[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7003070B2 - Wireless power transmission device, wireless power transmission system, power receiving, wireless power transmission method, and power receiving method - Google Patents

Wireless power transmission device, wireless power transmission system, power receiving, wireless power transmission method, and power receiving method Download PDF

Info

Publication number
JP7003070B2
JP7003070B2 JP2019000720A JP2019000720A JP7003070B2 JP 7003070 B2 JP7003070 B2 JP 7003070B2 JP 2019000720 A JP2019000720 A JP 2019000720A JP 2019000720 A JP2019000720 A JP 2019000720A JP 7003070 B2 JP7003070 B2 JP 7003070B2
Authority
JP
Japan
Prior art keywords
power transmission
power
information
receiving
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019000720A
Other languages
Japanese (ja)
Other versions
JP2019140900A (en
Inventor
健太郎 村田
浩平 鬼塚
敏也 三友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to US16/268,031 priority Critical patent/US20190245388A1/en
Publication of JP2019140900A publication Critical patent/JP2019140900A/en
Priority to US17/163,943 priority patent/US12088116B2/en
Application granted granted Critical
Publication of JP7003070B2 publication Critical patent/JP7003070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明の実施形態は、無線電力伝送装置及び無線電力伝送システムに関する。 An embodiment of the present invention relates to a wireless power transmission device and a wireless power transmission system.

送電機から複数のアンテナパターンの電波を送信し、受電機にて最大の受信感度が得られたアンテナパターンのIDを受電機から送電機に通知し、その通知したアンテナパターンの電波で送電を行うように制御する技術が知られている。 Radio waves of multiple antenna patterns are transmitted from the transmitter, the ID of the antenna pattern for which the maximum reception sensitivity is obtained by the receiver is notified from the receiver to the transmitter, and the radio waves of the notified antenna pattern are used for transmission. The technology to control the antenna is known.

また、複数の受電機のバッテリ需要に応じて、各受電機に送電する送電パルス配分を最適化して、各受電機に向けて送電パルスを送電する技術が知られている。 Further, there is known a technique of optimizing the distribution of power transmission pulses to be transmitted to each power receiving machine according to the battery demand of a plurality of power receiving machines and transmitting the power transmission pulse to each power receiving machine.

しかしながら,特定の対象となる受電機に配分されたパルスであっても,送電パルスを含む電波は拡散して他の受電機でも受信され、このことを考慮した最適な電力配分方法については従来提案されていないのが実情である。 However, even if the pulse is distributed to a specific target electric power receiver, the radio wave including the power transmission pulse is diffused and received by other electric power receivers, and the optimum power distribution method considering this is conventionally proposed. The reality is that it has not been done.

特表2016-512677号公報Special Table 2016-512677

本発明が解決しようとする課題は、複数の送電パターンを用いて効率的に複数の受電機に無線電力を送電することができる無線電力伝送装置及び無線電力伝送システムを提供するものである。 An object to be solved by the present invention is to provide a wireless power transmission device and a wireless power transmission system capable of efficiently transmitting wireless power to a plurality of receiving electric powers by using a plurality of transmission patterns.

本実施形態によれば、複数の受電機に対して電波による無線電力を伝送する無線電力伝送装置であって、
前記複数の受電機からの受電電力情報及び要求電力量情報に基づいて、それぞれ異なる複数の送電パターンのうち2つ以上の送電パターンそれぞれの送電期間を含む送電条件を計算する送電条件計算部と、
前記計算された送電条件にて前記2つ以上の送電パターンを切替ながら電波を送電する送電部と、を備える、無線電力伝送装置が提供される。
According to the present embodiment, it is a wireless power transmission device that transmits wireless power by radio waves to a plurality of receiving electric powers.
A power transmission condition calculation unit that calculates power transmission conditions including the power transmission period of each of two or more power transmission patterns among a plurality of different power transmission patterns based on the power reception power information and the required electric energy amount information from the plurality of power transmission patterns.
Provided is a wireless power transmission device including a power transmission unit that transmits radio waves while switching between the two or more power transmission patterns under the calculated power transmission conditions.

第1の実施形態による無線電力伝送装置を備えた無線電力伝送システム2の概略構成を示すブロック図。The block diagram which shows the schematic structure of the wireless power transmission system 2 provided with the wireless power transmission apparatus by 1st Embodiment. 送電機の内部構成の一例を示すブロック図。A block diagram showing an example of the internal configuration of a transmitter. 受電機の内部構成の一例を示すブロック図。The block diagram which shows an example of the internal structure of a receiving electric machine. 図2の一変形例を示す送電機のブロック図。FIG. 2 is a block diagram of a transmitter showing a modification of FIG. 図3の一変形例を示す受電機のブロック図。FIG. 3 is a block diagram of a receiving electric machine showing a modification of FIG. 一括フィードバック方式の処理手順の一例を示すフローチャート。A flowchart showing an example of the processing procedure of the batch feedback method. 一括フィードバック方式のタイミング図。Timing diagram of the batch feedback method. 逐次フィードバック方式の処理手順の一例を示すフローチャート。The flowchart which shows an example of the processing procedure of the sequential feedback method. 逐次フィードバック方式のタイミング図。Timing diagram of the sequential feedback method. 送電機が受信した各受電機からの受電電力情報及び要求電力量情報をまとめた受電電力テーブルの一例を示す図。The figure which shows an example of the received power table which summarized the received power information and required electric energy information from each electric power received by a transmitter. 線形計画問題の最適解の求め方を示す図。The figure which shows how to find the optimum solution of a linear programming problem. 各受電機の受電電力特性と受電電力量特性を示す図。The figure which shows the received power characteristic and the received power amount characteristic of each electric receiving electric power. (a)は番号順に電波を送電する例、(b)は任意の順番で電波を送電する例を示す図。(A) is an example of transmitting radio waves in numerical order, and (b) is a diagram showing an example of transmitting radio waves in any order. 第2の実施形態による無線電力伝送装置の概略構成を示すブロック図。The block diagram which shows the schematic structure of the wireless power transmission apparatus by 2nd Embodiment. 送電パターンの方向とビーム幅と受電機の配置場所を説明する図。The figure explaining the direction of the power transmission pattern, the beam width, and the arrangement place of the electric receiver. 第2の実施形態による送電機の処理手順を示すフローチャート。The flowchart which shows the processing procedure of the transmission according to 2nd Embodiment.

以下、図面を参照して実施の形態について説明する。なお、本件明細書と添付図面においては、理解のしやすさと図示の便宜上、一部の構成部分を省略、変更または簡易化して説明および図示しているが、同様の機能を期待し得る程度の技術内容も、本実施の形態に含めて解釈することとする。また、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物から変更し誇張してある。 Hereinafter, embodiments will be described with reference to the drawings. In the present specification and the attached drawings, some components are omitted, changed or simplified for the sake of easy understanding and illustration, and the explanations and illustrations are shown, but the same functions can be expected. The technical content shall also be included in the present embodiment and interpreted. Further, in the drawings attached to the present specification, the scale and the aspect ratios are appropriately changed from the actual ones and exaggerated for the convenience of illustration and comprehension.

(第1の実施形態)
図1は第1の実施形態による無線電力伝送装置1を備えた無線電力伝送システム2の概略構成を示すブロック図である。図1の無線電力伝送システム2は、1つ以上の送電機3と、複数の受電機4とを備えている。送電機3が2つ以上ある場合には、各送電機3は、無線又は有線にてそれぞれ情報の送受を行い、協調しながら複数の送電パターン5を生成する。1つ以上の送電機3で生成された複数の送電パターン5のうちの2つ以上の送電パターン5に基づく電波が複数の受電機4に向けて送電される。より詳細には、1つ以上の送電機3は、複数の送電パターン5のうちの2つ以上の送電パターン5を順次に切替ながら電波を送電する。各送電パターン5は、それぞれ固有の送電期間で送電される。複数の受電機4のそれぞれは、1つ以上の送電機3から送電された上述の電波を受電して、直流電力を生成する。図1の無線電力伝送装置1は、送電機3及び受電機4の総称である。なお、場合によっては、1つ以上の送電機3は、1つのみの送電パターン5に基づく電波を送電する場合もありうるが、以下では主に、2つ以上の送電パターン5を切替ながら送電する例を説明する。
(First Embodiment)
FIG. 1 is a block diagram showing a schematic configuration of a wireless power transmission system 2 including the wireless power transmission device 1 according to the first embodiment. The wireless power transmission system 2 of FIG. 1 includes one or more transmitters 3 and a plurality of power receiving 4s. When there are two or more power transmissions 3, each power transmission 3 transmits and receives information wirelessly or by wire, and generates a plurality of power transmission patterns 5 in cooperation with each other. Radio waves based on two or more transmission patterns 5 among the plurality of transmission patterns 5 generated by one or more power transmissions 3 are transmitted to the plurality of power receiving electric units 4. More specifically, the one or more power transmissions 3 transmit radio waves while sequentially switching two or more power transmission patterns 5 out of the plurality of power transmission patterns 5. Each power transmission pattern 5 is transmitted in a unique power transmission period. Each of the plurality of receiving electric power 4 receives the above-mentioned radio wave transmitted from one or more power transmissions 3 to generate DC power. The wireless power transmission device 1 in FIG. 1 is a general term for a power transmission device 3 and a power receiving device 4. In some cases, one or more power transmissions 3 may transmit radio waves based on only one power transmission pattern 5, but in the following, mainly, power transmission is performed while switching between two or more power transmission patterns 5. An example of doing so will be described.

図2は送電機3の内部構成の一例を示すブロック図である。図2の送電機3は、送電用アンテナ11と、通信用第1アンテナ12と、送電部13と、第1通信部14と、第1制御部15と、第1記憶部16と、第1計算部17とを有する。 FIG. 2 is a block diagram showing an example of the internal configuration of the transmitter 3. The power transmission 3 of FIG. 2 includes a power transmission antenna 11, a first communication antenna 12, a power transmission unit 13, a first communication unit 14, a first control unit 15, a first storage unit 16, and a first unit. It has a calculation unit 17.

送電部13は、試行送電と本送電とを行う。送電部13は、試行送電では、複数の送電パターン5のそれぞれを含む複数の電波を別々のタイミングで送電する。また、送電部13は、本送電では、複数の受電機4からの受電電力情報及び要求電力量情報に基づいて、複数の送電パターン5のうちの2つ以上の送電パターン5を切替ながら電波を送電する。 The power transmission unit 13 performs trial power transmission and main power transmission. In the trial power transmission, the power transmission unit 13 transmits a plurality of radio waves including each of the plurality of power transmission patterns 5 at different timings. Further, in the main power transmission, the power transmission unit 13 transmits radio waves while switching two or more power transmission patterns 5 among the plurality of power transmission patterns 5 based on the power received power information and the required electric energy amount information from the plurality of power receiving electric power 4s. To transmit electricity.

第1通信部14は、無線電力の伝送目的ではなく、複数の受電機4との間で種々の情報を送受する。例えば、第1通信部14は、複数の受電機4から送信された受電電力情報及び要求電力量情報を受信する。 The first communication unit 14 transmits and receives various information to and from a plurality of receiving electric power 4s, not for the purpose of transmitting wireless power. For example, the first communication unit 14 receives the received power information and the required electric energy amount information transmitted from the plurality of receiving electric powers 4.

第1計算部17は、複数の受電機4からの受電電力情報及び要求電力量情報に基づいて、複数の送電パターン5のうち2つ以上の送電パターン5それぞれの送電期間を含む送電条件を計算する。第1計算部17が計算する送電条件には、各送電パターン5の送電期間だけでなく、2つ以上の送電パターン5それぞれの方向と、電波の位相と、電波の振幅との少なくとも一つを含むパラメータが含まれていてもよい。 The first calculation unit 17 calculates the power transmission condition including the power transmission period of each of two or more power transmission patterns 5 among the plurality of power transmission patterns 5 based on the power received power information and the required electric energy amount information from the plurality of power receiving electric power 4s. do. The power transmission condition calculated by the first calculation unit 17 includes not only the power transmission period of each power transmission pattern 5, but also at least one of the direction of each of the two or more power transmission patterns 5, the phase of the radio wave, and the amplitude of the radio wave. The parameters to be included may be included.

第1記憶部16は、第1計算部17で計算された送電条件等を記憶する。例えば、第1記憶部16は、各送電パターン5の送電期間や上述したパラメータ等を記憶する。また、複数の受電機4からの受電電力情報及び要求電力量情報を第1記憶部16に記憶してもよい。 The first storage unit 16 stores the power transmission conditions and the like calculated by the first calculation unit 17. For example, the first storage unit 16 stores the power transmission period of each power transmission pattern 5, the above-mentioned parameters, and the like. Further, the received power information and the required electric energy amount information from the plurality of receiving electric powers 4 may be stored in the first storage unit 16.

