JP7002501B2 - Unmanned aerial vehicle status check device and status check method - Google Patents
Unmanned aerial vehicle status check device and status check method Download PDFInfo
- Publication number
- JP7002501B2 JP7002501B2 JP2019138550A JP2019138550A JP7002501B2 JP 7002501 B2 JP7002501 B2 JP 7002501B2 JP 2019138550 A JP2019138550 A JP 2019138550A JP 2019138550 A JP2019138550 A JP 2019138550A JP 7002501 B2 JP7002501 B2 JP 7002501B2
- Authority
- JP
- Japan
- Prior art keywords
- unmanned aerial
- aerial vehicle
- state
- data
- holding portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 19
- 238000004891 communication Methods 0.000 claims description 48
- 238000005259 measurement Methods 0.000 claims description 46
- 238000012790 confirmation Methods 0.000 claims description 39
- 238000012545 processing Methods 0.000 claims description 15
- 238000012805 post-processing Methods 0.000 claims description 7
- 238000012986 modification Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000008439 repair process Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Landscapes
- Arrangements For Transmission Of Measured Signals (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Description
本発明は、無人飛行機の状態を確認するための状態確認装置および状態確認方法に関する。 The present invention relates to a state confirmation device and a state confirmation method for confirming the state of an unmanned aerial vehicle.
荷物を無人飛行機で目的地まで搬送することが提案されている(例えば、特許文献1)。このような無人飛行機は、荷物を把持した状態で、GPS(global positioning system)を利用して、予め入力された位置情報が示す目的地へ飛行する。次いで、無人飛行機は、目的地において荷物を解放して置く。 It has been proposed to transport luggage to a destination by unmanned aerial vehicle (for example, Patent Document 1). Such an unmanned aerial vehicle flies to the destination indicated by the position information input in advance by using GPS (global positioning system) while holding the luggage. The unmanned aerial vehicle then releases and leaves the luggage at the destination.
このように無人飛行機による荷物搬送の開始前に、無人飛行機の状態を検査している。この検査で、無人飛行機の状態が健全であると確認されたら、無人飛行機が離陸して荷物搬送を行う。従来において、無人飛行機の検査は、人が行っている。 In this way, the condition of the unmanned aerial vehicle is inspected before the start of cargo transportation by the unmanned aerial vehicle. If this inspection confirms that the unmanned aerial vehicle is in good condition, the unmanned aerial vehicle will take off and carry the cargo. Traditionally, unmanned aerial vehicles are inspected by humans.
しかし、無人飛行機の検査を人が行う場合には、無人飛行機が置かれている場所(例えば無人飛行機が離陸する場所)に点検者がいる必要がある。 However, when a person inspects an unmanned aerial vehicle, it is necessary to have an inspector at the place where the unmanned aerial vehicle is located (for example, the place where the unmanned aerial vehicle takes off).
そこで、本発明の目的は、無人飛行機が置かれている場所に点検者がいなくても無人飛行機の状態を確認できるようにすることにある。 Therefore, an object of the present invention is to make it possible to check the state of the unmanned aerial vehicle even if there is no inspector at the place where the unmanned aerial vehicle is placed.
本発明による状態確認装置は、無人飛行機の状態を該無人飛行機から離れた場所で確認するための装置であって、
無人飛行機の状態を計測して、当該状態を表す状態データを生成する計測装置と、
前記状態データを送信する第1通信装置と、
送信された前記状態データを、前記無人飛行機から離れた場所で受信する第2通信装置と、
受信された前記状態データ、又は、前記状態データを処理した処理後データを表示する表示装置と、を備える。
The state confirmation device according to the present invention is a device for confirming the state of an unmanned aerial vehicle at a place away from the unmanned aerial vehicle.
A measuring device that measures the state of an unmanned aerial vehicle and generates state data that represents the state,
The first communication device that transmits the status data and
A second communication device that receives the transmitted state data at a location away from the unmanned aerial vehicle, and
A display device for displaying the received state data or the processed data obtained by processing the state data is provided.
本発明による状態確認方法は、無人飛行機の状態を該無人飛行機から離れた場所で確認するための方法であって、
(A)計測装置により、無人飛行機の状態を計測して、当該状態を表す状態データを生成し、
(B)前記状態データを送信し、
(C)送信された前記状態データを、前記無人飛行機から離れた場所で受信し、
(D)受信された前記状態データ、又は、前記状態データを処理した処理後データを表示装置の画面に表示する。
The state confirmation method according to the present invention is a method for confirming the state of an unmanned aerial vehicle at a place away from the unmanned aerial vehicle.
(A) The state of the unmanned aerial vehicle is measured by the measuring device, and state data representing the state is generated.
(B) The state data is transmitted, and the state data is transmitted.
(C) Receive the transmitted status data at a location away from the unmanned aerial vehicle,
(D) The received state data or the processed data obtained by processing the state data is displayed on the screen of the display device.
本発明によると、計測装置が、無人飛行機の状態を計測して当該状態を表す状態データを生成し、状態データが送信される。送信された状態データは、無人飛行機から離れた場所で受信され、状態データ、又は、状態データ処理した処理後データが、表示装置により表示される。 According to the present invention, the measuring device measures the state of the unmanned aerial vehicle, generates state data representing the state, and transmits the state data. The transmitted state data is received at a place away from the unmanned aerial vehicle, and the state data or the processed data processed by the state data is displayed by the display device.
