商用電源に依存することなく効率的なバッテリ充電およびバッテリ提供が可能となる。 As described above, according to the present invention, by utilizing the light existing in the environment without waste, it is possible to efficiently charge the battery and provide the battery without depending on the commercial power source.

本発明の一実施形態による電源システムに用いられる光発電デバイスの一例を示す図である。It is a figure which shows an example of the photovoltaic power generation device used in the power source system by one Embodiment of this invention. 本実施形態による電源システムに使用される光発電デバイスの模式的構成を示す図である。It is a figure which shows the schematic structure of the photovoltaic power generation device used in the power source system by this embodiment. 本実施形態による電源システムであるバッテリレンタルサーバの一例を示す図である。It is a figure which shows an example of the battery rental server which is the power supply system by this embodiment. 本実施形態による電源システムであるバッテリレンタルサーバの概略的構成を示す斜視図である。It is a perspective view which shows the schematic structure of the battery rental server which is the power supply system by this embodiment. 図4に示すバッテリレンタルサーバのバッテリ返却口側から見た概略的な平面図である。It is a schematic plan view seen from the battery return port side of the battery rental server shown in FIG. 図4に示すバッテリレンタルサーバで使用されるバッテリの正面図(A)、平面図(B)および側面図(C)である。It is a front view (A), the plan view (B) and the side view (C) of the battery used in the battery rental server shown in FIG. 図4に示すバッテリレンタルサーバの内部構成を概略的に示す側面構成図である。It is a side block diagram which shows outline the internal structure of the battery rental server shown in FIG. 図4に示すバッテリレンタルサーバの回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the battery rental server shown in FIG. 図4に示すバッテリレンタルサーバにおけるバッテリ貸与・返却方法の一例を示すシーケンス図である。It is a sequence diagram which shows an example of the battery lending / returning method in the battery rental server shown in FIG. 本発明の他の実施形態による電源システムの概略的構成を示す図である。It is a figure which shows the schematic structure of the power supply system by another embodiment of this invention.

<実施形態の概要>
本発明の実施形態によれば、複数のバッテリが受入/取出可能に収納されており、第1光発電パネルの光起電力と第1光発電パネルに重ねた第2光発電パネルの光起電力とを用いて複数のバッテリの充電を行い、登録済みのユーザに充電されたバッテリを提供する。たとえば、第1光発電パネルを屋外に向け、第2光発電パネルを屋内に向けてそれぞれ設置した場合、第1光発電パネルは屋外光の光電変換を行い、さらに第2光発電パネルを透過した屋内光の光電変換も行う。同時に、第2光発電パネルは屋内光の光電変換を行い、さらに第1光発電パネルを透過した屋外光の光電変換も行う。
<Outline of Embodiment>
According to the embodiment of the present invention, a plurality of batteries are housed so as to be acceptable / removable, and the photovoltaic power of the first photovoltaic power generation panel and the photovoltaic power of the second photovoltaic power generation panel superimposed on the first photovoltaic power generation panel. To charge a plurality of batteries using and to provide a charged battery to a registered user. For example, when the first photovoltaic power generation panel is installed outdoors and the second photovoltaic power generation panel is installed indoors, the first photovoltaic power generation panel performs photoelectric conversion of outdoor light and further transmits the second photovoltaic power generation panel. It also performs photoelectric conversion of indoor light. At the same time, the second photovoltaic panel performs photoelectric conversion of indoor light, and further performs photoelectric conversion of outdoor light transmitted through the first photovoltaic panel.

このように、本発明の実施形態によれば、光発電デバイスの両面から入射する光を発電に利用することができ、簡単な構成で環境に存在する光を無駄なく利用して発電効率を向上させることができる。特に災害発生時に停電した場合であっても、商用電源に依存することなく効率的なバッテリ充電およびバッテリ提供が可能となる。以下、本発明の実施形態について図面を参照して詳細に説明する。ただし、以下の実施形態に記載されている構成要素は単なる例示であって、本発明の技術範囲をそれらのみに限定する趣旨ではない。 As described above, according to the embodiment of the present invention, the light incident from both sides of the photovoltaic power generation device can be used for power generation, and the light existing in the environment can be utilized without waste in a simple configuration to improve the power generation efficiency. Can be made to. In particular, even in the event of a power outage in the event of a disaster, efficient battery charging and battery provision can be achieved without depending on a commercial power source. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the components described in the following embodiments are merely examples, and the technical scope of the present invention is not limited to them.

1.一実施形態
図1に例示するように、本発明の一実施形態による電源システムは複数のバッテリを充電し提供するシステムであり、光発電デバイス10および充電回路20を有し、充電回路20が光発電デバイス10から出力される光起電力を電力変換しバッテリ30を充電する。
1. 1. One Embodiment As illustrated in FIG. 1, the power supply system according to one embodiment of the present invention is a system that charges and provides a plurality of batteries, includes a photopower generation device 10 and a charging circuit 20, and the charging circuit 20 is optical. The photovoltaic power output from the power generation device 10 is converted into electric power to charge the battery 30.