第1制御部15は、送電部13内の各部を制御する。例えば、第1制御部15は、第1通信部14で受信された受電電力情報及び要求電力量情報を第1計算部17に送信する制御や、第1計算部17で計算された送電条件を送電部13に送信する制御を行う。また、第1制御部15は、第1記憶部16への各種情報の書込を制御したり、第1記憶部16からの各種情報の読出しを制御する。 The first control unit 15 controls each unit in the power transmission unit 13. For example, the first control unit 15 controls to transmit the received power information and the required electric energy amount information received by the first communication unit 14 to the first calculation unit 17, and the power transmission condition calculated by the first calculation unit 17. Controls transmission to the power transmission unit 13. Further, the first control unit 15 controls the writing of various information to the first storage unit 16 and controls the reading of various information from the first storage unit 16.

複数の送電機3が設けられる場合には、通信用第1アンテナ12と、第1通信部14と、第1制御部15と、第1計算部17と、不図示の電力信号源とを共用してもよい。これにより、各送電機3の内部構成を簡略化できる。 When a plurality of transmitters 3 are provided, the first communication antenna 12, the first communication unit 14, the first control unit 15, the first calculation unit 17, and a power signal source (not shown) are shared. You may. This makes it possible to simplify the internal configuration of each transmitter 3.

図3は受電機4の内部構成の一例を示すブロック図である。図3の受電機4は、受電用アンテナ21と、通信用第2アンテナ22と、受電部23と、測定部24と、第2通信部25と、第2制御部26と、第2記憶部27と、第2計算部28とを有する。 FIG. 3 is a block diagram showing an example of the internal configuration of the electric receiver 4. The electric receiving unit 4 of FIG. 3 includes a power receiving antenna 21, a communication second antenna 22, a power receiving unit 23, a measuring unit 24, a second communication unit 25, a second control unit 26, and a second storage unit. It has 27 and a second calculation unit 28.

受電部23は、1つ以上の送電機3からの電波を受電して、直流電力を生成する。受電部23は、整流器23aと負荷23bを有する。整流器23aは、受電された交流電力を直流電力に変換する。この直流電力の振幅で規定される受電電力情報は負荷23bを通して測定部24にて測定される。この他、受電部23は、整合器やDC-DCコンバータを有していてもよい。整合器は、受電用アンテナ21と整流器23aとのインピーダンス整合を行う。DC-DCコンバータは、整流後の電圧を変圧する。 The power receiving unit 23 receives radio waves from one or more transmitters 3 to generate DC power. The power receiving unit 23 has a rectifier 23a and a load 23b. The rectifier 23a converts the received AC power into DC power. The received power information defined by the amplitude of the DC power is measured by the measuring unit 24 through the load 23b. In addition, the power receiving unit 23 may have a matching unit or a DC-DC converter. The matching box performs impedance matching between the power receiving antenna 21 and the rectifier 23a. The DC-DC converter transforms the voltage after rectification.

第2通信部25は、通信用第2アンテナ22を介して、1つ以上の送電機3と種々の情報の送受を行う。例えば、第2通信部25は、試行送電の際に受電した複数の送電パターン5に基づく複数の電波の受電電力情報と要求電力量情報を1つ以上の送電機3に送信する。 The second communication unit 25 transmits and receives various information to and from one or more transmitters 3 via the second communication antenna 22. For example, the second communication unit 25 transmits the received power information and the required electric energy information of a plurality of radio waves based on the plurality of power transmission patterns 5 received during the trial power transmission to one or more power transmissions 3.

第2記憶部27は、受電機4が必要とする要求電力量情報を計算する。要求電力量情報は、受電機4の充電状況や消費電力等に基づいて計算される。第2記憶部27は、受電電力情報や要求電力量情報等を記憶する。第2制御部26は、受電部23内の各部を制御する。 The second storage unit 27 calculates the required electric energy amount information required by the receiving electric power 4. The required electric energy amount information is calculated based on the charging status of the receiving electric power 4, the power consumption, and the like. The second storage unit 27 stores the received power information, the required power amount information, and the like. The second control unit 26 controls each unit in the power receiving unit 23.

図4は図2の一変形例を示す送電機3のブロック図、図5は図3の一変形例を示す受電機4のブロック図である。上述した図2の送電機3と図3の受電機4は、伝搬路の推定を行わない場合の内部構成を示しているのに対して、図4の送電機3と図5の受電機4は、伝搬路の推定を行う場合の内部構成を示している。ここで、伝搬路とは、送電機3と個々の受電機4との間の伝搬路を指す。 FIG. 4 is a block diagram of a transmitter 3 showing a modified example of FIG. 2, and FIG. 5 is a block diagram of a receiving electric machine 4 showing a modified example of FIG. While the transmitter 3 of FIG. 2 and the receiver 4 of FIG. 3 described above show the internal configuration when the propagation path is not estimated, the transmitter 3 of FIG. 4 and the receiver 4 of FIG. 5 are shown. Shows the internal configuration when estimating the propagation path. Here, the propagation path refers to a propagation path between the transmitter 3 and each electric receiver 4.

図4の送電機3は、図2の送電機3の内部構成に加えて、伝搬路推定部18と、第1送受切替器19とを備えている。この伝搬路推定部18は、受電機4から送信されたビーコン信号を受信して、受信したビーコン信号に基づいて、受電機4との間の伝搬路の推定を行う。第1送受切替器19は、電波を送電する場合と、伝搬路の推定を行う場合とで、電波の送受を切り替える。 The transmitter 3 of FIG. 4 includes a propagation path estimation unit 18 and a first transmission / reception switch 19 in addition to the internal configuration of the transmitter 3 of FIG. The propagation path estimation unit 18 receives the beacon signal transmitted from the electric receiver 4, and estimates the propagation path to and from the electric receiver 4 based on the received beacon signal. The first transmission / reception switch 19 switches between transmission / reception of radio waves depending on whether the radio waves are transmitted or the propagation path is estimated.

図5の受電機4は、図3の受電機4の内部構成に加えて、ビーコン信号送信部29と第2送受切替器30とを有する。ビーコン信号送信部29は、伝搬路の推定を行う際にビーコン信号を送信する。第2送受切替器30は、1つ以上の送電機3からの電波を受電する場合と、伝搬路の推定を行う場合とで、電波の送受を切り替える。 The electric receiving 4 of FIG. 5 has a beacon signal transmitting unit 29 and a second transmitting / receiving switching device 30 in addition to the internal configuration of the electric receiving 4 of FIG. The beacon signal transmission unit 29 transmits a beacon signal when estimating the propagation path. The second transmission / reception switch 30 switches between transmission / reception of radio waves depending on whether the radio waves from one or more transmitters 3 are received or the propagation path is estimated.

上述したように、送電機3は、試行送電と本送電を行う。試行送電の方式として、一括フィードバック方式と逐次フィードバック方式がある。一括フィードバック方式は、複数の送電パターン5に基づく複数の電波を連続して送電し、その後に、複数の受電機4からの受電電力情報及び要求電力量情報をまとめて受信するものである。一方、逐次フィードバック方式は、各送電パターン5に基づく電波を送電するたびに、複数の受電機4からの受電電力情報及び要求電力量情報を受信するものである。 As described above, the power transmission 3 performs trial power transmission and main power transmission. There are a collective feedback method and a sequential feedback method as a method of trial power transmission. In the batch feedback method, a plurality of radio waves based on a plurality of power transmission patterns 5 are continuously transmitted, and then power received power information and required electric energy amount information from the plurality of power receiving electric power 4 are collectively received. On the other hand, in the sequential feedback method, each time a radio wave based on each transmission pattern 5 is transmitted, the received power information and the required electric energy amount information from a plurality of receiving electric powers 4 are received.

図6は一括フィードバック方式の処理手順の一例を示すフローチャート、図7は一括フィードバック方式のタイミング図である。図6のフローチャートは、1つ以上の送電機3の処理手順を示している。図6のステップS1~S4では、複数の送電パターン5に基づく複数の電波の試行送電を連続して行う。より具体的には、まず、送電パターン5の種類を表す変数kをゼロに初期化する(ステップS1)。次に、kを1だけインクリメントする(ステップS2)。次に、k番目の送電パターン5に基づく電波を試行送電する(ステップS3)。次に、変数kが最大値Kに到達したか否かを判定し(ステップS4)、まだ到達していなければ、ステップS2以降の処理を繰り返す。これにより、図7の時刻t1~t2に示すように、複数の送電パターン5に基づく複数の電波が連続的に送電される。
試行送電中の各送電パターン5の送電期間は任意でよい。各受電機4は、各送電パターン5に基づく電波を受電し、受電電力情報を第2記憶部27に記憶する。
FIG. 6 is a flowchart showing an example of the processing procedure of the batch feedback method, and FIG. 7 is a timing diagram of the batch feedback method. The flowchart of FIG. 6 shows a processing procedure of one or more transmitters 3. In steps S1 to S4 of FIG. 6, trial transmission of a plurality of radio waves based on a plurality of power transmission patterns 5 is continuously performed. More specifically, first, the variable k representing the type of the power transmission pattern 5 is initialized to zero (step S1). Next, k is incremented by 1 (step S2). Next, the radio wave based on the k-th power transmission pattern 5 is trial-transmitted (step S3). Next, it is determined whether or not the variable k has reached the maximum value K (step S4), and if it has not yet been reached, the processes after step S2 are repeated. As a result, as shown at times t1 to t2 in FIG. 7, a plurality of radio waves based on the plurality of power transmission patterns 5 are continuously transmitted.
The transmission period of each transmission pattern 5 during the trial transmission may be arbitrary. Each receiving electric power 4 receives a radio wave based on each transmission pattern 5, and stores the received power information in the second storage unit 27.

ステップS4で変数kがKに到達したと判定されると、図7の時刻t3~t4に示すように、各受電機4が受電電力情報及び要求電力量情報を送信する。各送電機3は、各受電機4が送信した受電電力情報及び要求電力量情報を受信し、これらの情報を第1記憶部16に記憶する(ステップS5)。複数の受電機4が受電電力情報及び要求電力量情報を送信する順序は任意でよい。また、複数の受電機4は、それぞれ異なる周波数帯で受電電力情報及び要求電力量情報を変調してから送信してもよい。 When it is determined in step S4 that the variable k has reached K, each receiving electric power 4 transmits the received power information and the required electric energy amount information as shown at times t3 to t4 in FIG. Each transmitter 3 receives the received power information and the required electric energy amount information transmitted by each receiving electric power 4, and stores these information in the first storage unit 16 (step S5). The order in which the plurality of receiving electric power 4s transmit the received power information and the required electric energy amount information may be arbitrary. Further, the plurality of receiving electric power 4 may be transmitted after modulating the received power information and the required electric energy information in different frequency bands.

次に、受信した受電電力情報及び要求電力量情報に基づいて、第1計算部17にて、2つ以上の送電パターン5のそれぞれの送電期間を計算する(図6のステップS6、図7の時刻t5~t6)。このとき、第1計算部17は、送電期間以外の各種パラメータを合わせて計算してもよい。 Next, based on the received power received power information and the required power amount information, the first calculation unit 17 calculates the power transmission period of each of the two or more power transmission patterns 5 (steps S6 and 7 in FIG. 6). Times t5 to t6). At this time, the first calculation unit 17 may calculate by combining various parameters other than the power transmission period.

次に、ステップS6の計算結果に基づいて、2つ以上の送電パターン5を切替ながら本送電を行う(図6のステップS7、図7の時刻t7~t8)。これにより、送電機3から送電される電波に含まれる送電パターン5は、それぞれ固有の送電期間ごとに切り替わる(図7の時刻t7~t8)。1つ以上の送電機3は、各受電機4の受電電力情報及び要求電力量情報に基づいて、各送電パターン5の送電期間を切替ながら電波を送電する。各受電機4は、本送電の電波が受電されたか否かを測定部24でモニタリングし、モニタリング結果を示す情報を定期的に各送電機3に通知してもよい。 Next, based on the calculation result of step S6, the main power transmission is performed while switching between two or more power transmission patterns 5 (step S7 in FIG. 6 and times t7 to t8 in FIG. 7). As a result, the power transmission pattern 5 included in the radio waves transmitted from the power transmission 3 is switched for each unique power transmission period (time t7 to t8 in FIG. 7). One or more power transmissions 3 transmit radio waves while switching the transmission period of each transmission pattern 5 based on the received power information and the required electric energy amount information of each receiving electric power 4. Each power receiving unit 4 may monitor whether or not the radio wave of the main power transmission has been received by the measuring unit 24, and periodically notify each power transmission unit 3 of information indicating the monitoring result.

図8は逐次フィードバック方式の処理手順の一例を示すフローチャート、図9は逐次フィードバック方式のタイミング図である。図8のフローチャートは、1つ以上の送電機3の処理手順を示している。ステップS11~S13は図6のステップS1~S3と同様である。ステップS13でk番目の送電パターン5に基づく電波を試行送電した後、その電波を受電した各受電機4からの受電電力情報及び要求電力量情報を受信する(ステップS14)。受信された受電電力情報及び要求電力量情報は、第1記憶部16に記憶される。
例えば、図9の時刻t11~t12は1番目の送電パターン5に基づく電波の試行送電期間であり、時刻t13~t14はその電波を受電した各受電機4からの受電電力情報及び要求電力量情報を受信する期間である。
FIG. 8 is a flowchart showing an example of the processing procedure of the sequential feedback method, and FIG. 9 is a timing diagram of the sequential feedback method. The flowchart of FIG. 8 shows a processing procedure of one or more transmitters 3. Steps S11 to S13 are the same as steps S1 to S3 in FIG. After the radio wave based on the k-th transmission pattern 5 is trial-transmitted in step S13, the received power information and the required electric energy amount information from each receiving electric power 4 that has received the radio wave are received (step S14). The received power received power information and the requested power amount information are stored in the first storage unit 16.
For example, times t11 to t12 in FIG. 9 are trial transmission periods of radio waves based on the first transmission pattern 5, and times t13 to t14 are power received power information and required electric energy amount information from each receiving electric wave 4 that received the radio waves. Is the period for receiving.