したがって、人は、無人飛行機から離れた場所で、表示された状態データ又は処理後データを見ることにより、無人飛行機の状態を確認することができる。よって、無人飛行機が置かれている場所に点検者がいなくても無人飛行機の状態を確認できる。 Therefore, a person can confirm the state of the unmanned aerial vehicle by looking at the displayed state data or the processed data at a place away from the unmanned aerial vehicle. Therefore, the state of the unmanned aerial vehicle can be confirmed even if there is no inspector at the place where the unmanned aerial vehicle is placed.
本発明の実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。 An embodiment of the present invention will be described with reference to the drawings. In addition, the same reference numerals are given to the common parts in each figure, and duplicate description is omitted.
(状態確認装置の構成)
図1は、本発明の実施形態による状態確認装置10を示すブロック図である。状態確認装置10は、無人飛行機1の状態を確認するための装置である。図2は、無人飛行機1の状態を計測するための計測場所に置かれた無人飛行機1を示す。状態確認装置10は、計測装置3、第1通信装置5、第2通信装置7、および表示装置9を備える。
(Configuration of status confirmation device)
FIG. 1 is a block diagram showing a
無人飛行機1は、自律飛行により飛行する小型の無人ヘリコプタであってよい。無人飛行機1は、荷物4を把持する適宜の把持機構6を備える。無人飛行機1は、把持機構6で荷物を把持した状態で、GPSを利用して、予め入力された位置情報が示す目的地へ飛行し、次いで、目的地において荷物を解放して置く。このように、無人飛行機1は、荷物4を飛行により運搬する。無人飛行機1は、一例では、縦と横の各々の寸法が2メートル以下であり高さが1m以下であってよいが、このような寸法に限定されない。また、無人飛行機1は、飛行のための推力を発生する複数のプロペラ1aを有する。
The unmanned
計測装置3は、図2のように、計測場所において所定の載置面2aに置かれている無人飛行機1の状態を計測して、当該状態を表す状態データを生成する。計測場所は、無人飛行機1が離陸する離陸場所、無人飛行機1が着陸する着陸場所、又は、無人飛行機1が格納されている格納場所であってよい。
As shown in FIG. 2, the
計測場所が離陸場所である場合、無人飛行機1は、荷物運搬のための飛行の開始前において、離陸場所で待機している。この時、状態確認装置10を用いた状態確認により、無人飛行機1の状態を確認する。その結果、無人飛行機1の状態が健全であると判断されたら、無人飛行機1は離陸して飛行による荷物4の運搬を開始する。
When the measurement place is the takeoff place, the unmanned
本実施形態では、計測装置3は、無人飛行機1の状態として、次の(a)~(e)の少なくともいずれか(例えば,任意の2つ以上の組合せ、又は全て)を計測することにより、当該状態を表す状態データを生成する。
(a)無人飛行機1の外観
(b)無人飛行機1の温度
(c)動作中の無人飛行機1が発生する音
(d)動作中の無人飛行機1が発生する振動
(e)無人飛行機1の蓄電装置の残量
ここで、「動作中の」とは、プロペラ1aが回転していることを意味する。
In the present embodiment, the
(A) Appearance of unmanned aerial vehicle 1 (b) Temperature of unmanned aerial vehicle 1 (c) Sound generated by unmanned
上記(a)~(e)の少なくともいずれかを計測するために、計測装置3は、外観計測装置3a、温度計測装置3b、騒音センサ3c、振動センサ3d、及び残量センサ3eの少なくともいずれか(例えば,任意の2つ以上の組合せ、又は全て)を備える。
In order to measure at least one of the above (a) to (e), the
外観計測装置3aは、無人飛行機1の外部において、計測場所に設けられる。外観計測装置3aは、無人飛行機1の外観を撮像することにより無人飛行機1の画像データを生成する。この画像データは、無人飛行機1の外観を表す状態データである。一例では、外観計測装置3aは、カメラ(可視光カメラ)であってよい。
The appearance measuring
温度計測装置3bは、無人飛行機1の外部において、計測場所に設けられた赤外線カメラであってよい。赤外線カメラ3bは、無人飛行機1を撮像することにより無人飛行機1の赤外線画像データを生成する。この赤外線画像データは、無人飛行機1の温度を表す状態データである。
The
騒音センサ3cは、無人飛行機1の外部において、計測場所に設けられる。騒音センサ3cは、動作中の無人飛行機1が発生する音を計測することにより、当該音の大きさを表す状態データ(以下で音データともいう)を生成する。例えば、無人飛行機1のプロペラ1aが、当該無人飛行機1が置かれている載置面2aから離陸しない範囲の回転速度(以下で単に非離陸回転速度ともいう)で回転している状態で、騒音センサ3cは、無人飛行機1が発生する音を計測することにより、上記音データを生成する。
The
騒音センサ3cは、所定の計測時間にわたって、動作中の無人飛行機1が発生する音を計測することにより、当該計測時間における各時点の音の大きさ(大きさ)を表す時間データを上記音データとして生成してよい。あるいは、騒音センサ3cは、当該時間データを周波数データに変換してもよい。すなわち、騒音センサ3cは、各周波数における騒音の大きさを表す当該周波数データを状態データ(音データ)として生成してもよい。
The
振動センサ3dは、動作中の無人飛行機1が発生する音を計測することにより、当該振動の大きさを表す振動データ(すなわち、状態データ)を生成する。振動センサ3dは、無人飛行機1の外部において、無人飛行機1が置かれている載置面2aに設けられ、又は、当該載置面2aを有する載置面形成体2に取り付けられている。無人飛行機1のプロペラ1aが、載置面2aから離陸しない範囲の非離陸回転速度で回転している状態で、振動センサ3dは、動作中(すなわち当該状態)の無人飛行機1が発生する振動を計測することにより、振動データを生成する。