図1および図2に例示するように、光発電デバイス10は、第1光発電パネル11と第2光発電パネル12とを重ねた構成を有する。第1光発電パネル11と第2光発電パネル12とは別個のパネルを一定の空間を隔てて重ねた構成でも良いし、透明基板上に第1光発電パネル11と第2光発電パネル12を積層した構成でも良い。第1光発電パネル11および第2光発電パネル12は入射光を電気エネルギに変換するが、特定の波長域を透過してもよい。第1光発電パネル11は透明あるいは半透明の太陽電池であってもよく、たとえば薄膜型あるいは有機薄膜型太陽電池フィルムを用いることができる。 As illustrated in FIGS. 1 and 2, the photovoltaic power generation device 10 has a configuration in which a first photovoltaic power generation panel 11 and a second photovoltaic power generation panel 12 are stacked. The first photovoltaic power generation panel 11 and the second photovoltaic power generation panel 12 may be stacked with separate panels separated by a certain space, or the first photovoltaic power generation panel 11 and the second photovoltaic power generation panel 12 may be stacked on a transparent substrate. It may be a laminated structure. The first photovoltaic panel 11 and the second photovoltaic panel 12 convert incident light into electrical energy, but may pass through a specific wavelength range. The first photovoltaic panel 11 may be a transparent or translucent solar cell, and for example, a thin film type or an organic thin film type solar cell film can be used.

図2に例示するように、第2光発電パネル12は、集光性パネル102とそのエッジ面に設けられた太陽電池パネル103とからなる。本実施形態では、集光性パネル102の4辺にそれぞれ太陽電池パネル103が設けられ、それらが直列に接続されている。集光性パネル102は、アクリル等の透明媒質中に蛍光染料を均一に分散させた透明板であり、LSC(Luminescent Solar Concentrator)とも呼ばれている。入射光のうち特定波長の光が蛍光染料にトラップされ、再放出される。再放出された特定波長光は集光性パネル102の主面で全反射を繰り返し、エッジに集光する。蛍光染料でトラップされなかった光は透過光となる。 As illustrated in FIG. 2, the second photovoltaic power generation panel 12 includes a condensing panel 102 and a solar cell panel 103 provided on an edge surface thereof. In the present embodiment, solar cell panels 103 are provided on each of the four sides of the light-collecting panel 102, and they are connected in series. The light-collecting panel 102 is a transparent plate in which a fluorescent dye is uniformly dispersed in a transparent medium such as acrylic, and is also called an LSC (Luminescent Solar Concentrator). Of the incident light, light of a specific wavelength is trapped in the fluorescent dye and re-emitted. The re-emitted specific wavelength light repeats total internal reflection on the main surface of the condensing panel 102 and is focused on the edge. Light that is not trapped by the fluorescent dye becomes transmitted light.

こうしてエッジから出射した光が太陽電池パネル103により電気エネルギに変換される。太陽電池パネル103は、光を透過しない半導体基板上に形成された太陽電セル配列からなり、エッジから出射する光だけなく広範囲の波長光を光電変換可能な基板実装された太陽電池パネルであることが望ましい。あるいは、太陽電池パネル103は、蛍光染料によりトラップされ再放出される波長域で高い効率を有してもよい。なお、集光性パネル102のエッジ面の面積を大きくして入射面の面積に対する比率を大きくし、集光比を上げることもできる。 The light emitted from the edge in this way is converted into electrical energy by the solar cell panel 103. The solar cell panel 103 is a solar cell panel composed of a solar cell arrangement formed on a semiconductor substrate that does not transmit light, and is mounted on a substrate capable of photoelectric conversion of not only light emitted from an edge but also light having a wide range of wavelengths. Is desirable. Alternatively, the solar cell panel 103 may have high efficiency in the wavelength range trapped and re-emitted by the fluorescent dye. It is also possible to increase the area of the edge surface of the light-collecting panel 102 to increase the ratio to the area of the incident surface to increase the light-collecting ratio.

図1に戻って、第1光発電パネル11の太陽電池パネル101と第2光発電パネル12の集光性パネル102とは透明保護カバー104により覆われてもよい。この場合、透明保護カバー104の屈折率は集光性パネル102の透明材料の屈折率との間で上述した集光性パネル102内での全反射を起こすように選択される。なお、他の構成として、アクリル等の透明板あるいは透明偏光板の表面と裏面に太陽電池パネル101と集光性パネル102とを積層させた構成であってもよい。 Returning to FIG. 1, the solar cell panel 101 of the first photovoltaic power generation panel 11 and the light-collecting panel 102 of the second photovoltaic power generation panel 12 may be covered with the transparent protective cover 104. In this case, the index of refraction of the transparent protective cover 104 is selected to cause total internal reflection within the light-collecting panel 102 described above with the index of refraction of the transparent material of the light-collecting panel 102. As another configuration, the solar cell panel 101 and the light-collecting panel 102 may be laminated on the front surface and the back surface of a transparent plate such as acrylic or a transparent polarizing plate.