次に、変数kがKに到達したか否かを判定し(ステップS15)、到達していなければステップS12以降の処理を繰り返す。ステップS15で変数kがKに到達したと判定されると、第1記憶部16に記憶された各送電パターン5に対応する受電電力情報及び要求電力量情報を一括して読み出して、第1計算部17にて、2つ以上の送電パターン5のそれぞれの送電期間を計算する(図8のステップS16、図9の時刻t15~t16)。次に、ステップS6の計算結果に基づいて、2つ以上の送電パターン5を切替ながら本送電を行う(図8のステップS17、図9の時刻t17~t18)。 Next, it is determined whether or not the variable k has reached K (step S15), and if not, the processing after step S12 is repeated. When it is determined in step S15 that the variable k has reached K, the received power information and the required electric energy information corresponding to each power transmission pattern 5 stored in the first storage unit 16 are collectively read out and the first calculation is performed. In section 17, the transmission period of each of the two or more transmission patterns 5 is calculated (step S16 in FIG. 8, times t15 to t16 in FIG. 9). Next, based on the calculation result of step S6, the main power transmission is performed while switching between two or more power transmission patterns 5 (step S17 in FIG. 8, times t17 to t18 in FIG. 9).

このように、一括フィードバック方式では、各受電機4は、複数の送電パターン5に基づく複数の電波の受電電力情報及び要求電力量情報を一括して各送電機3に送信する。よって、各送電機3は、受電電力情報及び要求電力量情報を一括で受信でき、受信後にすぐに各送電パターン5の送電期間を計算できる。一方、逐次フィードバック方式では、各受電機4は、各送電パターン5に基づく電波の受電電力情報及び要求電力量情報を個別のタイミングで各送電機3に送信する。よって、各送電機3は、すべての受電電力情報及び要求電力量情報が受信されるまで、これらの情報を第1記憶部16に順次記憶しておき、すべての受電電力情報及び要求電力量情報が受信された後に、各送電パターン5の送電期間とパラメータを計算する。 As described above, in the batch feedback method, each receiving electric power 4 collectively transmits the received power information and the required electric energy amount information of a plurality of radio waves based on the plurality of transmission patterns 5 to each transmission device 3. Therefore, each power transmission 3 can collectively receive the received power information and the required electric energy amount information, and can calculate the power transmission period of each power transmission pattern 5 immediately after the reception. On the other hand, in the sequential feedback method, each receiving electric power 4 transmits the received power information and the required electric energy amount information of the radio wave based on each transmission pattern 5 to each transmission 3 at individual timings. Therefore, each power transmission 3 sequentially stores these information in the first storage unit 16 until all the received power information and the required electric energy information are received, and all the received power information and the required electric energy information. Is received, the transmission period and parameters of each transmission pattern 5 are calculated.

図10は送電機3が受信した各受電機4からの受電電力情報及び要求電力量情報をまとめた受電電力テーブル6の一例を示す図である。このテーブルは、第1記憶部16に記憶される。図10の受電電力テーブル6の行方向は各受電機4の識別番号、列方向は各送電パターン5に基づく電波の識別番号を示しており、行と列の各マス目には、対応する受電電力が記録されている。また、最後の行の各マス目には、第1計算部17で計算された各送電パターン5の送電期間が記録されている。さらに、最後の列の各マス目には、各受電機4の要求電力量が記録されている。第1計算部17が計算した各送電パターン5に基づく電波の送電期間も、受電電力テーブル6に登録される。 FIG. 10 is a diagram showing an example of a received power table 6 that summarizes the received power information and the required electric energy amount information from each of the received electric power 4 received by the transmitter 3. This table is stored in the first storage unit 16. The row direction of the received power table 6 in FIG. 10 indicates the identification number of each electric receiving electric power 4, the column direction indicates the identification number of the radio wave based on each power transmission pattern 5, and the corresponding power receiving is received in each cell of the row and the column. The power is recorded. Further, in each cell of the last row, the power transmission period of each power transmission pattern 5 calculated by the first calculation unit 17 is recorded. Further, the required electric energy of each receiving electric power 4 is recorded in each cell of the last column. The transmission period of the radio wave based on each transmission pattern 5 calculated by the first calculation unit 17 is also registered in the received power table 6.

各送電機3内の第1制御部15及び送電部13は、図10の受電電力テーブル6を参照して、本送電を行う。 The first control unit 15 and the power transmission unit 13 in each power transmission unit 3 perform the main power transmission with reference to the power reception power table 6 of FIG.

次に、第1計算部17が計算を行う各送電パターン5の送電期間の計算手法について説明する。k番目の送電パターン5で本送電を行う送電期間をtと定義したとき、送電パターン5の総数K個分の送電を行う合計時間Tは、以下の(1)式で表される。

Figure 0007003070000001
Next, a method of calculating the power transmission period of each power transmission pattern 5 to be calculated by the first calculation unit 17 will be described. When the power transmission period for main power transmission in the kth power transmission pattern 5 is defined as tk, the total time T for power transmission for the total number of K power transmission patterns 5 is expressed by the following equation (1).
Figure 0007003070000001

ここで、時間tは正の実数であることから、
≧0 …(2)
である。
Here, since the time tk is a positive real number,
tk ≧ 0… (2)
Is.

次に、図10の受電電力テーブル6に基づいて、k番目の送電パターン5の試行送電時におけるn番目の受電機4の受電電力をpn,kと定義すると、k番目の送電パターン5の送電期間tで送電したときに、n番目の受電機4の電力量が要求電力量Wを満たすには、以下の(3)式を満足するように送電期間tを決定する必要がある。

Figure 0007003070000002
Next, based on the received power table 6 of FIG. 10, if the received power of the nth receiving electric power 4 at the time of trial transmission of the kth transmission pattern 5 is defined as pn, k , the kth transmission pattern 5 In order for the electric energy of the nth receiving electric power 4 to satisfy the required electric energy Wn when the electric power is transmitted in the electric power transmission period tk , it is necessary to determine the electric power transmission period tk so as to satisfy the following equation (3). be.
Figure 0007003070000002

(3)式において、pn,kが非ゼロであれば、送電期間tを大きな値にすることで、いずれは要求電力量Wを満足することになる。しかしながら、省電力化や送電期間の短縮の観点からは、送電期間t、すなわち合計時間Tは小さければ小さいほど望ましい。したがって、最短時間で全受電機4の要求電力量をすべて満足するには、送電期間tに関する以下の(4)式の最小化問題の解を求めればよい。

Figure 0007003070000003
In the equation (3), if pn and k are non-zero, the required power amount W n will be satisfied eventually by setting the transmission period tk to a large value. However, from the viewpoint of power saving and shortening of the transmission period, it is desirable that the transmission period tk , that is, the total time T is smaller. Therefore, in order to satisfy all the required electric energy of all the receiving electric powers 4 in the shortest time, it is sufficient to find the solution of the minimization problem of the following equation (4) regarding the transmission period tk .
Figure 0007003070000003

(4)式からわかるように、(4)式の最小化問題は、目的関数及び制約条件がともに線形形式で表現できる線形計画問題である。図11は線形計画問題の最適解の求め方を示す図である。図11は、送電パターン5数が2、受電機4数が2の例を示している。図中の斜線部は、制約条件を満足する実行可能領域を表しており、線形計画問題では、実行可能領域を示す多角形の頂点に最適解が存在する。 As can be seen from the equation (4), the minimization problem of the equation (4) is a linear programming problem in which both the objective function and the constraint condition can be expressed in a linear form. FIG. 11 is a diagram showing how to find the optimum solution of a linear programming problem. FIG. 11 shows an example in which the number of 5 transmission patterns is 2 and the number of 4 receiving electric powers is 2. The shaded area in the figure represents the feasible region that satisfies the constraint condition, and in the linear programming problem, the optimum solution exists at the apex of the polygon indicating the feasible region.

図11の場合、破線で示される合計時間Tの目的関数を原点に漸近させ、かつ合計時間Tが最小になるときの頂点(t'、t')が最適解になる。送電パターン5数が2、受電機4数が2の場合、図11のようなグラフに表すことで容易に最適解を探索することができる。ところが、送電パターン5数、すなわち変数が3以上になる場合、実行可能領域は超多面体で表され、直感的に最適解を求めるのは極めて困難になる。この場合、シンプレックス法のように、実行可能領域の頂点を特定の規則に基づいて効率的に探索することで、大域的な最適化を得るのが望ましい。 In the case of FIG. 11, the vertices (t 1 ', t 2 ') when the objective function of the total time T shown by the broken line is asymptotic to the origin and the total time T is minimized are the optimum solutions. When the number of power transmission patterns 5 is 2 and the number of electric power transmissions 4 is 2, the optimum solution can be easily searched by displaying the graph as shown in FIG. However, when the number of power transmission patterns is 5, that is, the variable is 3 or more, the feasible region is represented by a superpolyhedron, and it is extremely difficult to intuitively find the optimum solution. In this case, it is desirable to obtain global optimization by efficiently searching the vertices of the feasible region based on a specific rule, as in the simplex method.

図12は、第1計算部17の計算結果に基づいて本送電を行った場合の、各受電機4における、時間に対する各受電機4の受電電力特性を上段に示し、時間に対する受電電力量特性を下段に示している。 FIG. 12 shows in the upper part the power received power characteristics of each electric power receiving electric power 4 with respect to time in each electric power receiving electric power system 4 when the main power transmission is performed based on the calculation result of the first calculation unit 17, and the power receiving power amount characteristic with respect to time. Is shown in the lower row.

図12の上段の受電電力特性については、電波伝搬環境と送受電機の位置に変動がない場合、同一の送電パターン5に基づく電波を送電している最中の受電電力は一定である。送電パターン5が切り替わると、受電電力は送電パターン5に応じた値に変化する。 Regarding the received power characteristics in the upper part of FIG. 12, if there is no change in the radio wave propagation environment and the position of the transmitting and receiving electric power, the received power during transmission of the radio wave based on the same transmission pattern 5 is constant. When the power transmission pattern 5 is switched, the received power changes to a value corresponding to the power transmission pattern 5.

図12の下段の受電電力量特性については、時間に対する受電電力量のグラフの傾きは、同一の送電パターン5に基づく電波を送電している最中は一定である。送電パターン5が切り替わると、受電電力量のグラフの傾きは変化する。図12の下段の破線は、要求電力量を示している。最後のK番目の送電パターン5に基づく電波を送電するのと同時に、各受電機4の受電電力量が破線に到達するか、破線を上回るように、各送電パターン5の送電期間が設定される。 Regarding the characteristics of the amount of received power in the lower part of FIG. 12, the slope of the graph of the amount of received power with respect to time is constant while transmitting radio waves based on the same power transmission pattern 5. When the power transmission pattern 5 is switched, the slope of the graph of the amount of power received changes. The broken line at the bottom of FIG. 12 shows the required electric energy. At the same time as transmitting the radio wave based on the last K-th power transmission pattern 5, the power transmission period of each power transmission pattern 5 is set so that the amount of power received by each power receiving electric power 4 reaches or exceeds the broken line. ..

なお、図12では、1番目の送電パターン5からK番目の送電パターン5まで、番号順に各送電パターン5に基づく電波を送電する例を示しているが、送電する送電パターン5の順序は任意でよい。図13(a)は番号順に送電パターン5に基づく電波を送電する例を示しているのに対して、図13(b)は任意の順番で送電パターン5に基づく電波を送電する例を示している。また、各送電パターン5に基づく電波は、必ずしもまとめて送電する必要はなく、図13(b)に示すように、各送電パターン5を複数の送電期間に分割して、分割された分割送電パターン5ごとに、任意の送電順序で送電してもよい。 Note that FIG. 12 shows an example in which radio waves based on each power transmission pattern 5 are transmitted in numerical order from the first power transmission pattern 5 to the Kth power transmission pattern 5, but the order of the power transmission patterns 5 to be transmitted is arbitrary. good. FIG. 13 (a) shows an example of transmitting radio waves based on the power transmission pattern 5 in numerical order, whereas FIG. 13 (b) shows an example of transmitting radio waves based on the power transmission pattern 5 in an arbitrary order. There is. Further, the radio waves based on each power transmission pattern 5 do not necessarily have to be collectively transmitted, and as shown in FIG. 13B, each power transmission pattern 5 is divided into a plurality of power transmission periods, and the divided power transmission pattern is divided. Every 5 may be transmitted in any transmission order.