The
振動センサ3dは、所定の計測時間にわたって、動作中の無人飛行機1が発生する振動を計測することにより、当該計測時間における各時点の振動の大きさを表す時間データを振動データ(状態データ)として生成してよい。あるいは、振動センサ3dは、当該時間データを生成し、更に当該時間データを周波数データに変換してもよい。すなわち、振動センサ3dは、各周波数における振動の大きさを表す周波数データを状態データとして生成してもよい。
The
残量センサ3eは、無人飛行機1の蓄電装置の残量を計測することにより、当該残量を表す残量データ(状態データ)を生成する。すなわち、蓄電装置は、無人飛行機1のプロペラ1aを回転駆動することに消費される電気エネルギーを蓄えており、残量センサ3eは、蓄電装置に蓄えられている電気エネルギーを上記残量として計測する。残量センサ3eは、無人飛行機1に設けられる。
The remaining
第1通信装置5は、計測装置3が生成した各状態データを、例えば無線通信を利用して、第2通信装置7へ送信する。
The
第2通信装置7は、第1通信装置5により送信された各状態データを、計測場所から離れている場所で受信する。
表示装置9は、第2通信装置7により受信された各状態データを表示する。
The
The
本実施形態では、第2通信装置7と表示装置9は、図1のように上記計測場所から離れた状態確認場所に設置されていてよい。または、第2通信装置7と表示装置9は、人が携帯可能な1つの携帯端末に設けられていてもよい。
In the present embodiment, the
(状態確認方法)
図3は、本発明の実施形態による状態確認方法を示すフローチャートである。この状態確認方法は、上述した状態確認装置10を用いて行われる。この状態確認方法は、計測場所に置かれている無人飛行機1に対して行われる。状態確認方法は、ステップS1~S7を有する。
(Status check method)
FIG. 3 is a flowchart showing a state confirmation method according to the embodiment of the present invention. This state confirmation method is performed using the above-mentioned
一例では、計測場所は離陸場所であり、無人飛行機1は、荷物運搬のための飛行の前に、状態確認方法により、その状態が確認される。この場合、上述の載置面2aは、無人飛行機1が離陸を行う離陸面であってよい。
In one example, the measurement location is a takeoff location, and the state of the unmanned
また、一例では、次のように状態確認方法が開始される。計測場所において、作業者の手で、無人飛行機1の把持機構6に荷物4を搭載する作業が完了したら、作業者は、計測開始操作を適宜の操作装置に行うことにより、計測開始指令が計測装置3(例えば図示しない入力部)に入力される。これにより、計測装置3(例えば各計測機器3a~3e)は、ステップS1を行う。
Further, in one example, the status confirmation method is started as follows. When the work of mounting the
別の例では、計測場所において、無人飛行機1又はロボットにより、自動的に、当該無人飛行機1の把持機構6による荷物4の把持を完了させたら、当該無人飛行機1又はロボットは、計測開始指令を計測装置3に入力してもよい。これにより、計測装置3は、ステップS1を行う。
In another example, when the unmanned
ステップS1において、計測装置3により、無人飛行機1の状態を計測し、計測した状態を表す状態データを生成する。ステップS1において計測される状態は、無人飛行機1の外観、無人飛行機1の温度、動作中の(すなわち、プロペラ1aが回転している)無人飛行機1が発生する音、動作中の無人飛行機1の振動、及び無人飛行機1の蓄電装置の残量の少なくともいずれか(例えば複数又は全て)である。ステップS1において、これらの状態のうち複数又は全てが計測される場合には、これらの状態に対応するそれぞれの(すなわち複数種類の)状態データが生成される。
In step S1, the measuring
ステップS1において、計測装置3が、無人飛行機1が発生する音と振動の一方または両方を計測する場合には、無人飛行機1のプロペラ1aが非離陸回転速度で回転している状態で、計測装置3は、当該音と振動の一方または両方を計測し、当該音と振動の一方または両方を表す状態データを生成してよい。
In step S1, when the measuring
この場合、例えば、上述のように、作業者が、計測開始操作を適宜の操作装置に行うことにより、計測開始指令が計測装置3に入力されるとともに、計測場所の無人飛行機1に非離陸回転速度でプロペラ1aを回転させる旨の指令信号が無線通信により無人飛行機1に入力されてよい。無人飛行機1は、当該指令信号を受信すると、非離陸回転速度で、所定の時間(例えば上述の所定の計測時間)、プロペラ1aを回転させる。
In this case, for example, as described above, when the operator performs the measurement start operation to an appropriate operation device, the measurement start command is input to the
あるいは、上述のように、無人飛行機1が計測開始指令を計測装置3に入力するときに、無人飛行機1は非離陸回転速度でプロペラ1aを回転させる。または、上述のように、ロボットが計測開始指令を計測装置3に入力するときに、ロボットは、上記指令信号を無線通信により無人飛行機1に入力してもよい。
Alternatively, as described above, when the unmanned
なお、ステップS1で計測される各状態のうち、騒音と振動以外の状態(例えば、上述の温度、外観、及び残量)は、ステップS1における特定の時点での値であってよい。 Of the states measured in step S1, the states other than noise and vibration (for example, the above-mentioned temperature, appearance, and remaining amount) may be values at a specific time point in step S1.