第1光発電パネル11の太陽電池パネル101は、外部から入射した第1の光を電気エネルギに変換し、さらに集光性パネル102を透過した第2の光を電気エネルギに変換することで、光起電力V1を出力する。また、第2光発電パネル12の太陽電池パネル103は、外部から集光性パネル102に入射した第2の光を電気エネルギに変換し、さらに太陽電池パネル101を透過した第1の光を電気エネルギに変換することで、光起電力V2を出力する。 The solar cell panel 101 of the first photovoltaic power generation panel 11 converts the first light incident from the outside into electric energy, and further converts the second light transmitted through the condensing panel 102 into electric energy. The photovoltaic power V1 is output. Further, the solar cell panel 103 of the second photovoltaic cell 12 converts the second light incident on the condensing panel 102 from the outside into electric energy, and further converts the first light transmitted through the solar cell panel 101 into electricity. By converting it into energy, the photovoltaic power V2 is output.

図1において、充電回路20は太陽電池パネル101および103からそれぞれ入力した光起電力V1およびV2をDC-DCコンバータ等により必要な出力電圧へ変換し、バッテリ30へ充電する。このような充電回路20はエネルギーハーベスティング技術として知られている。 In FIG. 1, the charging circuit 20 converts the photovoltaic powers V1 and V2 input from the solar cell panels 101 and 103, respectively, into a required output voltage by a DC-DC converter or the like, and charges the battery 30. Such a charging circuit 20 is known as an energy harvesting technique.

上述したように、本発明の一実施形態による電源システムは、光発電デバイス10が第1光発電パネル11と第2光発電パネル12とを重ねた構成を有する。したがって、光発電デバイス10の両側から第1の光と第2の光とが入射することで、第1光発電パネル11は第1の光の光電変換を行い、さらに第2光発電パネル12を透過した第2の光の光電変換も行う。同時に、第2光発電パネル12は第2の光の光電変換を行い、さらに第1光発電パネル11を透過した第1の光の光電変換も行う。このように、光発電デバイス10の両面から入射する光を発電に利用することができ、簡単な構成で発電効率を向上させることができる。 As described above, the power generation system according to the embodiment of the present invention has a configuration in which the photovoltaic power generation device 10 has a first photovoltaic power generation panel 11 and a second photovoltaic power generation panel 12 overlapped with each other. Therefore, when the first light and the second light are incident from both sides of the photovoltaic device 10, the first photovoltaic panel 11 performs photoelectric conversion of the first light, and further, the second photovoltaic panel 12 is subjected to photoelectric conversion. The photoelectric conversion of the transmitted second light is also performed. At the same time, the second photovoltaic panel 12 performs photoelectric conversion of the second light, and further performs photoelectric conversion of the first light transmitted through the first photovoltaic panel 11. In this way, the light incident from both sides of the photovoltaic power generation device 10 can be used for power generation, and the power generation efficiency can be improved with a simple configuration.

2.実施例
上述した実施形態による電源システムは種々のバッテリ充電システムに適用可能である。以下、一実施例として複数のユーザがバッテリを共有することができるバッテリレンタルシステムについて図3~図10を参照しながら説明する。
2. 2. Examples The power supply system according to the above-described embodiment can be applied to various battery charging systems. Hereinafter, as an embodiment, a battery rental system in which a plurality of users can share a battery will be described with reference to FIGS. 3 to 10.

2.1)バッテリレンタルサーバ
図3に例示するように、バッテリレンタルサーバ40は電源として上述した電源システム1を備えている。光発電デバイス10を建物の窓等(W)に設置することで、太陽光あるいは屋外光(第1の光)および屋内光(第2の光)を電力に変換しバッテリ充電用に利用する。光発電デバイス10を設置するだけでバッテリ充電が可能となるので、商用電源を必要とせず、災害発生による停電時などに使用可能である。
2.1) Battery rental server As illustrated in FIG. 3, the battery rental server 40 includes the above-mentioned power supply system 1 as a power source. By installing the photovoltaic device 10 in a window (W) of a building or the like, sunlight or outdoor light (first light) and indoor light (second light) are converted into electric power and used for battery charging. Since the battery can be charged simply by installing the photovoltaic power generation device 10, it does not require a commercial power source and can be used in the event of a power outage due to the occurrence of a disaster.

図4に例示するように、バッテリレンタルサーバ40はバッテリ返却口41、バッテリ取出口42および認証窓43を有し、バッテリ返却口41およびバッテリ取出口42にはそれぞれ保護用の開閉カバー44および開閉扉45が取り付けられている。取出口42の開閉扉45は透明であることが望ましい。後述するように、ユーザ認証はユーザ端末50に表示された認証情報を認証窓43を通して読み取ることで行われる。バッテリレンタルサーバ40は、ユーザが認証されると、携帯端末用のバッテリ30をバッテリ取出口42に落とし、ユーザは開閉扉45を開けてバッテリ取出口42からバッテリ30を取り出す。ユーザは使用済みバッテリ30をバッテリ返却口41に返却する。 As illustrated in FIG. 4, the battery rental server 40 has a battery return port 41, a battery outlet 42, and an authentication window 43, and the battery return port 41 and the battery outlet 42 have a protective opening / closing cover 44 and an opening / closing, respectively. The door 45 is attached. It is desirable that the opening / closing door 45 of the outlet 42 is transparent. As will be described later, the user authentication is performed by reading the authentication information displayed on the user terminal 50 through the authentication window 43. When the user is authenticated, the battery rental server 40 drops the battery 30 for the mobile terminal into the battery outlet 42, and the user opens the open / close door 45 and takes out the battery 30 from the battery outlet 42. The user returns the used battery 30 to the battery return port 41.