(第1変形例)
1つ以上の送電機3から複数の受電機4に電波を送電する際に、送電時間ができるだけ短い方が望ましい。すなわち、各送電機3から2つ以上の送電パターン5を切替ながら複数の受電機4に電波を送電する際に、所定時間以内で各受電機4の要求電力量情報を満たせるようにするのが望ましい。所定時間の設定方法として、以下の第1手法と第2手法がある。
(First modification)
When transmitting radio waves from one or more power transmissions 3 to a plurality of power receiving units 4, it is desirable that the power transmission time is as short as possible. That is, when transmitting radio waves from each power transmission 3 to a plurality of power receiving 4 while switching two or more power transmission patterns 5, it is possible to satisfy the required electric energy information of each power receiving 4 within a predetermined time. desirable. As a method of setting a predetermined time, there are the following first method and second method.

第1手法は、全K個の送電パターン5を等しい送電期間tequalで使用して送電した場合に、全N個の受電機4の要求電力量を満たすのに要する最小時間T1,minを所定時間とするものである。合計時間をT1とした場合、全K個の送電パターン5に等しく割り振られる送電期間tequalは、以下の(5)式で与えられる。

Figure 0007003070000004
In the first method, when all K power transmission patterns 5 are used for equal power transmission periods and power transmission is performed, the minimum time T 1, min required to satisfy the required electric energy of all N power receiving electric power transmissions 4 is predetermined. It is time. When the total time is T1, the power transmission period equal allocated to all K power transmission patterns 5 is given by the following equation (5).
Figure 0007003070000004

ここで、各送電パターン5が等しい送電期間tequalで送電される場合、n番目の受電機4の受電電力量は、上述した(3)式によると、以下の(6)式の左辺で表される。受電電力量は、(6)式の右辺で表されるn番目の受電機4の要求電力量W以上である必要がある。

Figure 0007003070000005
Here, when each power transmission pattern 5 is transmitted in equal transmission periods, the amount of power received by the nth power receiving electric power 4 is represented by the left side of the following equation (6) according to the above equation (3). To. The amount of received power must be equal to or greater than the required amount of power Wn of the nth receiving electric power 4 represented by the right side of the equation (6).
Figure 0007003070000005

したがって、全N個の受電機4の全ての要求電力量を満たすための最小時間T1,minは、以下の(7)式で表される。

Figure 0007003070000006
なお、(7)式のmax( )は、( )内のベクトルのうち最大値を示す。 Therefore, the minimum time T 1, min for satisfying all the required electric energies of all N receiving electric power 4 is expressed by the following equation (7).
Figure 0007003070000006
Note that max () in Eq. (7) indicates the maximum value among the vectors in ().

所定期間を設定する第2手法は、各受電機4において最大受電電力が得られた送電パターン5を適用する際の受電電力情報のみを送電機3に返すものと仮定した場合に、全N個の受電機4の要求電力量を満たすために要する最小時間T2,minを所定時間とするものである。 The second method for setting a predetermined period is a total of N pieces, assuming that only the received power information when applying the power transmission pattern 5 in which the maximum received power is obtained in each receiving power 4 is returned to the transmitter 3. The minimum time T2 and min required to satisfy the required power amount of the electric receiving electric power 4 is set as a predetermined time.

n番目の受電機4において、k番目の送電パターン5により最大受電電力pn,kが得られた場合、n番目の受電機4の要求電力量Wを最短で満足する時間tn,kは、以下の(8)式で求められる。

Figure 0007003070000007
When the maximum received power pn, k is obtained by the k-th power transmission pattern 5 in the n-th receiving electric power 4, the time t n, k that satisfies the required electric energy Wn of the nth receiving electric power 4 in the shortest time. Is obtained by the following equation (8).
Figure 0007003070000007

ここで、複数の受電機4でいずれも、k番目の送電パターン5により最大受電電力が得られる場合、(8)式に基づいて計算される各受電機4の要求電力量を満足する最小時間tn,kのうち最大のものを、k番目の送電パターン5の送電期間tk,minとする。
いずれの受電機4でも選択されなかった送電パターン5については、時間tk,minをゼロとし、このときの送電パターン5は本送電時には使用しないものとする。k番目の送電パターン5を送電期間tk,minで送電した場合のn番目の受電機4の受電電力量は、上述した(3)式によると、以下の(9)式の左辺で表される。受電電力量は、(9)式の右辺で表されるn番目の受電機4の要求電力量Wn以上となる必要がある。

Figure 0007003070000008
Here, when the maximum received power is obtained by the k-th power transmission pattern 5 in each of the plurality of receiving electric power 4, the minimum time that satisfies the required electric energy of each electric receiving electric power 4 calculated based on the equation (8). The largest of t n and k is defined as the transmission period tk and min of the kth transmission pattern 5.
For the power transmission pattern 5 that is not selected in any of the power receiving 4s, the time tk and min are set to zero, and the power transmission pattern 5 at this time is not used during the main power transmission. According to the above-mentioned equation (3), the amount of power received by the n-th receiver 4 when the k-th transmission pattern 5 is transmitted in the transmission period tk, min is represented by the left side of the following equation (9). .. The amount of received power must be equal to or greater than the required amount of power Wn of the nth receiving electric power 4 represented by the right side of the equation (9).
Figure 0007003070000008

ここで、k番目の送電パターン5の送電期間tk,minは、全受電機4の要求電力量Wをすべて満たすように予め定義されている。よって、実際には、(9)式の左辺は、(9)式の右辺に等しいか、又は大きい値になる。ここで、(9)式の左辺を右辺で除した値であるスケールファクタsは、以下の(10)式で表される。

Figure 0007003070000009
Here, the transmission periods tk and min of the k-th transmission pattern 5 are predefined so as to satisfy all the required electric energy W n of all the receiving electric powers 4. Therefore, in reality, the left side of the equation (9) is equal to or larger than the right side of the equation (9). Here, the scale factor s n , which is the value obtained by dividing the left side of the equation (9) by the right side, is expressed by the following equation (10).
Figure 0007003070000009

全受電機4に対するスケールファクタsのうち最小の値sminを、以下の(11)式で表す。
min=min(s,s,…,s) …(11)
The minimum value s min of the scale factor s n for all the receiving electric machines 4 is expressed by the following equation (11).
s min = min (s 1 , s 2 , ..., s N ) ... (11)

(11)式のmin( )は、( )内のベクトルのうち最小値を示す。すなわち、k番目の送電パターン5の送電期間tk,minを、最小のスケールファクタsminで除することで、全受電機4の要求電力量Wnをすべて最小で満足する合計時間T2,minが求められる。以上より、最小時間T2,minは以下の(12)式で表される。

Figure 0007003070000010
Min () in Eq. (11) indicates the minimum value of the vectors in (). That is, by dividing the power transmission period tk , min of the kth power transmission pattern 5 by the minimum scale factor s min , the total time T 2, min that satisfies all the required electric energy Wn of all the receiving electric power 4 at the minimum. Is required. From the above, the minimum time T 2, min is expressed by the following equation (12).
Figure 0007003070000010

(第2変形例)
送電機3の送電用アンテナ11は、フェーズドアレーアンテナであってもよい。フェーズドアレイアンテナは、複数のアンテナ素子と、これらのアンテナ素子に接続される可変位相器とを有する。可変位相器は、各アンテナ素子に入力される電波の位相を制御することにより、任意の送電パターン5を生成できる。また、フェーズドアレイアンテナは、可変位相器だけでなく、可変増幅器を有していてもよい。可変増幅器を設けることで、電波の振幅も制御可能となり、不要方向への電力の放射を抑制する等、より自由度の高い送電パターン5を生成できる。
(Second modification)
The power transmission antenna 11 of the power transmission 3 may be a phased array antenna. The phased array antenna has a plurality of antenna elements and a variable phase device connected to these antenna elements. The variable phase detector can generate an arbitrary power transmission pattern 5 by controlling the phase of the radio wave input to each antenna element. Further, the phased array antenna may have a variable amplifier as well as a variable phase detector. By providing the variable amplifier, the amplitude of the radio wave can also be controlled, and it is possible to generate a power transmission pattern 5 having a higher degree of freedom, such as suppressing the radiation of electric power in an unnecessary direction.

(第3変形例)
送電に使用される電波は、送電効率向上と他の無線設備への与干渉低減の観点から、無情報の無変調連続波であるのが望ましい。また、送受電機間で行われる通信を阻害しないように、送電と通信に使用される電波の周波数は異なるものであるのが望ましい。これにより、送電機3からの送電と、受電機4からの受電電力情報の送信とを干渉なしで安定に行うことができる。
(Third modification example)
The radio waves used for power transmission are preferably unmodulated continuous waves without information from the viewpoint of improving power transmission efficiency and reducing interference with other radio equipment. Further, it is desirable that the frequencies of the radio waves used for power transmission and communication are different so as not to interfere with the communication performed between the transmission and reception electric machines. As a result, the power transmission from the power transmission 3 and the transmission of the received power information from the electric power receiving 4 can be stably performed without interference.

(第4変形例)
以上では、予め用意された複数の送電パターン5に割り当てられる送電期間の制御手法について説明したが、送電パターン5を可変制御できるようにしてもよい。
(Fourth modification)
In the above, the control method of the power transmission period assigned to the plurality of power transmission patterns 5 prepared in advance has been described, but the power transmission pattern 5 may be variably controlled.

例えば、図4の送電機3と図5の受電機4のように、送電機3と受電機4間の伝搬路情報に基づいて送電パターン5を決定してもよい。より具体的には、複数の送電機3と複数の受電機4間の伝搬路行列を特異値分解したときに得られる送電側の特異ベクトルは、各送電機3の送電アンテナに入力される電波の位相および振幅情報(以降、ウェイトと呼ぶ)に相当し、特に最大特異値に対応するウェイトは、全受電機4で受電される交流電力の総和を最大化する送電パターン5を生成する。ただし、各受電機4の整流器23aの整流効率の非線形性により、このウェイトが全受電機4で受電される直流電力の総和を最大化するとは限らない。その他、非ゼロの特異値に対応するウェイトは受電機4に対し電力を供給することが可能であるが、ゼロの特異値に対応するウェイトは電力を供給することが不可能である。したがって、ゼロの特異値に対応するウェイトは送電パターン5には使用せず、非ゼロの特異値に対応するウェイトの内、1つ以上を送電パターン5として使用することができる。 For example, as in the transmission 3 of FIG. 4 and the power receiving 4 of FIG. 5, the power transmission pattern 5 may be determined based on the propagation path information between the power transmission 3 and the power receiving 4. More specifically, the singular vector on the power transmission side obtained when the propagation path matrix between the plurality of power transmissions 3 and the plurality of power receiving units 4 is decomposed into singular values is the radio wave input to the power transmission antenna of each power transmission 3. The weights corresponding to the phase and amplitude information (hereinafter referred to as weights) of the above, and particularly corresponding to the maximum singular value, generate a power transmission pattern 5 that maximizes the total amount of AC power received by all the receiving electric machines 4. However, due to the non-linearity of the rectifying efficiency of the rectifier 23a of each receiving electric power 4, this weight does not always maximize the total DC power received by all the receiving electric powers 4. In addition, the weight corresponding to the non-zero singular value can supply electric power to the receiving electric power 4, but the weight corresponding to the zero singular value cannot supply electric power. Therefore, the weight corresponding to the singular value of zero is not used for the power transmission pattern 5, and one or more of the weights corresponding to the non-zero singular value can be used as the power transmission pattern 5.

また、特定の1つの受電機4に対して集中して送電を実施する場合、この受電機4との間の伝搬路ベクトルの複素共役の関係にあるウェイトを使用することができる。この方式はレトロディレクティブ方式として広く知られている。レトロディレクティブ方式のウェイトは、受電機4の個数分仮定でき、受電機4の台数分のウェイトのうち、1つ以上を送電パターン5として使用することができる。 Further, when power transmission is concentrated on one specific power receiving 4, weights having a complex conjugate relationship of the propagation path vector with the power receiving 4 can be used. This method is widely known as the retro directive method. The weight of the retro directive method can be assumed for the number of electric power receiving units 4, and one or more of the weights for the number of electric power receiving electric units 4 can be used as the power transmission pattern 5.

なお、上述のウェイトは、可変位相器および可変増幅器の分解能、可変増幅器のダイナミックレンジによっては、厳密には再現できない場合がある。この場合、理想のウェイトに近い設定可能な位相値・振幅値に丸めた、またはダイナミックレンジ内に収まるように振幅の上下限をクリップまたは圧縮した疑似的なウェイトを使用することができる。 The above weight may not be reproduced exactly depending on the resolution of the variable phase detector and the variable amplifier and the dynamic range of the variable amplifier. In this case, it is possible to use a pseudo weight that is rounded to a configurable phase value / amplitude value close to the ideal weight, or the upper and lower limits of the amplitude are clipped or compressed so as to be within the dynamic range.

(第5の変形例)
図2の送電機3や図3の受電機4のように、送電機3と受電機4のいずれも伝搬路推定機能を持たない場合、第4の変形例で説明した伝搬路情報に基づく送電パターン5を求めるのは困難である。伝搬路推定情報から送電パターン5を決定する代わりに、送電機3に対する受電機4の相対的な位置または方向情報に基づき送電パターン5を決定することができる。例えば、商業施設や工場のような屋内環境においては、監視用のカメラ等(受電機特定部)が配置され、これにより得られる画像情報から受電機4の位置情報を得ることが可能である。また、屋外であれば、GPSにより受電機4のおおよその位置を特定できる。この他、受電側が通信用に使用する信号を、送電側に別途搭載されたレーダ等により受信することで、位置情報を取得することもできる。
(Fifth variant)
When neither the transmitter 3 nor the receiver 4 has a propagation path estimation function as in the transmitter 3 of FIG. 2 and the receiver 4 of FIG. 3, power transmission is based on the propagation path information described in the fourth modification. It is difficult to find pattern 5. Instead of determining the power transmission pattern 5 from the propagation path estimation information, the power transmission pattern 5 can be determined based on the relative position or direction information of the receiving electric power 4 with respect to the transmitter 3. For example, in an indoor environment such as a commercial facility or a factory, a monitoring camera or the like (electric receiving electric receiving specifying unit) is arranged, and it is possible to obtain the position information of the electric receiving electric power 4 from the image information obtained by the camera or the like. Further, if it is outdoors, the approximate position of the receiving electric power 4 can be specified by GPS. In addition, the position information can be acquired by receiving the signal used for communication by the power receiving side by a radar or the like separately mounted on the power transmission side.

ここで、等間隔で1次元的または2次元的に配置された送電用アンテナ11から成るフェーズドアレーの場合、各送電用アンテナ11に入力される電波に適当な位相差を与えることで、電波の進行する波面を制御することができ、特定の方向に集中して送電することが可能である。このように伝搬路推定機能を有していない受電機4に対しては、位置または方向情報に基づく送電パターン5を1つ以上使用することができる。 Here, in the case of a phased array consisting of power transmission antennas 11 arranged one-dimensionally or two-dimensionally at equal intervals, the radio waves are subjected to an appropriate phase difference by giving an appropriate phase difference to the radio waves input to each power transmission antenna 11. It is possible to control the traveling wave surface and concentrate power transmission in a specific direction. As described above, one or more power transmission patterns 5 based on position or direction information can be used for the power receiving electric power 4 that does not have the propagation path estimation function.

このように、本実施形態では、複数の受電機4からの受電電力情報及び要求電力量情報に基づいて、2つ以上の送電パターン5それぞれの送電期間を計算して、これら送電パターン5を、計算された送電期間にて切替ながら送電するため、複数の受電機4での要求電力量情報を満たすような電波を送電できる。また、本実施形態における送電機3は、試行送電と本送電を行う。試行送電は、複数の送電パターン5に基づく複数の電波を連続して送電し、これらの電波を受電した複数の受電機4は、受電電力情報と要求電力量情報を送信するため、送電機3は、これら受電電力情報と要求電力量情報を受信することにより、本送電で用いる2つ以上の送電パターン5の送電期間を計算できる。このように、2つ以上の送電パターン5それぞれの送電期間を調整することで、複数の受電機4が所定時間以内に要求電力量を受電できるようにすることができる。 As described above, in the present embodiment, the power transmission period of each of the two or more power transmission patterns 5 is calculated based on the power reception power information and the required electric energy amount information from the plurality of power reception patterns 4, and these power transmission patterns 5 are used. Since power transmission is performed while switching within the calculated power transmission period, it is possible to transmit power that satisfies the required electric energy amount information of the plurality of receiving electric power 4. Further, the power transmission 3 in the present embodiment performs trial power transmission and main power transmission. In the trial power transmission, a plurality of radio waves based on the plurality of power transmission patterns 5 are continuously transmitted, and the plurality of power receiving electric power transmissions 4 that have received these radio power transmissions transmit the received power information and the required electric energy amount information. Can calculate the transmission period of two or more transmission patterns 5 used in the main transmission by receiving the received power information and the required electric energy amount information. By adjusting the power transmission period of each of the two or more power transmission patterns 5 in this way, it is possible to enable a plurality of power receiving electric power transmission units 4 to receive the required electric energy within a predetermined time.

(第2の実施形態)
第1の実施形態による無線電力伝送装置1では、各受電機4は、複数の試行送電パターン全てに対し、試行送電パターン毎の受電電力情報を送電機3に送信するものとしていた。
しかしながら試行送電パターンの数が多いほど、各受電機4は送電機3に対して受電電力情報を送信する回数が増えるため、受電機4の消費電力が増大する。本来的には、試行送電パターンによる給電効率が高い受電機4のみ受電電力情報を送電機に送信するのが望ましい。そこで、第2の実施形態では、試行送電パターンによる給電効率が低い受電機4は受電電力情報を送電機3に送信しないようにする。
(Second embodiment)
In the wireless power transmission device 1 according to the first embodiment, each receiving electric power 4 transmits the received power information for each trial transmission pattern to the transmission 3 for all the plurality of trial transmission patterns.
However, as the number of trial power transmission patterns increases, the number of times each power receiving 4 transmits the power received information to the power transmission 3 increases, so that the power consumption of the power receiving 4 increases. Originally, it is desirable to transmit the received power information to the transmitter only for the receiving electric power 4 having a high power feeding efficiency according to the trial power transmission pattern. Therefore, in the second embodiment, the power receiving electric power 4 having a low power feeding efficiency due to the trial power transmission pattern is prevented from transmitting the power receiving power information to the power transmission device 3.

図14は第2の実施形態による無線電力伝送装置1の概略構成を示すブロック図であり、送電機3のブロック構成を示している。図14の送電機3は、図4の送電機3の構成に加えて、判定部31と、送信要求部32とを備えている。 FIG. 14 is a block diagram showing a schematic configuration of the wireless power transmission device 1 according to the second embodiment, and shows a block configuration of the transmitter 3. The transmitter 3 of FIG. 14 includes a determination unit 31 and a transmission request unit 32 in addition to the configuration of the transmitter 3 of FIG.

判定部31は、複数の受電機4の伝搬路情報と複数の受電機4の配置情報との少なくとも一つと、複数の受電機4への送電パターン情報と、に基づいて、複数の受電機4からの受電電力情報の送信が必要か否かを受電機4ごとに判定する。送信要求部32は、判定部31にて受電電力情報の送信が必要と判定された受電機4に対して、受電電力情報及び当該受電機4が要求する要求電力量情報の送信を要求する。 The determination unit 31 is based on at least one of the propagation path information of the plurality of power receiving 4 and the arrangement information of the plurality of power receiving 4 and the power transmission pattern information to the plurality of power receiving 4 and the plurality of power receiving 4 It is determined for each power receiving 4 whether or not it is necessary to transmit the power received power information from. The transmission requesting unit 32 requests the receiving electric power 4 determined by the determination unit 31 to transmit the received power information to transmit the received power information and the required electric energy amount information requested by the receiving electric power 4.

判定部31の具体的な処理手順として、第1処理手順と、第2処理手順との2通りが考えられる。 As a specific processing procedure of the determination unit 31, two types, a first processing procedure and a second processing procedure, can be considered.

第1処理手順では、複数の受電機4の伝搬路情報と、複数の受電機4への送電パターン情報と、を乗じた値に基づいて、複数の受電機4からの受電電力情報と要求電力量情報の送信が必要か否かを受電機4ごとに判定する。 In the first processing procedure, the received power information and the required power from the plurality of receiving electric powers 4 are based on the value obtained by multiplying the propagation path information of the plurality of receiving electric powers 4 and the power transmission pattern information to the plurality of receiving electric powers 4. It is determined for each power receiving 4 whether or not it is necessary to transmit the amount information.

複数の受電機4への送電パターン情報は、送電機3が有する複数の送電用アンテナ11に入力される電波の位相及び振幅情報(ウェイト)で表すことができる。送電機3の送電用アンテナ11は、計M素子から構成されるフェーズドアレーアンテナとし、計N個の受電機4のうち、第n受電機(n=1…N)に対する伝搬路ベクトルの第m要素(m=1…M)をhn,mと定義する。これは第n受電機4とフェーズドアレーアンテナの第m素子との間の伝搬路係数に相当する。また、第k送電パターンに対応するウェイトの第m要素をwk,mと定義する。これはフェーズドアレーアンテナの第m素子に入力される電波の位相および振幅情報に相当する。第n受電機4に対する伝搬路ベクトルと第k送電パターンに対応するウェイトの複素相関係数ρn,kは、以下の(13)式で表される。

Figure 0007003070000011
The power transmission pattern information to the plurality of power receiving units 4 can be represented by the phase and amplitude information (weight) of the radio waves input to the plurality of power transmission antennas 11 included in the power transmission device 3. The power transmission antenna 11 of the power transmission 3 is a phased array antenna composed of a total of M elements, and of the total of N receiving electric machines 4, the mth of the propagation path vector with respect to the nth receiving electric machine (n = 1 ... N). The element (m = 1 ... M) is defined as h n, m . This corresponds to the propagation path coefficient between the nth receiving electric machine 4 and the mth element of the phased array antenna. Further, the mth element of the weight corresponding to the kth transmission pattern is defined as w k, m . This corresponds to the phase and amplitude information of the radio wave input to the mth element of the phased array antenna. The complex correlation coefficient ρ n, k of the propagation path vector for the nth receiving electric machine 4 and the weight corresponding to the kth power transmission pattern is expressed by the following equation (13).
Figure 0007003070000011

相関を評価する際、(13)式で表される複素相関係数ρn,kの絶対値の二乗の値がよく用いられる。|ρn,k|2が所定の値以上のときに、受電機4からの受電電力情報の送信が必要であると判定される。一般的には、|ρn,k|2が0.5以上の値の場合、相関が高いとされる。よって、所定の値は0.5を採用してもよいし、それ以外の値を採用してもよい。 When evaluating the correlation, the square value of the absolute value of the complex correlation coefficients ρ n and k expressed by Eq. (13) is often used. When | ρ n, k | 2 is equal to or greater than a predetermined value, it is determined that the received power information from the receiving electric power 4 needs to be transmitted. Generally, when | ρ n, k | 2 is a value of 0.5 or more, it is considered that the correlation is high. Therefore, 0.5 may be adopted as the predetermined value, or other values may be adopted.

第2処理手順では、判定部31は、複数の受電機4の配置情報と、複数の受電機4への送電パターン情報と、に基づいて、複数の受電機4からの受電電力情報及び要求電力量情報が必要か否かを受電機4ごとに判定する。複数の受電機4の配置情報(相対的位置情報)は、上述したように、カメラ、GPS、レーダ等から取得することができる。送電パターン情報は、例えば、図15に示すように、送電パターンのメインビーム(メインローブ)方向とビーム幅の情報を含んでいる。判定部31は、複数の受電機4の相対的位置情報と、送電パターンのメインビーム方向及びビーム幅とを比較して、送電パターンのメインビーム範囲内に複数の受電機4が位置するか否かを判定する。例えば、所定のビーム幅には、最大利得から3dB低下する角度幅、いわゆる半値角を採用してもよい。送電パターンのメインビーム範囲内に位置する受電機4については、受電電力情報の送信が必要であると判定される。 In the second processing procedure, the determination unit 31 receives power information and required power from the plurality of power receiving 4s based on the arrangement information of the plurality of power receiving 4s and the power transmission pattern information to the plurality of power receiving 4s. It is determined for each power receiving 4 whether or not the quantity information is necessary. As described above, the arrangement information (relative position information) of the plurality of receiving electric power 4 can be acquired from the camera, GPS, radar and the like. The power transmission pattern information includes, for example, as shown in FIG. 15, information on the main beam (main lobe) direction and beam width of the power transmission pattern. The determination unit 31 compares the relative position information of the plurality of power receiving 4 with the main beam direction and the beam width of the power transmission pattern, and determines whether or not the plurality of power receiving 4 are located within the main beam range of the power transmission pattern. Is determined. For example, for the predetermined beam width, an angle width that is 3 dB lower than the maximum gain, that is, a so-called half-value angle may be adopted. It is determined that the receiving power information 4 needs to be transmitted to the receiving electric power 4 located within the main beam range of the power transmission pattern.

ここで、送電パターンのメインビーム方向およびビーム幅は、予め測定することにより取得できるが、想定される全ての送電パターンの測定を実施することは現実的に不可能である。そこで、送電パターンのメインビーム方向およびビーム幅を、シミュレーションにより計算した値を用いても良い。なおシミュレーションには、必ずしも電磁界シミュレータを用いる必要はなく、フェーズドアレーアンテナの各素子に用いられるアンテナ単体の指向性(エレメントファクターとも)およびフェーズドアレーアンテナの各素子の配列座標情報およびウェイト情報(アレーファクターとも)に基づき、汎用計算機により計算することが可能である。 Here, the main beam direction and the beam width of the power transmission pattern can be obtained by measuring in advance, but it is practically impossible to measure all the assumed power transmission patterns. Therefore, the values calculated by simulation may be used for the main beam direction and the beam width of the power transmission pattern. It is not always necessary to use an electromagnetic field simulator for the simulation, and the directivity (also known as the element factor) of the antenna used for each element of the phased array antenna and the array coordinate information and weight information (array) of each element of the phased array antenna. It can be calculated by a general-purpose computer based on the factor).

なお、上記では、各受電機4からの受電電力情報の送信が必要か否かを判定する処理手順について述べたが、特定の2以上の受電機4からなる受電機4群が所定の判定条件を満たすような送電パターンを決定して、決定した送電パターンを受電機4群に送電してもよい。受電器群の分類については、(13)式で求められる2つの受電機4の伝搬路ベクトル同士の複素相関係数や、各受電機4の座標情報(例えば直交座標系では、x、y、z座標)を変量とし、種々クラスタリング法を用いることで、互いに「相関が高い」または「物理的に近接する」受電機4から構成される複数の受電器群に分類することが可能である。クラスタリング法の代表的なものとして階層的手法であるウォード法や、非階層的手法であるK平均法等が挙げられる。 In the above, the processing procedure for determining whether or not it is necessary to transmit the received power information from each receiving electric power 4 has been described, but the electric power receiving 4 group consisting of two or more specific receiving electric power 4 is a predetermined determination condition. A power transmission pattern that satisfies the above conditions may be determined, and the determined power transmission pattern may be transmitted to the four receiving electric power groups. Regarding the classification of the power receiver group, the complex correlation coefficient between the propagation path vectors of the two power receivers 4 obtained by Eq. (13) and the coordinate information of each power receiver 4 (for example, x, y, in the Cartesian coordinate system). By using various clustering methods with the z-coordinate as a variable, it is possible to classify the receivers into a plurality of receiver groups composed of the receivers 4 that are "highly correlated" or "physically close" to each other. Typical examples of the clustering method include Ward's method, which is a hierarchical method, and K-means method, which is a non-hierarchical method.

そして、例えば、上述したように、各受電機4群内の複数の受電機4に対する伝搬路行列の特異値分解により得られるウェイト(特に最大特異値に対応するウェイト)に基づく送電パターンを候補とすることができる。 Then, for example, as described above, a power transmission pattern based on the weight (particularly the weight corresponding to the maximum singular value) obtained by singular value decomposition of the propagation path matrix for a plurality of power receiving 4s in each power receiving 4 group is used as a candidate. can do.

図16は第2の実施形態による送電機3の処理手順を示すフローチャートである。このフローチャートは、図6と同様の一括フィードバック方式の処理手順を示している。まず、各受電機4の伝搬路情報を取得する(ステップS21)。ここでは、例えば、各受電機4から送信されたビーコン信号を受信して、送電機3内の伝搬路推定部にて、受信したビーコン信号に基づいて、各受電機4との間の伝搬路情報を推定する。 FIG. 16 is a flowchart showing a processing procedure of the transmitter 3 according to the second embodiment. This flowchart shows the processing procedure of the batch feedback method similar to that of FIG. First, the propagation path information of each receiving electric machine 4 is acquired (step S21). Here, for example, a beacon signal transmitted from each receiver 4 is received, and the propagation path estimation unit in the transmitter 3 receives a propagation path to and from each receiver 4 based on the received beacon signal. Estimate the information.

次に、判定部31にて、各受電機4からの受電電力情報の送信が必要か否かを判定する(ステップS22)。ここでは、上述した第1処理手順又は第2処理手順にて、各受電機4からの受電電力情報の送信が必要か否かを判定する。 Next, the determination unit 31 determines whether or not it is necessary to transmit the received power information from each receiving electric power 4 (step S22). Here, in the first processing procedure or the second processing procedure described above, it is determined whether or not it is necessary to transmit the received power information from each receiving electric power 4.

次に、受電電力情報の送信が必要であると判定された受電機4に対して、受電電力情報と要求電力量情報を送信するよう通知する(ステップS23)。この通知は、例えば第1通信部14を介して行われる。 Next, the receiving electric power 4 determined to need to transmit the received power information is notified to transmit the received power information and the required electric energy amount information (step S23). This notification is made, for example, via the first communication unit 14.

その後は、図6のステップS1~S7と同様に、試行送電と、受電電力情報及び要求電力量情報の受信と、本送電が順次行われる(ステップS24~S30)。なお、逐次フィードバック方式を採用する場合には、図16のステップS24~S30において、図8のS11~S17の処理を行えばよい。 After that, as in steps S1 to S7 of FIG. 6, trial power transmission, reception of received power information and required electric energy amount information, and main power transmission are sequentially performed (steps S24 to S30). When the sequential feedback method is adopted, the processes of S11 to S17 of FIG. 8 may be performed in steps S24 to S30 of FIG.

このように、第2の実施形態では、複数の受電機4の伝搬路情報と複数の受電機4の配置情報との少なくとも一つと、複数の受電機4への送電パターン情報と、に基づいて、複数の受電機4からの受電電力情報の送信が必要か否かを受電機4ごとに判定する。これにより、送電パターン毎に、給電効率の高い受電機4のみが受電電力情報と要求電力量情報を送電機3に送信すればよくなり、各受電機4の消費電力を削減できるとともに、送電機3が受信する受電電力情報等の数も削減できることから、送電機3の処理負担も軽減できる。 As described above, in the second embodiment, based on at least one of the propagation path information of the plurality of power receiving 4 and the arrangement information of the plurality of power receiving 4 and the power transmission pattern information to the plurality of power receiving 4 , It is determined for each power receiving 4 whether or not it is necessary to transmit the power received power information from the plurality of power receiving 4s. As a result, for each transmission pattern, only the receiving power 4 having high power supply efficiency needs to transmit the received power information and the required electric energy amount information to the transmission 3, so that the power consumption of each receiving power 4 can be reduced and the transmission. Since the number of received power information and the like received by 3 can be reduced, the processing load of the power transmission 3 can also be reduced.

上述した各実施形態による送電機3内の各部の処理は、一つ以上の信号処理プロセッサにて行うことができる。また、信号処理プロセッサにメモリを混載したSoC(System on Chip)にて送電機3を構成してもよい。 The processing of each part in the transmitter 3 according to each of the above-described embodiments can be performed by one or more signal processing processors. Further, the transmitter 3 may be configured by a SoC (System on Chip) in which a memory is mixedly mounted on a signal processing processor.

上述した実施形態で説明した無線電力伝送装置1及び無線電力伝送システム2の少なくとも一部は、ハードウェアで構成してもよいし、ソフトウェアで構成してもよい。ソフトウェアで構成する場合には、無線電力伝送装置1及び無線電力伝送システム2の少なくとも一部の機能を実現するプログラムをフレキシブルディスクやCD-ROM等の記録媒体に収納し、コンピュータに読み込ませて実行させてもよい。記録媒体は、磁気ディスクや光ディスク等の着脱可能なものに限定されず、ハードディスク装置やメモリなどの固定型の記録媒体でもよい。 At least a part of the wireless power transmission device 1 and the wireless power transmission system 2 described in the above-described embodiment may be configured by hardware or software. When configured with software, a program that realizes at least a part of the functions of the wireless power transmission device 1 and the wireless power transmission system 2 is stored in a recording medium such as a flexible disk or a CD-ROM, read by a computer, and executed. You may let me. The recording medium is not limited to a removable one such as a magnetic disk or an optical disk, and may be a fixed recording medium such as a hard disk device or a memory.

また、無線電力伝送装置1及び無線電力伝送システム2の少なくとも一部の機能を実現するプログラムを、インターネット等の通信回線(無線通信も含む)を介して頒布してもよい。さらに、同プログラムを暗号化したり、変調をかけたり、圧縮した状態で、インターネット等の有線回線や無線回線を介して、あるいは記録媒体に収納して頒布してもよい。 Further, a program that realizes at least a part of the functions of the wireless power transmission device 1 and the wireless power transmission system 2 may be distributed via a communication line (including wireless communication) such as the Internet. Further, the program may be encrypted, modulated, compressed, and distributed via a wired line or a wireless line such as the Internet, or stored in a recording medium.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1 無線電力伝送装置、2 無線電力伝送システム、3 送電機、4 受電機、5 送電パターン、11 送電用アンテナ、12 通信用第1アンテナ、13 送電部、14 第1通信部、15 第1制御部、16 第1記憶部、17 第1計算部、18 伝搬路推定部、21 受電用アンテナ、22 通信用第2アンテナ、23 受電部、24 測定部、25 第2通信部、26 第2制御部、27 第2記憶部、28 第2計算部、29 ビーコン信号送信部、30 第2送受切替器 1 wireless power transmission device, 2 wireless power transmission system, 3 transmitter, 4 receiver, 5 transmission pattern, 11 transmission antenna, 12 communication 1st antenna, 13 transmission unit, 14 1st communication unit, 15 1st control Unit, 16 1st storage unit, 17 1st calculation unit, 18 Propagation path estimation unit, 21 Power receiving antenna, 22 Communication 2nd antenna, 23 Power receiving unit, 24 Measuring unit, 25 2nd communication unit, 26 2nd control Unit, 27 2nd storage unit, 28 2nd calculation unit, 29 Beacon signal transmission unit, 30 2nd power transmission / reception switch

Claims (20)

第1受電機及び第2受電機に対して電波による無線電力を複数の送電パターンにより伝送する無線電力伝送装置であって、
前記第1受電機によって前記複数の送電パターンに応じて受電される電力を示す第1情報、前記第2受電機によって前記複数の送電パターンに応じて受電される電力を示す第2情報、前記第1受電機から要求される電力量を示す第3情報、及び前記第2受電機から要求される電力量を示す第4情報に基づいて、前記複数の送電パターンに含まれる第1送電パターン及び第2送電パターンを決定し、前記第1送電パターンによる第1送電期間及び前記第2送電パターンによる第2送電期間を計算する計算部と、
前記第1送電期間に前記第1送電パターンにより第1電波を送電し、前記第2送電期間に前記第2送電パターンにより第2電波を送電する送電部と、
前記複数の送電パターンのそれぞれに基づく複数の電波を前記送電部から試行送電する制御を行う制御部と、
前記複数の電波のそれぞれを受信した前記第1受電機から送信される前記第1情報及び前記第3情報を受信し、前記複数の電波のそれぞれを受信した前記第2受電機から送信される前記第2情報及び前記第4情報を受信する通信部と、を備え、
前記計算部は、前記通信部で受信された前記第1情報及び前記第4情報に基づいて、前記第1送電パターン及び第2送電パターンを決定し、前記第1送電期間及び前記第2送電期間を計算する、無線電力伝送装置。
It is a wireless power transmission device that transmits wireless power by radio waves to the first receiving electric power and the second receiving electric power by a plurality of transmission patterns .
The first information indicating the electric power received by the first electric power transmission pattern according to the plurality of power transmission patterns, the second information indicating the electric energy received by the second electric power transmission pattern according to the plurality of power transmission patterns, the first information. The first power transmission pattern and the first power transmission pattern included in the plurality of power transmission patterns are based on the third information indicating the amount of power required from the first power receiving machine and the fourth information indicating the amount of power required from the second power receiving machine. 2 A calculation unit that determines a power transmission pattern and calculates a first power transmission period according to the first power transmission pattern and a second power transmission period according to the second power transmission pattern.
A power transmission unit that transmits a first radio wave according to the first power transmission pattern during the first power transmission period and transmits a second radio wave according to the second power transmission pattern during the second power transmission period .
A control unit that controls trial transmission of a plurality of radio waves based on each of the plurality of power transmission patterns from the power transmission unit.
The first information and the third information transmitted from the first receiver that has received each of the plurality of radio waves are received, and the second receiver that has received each of the plurality of radio waves transmits the first information and the third information. A communication unit that receives the second information and the fourth information is provided.
The calculation unit determines the first power transmission pattern and the second power transmission pattern based on the first information and the fourth information received by the communication unit, and determines the first power transmission period and the second power transmission period. To calculate, wireless power transmission equipment.
第1受電機及び第2受電機に対して電波による無線電力を、複数の送電パターンにより伝送する無線電力伝送装置であって、
前記第1受電機と前記無線電力伝送装置の間の第1伝搬路を示す第1伝搬路情報及び前記第2受電機と前記無線電力伝送装置の間の第2伝搬路を示す第2伝搬路情報、並びに前記第1受電機及び前記第2受電機の配置情報、の少なくとも一方と、前記複数の送電パターンを示す送電パターン情報と、に基づいて、前記第1受電機によって前記複数の送電パターンに応じて受電される電力を示す第1情報が必要か否かを判定し、前記第2受電機によって前記複数の送電パターンに応じて受電される電力を示す第2情報が必要か否かを判定する判定部と、
前記第1情報が必要と判定された場合に、前記第1受電機に対して前記第1情報及び前記第1受電機から要求される電力量を示す第3情報の送信を要求し、前記第2情報が必要と判定された場合に、前記第2受電機に対して前記第2情報及び前記第2受電機から要求される電力量を示す第4情報の送信を要求する送信要求部と、
前記第1情報及び前記第3情報、並びに前記第2情報及び前記第4情報、の少なくとも一方に基づいて、前記複数の送電パターンに含まれる第1送電パターン及び第2送電パターンを決定し、前記第1送電パターンによる第1送電期間及び前記第2送電パターンによる第2送電期間を計算する計算部と、
前記第1送電期間に前記第1送電パターンにより第1電波を送電し、前記第2送電期間に前記第2送電パターンにより第2電波を送電する送電部と、を備える、無線電力伝送装置。
A wireless power transmission device that transmits radio power by radio waves to a first receiver and a second receiver in a plurality of transmission patterns .
The first propagation path information indicating the first propagation path between the first receiver and the wireless power transmission device and the second propagation path indicating the second propagation path between the second receiver and the wireless power transmission device. Based on the information, at least one of the first receiving electric power and the arrangement information of the second receiving electric power, and the transmission pattern information indicating the plurality of power transmission patterns, the first receiving electric power causes the plurality of power transmission patterns. It is determined whether or not the first information indicating the electric power received according to the above is necessary, and whether or not the second information indicating the electric power received by the second electric power receiving pattern according to the plurality of power transmission patterns is necessary. Judgment unit and
When it is determined that the first information is necessary, the first receiving electric power is requested to transmit the first information and the third information indicating the amount of electric power required from the first receiving electric power, and the first is said. (2) A transmission requesting unit that requests the second receiving electric power to transmit the second information and the fourth information indicating the amount of electric power required from the second receiving electric power when it is determined that the information is necessary .
Based on at least one of the first information and the third information, and the second information and the fourth information, the first power transmission pattern and the second power transmission pattern included in the plurality of power transmission patterns are determined, and the power transmission pattern is determined. A calculation unit that calculates the first power transmission period according to the first power transmission pattern and the second power transmission period according to the second power transmission pattern.
A wireless power transmission device comprising a transmission unit that transmits a first radio wave according to the first power transmission pattern during the first power transmission period and transmits a second radio wave according to the second power transmission pattern during the second power transmission period .
前記判定部は、前記第1伝搬路を示す値と前記複数の送電パターンを示す値とを乗じた第1値及び前記第2伝搬路を示す値と前記複数の送電パターンを示す値とを乗じた第2値に基づいて、前記第1情報が必要か否か及び前記第2情報が必要か否かを判定する、請求項2に記載の無線電力伝送装置。 The determination unit multiplies the first value obtained by multiplying the value indicating the first propagation path and the value indicating the plurality of transmission patterns, the value indicating the second propagation path, and the value indicating the plurality of transmission patterns. The wireless power transmission device according to claim 2, wherein it is determined whether or not the first information is necessary and whether or not the second information is necessary based on the second value. 前記判定部は、前記第1受電機及び前記第2受電機の配置情報と、前記送電パターン情報と、に基づいて、前記第1情報が必要か否か及び前記第2情報が必要か否かを判定する、請求項2に記載の無線電力伝送装置。 The determination unit determines whether or not the first information is necessary and whether or not the second information is necessary based on the arrangement information of the first receiving electric power and the second receiving electric power and the transmission pattern information. 2. The wireless power transmission device according to claim 2. 前記複数の送電パターンのそれぞれに基づく複数の電波を前記送電部から試行送電する制御を行う制御部と、
前記複数の電波のそれぞれを受信した前記第1受電機から送信される前記第1情報及び前記第3情報を受信し、前記複数の電波のそれぞれを受信した前記第2受電機から送信される前記第2情報及び前記第4情報を受信する通信部と、を備え、
前記計算部は、前記通信部で受信された前記第1情報及び前記第4情報に基づいて、前記第1送電パターン及び第2送電パターンを決定し、前記第1送電期間及び前記第2送電期間を計算する、請求項乃至のいずれか一項に記載の無線電力伝送装置。
A control unit that controls trial transmission of a plurality of radio waves based on each of the plurality of power transmission patterns from the power transmission unit.
The first information and the third information transmitted from the first receiver that has received each of the plurality of radio waves are received, and the second receiver that has received each of the plurality of radio waves transmits the first information and the third information. A communication unit that receives the second information and the fourth information is provided.
The calculation unit determines the first power transmission pattern and the second power transmission pattern based on the first information and the fourth information received by the communication unit, and determines the first power transmission period and the second power transmission period. The wireless power transmission device according to any one of claims 2 to 4 , wherein the wireless power transmission device is calculated.
前記計算部は、さらに前記第1電波の方向、前記第1電波の位相、前記第1電波の振幅、前記第2電波の方向、前記第2電波の位相、前記第2電波の振幅のうち、少なくとも一つを計算する、請求項1乃至のいずれか一項に記載の無線電力伝送装置。 The calculation unit further includes the direction of the first radio wave, the phase of the first radio wave, the amplitude of the first radio wave, the direction of the second radio wave, the phase of the second radio wave, and the amplitude of the second radio wave. The radio power transmission device according to any one of claims 1 to 5 , wherein at least one is calculated . 前記計算部は、前記第1受電機から要求される電力量と、前記第2受電機から要求される電力量を満たす無線電力が所定時間内に前記第1受電機及び前記第2受電機に送電されるように、前記第1送電パターン及び第2送電パターンを決定し、前記第1送電期間及び前記第2送電期間を計算する、請求項1乃至6のいずれか一項に記載の無線電力伝送装置。 In the calculation unit, the wireless power satisfying the electric energy required from the first electric power receiving electric power and the electric electric power amount required from the second electric power receiving electric power can be generated within a predetermined time by the first electric power receiving electric power machine and the second electric power receiving electric power generation. The radio according to any one of claims 1 to 6, wherein the first power transmission pattern and the second power transmission pattern are determined, and the first power transmission period and the second power transmission period are calculated so as to be transmitted to the power transmission. Power transmission device. 前記送電部は、前記計算部で計算された前記第1送電期間及び前記第2送電期間を複数の送電分割期間に分割して、前記送電分割期間に応じて前記第1送電パターンに基づく第1電波及び前記第2送電パターンに基づく第2電波を送電する、請求項1乃至7のいずれか一項に記載の無線電力伝送装置。 The power transmission unit divides the first power transmission period and the second power transmission period calculated by the power transmission unit into a plurality of power transmission division periods, and the first power transmission unit based on the first power transmission pattern according to the power transmission division period. The wireless power transmission device according to any one of claims 1 to 7, which transmits a radio wave and a second electric power transmission based on the second power transmission pattern. 前記第1受電機及び前記第2受電機の間で電波を送受信する複数のアンテナと、前記複数のアンテナに接続され前記電波に応じた高周波信号の位相を可変制御することにより前記複数の送電パターンを生成する可変位相器と、を有するフェーズドアレーアンテナを備える、請求項1乃至8のいずれか一項に記載の無線電力伝送装置。 A plurality of antennas for transmitting and receiving radio waves between the first receiving electric wave and the second receiving electric wave, and the plurality of transmission patterns connected to the plurality of antennas and variably controlling the phase of a high frequency signal according to the radio waves. The radio power transmission device according to any one of claims 1 to 8, further comprising a variable phase device and a phased array antenna. 前記第1電波及び前記第2電波は、無情報の無変調連続波であり、
前記第1電波及び前記第2電波の周波数は、前記第1受電機が前記第1情報及び前記第3情報を送信する電波の周波数、並びに前記第2受電機が前記第2情報及び前記第4情報を送信する電波の周波数とは異なる、請求項1乃至9のいずれか一項に記載の無線電力伝送装置。
The first radio wave and the second radio wave are unmodulated continuous waves with no information.
The frequencies of the first radio wave and the second radio wave are the frequencies of the radio waves to which the first receiving electric wave transmits the first information and the third information, and the second receiving electric wave has the second information and the fourth information. The wireless power transmission device according to any one of claims 1 to 9, which is different from the frequency of radio waves for transmitting information .
前記第1受電機前記無線電力伝送装置との間の第1伝搬路を推定し、前記第2受電機と前記無線電力伝送装置との間の第2伝搬路を推定する伝搬路推定部をさらに備え、
前記第1送電パターン及び前記第2送電パターンのうちの少なくとも一つは、前記第1伝搬路及び前記第2伝搬路に基づいて生成される、請求項1乃至10のいずれか一項に記載の無線電力伝送装置。
A propagation path estimation unit that estimates a first propagation path between the first receiver and the wireless power transmission device and estimates a second propagation path between the second receiver and the wireless power transmission device. Further prepare,
The first transmission pattern and at least one of the second transmission patterns are according to any one of claims 1 to 10, which are generated based on the first propagation path and the second propagation path . Wireless power transmission device.
前記第1受電機及び前記第2受電機の、位置及び方向の少なくとも一方を検出する受電機特定部をさらに備え、
前記第1送電パターン及び前記第2送電パターンのうち少なくとも一つは、前記第1受電機及び前記第2受電機の、位置及び方向の少なくとも一方に基づいて生成される、請求項1乃至10のいずれか一項に記載の無線電力伝送装置。
Further , a power receiving identification unit for detecting at least one of the position and the direction of the first power receiving machine and the second power receiving machine is provided.
Claims 1 to 10, wherein at least one of the first power transmission pattern and the second power transmission pattern is generated based on at least one of the position and direction of the first power receiving machine and the second power receiving machine. The wireless power transmission device according to any one of the following items.
前記計算部は、前記第1受電機から要求される電力量と前記第2受電機から要求される電力量とを満たす無線電力が所定時間内に前記第1受電機及び第2受電機に送電されるように、前記第1送電パターン及び第2送電パターンを決定し、前記第1送電期間及び前記第2送電期間を計算する、請求項1乃至12のいずれか一項記載の無線電力伝送装置。In the calculation unit, wireless power satisfying the electric energy required from the first electric power receiving electric power and the electric electric power amount required from the second electric power receiving electric power is transmitted to the first electric power receiving electric power and the second electric power receiving electric power within a predetermined time. The wireless power transmission device according to any one of claims 1 to 12, wherein the first power transmission pattern and the second power transmission pattern are determined, and the first power transmission period and the second power transmission period are calculated. .. 請求項1乃至13のいずれか一項に記載の無線電力伝送装置と、前記第1受電機と、前記第2受電機と、を備える、無線電力伝送システム。A wireless power transmission system comprising the wireless power transmission device according to any one of claims 1 to 13, the first receiving electric power, and the second receiving electric power. 送電機と、
前記送電機から送信された電波による無線電力を受電する第1受電機及び第2受電機と、を備える無線電力伝送システムであって、
前記送電機は、
複数の送電パターンのそれぞれに基づく複数の電波を試行送電する制御を行う制御部と、
前記複数の電波のそれぞれを受電した前記第1受電機から送信される、前記第1受電機によって前記複数の送電パターンに応じて受電された電力を示す第1情報及び前記第1受電機から要求される電力量を示す第2情報を受信し、
前記複数の電波のそれぞれを受信した前記第2受電機から送信される、前記第2受電機によって前記複数の送電パターンに応じて受電された電力を示す第3情報及び前記第2受電機から要求される電力量を示す第4情報を受信する第1通信部と、
前記第1乃至第4情報に基づいて、前記複数の送電パターンに含まれる第1送電パターン及び第2送電パターンを決定し、前記第1送電パターンによる第1送電期間及び前記第2送電パターンによる第2送電期間を計算する第1計算部と、
前記複数の電波を送電し、前記第1送電期間に前記第1送電パターンによる第1電波を送電し、前記第2送電期間に前記第2送電パターンにより第2電波を送電する送電部と、を有し、
前記第1受電機は、
前記送電部から送電された電波を受電して、直流電力を生成する第1受電部と、
前記第1受電部が前記複数の電波を受信したときに、前記第1情報を生成する第2計算部と、
前記第1情報及び前記第2情報を含む第1電波を送信する第2通信部と、を有し、
前記第2受電機は、
前記送電部から送電された電波を受電して、直流電力を生成する第2受電部と、
前記第2受電部が前記複数の電波を受信したときに、前記第3情報を生成する第3計算部と、
前記第3情報及び前記第4情報を含む第2電波を送信する第3通信部と、を有する、無線電力伝送システム。
With a transmitter
A wireless power transmission system including a first receiving electric power and a second receiving electric power for receiving wireless power by radio waves transmitted from the transmitter.
The transmitter is
A control unit that controls the trial transmission of multiple radio waves based on each of multiple transmission patterns,
First information indicating the power received by the first power receiving machine according to the plurality of power transmission patterns transmitted from the first power receiving machine that has received each of the plurality of radio waves, and a request from the first power receiving machine. Receives second information indicating the amount of power to be generated,
A third piece of information indicating the power received by the second power receiving machine according to the plurality of power transmission patterns transmitted from the second power receiving machine that has received each of the plurality of radio waves, and a request from the second power receiving machine. The first communication unit that receives the fourth information indicating the amount of power to be generated , and
Based on the first to fourth information, the first power transmission pattern and the second power transmission pattern included in the plurality of power transmission patterns are determined, and the first power transmission period according to the first power transmission pattern and the second power transmission pattern according to the second power transmission pattern. 2 The first calculation unit that calculates the transmission period and
A power transmission unit that transmits a plurality of radio waves, transmits a first radio wave according to the first power transmission pattern during the first power transmission period, and transmits a second radio wave according to the second power transmission pattern during the second power transmission period. Have and
The first receiving electric machine is
The first power receiving unit that receives the radio waves transmitted from the power transmission unit and generates DC power,
A second calculation unit that generates the first information when the first power receiving unit receives the plurality of radio waves .
It has a second communication unit that transmits the first information and the first radio wave including the second information .
The second receiving electric machine is
A second power receiving unit that receives radio waves transmitted from the power transmission unit and generates DC power, and
A third calculation unit that generates the third information when the second power receiving unit receives the plurality of radio waves.
A wireless power transmission system including a third communication unit that transmits the third information and a second radio wave including the fourth information .
前記第2通信部及び前記第3通信部の少なくとも一方は、前記送電機が前記複数の電波を送電する前にビーコン信号を送信し、
前記送電機は、
前記第1通信部が受信した前記ビーコン信号に基づいて、前記ビーコン信号を送信した受電機と前記送電機の間の伝搬路情報を推定する伝搬路推定部をさらに有し、
前記第1送電パターン及び前記第2送電パターンのうちの少なくとも一つは、前記伝搬路情報に基づいて生成される、請求項15に記載の無線電力伝送システム。
At least one of the second communication unit and the third communication unit transmits a beacon signal before the power transmission transmits the plurality of radio waves .
The transmitter is
It further has a propagation path estimation unit that estimates propagation path information between the receiving electric machine that transmitted the beacon signal and the transmitter based on the beacon signal received by the first communication unit.
The wireless power transmission system according to claim 15 , wherein at least one of the first power transmission pattern and the second power transmission pattern is generated based on the propagation path information.
送電機から送電される電波を受電して、直流電力を生成する受電部と、
前記受電部が、前記送電機から試行送電され複数の送電パターンのそれぞれに基づく複数の電波受電たときに、前記複数の送電パターンに応じて受電された電力を示す第1情報を生成する受電電力生成部と、
前記第1情報及び前記受電部が要求する電力量を示す第2情報を送信する通信部と、を備え、
前記受電部は、前記第1情報及び前記第2情報を受信した前記送電機から送信された、前記複数の送電パターンに含まれる第1送電パターン及び第2送電パターンがそれぞれ固有の送電期間で切り替わる電波に基づいて前記直流電力を生成する、受電機
A power receiving unit that receives radio waves transmitted from a power transmission and generates DC power,
When the power receiving unit receives a plurality of radio waves based on each of the plurality of power transmission patterns of trial power transmission from the power transmission device , the first information indicating the power received according to the plurality of power transmission patterns is generated. Power receiving power generation unit and
A communication unit for transmitting the first information and the second information indicating the amount of electric power required by the power receiving unit is provided.
The power receiving unit switches between the first power transmission pattern and the second power transmission pattern included in the plurality of power transmission patterns transmitted from the power transmission device that has received the first information and the second information in a unique power transmission period. A power receiving machine that generates the DC power based on radio waves.
第1受電機及び第2受電機に対して電波による無線電力を複数の送電パターンにより伝送する方法であって、
前記第1受電機によって前記複数の送電パターンに応じて受電される電力を示す第1情報、前記第2受電機によって前記複数の送電パターンに応じて受電される電力を示す第2情報、前記第1受電機から要求される電力量を示す第3情報、及び前記第2受電機から要求される電力量を示す第4情報に基づいて、前記複数の送電パターンに含まれる第1送電パターン及び第2送電パターンを決定し、前記第1送電パターンによる第1送電期間及び前記第2送電パターンによる第2送電期間を計算し、
前記第1送電期間に前記第1送電パターンにより第1電波を送電し、前記第2送電期間に前記第2送電パターンにより第2電波を送電し、
前記複数の送電パターンのそれぞれに基づく複数の電波を送電部から試行送電する制御を行い、
前記複数の電波のそれぞれを受信した前記第1受電機から送信される前記第1情報及び前記第3情報を受信し、前記複数の電波のそれぞれを受信した前記第2受電機から送信される前記第2情報及び前記第4情報を受信し、
前記受信された前記第1情報及び前記第4情報に基づいて、前記第1送電パターン及び第2送電パターンを決定し、前記第1送電期間及び前記第2送電期間を計算する、無線電力伝送方法。
It is a method of transmitting wireless power by radio waves to the first receiving electric power and the second receiving electric power by a plurality of transmission patterns .
The first information indicating the electric power received by the first electric power transmission pattern according to the plurality of power transmission patterns, the second information indicating the electric energy received by the second electric power transmission pattern according to the plurality of power transmission patterns, the first information. The first power transmission pattern and the first power transmission pattern included in the plurality of power transmission patterns are based on the third information indicating the amount of power required from the first power receiving machine and the fourth information indicating the amount of power required from the second power receiving machine. 2 The power transmission pattern is determined, and the first power transmission period according to the first power transmission pattern and the second power transmission period according to the second power transmission pattern are calculated.
The first radio wave is transmitted by the first power transmission pattern during the first power transmission period, and the second radio wave is transmitted by the second power transmission pattern during the second power transmission period .
Control is performed to test-transmit a plurality of radio waves based on each of the plurality of power transmission patterns from the power transmission unit.
The first information and the third information transmitted from the first receiver that has received each of the plurality of radio waves are received, and the second receiver that has received each of the plurality of radio waves transmits the first information and the third information. Upon receiving the second information and the fourth information ,
A wireless power transmission method that determines the first power transmission pattern and the second power transmission pattern based on the received first information and the fourth information, and calculates the first power transmission period and the second power transmission period. ..
第1受電機及び第2受電機に対して電波による無線電力を、複数の送電パターンにより伝送する方法であって、
前記第1受電機と無線電力伝送装置の間の第1伝搬路を示す第1伝搬路情報及び前記第2受電機と前記無線電力伝送装置の間の第2伝搬路を示す第2伝搬路情報、並びに前記第1受電機及び前記第2受電機の配置情報、の少なくとも一方と、前記複数の送電パターンを示す送電パターン情報と、に基づいて、前記第1受電機によって前記複数の送電パターンに応じて受電される電力を示す第1情報が必要か否かを判定し、前記第2受電機によって前記複数の送電パターンに応じて受電される電力を示す第2情報が必要か否かを判定し、
前記第1情報が必要と判定された場合に、前記第1受電機に対して前記第1情報及び前記第1受電機から要求される電力量を示す第3情報の送信を要求し、
前記第2情報が必要と判定された場合に、前記第2受電機に対して前記第2情報及び前記第2受電機から要求される電力量を示す第4情報の送信を要求し、
前記第1情報及び前記第3情報、並びに前記第2情報及び前記第4情報の少なくとも一方に基づいて、前記複数の送電パターンに含まれる第1送電パターン及び第2送電パターンを決定し、前記第1送電パターンによる第1送電期間及び前記第2送電パターンによる第2送電期間を計算し、
前記第1送電期間に前記第1送電パターンにより第1電波を送電し、前記第2送電期間に前記第2送電パターンにより第2電波を送電する、無線電力伝送方法。
It is a method of transmitting wireless power by radio waves to the first receiving electric power and the second receiving electric power by a plurality of transmission patterns .
First propagation path information indicating a first propagation path between the first receiver and the wireless power transmission device, and second propagation path information indicating a second propagation path between the second receiver and the wireless power transmission device. , And, based on at least one of the arrangement information of the first receiving electric power and the second receiving electric power, and the transmission pattern information indicating the plurality of power transmission patterns, the first receiving electric power makes the plurality of power transmission patterns. It is determined whether or not the first information indicating the electric power to be received is necessary, and whether or not the second information indicating the electric power to be received by the second electric power receiving pattern is necessary according to the plurality of power transmission patterns. death,
When it is determined that the first information is necessary, the first receiving electric power is requested to transmit the first information and the third information indicating the amount of electric power required from the first receiving electric power.
When it is determined that the second information is necessary, the second receiver is requested to transmit the second information and the fourth information indicating the amount of power required by the second receiver .
Based on the first information and the third information, and at least one of the second information and the fourth information, the first power transmission pattern and the second power transmission pattern included in the plurality of power transmission patterns are determined, and the first power transmission pattern is determined. Calculate the first power transmission period according to one power transmission pattern and the second power transmission period according to the second power transmission pattern.
A wireless power transmission method in which a first radio wave is transmitted by the first power transmission pattern during the first power transmission period, and a second radio wave is transmitted by the second power transmission pattern during the second power transmission period .
送電機から送電される電波を受電部にて受電して、直流電力を生成し、
前記受電部が、前記送電機から試行送電され複数の送電パターンのそれぞれに基づく複数の電波受電たときに、前記複数の送電パターンに応じて受電された電力を示す第1情報を生成し、
前記第1情報及び前記受電部が要求する電力量を示す第2情報を送信し、
前記受電部は、前記第1情報及び前記第2情報を受信した前記送電機から送信された、前記複数の送電パターンに含まれる第1送電パターン及び第2送電パターンがそれぞれ固有の送電期間で切り替わる電波に基づいて前記直流電力を生成する、受電方法。
The radio waves transmitted from the power transmission are received by the power receiving section to generate DC power.
When the power receiving unit receives a plurality of radio waves based on each of the plurality of power transmission patterns of trial power transmission from the power transmission device , the first information indicating the power received according to the plurality of power transmission patterns is generated. death,
The first information and the second information indicating the amount of electric power required by the power receiving unit are transmitted.
The power receiving unit switches between the first power transmission pattern and the second power transmission pattern included in the plurality of power transmission patterns transmitted from the power transmission device that has received the first information and the second information in a unique power transmission period. A power receiving method that generates the DC power based on radio waves.
JP2019000720A 2018-02-06 2019-01-07 Wireless power transmission device, wireless power transmission system, power receiving, wireless power transmission method, and power receiving method Active JP7003070B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/268,031 US20190245388A1 (en) 2018-02-06 2019-02-05 Wireless power transmission device and wireless power transmission system
US17/163,943 US12088116B2 (en) 2018-02-06 2021-02-01 Wireless power transmission device and wireless power transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018019372 2018-02-06
JP2018019372 2018-02-06

Publications (2)

Publication Number Publication Date
JP2019140900A JP2019140900A (en) 2019-08-22
JP7003070B2 true JP7003070B2 (en) 2022-01-20

Family

ID=67694661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019000720A Active JP7003070B2 (en) 2018-02-06 2019-01-07 Wireless power transmission device, wireless power transmission system, power receiving, wireless power transmission method, and power receiving method

Country Status (1)

Country Link
JP (1) JP7003070B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7228490B2 (en) * 2019-08-28 2023-02-24 株式会社東芝 Electronic device and method
JP7321849B2 (en) * 2019-09-06 2023-08-07 株式会社東芝 Electronic device and method
CN114243937B (en) * 2021-11-23 2024-10-25 南方电网数字电网科技(广东)有限公司 Path optimization method and system for high-voltage power-taking multi-node wireless power transmission

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205411A (en) 2011-03-25 2012-10-22 Oki Electric Ind Co Ltd Wireless power transmission system, power transmitting apparatus, power receiving apparatus, and power feeding control program
JP2016512677A (en) 2013-02-04 2016-04-28 オシア,インク. System and method for optimal delivery of pulsed radio power

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205411A (en) 2011-03-25 2012-10-22 Oki Electric Ind Co Ltd Wireless power transmission system, power transmitting apparatus, power receiving apparatus, and power feeding control program
JP2016512677A (en) 2013-02-04 2016-04-28 オシア,インク. System and method for optimal delivery of pulsed radio power

Also Published As

Publication number Publication date
JP2019140900A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
US11522390B2 (en) Wireless power transmission for near and far field applications
JP7003070B2 (en) Wireless power transmission device, wireless power transmission system, power receiving, wireless power transmission method, and power receiving method
US10284020B2 (en) Energy delivery modulation in wireless power delivery environments
JP5350490B2 (en) Beam forming method, radio communication system, and computer program
JP7054583B2 (en) Wireless power transmission device, wireless power transmission system and wireless power transmission method
CN114144977B (en) Beam forming method, device, wireless access network equipment and readable storage medium
KR101872621B1 (en) Apparatus and method for managing available resource of air vehicle equipped with mfr
US20110019573A1 (en) Low complexity user selection for sdma
KR20170112899A (en) Wireless power transmitter and method for controlling thereof
US11743841B2 (en) Method and system for wireless power delivery
US20210159735A1 (en) Wireless power transmission device and wireless power transmission system
EP3921952A1 (en) Far-field wireless power transfer using localized field with multi-tone signals
Farajzadeh et al. Mobility-assisted over-the-air computation for backscatter sensor networks
Kao et al. AI-aided 3-D beamforming for millimeter wave communications
KR102426981B1 (en) Transmitting and receiving apparatus and method of wireless power transmission system to improve wireless power transmission efficiency
US20140086190A1 (en) Mobile station device, communication method, and computer program
US11362714B2 (en) Method and apparatus for performing beamforming in wireless communication system
EP3726739B1 (en) Memory-assisted radio frequency beam training for mimo channels
KR102762582B1 (en) Method and system for wireless power transfer
KR102692551B1 (en) Method for determining optimal phases of antenna array in transmission antenna and a beam focusing array system using the same
JP7602180B2 (en) Position estimation device, position estimation method, and position estimation program
US20240213810A1 (en) Method and apparatus for providing high power in a wireless power system
CN119012128A (en) Distance indication method, distance indication device and communication equipment
KR20230062577A (en) Methods and systems for wireless power transfer
Mazzola Radio Resource Management for Joint Communication and Sensing (JCAS) Services in 6G Networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211228

R151 Written notification of patent or utility model registration

Ref document number: 7003070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151