ステップS2において、ステップS1で生成された各状態データが、第1通信装置5により第2通信装置7へ無線で送信される。
In step S2, each state data generated in step S1 is wirelessly transmitted to the
ステップS3において、ステップS2で送信された各状態データが第2通信装置7により受信される。
In step S3, each state data transmitted in step S2 is received by the
ステップS4において、ステップS3で受信された状態データが表示装置9により表示される。
In step S4, the state data received in step S3 is displayed by the
ステップS5において、計測場所から離れた場所(例えば建物内の所定の部屋のような状態確認場所)において、人は、ステップS4で表示装置9の画面に表示された各状態データを見て、各状態データが表わす状態が健全であるかを判断する。ステップS5において、1つ以上の状態データが表わす状態が健全でないと判断された場合には、ステップS6へ進み、全ての状態データが表わす状態が健全であると判断された場合には、ステップS7へ進む。
In step S5, at a place away from the measurement place (for example, a state confirmation place such as a predetermined room in a building), a person sees each state data displayed on the screen of the
ステップS6において、ステップS1で状態が計測された無人飛行機1に対して必要な対応がとられる。例えば、当該無人飛行機1が、自律飛行により離陸するのを待機している場合には、人は、適宜の操作部を操作することにより、当該無人飛行機1に対して、離陸不許可信号を無線通信で送信する。当該無人飛行機1は、離陸不許可信号を受信することにより離陸を開始せず、必要な対応(例えば修理)を受ける。
In step S6, necessary measures are taken for the unmanned
ステップS7において、ステップS1で状態が計測された無人飛行機1に対して修理などの必要な対応はとられない。例えば、当該無人飛行機1が、自律飛行により離陸するのを待機している場合には、人は、適宜の操作部を操作することにより、当該無人飛行機1に対して、離陸許可信号を無線通信で送信する。当該無人飛行機1は、離陸許可信号を受信することにより、離陸を開始して(例えば上述の載置面2aから離陸して)、把持している荷物4を飛行により目的地へ運搬する。
In step S7, necessary measures such as repair cannot be taken for the unmanned
なお、本発明によると、状態確認方法は、他の契機により開始されてもよい。例えば、計測場所(例えば保管場所)における無人飛行機1の存在が適宜のセンサにより検出されると、当該センサから上述のような計測開始指令が計測装置3に入力されてよい。この場合、当該センサから、非離陸回転速度でプロペラ1aを回転させる旨の上述のような指令信号が無線通信により無人飛行機1に入力されてよい。また、本発明によると、無人飛行機1が荷物4を把持していない状態で、上述の計測開始指令が計測装置3に入力されるようにしてもよい。
According to the present invention, the state confirmation method may be started by another trigger. For example, when the presence of the unmanned
また、図2のように複数の振動センサ3dが設けられている場合には、複数の振動センサ3dが生成した複数の振動データ(時間データ又は周波数データ)が、第1通信装置5により第2通信装置7へ送信されて、これら振動データが表示装置9にそれぞれ表示されてよい。あるいは、計測装置3は、上述の計測時間における各時点毎に複数の振動センサ3dが当該時点で計測した複数の振動の大きさを合計し、当該各時点毎に当該合計値を表した状態データ(以下で合計値を表す時間データという)を生成し、当該状態データが、第1通信装置5により第2通信装置7へ送信されて表示装置9に表示されてもよい。あるいは、計測装置3は、合計値を表す時間データを各周波数における振動の大きさを表す周波数データに変換し、当該周波数データが、第1通信装置5により第2通信装置7へ送信されて表示装置9に表示されてもよい。
Further, when a plurality of
(実施形態による効果)
上述した実施形態の状態確認装置10と状態確認方法によると、計測装置3が、無人飛行機1の状態を計測して当該状態を表す状態データを生成し、第1通信装置5が、状態データを送信する。送信された状態データは、無人飛行機1から離れた場所で、第2通信装置7に受信され、状態データが表示装置9により表示される。
(Effect of the embodiment)
According to the
したがって、人は、無人飛行機1から離れた場所で、表示された状態データを見ることにより、無人飛行機1の状態を確認することができる。よって、無人飛行機1が置かれている場所に点検者がいなくても無人飛行機1の状態を確認できる。
Therefore, a person can confirm the state of the unmanned
また、上述のように、無人飛行機1のプロペラ1aを、当該無人飛行機1が離陸しない範囲の非離陸回転速度で回転させた状態で、計測装置3は、無人飛行機1が発生する音と振動の一方または両方を計測する。したがって、無人飛行機1を離陸させることなく、その音と振動の一方または両方の健全性を確認することができる。
Further, as described above, in a state where the
本発明は上述した実施の形態に限定されず、本発明の技術的思想の範囲内で種々変更を加え得ることは勿論である。例えば、以下の変更例1~4のいずれかを単独で採用してもよいし、変更例1~4の2つ以上を任意に組み合わせて採用してもよい。この場合、以下で述べない点は、上述と同じである。 The present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made within the scope of the technical idea of the present invention. For example, any one of the following modification examples 1 to 4 may be adopted alone, or two or more of the modification examples 1 to 4 may be arbitrarily combined and adopted. In this case, the points not described below are the same as described above.