図5に例示するように、バッテリレンタルサーバ40の上面には、バッテリ返却口41の開閉カバー44を開くと、バッテリ30の断面形状と同じバッテリ投入口46が設けられている。バッテリ投入口46にはバッテリガイドレール47が設けられているので、ユーザは返却するバッテリ30をバッテリ投入口46に合わせて投入するだけでよい。 As illustrated in FIG. 5, on the upper surface of the battery rental server 40, when the opening / closing cover 44 of the battery return port 41 is opened, a battery inlet 46 having the same cross-sectional shape as the battery 30 is provided. Since the battery guide rail 47 is provided in the battery inlet 46, the user only needs to insert the returned battery 30 in accordance with the battery inlet 46.

図6に例示するように、バッテリ30には厚さ方向にガイド溝31と傾斜部32とが設けられる。これによりバッテリ30の形状が左右および上下で非対称となり、バッテリ30の投入方向が規定される。バッテリ30の上面後端部には正負の電極33が設けられているので、図6に示すバッテリ投入口46にバッテリ30を投入するだけで電極33の位置を正しく確定できる。 As illustrated in FIG. 6, the battery 30 is provided with a guide groove 31 and an inclined portion 32 in the thickness direction. As a result, the shape of the battery 30 becomes asymmetrical in the left-right and up-down directions, and the insertion direction of the battery 30 is defined. Since the positive and negative electrodes 33 are provided at the rear end of the upper surface of the battery 30, the position of the electrodes 33 can be correctly determined only by inserting the battery 30 into the battery inlet 46 shown in FIG.

図7において、ユーザが返却バッテリ30をバッテリ投入口46に投入すると、バッテリ30はガイド溝31をバッテリガイドレール47にかみ合わせて下降し、すでに格納されたバッテリの上に積み上がって充電が開始される。またユーザから貸出し要求があれば、認証を行った上で充電が完了したバッテリを順次バッテリ取出口42へ落下させる。バッテリの充電および取出は管理装置48により制御される。管理装置48の電源として、上述した光発電デバイス10からの光起電力がケーブル49を通して供給される。以下、管理装置48の構成について図8を参照しながら説明する。 In FIG. 7, when the user inserts the return battery 30 into the battery inlet 46, the battery 30 descends by engaging the guide groove 31 with the battery guide rail 47, and is stacked on the already stored battery to start charging. The battery. Further, if there is a request for lending from the user, the batteries that have been fully charged after being authenticated are sequentially dropped to the battery outlet 42. Battery charging and removal is controlled by the management device 48. As a power source for the management device 48, photovoltaic power from the above-mentioned photovoltaic device 10 is supplied through the cable 49. Hereinafter, the configuration of the management device 48 will be described with reference to FIG.

2.2)管理装置
図8に例示するように、バッテリレンタルサーバ40における上記管理装置48は、光発電デバイス10に接続された充電回路401、バッテリ収納部402、認証部403、レンタル管理部404およびサーバ電源回路405を含む。光発電デバイス10および充電回路401については図1および図2で説明した通りである。充電回路401はバッテリ収納部402に収納されている複数のバッテリ30(図中ではBAT1,BAT2、・・・BATnと記されている。)を順次充電し、これらの充電状態を監視する。バッテリ収納部402は複数のバッテリ30を充電可能に格納し、レンタル指示があれば、上述したように充電を完了したバッテリを順次ユーザへ提供する。
2.2) Management device As illustrated in FIG. 8, the management device 48 in the battery rental server 40 includes a charging circuit 401, a battery storage unit 402, an authentication unit 403, and a rental management unit 404 connected to the photovoltaic power generation device 10. And the server power supply circuit 405. The photovoltaic power generation device 10 and the charging circuit 401 are as described with reference to FIGS. 1 and 2. The charging circuit 401 sequentially charges a plurality of batteries 30 (denoted as BAT1, BAT2, ... BATn in the figure) stored in the battery accommodating portion 402, and monitors the charging state thereof. The battery storage unit 402 stores a plurality of batteries 30 in a rechargeable manner, and if there is a rental instruction, sequentially provides the user with the batteries that have been charged as described above.

認証部403は、ユーザ端末50に表示された認証情報を認証窓43を通して読み取り、当該ユーザの認証を行う。認証情報はユーザがサービス提供者から事前に、あるいはその場で取得した情報であり、たとえばユーザ端末50の表示部にQRコードとして表示できる。他の方法として、認証情報を近距離無線通信や赤外線通信により認証部403へ送信してもよい。また、認証部403は通信機能を有し、ユーザが提示したQRコードからサービス提供者のサーバにアクセスして当該QRコードの認証判定を行うこともできる。 The authentication unit 403 reads the authentication information displayed on the user terminal 50 through the authentication window 43, and authenticates the user. The authentication information is information acquired by the user from the service provider in advance or on the spot, and can be displayed as a QR code on the display unit of the user terminal 50, for example. As another method, the authentication information may be transmitted to the authentication unit 403 by short-range wireless communication or infrared communication. Further, the authentication unit 403 has a communication function, and can access the server of the service provider from the QR code presented by the user and perform the authentication determination of the QR code.