(変更例1)
計測装置3は、動作中の無人飛行機1が発生する上向き推力を計測する推力センサ3fを含んでいてもよい。この上向き推力は、無人飛行機1のプロペラ1aが回転駆動されることにより発生する。図4は、この変更例1における計測場所の無人飛行機1と推力センサ3fなどの一例を示す。
(Change example 1)
The measuring
図4のように、無人飛行機1の上向き推力を計測するために、計測装置3は、無人飛行機1の上向き推力に抗して無人飛行機1を保持する保持部11を有する。保持部11は、例えば、無人飛行機1の一部(図4では脚部1c)を係止する係止位置(図4の実線で示す保持部11の位置)と、当該係止を解除する解除位置(図4の二点鎖線で示す保持部11の位置)との間で移動可能な部材であってよい。図4の例では、保持部11は、水平軸Cまわりに係止位置と解除位置との間で回転可能である。また、図4の例では、係止位置にある保持部11は、この図の紙面と垂直な方向に延びる無人飛行機1の脚部1cを上側から係止している。
As shown in FIG. 4, in order to measure the upward thrust of the unmanned
保持部11は、例えば、載置面2aに固定された駆動装置(図示せず)により係止位置と解除位置との間で駆動されてよい。保持部11が係止位置にある時には、上記駆動装置は、無人飛行機1の上向き推力に抗して保持部11を係止位置に保つように駆動力を発生してよい。なお、上記駆動装置を用いる場合、当該駆動装置は、保持部11を係止位置と解除位置との間で回転駆動させるサーボモータであってよいが、これに限定されない。
The holding
推力センサ3fは、保持部11に組み込まれており、又は、保持部11を支持する支持体(図示せず)に組み込まれている。保持部11が無人飛行機1の上向き推力に抗して無人飛行機1を保持することにより保持部11に応力が発生する。推力センサ3fは、この応力を上向き推力として計測するように保持部11又はその支持部に組み込まれている。なお、この変更例1では、上述の振動センサ3dは保持部11又はその支持部に設けられてもよい。
The
上述の状態確認方法では、ステップS1の開始前に、計測場所で、無人飛行機1が図4のように載置面2aに置かれている時に、保持部11を係止位置に移動させる。例えば、上述したように計測開始指令が計測装置3に入力されることにより、上記駆動装置が作動し、その結果、当該駆動装置が保持部11を解除位置から係止位置へ移動させる。その後のタイミングで、例えばプロペラ1aを回転させる旨の上述の指令信号が無人飛行機1に入力されることにより、無人飛行機1のプロペラ1aが回転を開始してよい。この時のプロペラ1aの回転速度は、上述した場合と違って非離陸回転速度よりも高くてもよい。
In the above-mentioned state confirmation method, before the start of step S1, the holding
ステップS1において、推力センサ3fは、無人飛行機1の状態として、動作中の無人飛行機1が発生している上向き推力を計測し、当該上向きを表す状態データ(以下で推力データともいう)を生成する。この計測は、所定の計測時間にわたって行われてよい。この場合、推力データは、当該計測時間における各時点の上向き推力の大きさを表すデータであってよい。
In step S1, the
ステップS2において、推力データが、第1通信装置5により無線通信で送信される。送信された当該推力データは、第1通信装置5に受信されて表示装置9に表示される。
In step S2, the thrust data is transmitted by wireless communication by the
図4のように複数組の保持部11と複数の推力センサ3fが設けられている場合には、各保持部11に関する動作や処理は上述と同じである。この場合、複数の推力センサ3fが生成した複数の推力データが、第1通信装置5により第2通信装置7へ送信されて、これら推力データが表わす複数の推力が表示装置9にそれぞれ表示されてよい。あるいは、計測装置3は、上述の計測時間における各時点毎に複数の推力センサ3fが当該時点で計測した複数の推力の大きさを合計し、当該各時点毎に当該合計値を表した状態データ(推力データ)を生成し、当該状態データが、第1通信装置5により第2通信装置7へ送信されて当該状態データが表示装置9に表示されてもよい。
When a plurality of sets of holding
計測装置3の他の各計測機器3a~3eにより、ステップS1において、上述のように無人飛行機1の状態が計測され、当該各状態を表す状態データに対して上述のステップS2~S7が行われてよい。
In step S1, the states of the unmanned
なお、本発明によると、計測装置3は、外観計測装置3a、温度計測装置3b、騒音センサ3c、振動センサ3d、残量センサ3e、及び推力センサ3fの少なくともいずれか(すなわち、いずれか任意の1つ、又は、2つ以上の任意の組合せ(例えば全て))を備えていればよい。
According to the present invention, the measuring
(変更例2)
図5は、変更例2による状態確認装置10の構成を示すブロック図である。この変更例2では、状態確認装置10は、第2通信装置7が受信した状態データを処理することにより処理後データを生成するデータ処理装置13を備えている。
(Change example 2)
FIG. 5 is a block diagram showing the configuration of the
計測装置3が、騒音センサ3cを含む場合に、データ処理装置13は、第2通信装置7が受信した上述の時間データとしての上述の音データ(状態データ)を周波数データに変換する。すなわち、データ処理装置13は、当該音データから、各周波数における騒音の大きさ(レベル)を表す周波数データを処理後データとして生成する。
When the measuring
同様に、計測装置3が、図5のように騒音センサ3cに加えて(又は騒音センサ3cの代わりに)、振動センサ3dを含む場合に、データ処理装置13は、第2通信装置7が受信した上述の時間データとしての上述の振動データ(状態データ)を周波数データに変換してよい。すなわち、データ処理装置13は、当該振動データから、各周波数における振動の大きさを表す周波数データを処理後データとして生成する。
Similarly, when the measuring
データ処理装置13は、上述のように生成した処理後データ(音データから変換した処理後データと振動データから変換した処理後データの一方または両方)を表示装置9に入力する。これにより、表示装置9は、当該処理後データを表示する。なお、第2通信装置7により受信された他の状態データは、データ処理装置13を介さずに、表示装置9に入力されて表示装置9により表示されてよい。
The
(変更例3)
温度計測装置3bは、上述の赤外線カメラの代わりに、無人飛行機1に設けられ、無人飛行機1の上記蓄電装置の温度を計測する温度センサであってもよい。
(Change example 3)
Instead of the infrared camera described above, the
この場合、ステップS1において、温度センサ3bは、無人飛行機1の状態(無人飛行機1の温度)として、無人飛行機1におけるバッテリーの温度を計測し、当該温度を表す状態データを生成してよい。この状態データは、第1通信装置5により送信され、第2通信装置7で受信される。受信された当該状態データが表わす温度は表示装置9に表示される。
In this case, in step S1, the
(変更例4)
図6は、変更例4による状態確認装置10の構成を示すブロック図である。この変更例4では、状態確認装置10は、第2通信装置7が受信した状態データに基づいて、無人飛行機1の状態が健全であるかを判断する判断装置15を備えている。この場合、上述のステップS5において、人の代わりに判断装置15が、以下で説明する判断を行う。なお、この変更例4では、上述のステップS4は、ステップS5と同時に又はステップS5の後に行われてもよい。
(Change example 4)
FIG. 6 is a block diagram showing the configuration of the
<状態データが、温度、音、振動、残量又は上向き推力を表す場合>
判断装置15は、第2通信装置7が受信した各状態データを受け、状態データ毎に、当該状態データが表わす状態の値が、当該状態データ用の許容範囲内であるかを判断する。
<When the state data represents temperature, sound, vibration, remaining amount or upward thrust>
The
ここで、「状態の値」とは、次の通りである。状態データが上記温度を表す場合には、「状態の値」とは、当該温度(例えば赤外線画像における各部の温度のうちの最大値)である。また、状態データが音の大きさを表す場合には、「状態の値」とは、当該状態データが示す音の大きさ(例えば、当該状態データとしての時間データにおける各時点での音の大きさのうち最大値、又は、当該状態データとしての周波数データにおける各周波数での音の大きさのうち最大値)である。状態データが振動の大きさを表す場合には、「状態の値」とは、当該状態データが示す振動の大きさ(例えば、当該状態データとしての時間データにおける各時点での振動の大きさのうち最大値、又は、当該状態データとしての周波数データにおける各周波数での振動の大きさのうち最大値)である。状態データが上記残量データである場合には、「状態の値」とは、残量データが示す残量である。 Here, the "state value" is as follows. When the state data represents the above temperature, the "state value" is the temperature (for example, the maximum value among the temperatures of each part in the infrared image). When the state data represents the loudness of the sound, the "state value" is the loudness of the sound indicated by the state data (for example, the loudness of the sound at each time point in the time data as the state data). The maximum value among them, or the maximum value among the loudnesses of sounds at each frequency in the frequency data as the state data). When the state data represents the magnitude of vibration, the "state value" is the magnitude of vibration indicated by the state data (for example, the magnitude of vibration at each time point in the time data as the state data). Of these, the maximum value or the maximum value of the magnitude of vibration at each frequency in the frequency data as the state data). When the state data is the remaining amount data, the "state value" is the remaining amount indicated by the remaining amount data.
判断装置15は、1つ以上の状態データについて、当該状態データが表わす状態の値が当該状態データ用の許容範囲内ではないと判断したら、その旨の警告信号を出力する。この警告信号に基づいて、例えば、表示装置9は、当該状態データが示す状態が異常である旨を表示する。また、判断装置15は、上記警告信号を出力する場合、上述の離陸不許可信号を、ステップS1での計測の対象となった無人飛行機1に無線で送信する。
When the
<状態データが、外観を表す画像データである場合>
判断装置15は、外観計測装置3aにより生成され第2通信装置7が受信した画像データを受け、当該画像データを、予め作成した、無人飛行機1の健全な外観を表す基準画像データと照合することにより、受信した当該画像データに損傷を表す箇所が存在するかを判断する。
<When the state data is image data representing the appearance>
The
判断装置15は、照合により損傷箇所が存在すると判断した場合には、その旨の警告信号を出力する。この警告信号に基づいて、例えば、表示装置9は、当該状態データが示す状態(外観)に異常がある旨を表示する。また、判断装置15は、上記警告信号を出力する場合、上述の離陸不許可信号を、ステップS1での計測の対象となった無人飛行機1に無線で送信する。
When the
1 無人飛行機
1a プロペラ
1c 脚部
2 載置面形成体
2a 載置面
3 計測装置
3a 外観計測装置
3b 温度計測装置(赤外線カメラ、温度センサ)
3c 騒音センサ
3d 振動センサ
3e 残量センサ
3f 推力センサ
4 荷物
5 第1通信装置
6 把持機構
7 第2通信装置
9 表示装置
10 状態確認装置
11 保持部
13 データ処理装置
15 判断装置
1 Unmanned
Claims (6)
無人飛行機の状態を計測して、当該状態を表す状態データを生成する計測装置と、
前記状態データを送信する第1通信装置と、
送信された前記状態データを、前記無人飛行機から離れた場所で受信する第2通信装置と、
受信された前記状態データ、又は、前記状態データを処理した処理後データを表示する表示装置と、を備え、
前記計測装置は、所定の計測場所に設けられ、前記無人飛行機の一部を係止する係止位置と、当該係止を解除する解除位置との間で移動可能な保持部を備え、
前記計測装置は、前記計測場所に設けられ、動作中の前記無人飛行機の上向き推力を前記状態として計測する推力センサを備え、
前記推力センサは、前記保持部を支持する支持体又は前記保持部に組み込まれており、前記係止位置の前記保持部が前記無人飛行機の上向き推力に抗して前記無人飛行機を保持することにより前記保持部に発生する応力を上向き推力として計測する、状態確認装置。 It is a state confirmation device for confirming the state of an unmanned aerial vehicle at a place away from the unmanned aerial vehicle.