レンタル管理部404は、認証部403によりユーザが認証されると、バッテリ収納部402へレンタルOKの指示を出力する。それを受けたバッテリ収納部402は充電が完了したバッテリ30をバッテリ取出口42へ落としてユーザに貸与し、貸与したバッテリ30の識別番号を貸与情報としてレンタル管理部404へ出力する。レンタル管理部404は、当該ユーザのID情報と貸与したバッテリの識別番号とを紐付けてユーザ管理およびバッテリ貸与/返却管理を行う。バッテリ貸与後、所定期間内に返却されない場合は、そのユーザを特定することができる。 When the user is authenticated by the authentication unit 403, the rental management unit 404 outputs a rental OK instruction to the battery storage unit 402. Upon receiving this, the battery storage unit 402 drops the charged battery 30 to the battery outlet 42 and rents it to the user, and outputs the identification number of the rented battery 30 to the rental management unit 404 as rental information. The rental management unit 404 manages the user and manages the battery lending / returning by associating the ID information of the user with the identification number of the rented battery. After lending the battery, if it is not returned within the specified period, the user can be identified.

バッテリレンタルサーバ40には自身の電源としてサーバ電源回路405が設けられ、充電回路401は光発電デバイス10を用いてサーバ電源回路405内のサーババッテリ(図示せず。)を充電することもできる。なお、サーバ電源回路405は補完的に商用電源を利用してサーババッテリおよびレンタル用バッテリを充電することも可能である。あるいは、サーバ電源回路405から充電回路401を通してレンタル用バッテリを充電することも可能である。 The battery rental server 40 is provided with a server power supply circuit 405 as its own power source, and the charging circuit 401 can also charge the server battery (not shown) in the server power supply circuit 405 by using the photopower generation device 10. The server power supply circuit 405 can complementarily charge the server battery and the rental battery by using a commercial power supply. Alternatively, the rental battery can be charged from the server power supply circuit 405 through the charging circuit 401.

2.3)認証方法
図9に例示するように、バッテリレンタルサーバ40の認証部403はユーザの認証を行うが、ユーザはその際に用いられる認証情報をサービス提供者のサーバ60から取得することができる。ユーザ端末50はいわゆる「スマホ」であり、モバイルネットワークを通してインタネット上のサーバ60と通信可能であるものとする。なお、バッテリレンタルサーバ40も同様に無線LAN等を通してインタネット上のサーバ60と通信可能であってもよい。
2.3) Authentication method As illustrated in FIG. 9, the authentication unit 403 of the battery rental server 40 authenticates the user, and the user acquires the authentication information used at that time from the server 60 of the service provider. Can be done. It is assumed that the user terminal 50 is a so-called "smartphone" and can communicate with the server 60 on the Internet through the mobile network. Similarly, the battery rental server 40 may be able to communicate with the server 60 on the Internet via a wireless LAN or the like.

ユーザは、サーバ60に登録済みであれば、ユーザ端末50からバッテリレンタルのための所定アプリケーションを起動してサーバ60にアクセスし、認証情報の発行要求を送信する(動作502)。この発行要求はユーザのID情報を含む。ユーザのID情報としては、ユーザを特定するための情報および登録要求した日時、場所、ユーザ端末50にセットしているバッテリ識別番号、電圧ログ等の情報を含む。場所情報はユーザ端末50の位置情報であってもよい。あるいは、バッテリレンタルサーバ40の前面に当該サーバ40の位置情報等を記録したQRコードを用意し、ユーザ端末50に搭載されたカメラで入力することにより同様のID情報をサーバ60へ送信してもよい。 If the user has already registered in the server 60, the user activates a predetermined application for battery rental from the user terminal 50, accesses the server 60, and transmits a request for issuing authentication information (operation 502). This issuance request includes the user's ID information. The user ID information includes information for identifying the user, a date and time when registration is requested, a place, a battery identification number set in the user terminal 50, voltage logs, and the like. The location information may be the location information of the user terminal 50. Alternatively, a QR code recording the position information of the server 40 and the like is prepared in front of the battery rental server 40, and the same ID information can be transmitted to the server 60 by inputting the QR code with the camera mounted on the user terminal 50. good.

サーバ60は、ユーザ端末50から発行要求を受信すると、ユーザのID情報を参照して当該ユーザの認証を行う(動作503)。当該ユーザが正規の登録者であれば、正規の登録者であることを示すQRコードをユーザ端末50へ発行する(動作504)。ユーザ端末50は発行されたQRコードを格納する(動作505)。続いてユーザはユーザ端末50の表示部にQRコードを表示させ、バッテリレンタルサーバ40の認証窓43にかざす(動作506)。なお、QRコードは事前に取得し、必要なときに表示部に表示させても良い。 When the server 60 receives the issuance request from the user terminal 50, the server 60 authenticates the user by referring to the user's ID information (operation 503). If the user is a legitimate registrant, a QR code indicating that the user is a legitimate registrant is issued to the user terminal 50 (operation 504). The user terminal 50 stores the issued QR code (operation 505). Subsequently, the user displays the QR code on the display unit of the user terminal 50 and holds it over the authentication window 43 of the battery rental server 40 (operation 506). The QR code may be acquired in advance and displayed on the display unit when necessary.

バッテリレンタルサーバ40の認証部403は、認証窓43からQRコードの画像情報を入力すると、QRコードを復号して必要な情報を読み出し、レンタル要求をしているユーザが正規の登録者であるか否かを判定する(動作507)。その際、認証部403はサーバ60に必要な情報(ID情報)を送信して正規の登録者であるか否かを問い合わせることができる。正規の登録者であれば、バッテリレンタル「可」と判定し、上述したように充電済みのバッテリ30を提供する。その際、提供したバッテリ30の識別番号と当該ユーザの情報とを紐付けして記憶装置に格納し貸与/返却管理を行う。 When the authentication unit 403 of the battery rental server 40 inputs the image information of the QR code from the authentication window 43, the QR code is decoded and the necessary information is read out, and whether the user making the rental request is a legitimate registrant. It is determined whether or not (operation 507). At that time, the authentication unit 403 can send necessary information (ID information) to the server 60 to inquire whether or not the user is a legitimate registrant. If it is a legitimate registrant, it is determined that the battery rental is "possible", and the charged battery 30 is provided as described above. At that time, the identification number of the provided battery 30 and the information of the user are associated with each other and stored in the storage device for loan / return management.

ユーザがレンタルしたバッテリ30を返却する場合は、まず保持しているQRコードをユーザ端末50の表示部に表示させ、バッテリレンタルサーバ40の認証窓43にかざす(動作508)。バッテリレンタルサーバ40の認証部403は、認証窓43からQRコードの画像情報を入力すると、QRコードを復号して必要な情報を読み出し、保持している貸与/返却管理用のユーザ情報と照合する。一致すれば、バッテリ30をバッテリ返却口41への投入を促し、返却されたバッテリ30の識別番号が貸与したバッテリのそれと一致すれば返却が確認される(動作509)。その際、認証部403はサーバ60にユーザ情報を送信して正規の登録者であるか否かを問い合わせてもよい。 When returning the battery 30 rented by the user, first, the held QR code is displayed on the display unit of the user terminal 50 and held over the authentication window 43 of the battery rental server 40 (operation 508). When the authentication unit 403 of the battery rental server 40 inputs the image information of the QR code from the authentication window 43, it decodes the QR code, reads out the necessary information, and collates it with the held user information for loan / return management. .. If they match, the battery 30 is urged to be inserted into the battery return port 41, and if the identification number of the returned battery 30 matches that of the rented battery, the return is confirmed (operation 509). At that time, the authentication unit 403 may send user information to the server 60 to inquire whether or not the user is a legitimate registrant.

なお、ユーザがバッテリ30を紛失あるいは破損した場合を考慮して、ユーザの登録時に保証金を預かるようにすることが望ましい。また、本実施例ではユーザ管理および貸与/返却管理をレンタル管理部404が行っているが、ネットワーク上のサーバ60が同様の管理を行うこともできる。その場合、バッテリレンタルサーバ40のレンタル管理部404が不要となるので消費電力の削減が可能となる。 It is desirable to deposit a deposit at the time of user registration in consideration of the case where the user loses or damages the battery 30. Further, in this embodiment, the rental management unit 404 performs user management and rental / return management, but the server 60 on the network can also perform the same management. In that case, the rental management unit 404 of the battery rental server 40 becomes unnecessary, so that the power consumption can be reduced.

2.4)効果
上述したように、本発明の一実施例による電源システムを用いたバッテリレンタルサーバは、光発電デバイス10を建物の窓等(W)に設置することで、太陽光等の屋外光(第1の光)および屋内光(第2の光)の両方を電力に変換しバッテリ充電に利用することができる。これにより商用電源を必要とせず、災害発生による停電時でもモバイル電源の提供サービスを継続することができる。
2.4) Effect As described above, in the battery rental server using the power supply system according to the embodiment of the present invention, by installing the photopower generation device 10 in the window (W) of the building, the outdoor such as sunlight can be obtained. Both light (first light) and indoor light (second light) can be converted into electricity and used for battery charging. As a result, it is possible to continue the mobile power supply service even in the event of a power outage due to a disaster without the need for commercial power supply.

また、補完的に商用電源を利用してサーババッテリおよびレンタル用バッテリを充電することで、停電時にサーババッテリとレンタル用バッテリとの間で電力の融通をすることができ、電力のさらなる有効活用が可能となる。 In addition, by supplementarily using a commercial power source to charge the server battery and rental battery, it is possible to exchange power between the server battery and the rental battery in the event of a power outage, and further effective use of power can be achieved. It will be possible.

3.他の実施形態
上述した実施形態および実施例では、第1光発電パネル11と第2光発電パネル12とを重ねた光発電デバイス10を用いたが、本発明はこれに限定されない。
3. 3. Other Embodiments In the above-described embodiments and examples, the photovoltaic power generation device 10 in which the first photovoltaic power generation panel 11 and the second photovoltaic power generation panel 12 are stacked is used, but the present invention is not limited thereto.

図10に例示するように、複数の光発電デバイス10を折りたたみ可能に接続した構成であってもよい。光電変換面積が大きくなるのでより効率的な発電が可能となる。また複数の光発電デバイス10を屏風状に折りたたむことで携帯に優れ、バッテリレンタルサーバ40の設置場所の制約を緩和できる利点もある。 As illustrated in FIG. 10, a plurality of photovoltaic power generation devices 10 may be foldably connected to each other. Since the photoelectric conversion area becomes large, more efficient power generation becomes possible. Further, by folding the plurality of photovoltaic power generation devices 10 in a folding screen shape, it is excellent in carrying and has an advantage that restrictions on the installation location of the battery rental server 40 can be relaxed.

1 電源システム
10 光発電デバイス
11 第1光発電パネル
12 第2光発電パネル
101 太陽電池パネル
102 集光性パネル
103 太陽電池パネル
104 透明保護カバー
20 充電回路
30 バッテリ
40 バッテリレンタルサーバ
41 バッテリ返却口
42 バッテリ取出口
43 認証窓
1 Power supply system 10 Photovoltaic device 11 1st photovoltaic panel 12 2nd photovoltaic panel 101 Solar cell panel 102 Condensing panel 103 Solar cell panel 104 Transparent protective cover 20 Charging circuit 30 Battery 40 Battery rental server 41 Battery return port 42 Battery outlet 43 Certification window

Claims (7)

複数のバッテリを受入/取出可能に収納するバッテリ収納手段と、
第1光発電パネルと第2光発電パネルとを重ねた光発電デバイスと、
前記第1光発電パネルの光起電力と前記第2光発電パネルの光起電力とを用いて前記バッテリの充電を行う充電回路と、
前記充電回路により前記複数のバッテリを充電し、登録済みのユーザに前記バッテリ収納手段から前記バッテリを提供する管理手段と、
を有し、
前記第1光発電パネル側から第1の光を入射させ、前記第2光発電パネル側から第2の光を入射させ、
前記第1光発電パネルが前記第1の光と前記第2光発電パネルを透過した前記第2の光とから光発電を行い、
前記第2光発電パネルが前記第2の光と前記第1光発電パネルを透過した前記第1の光とから光発電を行う電源システム。
Battery storage means for storing multiple batteries so that they can be received / removed,
A photovoltaic device in which a first photovoltaic panel and a second photovoltaic panel are stacked,
A charging circuit that charges the battery using the photovoltaic power of the first photovoltaic power generation panel and the photovoltaic power of the second photovoltaic power generation panel.
A management means for charging the plurality of batteries by the charging circuit and providing the battery from the battery accommodating means to a registered user.
Have,
The first light is incident from the first photovoltaic power generation panel side, and the second light is incident from the second photovoltaic power generation panel side.
The first photovoltaic power generation panel generates photovoltaic power from the first light and the second light transmitted through the second photovoltaic power generation panel.
A power supply system in which the second photovoltaic power generation panel generates photovoltaic power from the second light and the first light transmitted through the first photovoltaic power generation panel.
前記第1光発電パネルが透明あるいは半透明の第1太陽電池パネルからなり、
前記第2光発電パネルが集光性パネルと前記集光性パネルのエッジ面に設けられた第2太陽電池パネルからなる、
ことを特徴とする請求項1に記載の電源システム。
The first photovoltaic cell panel comprises a transparent or translucent first solar cell panel.
The second photovoltaic power generation panel comprises a light-collecting panel and a second solar cell panel provided on an edge surface of the light-collecting panel.
The power supply system according to claim 1.
前記集光性パネルは、透明媒質に所定波長域の光を吸収し前記所定波長域の光を再放出する蛍光染料を分散させた透明板であることを特徴とする請求項2に記載の電源システム。 The power supply according to claim 2, wherein the light-collecting panel is a transparent plate in which a fluorescent dye that absorbs light in a predetermined wavelength range and re-emits the light in a predetermined wavelength range is dispersed in a transparent medium. system. 前記第2太陽電池パネルは光を透過しない太陽電池パネルであることを特徴とする請求項2または3に記載の電源システム。 The power supply system according to claim 2 or 3, wherein the second solar cell panel is a solar cell panel that does not transmit light. 前記第1の光が屋外光、前記第2の光が屋内光となるように前記光発電デバイスが建物の窓に設置されたことを特徴とする請求項1-4のいずれか1項に記載の電源システム。 The invention according to any one of claims 1-4, wherein the photovoltaic power generation device is installed in a window of a building so that the first light is outdoor light and the second light is indoor light. Power system. 前記充電回路により充電可能であり、前記管理手段に電源を供給するシステムバッテリをさらに有することを特徴とする請求項1-5のいずれか1項に記載の電源システム。 The power supply system according to any one of claims 1-5, further comprising a system battery that can be charged by the charging circuit and supplies power to the management means. 前記充電回路が前記複数のバッテリから前記システムバッテリへの充電あるいはその逆方向の充電を行うことを特徴とする請求項6に記載の電源システム。 The power supply system according to claim 6, wherein the charging circuit charges the system battery from the plurality of batteries or charges in the opposite direction.
JP2020063020A 2020-03-31 2020-03-31 Power system using photovoltaic device Active JP7009541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020063020A JP7009541B2 (en) 2020-03-31 2020-03-31 Power system using photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020063020A JP7009541B2 (en) 2020-03-31 2020-03-31 Power system using photovoltaic device

Publications (2)

Publication Number Publication Date
JP2021164251A JP2021164251A (en) 2021-10-11
JP7009541B2 true JP7009541B2 (en) 2022-01-25

Family

ID=78003880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020063020A Active JP7009541B2 (en) 2020-03-31 2020-03-31 Power system using photovoltaic device

Country Status (1)

Country Link
JP (1) JP7009541B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102616730B1 (en) * 2021-10-13 2023-12-21 한화시스템 주식회사 Battery charging system and method using energy harvesting technology and wireless charging technology, and battery charging station operating system and method using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243989A (en) 1999-02-18 2000-09-08 Dainippon Printing Co Ltd Transparent film solar-cell module
US20130063073A1 (en) 2011-09-09 2013-03-14 Bettery, Inc. Battery exchange, recharge and recycle apparatus, system and method
JP2013522900A (en) 2010-03-16 2013-06-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Photovoltaic device with switchable light / reflection
JP2014519621A (en) 2011-05-13 2014-08-14 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン Focused luminescence concentrator and thermal irradiation concentrator
WO2017154384A1 (en) 2016-03-10 2017-09-14 株式会社カネカ Solar cell module
JP2018011058A (en) 2016-07-13 2018-01-18 エルジー エレクトロニクス インコーポレイティド Tandem solar cell, tandem solar cell module including the same, and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2917780B2 (en) * 1993-09-07 1999-07-12 三菱自動車工業株式会社 Solar panel
JP3515859B2 (en) * 1995-09-29 2004-04-05 株式会社リコー Battery charge processing device and battery charge processing system
JP3670835B2 (en) * 1998-04-22 2005-07-13 三洋電機株式会社 Solar cell module
JPH11307793A (en) * 1998-04-27 1999-11-05 Sanyo Electric Co Ltd Two-sided incident type solar battery module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243989A (en) 1999-02-18 2000-09-08 Dainippon Printing Co Ltd Transparent film solar-cell module
JP2013522900A (en) 2010-03-16 2013-06-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Photovoltaic device with switchable light / reflection
JP2014519621A (en) 2011-05-13 2014-08-14 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン Focused luminescence concentrator and thermal irradiation concentrator
US20130063073A1 (en) 2011-09-09 2013-03-14 Bettery, Inc. Battery exchange, recharge and recycle apparatus, system and method
WO2017154384A1 (en) 2016-03-10 2017-09-14 株式会社カネカ Solar cell module
JP2018011058A (en) 2016-07-13 2018-01-18 エルジー エレクトロニクス インコーポレイティド Tandem solar cell, tandem solar cell module including the same, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2021164251A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
US9406828B2 (en) Compact photovoltaic generation assembly and power supply
van Sark et al. The “Electric Mondrian” as a luminescent solar concentrator demonstrator case study
US7915523B2 (en) Compact solar apparatus for producing electricity and method of producing electricity using a compact solar apparatus
CN101946334A (en) Dual layer thin film holographic solar concentrator/collector
Mouli et al. Solar powered e-bike charging station with AC, DC and contactless charging
JP7009541B2 (en) Power system using photovoltaic device
JP7161235B2 (en) How to Install Solar Modules for Efficient Use of Sunlight
Abella et al. Photovoltaic charging station for electrical vehicles
US20150321569A1 (en) Garage and electricity supply system
CN104934493B (en) A kind of photovoltaic module of available ambient light
EP1693901A1 (en) Generator of photovoltaic energy with co-generation of thermal energy
US20160133772A1 (en) Concentrating optical waveguide and containment chamber system
US20230029693A1 (en) System, apparatus, and method for harnessing energy from the sun without occupying a large surface area
JP7461012B2 (en) Carport solar battery charging unit network system
KR101921956B1 (en) Method and Apparatus for Generating Solar Photovoltaic Power
Rathod et al. Designing a solar simulator for uniform irradiance
WO2006039149A2 (en) Compact solar apparatus for producing electricity
CN210723064U (en) Solar module and audio amplifier
Mohedano et al. Progress In Fresnel‐Köhler Concentrators
CN102034884B (en) Device with solar cell unit
Pande A Case Study of Solar Powered Cellular Base Stations
Thomason Solar houses and solar house models
US20220200324A1 (en) Coin operated solar charging station
Kuandikov et al. Phone Case Harnessing the Power of the Sun
Hardcastle Energy Innovations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220112

R150 Certificate of patent or registration of utility model

Ref document number: 7009541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150