A measuring device that measures the state of an unmanned aerial vehicle and generates state data that represents the state,
The first communication device that transmits the status data and
A second communication device that receives the transmitted state data at a location away from the unmanned aerial vehicle, and
A display device for displaying the received state data or the processed data processed from the state data is provided.
The measuring device is provided at a predetermined measurement location and includes a holding portion that can move between a locking position for locking a part of the unmanned aerial vehicle and a releasing position for releasing the locking.
The measuring device is provided at the measuring place and includes a thrust sensor that measures the upward thrust of the unmanned aerial vehicle in operation as the state.
The thrust sensor is incorporated in a support supporting the holding portion or the holding portion, and the holding portion at the locking position holds the unmanned aerial vehicle against the upward thrust of the unmanned aerial vehicle. A state confirmation device that measures the stress generated in the holding portion as an upward thrust .
前記計測場所に設けられ、動作中の前記無人飛行機が発生する音を前記状態として計測する騒音センサ、又は
前記計測場所に設けられ、動作中の前記無人飛行機の振動を前記状態として計測する振動センサを備え、
前記第2通信装置が受信した、各時点の前記音の大きさ又は各時点の前記振動の大きさを表わす前記状態データを処理することにより前記処理後データを生成するデータ処理装置を備え、
前記表示装置は、前記処理後データを表示する、請求項1に記載の状態確認装置。 The measuring device is
A noise sensor provided at the measurement location and measuring the sound generated by the unmanned aerial vehicle in operation as the state, or
A vibration sensor provided at the measurement location and measuring the vibration of the unmanned aerial vehicle in operation as the state is provided.
A data processing device for generating the post-processing data by processing the state data representing the loudness of the sound at each time point or the magnitude of the vibration at each time point received by the second communication device is provided.
The state confirmation device according to claim 1, wherein the display device displays the processed data.
前記振動センサは、前記計測場所において、無人飛行機が置かれる載置面に、又は当該載置面を有する載置面形成体に取り付けられている、請求項1に記載の状態確認装置。 The measuring device is provided at the measuring place and includes a vibration sensor that measures the vibration of the unmanned aerial vehicle in operation as the state .
The state confirmation device according to claim 1 , wherein the vibration sensor is attached to a mounting surface on which an unmanned aerial vehicle is placed or a mounting surface forming body having the mounting surface at the measurement location.
(A)所定の計測場所において、計測装置により、無人飛行機の状態を計測して、当該状態を表す状態データを生成し、
(B)前記状態データを送信し、
(C)送信された前記状態データを、前記無人飛行機から離れた場所で受信し、
(D)受信された前記状態データ、又は、前記状態データを処理した処理後データを表示装置の画面に表示し、
前記計測装置は、前記計測場所に設けられ、前記無人飛行機の一部を係止する係止位置と、当該係止を解除する解除位置との間で移動可能な保持部を備えるものであり、
前記(A)において、無人飛行機の前記状態として、動作中の前記無人飛行機の上向き推力を計測し、
前記計測装置は、前記計測場所に設けられ、動作中の前記無人飛行機の上向き推力を前記状態として計測する推力センサを備え、
前記推力センサは、前記保持部を支持する支持体又は前記保持部に組み込まれており、
前記(A)において、前記係止位置の前記保持部が前記無人飛行機の上向き推力に抗して前記無人飛行機を保持することにより前記保持部に発生する応力を前記推力センサが上向き推力として計測する、状態確認方法。 It is a state confirmation method for confirming the state of an unmanned aerial vehicle at a place away from the unmanned aerial vehicle.
(A) At a predetermined measurement location, the state of the unmanned aerial vehicle is measured by a measuring device, and state data representing the state is generated.
(B) The state data is transmitted, and the state data is transmitted.
(C) Receive the transmitted status data at a location away from the unmanned aerial vehicle,
(D) The received state data or the processed data obtained by processing the state data is displayed on the screen of the display device.
The measuring device is provided at the measuring place and includes a holding portion that can move between a locking position for locking a part of the unmanned aerial vehicle and a releasing position for releasing the locking.
In the above (A), as the state of the unmanned aerial vehicle, the upward thrust of the unmanned aerial vehicle in operation is measured .
The measuring device is provided at the measuring place and includes a thrust sensor that measures the upward thrust of the unmanned aerial vehicle in operation as the state.
The thrust sensor is incorporated in a support supporting the holding portion or the holding portion.
In (A), the thrust sensor measures the stress generated in the holding portion as the upward thrust when the holding portion at the locking position holds the unmanned aerial vehicle against the upward thrust of the unmanned aerial vehicle. , How to check the status.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019138550A JP7002501B2 (en) | 2019-07-29 | 2019-07-29 | Unmanned aerial vehicle status check device and status check method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019138550A JP7002501B2 (en) | 2019-07-29 | 2019-07-29 | Unmanned aerial vehicle status check device and status check method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021020573A JP2021020573A (en) | 2021-02-18 |
JP7002501B2 true JP7002501B2 (en) | 2022-01-20 |
Family
ID=74573616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019138550A Active JP7002501B2 (en) | 2019-07-29 | 2019-07-29 | Unmanned aerial vehicle status check device and status check method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7002501B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7203295B1 (en) | 2022-04-15 | 2023-01-12 | 三菱電機株式会社 | Discharge device manufacturing method and discharge device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7444127B2 (en) * | 2021-04-08 | 2024-03-06 | 株式会社デンソー | aircraft surveillance system |
KR102726562B1 (en) * | 2022-12-01 | 2024-11-06 | (주)위플로 | Folding diagnosing apparatus for driving system of drone |
CN118351670B (en) * | 2024-05-20 | 2025-01-03 | 北京理工大学珠海学院 | Regional security early warning system based on electronic fence |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160264262A1 (en) | 2013-10-24 | 2016-09-15 | Airbus Group Sas | Collaborative robot for visually inspecting an aircraft |
US10053236B1 (en) | 2016-03-28 | 2018-08-21 | Amazon Technologies, Inc. | Automated aerial vehicle inspections |
WO2018159256A1 (en) | 2017-03-01 | 2018-09-07 | 株式会社イシダ | Takeoff and landing device, takeoff and landing system, and unmanned delivery system |
US20180276810A1 (en) | 2015-01-13 | 2018-09-27 | Sikorsky Aircraft Corporation | Structural health monitoring employing physics models |
CN108945491A (en) | 2018-04-08 | 2018-12-07 | 北京领航智能科技发展有限公司 | Unmanned plane based on UWB precisely guides and automatic landing method |
KR101965775B1 (en) | 2017-12-13 | 2019-04-04 | 한국해양과학기술원 | System and method for implementing return home mode of drone to unmanned vessel |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6983051B1 (en) * | 1993-11-18 | 2006-01-03 | Digimarc Corporation | Methods for audio watermarking and decoding |
-
2019
- 2019-07-29 JP JP2019138550A patent/JP7002501B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160264262A1 (en) | 2013-10-24 | 2016-09-15 | Airbus Group Sas | Collaborative robot for visually inspecting an aircraft |
US20180276810A1 (en) | 2015-01-13 | 2018-09-27 | Sikorsky Aircraft Corporation | Structural health monitoring employing physics models |
US10053236B1 (en) | 2016-03-28 | 2018-08-21 | Amazon Technologies, Inc. | Automated aerial vehicle inspections |
WO2018159256A1 (en) | 2017-03-01 | 2018-09-07 | 株式会社イシダ | Takeoff and landing device, takeoff and landing system, and unmanned delivery system |
KR101965775B1 (en) | 2017-12-13 | 2019-04-04 | 한국해양과학기술원 | System and method for implementing return home mode of drone to unmanned vessel |
CN108945491A (en) | 2018-04-08 | 2018-12-07 | 北京领航智能科技发展有限公司 | Unmanned plane based on UWB precisely guides and automatic landing method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7203295B1 (en) | 2022-04-15 | 2023-01-12 | 三菱電機株式会社 | Discharge device manufacturing method and discharge device |
Also Published As
Publication number | Publication date |
---|---|
JP2021020573A (en) | 2021-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7002501B2 (en) | Unmanned aerial vehicle status check device and status check method | |
US10810501B1 (en) | Automated pre-flight and in-flight testing of aerial vehicles by machine learning | |
US9797801B2 (en) | Frequency-adaptable structural health and usage monitoring system | |
US10053236B1 (en) | Automated aerial vehicle inspections | |
JP6505927B1 (en) | Inspection method using unmanned small-sized flying object and unmanned small-sized flying object used therefor | |
JP6179502B2 (en) | Three-dimensional shape measuring method and apparatus using multicopter | |
AU2023201896A1 (en) | Materials management systems and methods | |
AU2021212167B2 (en) | Delivery-location recharging during aerial transport tasks | |
CN112009719A (en) | Method for inspecting and repairing a structure and unmanned aerial vehicle | |
US10607424B2 (en) | Frequency-adaptable structural health and usage monitoring system (HUMS) and method with smart sensors | |
JP6881296B2 (en) | Defect inspection equipment, defect inspection methods and programs | |
CN203673535U (en) | Power line inspection equipment and system | |
JP2020140726A (en) | Flight management server and flight management system for unmanned aerial vehicles | |
KR20160022065A (en) | System for Inspecting Inside of Bridge | |
AU2021397333B2 (en) | Systems and methods for autonomous airworthiness pre-flight checks for UAVs | |
US11534915B1 (en) | Determining vehicle integrity based on observed behavior during predetermined manipulations | |
JP6733925B2 (en) | Inspection method using unmanned small air vehicle and unmanned small air vehicle used for the inspection method | |
JP6999353B2 (en) | Unmanned aerial vehicle and inspection system | |
CN114286782A (en) | Control device for electric vertical take-off and landing | |
JPWO2020100945A1 (en) | Mobile | |
JP2019144052A (en) | Test object inspection device and inspection method | |
JP2022053447A (en) | Inspection system, management server, program, and crack information providing method | |
KR102482028B1 (en) | Drone flight situation provision system using drone forensics | |
JP3202876U (en) | Diagnostic equipment | |
JP2021044793A (en) | Dimension display system and dimension display method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210507 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210427 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210702 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211022 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7002501 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |