JP7085761B2 - Positive electrode active material for sodium secondary battery and its manufacturing method - Google Patents
Positive electrode active material for sodium secondary battery and its manufacturing method Download PDFInfo
- Publication number
- JP7085761B2 JP7085761B2 JP2019523916A JP2019523916A JP7085761B2 JP 7085761 B2 JP7085761 B2 JP 7085761B2 JP 2019523916 A JP2019523916 A JP 2019523916A JP 2019523916 A JP2019523916 A JP 2019523916A JP 7085761 B2 JP7085761 B2 JP 7085761B2
- Authority
- JP
- Japan
- Prior art keywords
- sodium
- secondary battery
- positive electrode
- ion secondary
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007774 positive electrode material Substances 0.000 title claims description 60
- 239000011734 sodium Substances 0.000 title claims description 56
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 title claims description 36
- 229910052708 sodium Inorganic materials 0.000 title claims description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 229910001415 sodium ion Inorganic materials 0.000 claims description 75
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims description 72
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 65
- 239000000463 material Substances 0.000 claims description 48
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 39
- 239000013078 crystal Substances 0.000 claims description 24
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 22
- 229910052742 iron Inorganic materials 0.000 claims description 19
- 235000002639 sodium chloride Nutrition 0.000 claims description 18
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 16
- 239000011780 sodium chloride Substances 0.000 claims description 16
- UDJMEHOEDIAPCK-UHFFFAOYSA-N sodium iron(2+) oxygen(2-) Chemical compound [O-2].[Fe+2].[Na+] UDJMEHOEDIAPCK-UHFFFAOYSA-N 0.000 claims description 16
- 229910017108 Fe—Fe Inorganic materials 0.000 claims description 15
- 229910017135 Fe—O Inorganic materials 0.000 claims description 14
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 14
- 238000001228 spectrum Methods 0.000 claims description 12
- 239000007864 aqueous solution Substances 0.000 claims description 11
- 238000000192 extended X-ray absorption fine structure spectroscopy Methods 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 10
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 8
- 239000011591 potassium Substances 0.000 claims description 8
- 229910052700 potassium Inorganic materials 0.000 claims description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 159000000011 group IA salts Chemical class 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 19
- 230000001105 regulatory effect Effects 0.000 description 11
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 10
- 238000002441 X-ray diffraction Methods 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 238000010335 hydrothermal treatment Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000011255 nonaqueous electrolyte Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000000441 X-ray spectroscopy Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000006258 conductive agent Substances 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000007784 solid electrolyte Substances 0.000 description 5
- -1 3 O 4 is used Chemical compound 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 241000209094 Oryza Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000005315 distribution function Methods 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 229910006540 α-FeOOH Inorganic materials 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- RAQDACVRFCEPDA-UHFFFAOYSA-L ferrous carbonate Chemical class [Fe+2].[O-]C([O-])=O RAQDACVRFCEPDA-UHFFFAOYSA-L 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical class Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 2
- 235000013980 iron oxide Nutrition 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical class [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002588 FeOOH Inorganic materials 0.000 description 1
- 229910021577 Iron(II) chloride Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910021314 NaFeO 2 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- CUPCBVUMRUSXIU-UHFFFAOYSA-N [Fe].OOO Chemical compound [Fe].OOO CUPCBVUMRUSXIU-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- MSNWSDPPULHLDL-UHFFFAOYSA-K ferric hydroxide Chemical compound [OH-].[OH-].[OH-].[Fe+3] MSNWSDPPULHLDL-UHFFFAOYSA-K 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- YPJCVYYCWSFGRM-UHFFFAOYSA-H iron(3+);tricarbonate Chemical compound [Fe+3].[Fe+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O YPJCVYYCWSFGRM-UHFFFAOYSA-H 0.000 description 1
- 229910021506 iron(II) hydroxide Inorganic materials 0.000 description 1
- 229910021519 iron(III) oxide-hydroxide Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Compounds Of Iron (AREA)
- Secondary Cells (AREA)
Description
本発明は、ナトリウム二次電池用正極活物質及びその製造方法に関する。 The present invention relates to a positive electrode active material for a sodium secondary battery and a method for producing the same.
二次電池のなかで最も高いエネルギー密度を有するリチウムイオン二次電池が実用化されているが、その代替技術の一つが電荷担体をリチウムイオンからより資源的に豊富なナトリウムイオンに代えたナトリウムイオン二次電池である。ナトリウムイオン二次電池は、リチウムイオン二次電池と同様に高い作動電圧(3V以上)を実現できることが有望視される二次電池の一つである。ナトリウムイオン二次電池においても、正極活物質の選択の重要性はリチウムイオン二次電池と変わりなく、正極活物質の性能が電池の理論容量と作動電圧を決定づける。 Lithium-ion secondary batteries, which have the highest energy density among secondary batteries, have been put into practical use, and one of the alternative technologies is to replace lithium ions with sodium ions, which are more resource-rich. It is a secondary battery. Sodium-ion secondary batteries are one of the promising secondary batteries that can achieve a high operating voltage (3V or higher) similar to lithium-ion secondary batteries. Even in a sodium ion secondary battery, the importance of selecting a positive electrode active material is the same as that of a lithium ion secondary battery, and the performance of the positive electrode active material determines the theoretical capacity and operating voltage of the battery.
正極活物質候補のなかで特に重要なものがナトリウムフェライト(NaFeO2)である。ナトリウムフェライトにはα相とβ相とがあり、例えば、特許文献1に記載されているように、α相のみが正極活物質として機能する。しかしながら、高温相であるβ相がいったんできると、α相との結晶構造の大きな違いから完全にβ相からα相への転移が完了せず、β相がしばしばα相と混在するため、α相の合成は容易ではない。Of the positive electrode active material candidates, the most important one is sodium ferrite (NaFeO 2 ). Sodium ferrite has an α phase and a β phase. For example, as described in
一方、水酸化ナトリウム中で鉄源を水熱処理する工程を用いた場合に、高結晶性の試料が得られ、規制充電容量を70mAh/gに制限したときに優れた充放電特性を有するナトリウムフェライトが得られることが知られている(例えば、特許文献2参照)。しかしながらこの材料は、例えば、特許文献3に比較例1として記載されているように、規制充電容量を100mAh/gに上昇したときにはサイクル劣化が激しく、特定量のコバルトを置換しないと特性改善できなかった。しかしながら、コバルトは高価であるため実用化の妨げとなっている。このため、高価で資源的に希少なコバルトを使うことなくこの充放電条件下でも安定にサイクル可能なナトリウムイオン二次電池用正極活物質ができればナトリウムイオン二次電池の実用化に向けて大きく前進する。
On the other hand, when a step of hydrothermally heat-treating an iron source in sodium hydroxide is used, a highly crystalline sample can be obtained, and sodium ferrite having excellent charge / discharge characteristics when the regulated charge capacity is limited to 70 mAh / g. Is known to be obtained (see, for example, Patent Document 2). However, as described in Comparative Example 1 in
本発明は、上記した従来技術の現状に鑑みてなされたものであり、資源的に豊富な物質を原料として、規制充電容量を高く設定した場合にも高い放電容量と優れたサイクル特性を発揮し得るナトリウムイオン二次電池用正極活物質を提供することを目的とする。 The present invention has been made in view of the current state of the prior art described above, and exhibits high discharge capacity and excellent cycle characteristics even when the regulated charge capacity is set high using a resource-rich substance as a raw material. It is an object of the present invention to provide a positive electrode active material for a sodium ion secondary battery to be obtained.
本発明者らは、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、六方晶層状岩塩型結晶構造を有し、特定の格子定数及び格子体積を有するナトリウム鉄酸化物が、高価で資源的に希少な材料を使わずとも、規制充電容量を高く設定した場合にも高い放電容量と優れたサイクル特性を発揮できることを見出した。本発明は、これらの知見に基づいてさらに研究を重ねた結果、完成されたものである。即ち、本発明は、以下の構成を包含する。
項1.一般式(1):
NaxFeO2 (1)
[式中、xは0.80~1.30である。]
で表され、
六方晶層状岩塩型結晶構造を有し、
格子定数が、aは3.0235Å以下、cは16.0820Å以下であり、
格子体積が127.360Å3以下である、
ナトリウム鉄酸化物からなるナトリウムイオン二次電池用正極活物質。
項2.前記ナトリウム鉄酸化物が有する六方晶層状岩塩型結晶構造中の3b位置鉄占有率が0.920以上である、項1に記載のナトリウムイオン二次電池用正極活物質。
項3.前記ナトリウム鉄酸化物が有する六方晶層状岩塩型結晶構造中の6c位置ナトリウム占有率が0.050以下である、項1又は2に記載のナトリウムイオン二次電池用正極活物質。
項4.前記ナトリウム鉄酸化物のFeK端広域X線吸収(EXAFS)スペクトルのフーリエ変換スペクトルにおいて、Fe-O高さに対するFe-Fe高さの比(Fe-Fe高さ/Fe-O高さ)が1.050以上である、項1~3のいずれか1項に記載のナトリウムイオン二次電池用正極活物質。項5.請求項1~4のいずれか1項に記載のナトリウム二次電池用正極材料の製造方法であって、
ナトリウム含有材料及び鉄含有材料を含み、リチウム含有材料を含まないアルカリ水溶液を用いて、180℃以上の温度で30時間以上水熱合成反応を行う工程
を備える、製造方法。
項6.前記ナトリウム含有材料が水酸化ナトリウムである、項5に記載の製造方法。
項7.前記アルカリ水溶液が、さらに、カリウム含有材料を含む、項5又は6に記載の製造方法。
項8.前記カリウム含有材料が、カリウムを含む中性又はアルカリ性塩である、項7に記載の製造方法。
項9.項1~4のいずれか1項に記載のナトリウムイオン二次電池用正極活物質を含有する、ナトリウムイオン二次電池用正極。
項10.項9に記載のナトリウムイオン二次電池用正極を備えるナトリウムイオン二次電池。The present inventors have carried out diligent research to achieve the above-mentioned object. As a result, when the sodium iron oxide having a hexagonal layered rock salt type crystal structure and having a specific lattice constant and lattice volume is set to a high regulated charge capacity without using an expensive and resource-rare material. It was also found that it can exhibit high discharge capacity and excellent cycle characteristics. The present invention has been completed as a result of further research based on these findings. That is, the present invention includes the following configurations.
Na x FeO 2 (1)
[In the formula, x is 0.80 to 1.30. ]
Represented by
It has a hexagonal layered rock salt type crystal structure and has a hexagonal layered rock salt type crystal structure.
The lattice constant is 3.0235 Å or less for a and 16.0820 Å or less for c.
Lattice volume is 127.360 Å 3 or less,
Positive electrode active material for sodium ion secondary batteries made of sodium iron oxide.
A production method comprising a step of performing a hydrothermal synthesis reaction at a temperature of 180 ° C. or higher for 30 hours or longer using an alkaline aqueous solution containing a sodium-containing material and an iron-containing material and not containing a lithium-containing material.
Item 6.
Item 7.
Item 8.
Item 9.
本発明のナトリウムイオン二次電池用正極活物質は、高価で資源的に希少な材料を使わずとも、規制充電容量を高く設定した場合にも高い放電容量と優れたサイクル特性を発揮することができる。 The positive electrode active material for a sodium ion secondary battery of the present invention can exhibit high discharge capacity and excellent cycle characteristics even when the regulated charge capacity is set high, without using an expensive and resource-rare material. can.
本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。また、本明細書において、「A~B」との表記は、「A以上且つB以下」を意味する。 As used herein, "contains" is a concept that includes any of "comprise," "consist essentially of," and "consist of." Further, in the present specification, the notation "A to B" means "A or more and B or less".
1.ナトリウムイオン二次電池用正極活物質
本発明のナトリウムイオン二次電池用正極活物質は、一般式(1):
NaxFeO2 (1)
[式中、xは0.80~1.30である。]
で表され、
六方晶層状岩塩型結晶構造を有し、
格子定数が、aは3.0235Å以下、cは16.0820Å以下であり、
格子体積が127.360Å3以下である、ナトリウム鉄酸化物からなる。 1. 1. Positive Active Material for Sodium Ion Secondary Battery The positive positive active material for sodium ion secondary battery of the present invention has the general formula (1) :.
Na x FeO 2 (1)
[In the formula, x is 0.80 to 1.30. ]
Represented by
It has a hexagonal layered rock salt type crystal structure and has a hexagonal layered rock salt type crystal structure.
The lattice constant is 3.0235 Å or less for a and 16.0820 Å or less for c.
It consists of sodium iron oxide with a lattice volume of 127.360 Å 3 or less.
本発明のナトリウムイオン二次電池用正極活物質が構成する六方晶層状岩塩型結晶構造は、空間群: The hexagonal layered rock salt type crystal structure composed of the positive electrode active material for the sodium ion secondary battery of the present invention is a space group:
に帰属される結晶構造(α相)である。本発明のナトリウムイオン二次電池用正極活物質の結晶構造の概略図を図1に示す。この構造において、今まで報告されてきたα相は、3a位置にNa+イオンが占有し、3b位置にFe3+イオンが占有している。本発明のナトリウムイオン二次電池用正極活物質においては、それに加えて、3b位置の上下の四面体位置に相当する6c位置に過剰のNa+イオンが占有する特異な構造を有する。したがって、Na/Fe値に相当するx値は0.80~1.30、特に0.90~1.20である。上記陽イオン分布は粉末X線リートベルト解析により、Na/Fe比は蛍光X線装置による元素分析により算出する。特に規制充電容量を高く設定した場合の充放電特性(放電容量、サイクル特性等)に優れる場合には、本発明のナトリウムイオン二次電池用正極活物質は、この六方晶層状岩塩型結晶構造中の3b位置鉄占有率は0.920以上が好ましく、0.930~1.200がより好ましい。また、特に規制充電容量を高く設定した場合の充放電特性(放電容量、サイクル特性等)に優れる場合には、本発明のナトリウムイオン二次電池用正極活物質は、6c位置Na占有率は0.050以下が好ましく、0.010~0.040がより好ましい。この六方晶層状岩塩型結晶構造は、特に限定的ではないが、本発明のナトリウムイオン二次電池用正極活物質全体を基準として80モル%以上が好ましく、90モル%以上がより好ましい。It is a crystal structure (α phase) attributed to. FIG. 1 shows a schematic diagram of the crystal structure of the positive electrode active material for a sodium ion secondary battery of the present invention. In this structure, the α phase reported so far is occupied by Na + ions at the 3a position and Fe 3+ ions at the 3b position. In addition, the positive electrode active material for a sodium ion secondary battery of the present invention has a unique structure in which excess Na + ions occupy the 6c position corresponding to the upper and lower tetrahedral positions at the 3b position. Therefore, the x value corresponding to the Na / Fe value is 0.80 to 1.30, especially 0.90 to 1.20. The cation distribution is calculated by powder X-ray Rietveld analysis, and the Na / Fe ratio is calculated by elemental analysis using a fluorescent X-ray device. In particular, when the charge / discharge characteristics (discharge capacity, cycle characteristics, etc.) are excellent when the regulated charge capacity is set high, the positive electrode active material for a sodium ion secondary battery of the present invention is contained in this hexagonal layered rock salt type crystal structure. The 3b position iron occupancy rate is preferably 0.920 or more, more preferably 0.930 to 1.200. Further, when the charge / discharge characteristics (discharge capacity, cycle characteristics, etc.) are particularly excellent when the regulated charge capacity is set high, the positive electrode active material for a sodium ion secondary battery of the present invention has a 6c position Na occupancy rate of 0.050. The following is preferable, and 0.010 to 0.040 is more preferable. The hexagonal layered rock salt type crystal structure is not particularly limited, but is preferably 80 mol% or more, more preferably 90 mol% or more, based on the entire positive electrode active material for the sodium ion secondary battery of the present invention.
本発明のナトリウムイオン二次電池用正極活物質は、単相の六方晶層状岩塩型結晶構造、つまり、六方晶層状岩塩型結晶構造のみからなる材料であってもよいが、本発明の効果を損なわない範囲で、他の結晶構造(β-NaFeO2型結晶構造、P2型層状構造等)を、本発明のナトリウムイオン二次電池用正極活物質の20モル%以下、特に10モル%以下有していてもよい。The positive electrode active material for a sodium ion secondary battery of the present invention may be a material having only a single-phase hexagonal layered rock salt type crystal structure, that is, a hexagonal layered rock salt type crystal structure. Other crystal structures (β-NaFeO type 2 crystal structure, P2 type layered structure, etc.) are contained in 20 mol% or less, particularly 10 mol% or less of the positive electrode active material for the sodium ion secondary battery of the present invention, as long as they are not impaired. You may be doing it.
また上記陽イオン分布の特徴に加えて、本発明のナトリウムイオン二次電池用正極活物質は、格子定数も特異な値を有している。Fe-Feイオン間距離(図1中央参照)に相当するa軸値は、規制充電容量を高く設定した場合の充放電特性(放電容量、サイクル特性)等の観点から、3.0235Å以下、好ましくは3.0000~3.0230Åである。一方、層状格子の積層状態を反映するc軸値は、規制充電容量を高く設定した場合の充放電特性(放電容量、サイクル特性)等の観点から、16.0820Å以下、好ましくは16.0000~16.0810Åである。さらに、格子体積は、規制充電容量を高く設定した場合の充放電特性(放電容量、サイクル特性)等の観点から、127.360Å3以下、好ましくは127.000~127.300Å3である。Further, in addition to the above-mentioned characteristics of the cation distribution, the positive electrode active material for a sodium ion secondary battery of the present invention also has a peculiar lattice constant. The a-axis value corresponding to the distance between Fe-Fe ions (see the center of Fig. 1) is 3.0235 Å or less, preferably 3.0235 Å or less from the viewpoint of charge / discharge characteristics (discharge capacity, cycle characteristics) when the regulated charge capacity is set high. It is 3.0000 to 3.0230 Å. On the other hand, the c-axis value that reflects the laminated state of the layered lattice is 16.8020 Å or less, preferably 16.0000 to 16.0810 Å, from the viewpoint of charge / discharge characteristics (discharge capacity, cycle characteristics) when the regulated charge capacity is set high. be. Further, the lattice volume is 127.360 Å 3 or less, preferably 127.000 to 127.300 Å 3 from the viewpoint of charge / discharge characteristics (discharge capacity, cycle characteristics) when the regulated charge capacity is set high.
また、本発明のナトリウムイオン二次電池用正極活物質は、上記結晶構造の特徴からFeK端広域X線吸収スペクトル(EXAFS)のフーリエ変換データから算出した第一近接Fe-Fe間距離(2.6~2.8Å)のピークトップ強度が、第一近接Fe-O間距離(1.4~1.6Å)のピークトップ強度に対する比率(Fe-Feピーク高さ/Fe-Oピーク高さ)は、規制充電容量を高く設定した場合の充放電特性(放電容量、サイクル特性)等の観点から、1.05以上が好ましく、1.10~1.50がより好ましい。これは、本発明のナトリウムイオン二次電池用正極活物質が、3b位置Feイオン占有率が92%以上であることと対応しているものと思われる。 Further, in the positive electrode active material for a sodium ion secondary battery of the present invention, the first proximity Fe-Fe distance (2.6 to Fe) calculated from the Fourier conversion data of the FeK end wide area X-ray absorption spectrum (EXAFS) from the characteristics of the crystal structure described above. The ratio of the peak top intensity of 2.8 Å) to the peak top intensity of the first proximity Fe-O distance (1.4 to 1.6 Å) (Fe-Fe peak height / Fe-O peak height) is the regulated charge capacity. From the viewpoint of charge / discharge characteristics (discharge capacity, cycle characteristics) when set high, 1.05 or more is preferable, and 1.10 to 1.50 is more preferable. This seems to correspond to the fact that the positive electrode active material for a sodium ion secondary battery of the present invention has a Fe ion occupancy rate of 92% or more at the 3b position.
本発明のナトリウムイオン二次電池用正極活物質は、上記一般式(1)で表される組成を有するナトリウム鉄酸化物からなるものである。本発明のナトリウムイオン二次電池用正極活物質は、上記一般式(1)で表される組成を有するナトリウム鉄酸化物のみからなるものであってもよいが、不可避不純物が含まれていてもよい。このような不可避不純物としては、原料によるものが考えられ、後述のナトリウム含有材料、鉄含有材料、カリウム含有材料等が挙げられ、本発明の効果を損なわない範囲で、10モル%以下、特に5モル%以下含有していてもよい。 The positive electrode active material for a sodium ion secondary battery of the present invention is made of a sodium iron oxide having a composition represented by the above general formula (1). The positive electrode active material for a sodium ion secondary battery of the present invention may consist only of a sodium iron oxide having a composition represented by the above general formula (1), but may contain unavoidable impurities. good. Such unavoidable impurities may be due to raw materials, and include sodium-containing materials, iron-containing materials, potassium-containing materials, etc., which will be described later, and are 10 mol% or less, particularly 5) as long as the effects of the present invention are not impaired. It may be contained in a molar% or less.
2.ナトリウムイオン二次電池用正極活物質の製造方法
本発明のナトリウムイオン二次電池用正極活物質は、例えば、
ナトリウム含有材料及び鉄含有材料を含むアルカリ水溶液を用いて、180℃以上の温度で30時間以上水熱合成反応を行う工程
を備える製造方法により得ることができる。以下、この方法について具体的に説明する。 2. 2. Method for Producing Positive Active Material for Sodium Ion Secondary Battery The positive positive active material for sodium ion secondary battery of the present invention is, for example,
It can be obtained by a production method comprising a step of performing a hydrothermal synthesis reaction at a temperature of 180 ° C. or higher for 30 hours or longer using an alkaline aqueous solution containing a sodium-containing material and an iron-containing material. Hereinafter, this method will be specifically described.
原料の具体例としては、ナトリウム含有材料として、金属ナトリウム(Na)酸化ナトリウム(Na2O)、過酸化ナトリウム(Na2O2);水酸化ナトリウム(NaOH);炭酸ナトリウム(Na2CO3)、炭酸水素ナトリウム(NaHCO3)等のナトリウム炭酸塩等が例示でき、鉄含有材料として、金属鉄(Fe);酸化鉄(II)(FeO)、酸化鉄(III)(Fe2O3)、Fe3O4等の鉄酸化物;水酸化鉄(II)(Fe(OH)2)、水酸化鉄(III)(Fe(OH)3)等の鉄水酸化物;α-FeOOH、β-FeOOH等の鉄オキシ水酸化物;炭酸鉄(II)(FeCO3)、炭酸鉄(III)(Fe2(CO3)2)等の鉄炭酸塩;硝酸鉄(II)(Fe(NO3)2)、硝酸鉄(III)(Fe(NO3)3)等の鉄硝酸塩;塩化鉄(II)(FeCl2)、塩化鉄(III)(FeCl3)等の鉄塩化物;硫酸鉄(II)(FeSO4)、硫酸鉄(III)(Fe2(SO4)3)等の鉄硫酸塩等が例示できる。本発明のナトリウムイオン二次電池用正極活物質を水熱合成により得やすい観点から、ナトリウム含有材料としては水酸化ナトリウムが好ましく、鉄含有材料としては鉄オキシ水酸化物(特にα-FeOOH)が好ましい。また、本発明のナトリウムイオン二次電池用正極活物質を水熱合成により得やすい観点から、鉄含有材料としては、3価の鉄を含む材料を用いることが好ましいが、Fe2O3、Fe3O4等の2価の鉄を含む材料を用いる場合は、特許文献2に記載されているように、塩素酸ナトリウム等の酸化剤を、例えば鉄含有材料1モルに対して1~3モル添加することもできる。さらに、鉄含有材料として、酸性の水溶性化合物(硝酸塩、塩化物、硫酸塩等)を用いる場合は、あらかじめアルカリで中和及び空気酸化(バブリング)した後、水洗して過剰の塩を取り除いた後に原料として用いることもできる。これらのナトリウム含有材料及び鉄含有材料は、それぞれ、単独で用いることもでき、2種以上を組合せて用いることもできる。Specific examples of raw materials include metallic sodium (Na) sodium oxide (Na 2 O), sodium peroxide (Na 2 O 2 ); sodium hydroxide (NaOH); sodium carbonate (Na 2 CO 3 ) as sodium-containing materials. , Sodium carbonate such as sodium hydrogen carbonate (NaHCO 3 ) can be exemplified, and as iron-containing materials, metallic iron (Fe); iron (II) oxide (FeO), iron (III) oxide (Fe 2 O 3 ), Iron oxides such as Fe 3 O 4 ; Iron hydroxides such as iron (II) hydroxide (Fe (OH) 2 ), iron (III) hydroxide (Fe (OH) 3 ); α-FeOOH, β- Iron oxyhydroxides such as FeOOH; iron carbonates such as iron (II) carbonate (FeCO 3 ) and iron (III) carbonate (Fe 2 (CO 3 ) 2 ); iron nitrate (II) (Fe (NO 3 )) 2 ), iron nitrates such as iron (III) nitrate (Fe (NO 3 ) 3 ); iron chlorides such as iron (II) chloride (FeCl 2 ), iron (III) chloride (FeCl 3 ); iron sulfate (II) ) (FeSO 4 ), iron (III) sulfate (Fe 2 (SO 4 ) 3 ) and other iron sulfates can be exemplified. From the viewpoint that the positive electrode active material for a sodium ion secondary battery of the present invention can be easily obtained by hydrothermal synthesis, sodium hydroxide is preferable as the sodium-containing material, and iron oxyhydroxide (particularly α-FeOOH) is used as the iron-containing material. preferable. Further, from the viewpoint that the positive electrode active material for a sodium ion secondary battery of the present invention can be easily obtained by hydrothermal synthesis, it is preferable to use a material containing trivalent iron as the iron-containing material, but Fe 2 O 3 and Fe. When a material containing divalent iron such as 3 O 4 is used, as described in
上記した原料におけるナトリウム含有材料と鉄含有材料との含有割合は、特に制限されず、鉄含有材料に対してナトリウム含有材料を過剰量とすることが好ましい。具体的には、鉄含有材料100質量部に対して、ナトリウム含有材料を5~50質量部、特に10~30質量部使用することが好ましい。 The content ratio of the sodium-containing material and the iron-containing material in the above-mentioned raw materials is not particularly limited, and it is preferable to use an excess amount of the sodium-containing material with respect to the iron-containing material. Specifically, it is preferable to use 5 to 50 parts by mass, particularly 10 to 30 parts by mass, of the sodium-containing material with respect to 100 parts by mass of the iron-containing material.
アルカリ水溶液としては、特に制限はないが、ナトリウム含有材料として水酸化ナトリウムを使用し、水酸化ナトリウム水溶液が好ましい。このアルカリ水溶液の濃度は、本発明のナトリウムイオン二次電池用正極活物質を水熱合成により得やすい観点から、高濃度とすることが好ましく、具体的には、20M以上、特に50M以上とすることが好ましい。 The alkaline aqueous solution is not particularly limited, but sodium hydroxide is used as the sodium-containing material, and a sodium hydroxide aqueous solution is preferable. The concentration of this alkaline aqueous solution is preferably high, preferably 20 M or more, particularly 50 M or more, from the viewpoint that the positive electrode active material for a sodium ion secondary battery of the present invention can be easily obtained by hydrothermal synthesis. Is preferable.
また、このアルカリ水溶液には、充放電特性(特にサイクル特性)をより向上させるため、カリウム含有材料を含ませることもできる。カリウム含有材料としては、特に制限はないが、アルカリ水溶液中で処理するため、水酸化カリウム、塩化カリウム等の中性又はアルカリ性塩が好ましい。カリウム含有材料の使用量は、特に制限されず、充放電特性(特にサイクル特性)の観点から、ナトリウム含有材料100質量部に対して、0.2~10.0質量部、特に0.5~5.0質量部使用することが好ましい。なお、リチウム含有材料を含む場合は、格子定数a及びc、格子体積等が大きくなり、かえってサイクル特性が悪化するため含まないことが好ましい。 Further, the alkaline aqueous solution may contain a potassium-containing material in order to further improve the charge / discharge characteristics (particularly the cycle characteristics). The potassium-containing material is not particularly limited, but a neutral or alkaline salt such as potassium hydroxide or potassium chloride is preferable because it is treated in an alkaline aqueous solution. The amount of the potassium-containing material used is not particularly limited, and from the viewpoint of charge / discharge characteristics (particularly cycle characteristics), 0.2 to 10.0 parts by mass, particularly 0.5 to 5.0 parts by mass, should be used with respect to 100 parts by mass of the sodium-containing material. Is preferable. When the lithium-containing material is contained, it is preferable not to include it because the lattice constants a and c, the lattice volume, and the like become large and the cycle characteristics deteriorate.
次に、このアルカリ水溶液を加熱することによって、水熱合成反応を進行させることができる。水熱合成反応は、通常の水熱反応装置(市販のオートクレーブ等)を用いて行うことができる。 Next, the hydrothermal synthesis reaction can be allowed to proceed by heating this alkaline aqueous solution. The hydrothermal synthesis reaction can be carried out using a normal hydrothermal reaction device (commercially available autoclave or the like).
水熱合成反応の条件については、低温では格子定数a及びc、格子体積等が大きくなる。この結果、放電容量が低下するのみならず、サイクル特性が劇的に悪化する。一方、短時間の場合も、格子定数a及びc、格子体積等が大きくなり、放電容量が低下するのみならず、サイクル特性が劇的に悪化する。このため、水熱合成反応における温度は高くすることが必要であり、180℃以上、水熱処理炉内にかかる圧力の観点から好ましくは200~400℃である。一方、水熱合成反応の時間は30時間以上、好ましくは35~100時間である。 Regarding the conditions of the hydrothermal synthesis reaction, the lattice constants a and c, the lattice volume, and the like become large at low temperatures. As a result, not only the discharge capacity is reduced, but also the cycle characteristics are dramatically deteriorated. On the other hand, even in the case of a short time, the lattice constants a and c, the lattice volume, and the like increase, and not only the discharge capacity decreases, but also the cycle characteristics deteriorate dramatically. Therefore, it is necessary to raise the temperature in the hydrothermal synthesis reaction, which is 180 ° C. or higher, preferably 200 to 400 ° C. from the viewpoint of the pressure applied in the hydrothermal heat treatment furnace. On the other hand, the hydrothermal synthesis reaction takes 30 hours or more, preferably 35 to 100 hours.
上記した方法で水熱合成反応を行った後、原料等の残存物や過剰のアルカリ成分を除去するために、反応生成物を洗浄してもよい。洗浄には、Na成分の遊離によりスピネルフェライトに変化することをより抑制するため、例えば、アルコール、アセトン等の非水極性溶媒を用いることができる。また、必要に応じて、水熱処理後の生成物を大気中等各種雰囲気下で熱処理することもできる。熱処理温度に関してはβ相に変化しない上限温度として、特許文献2にあるように730℃以下が好ましい。次いで、生成物を濾過し、例えば、80℃以上(特に90~200℃)で乾燥することにより、本発明のナトリウムイオン二次電池用正極活物質を得ることができる。
After the hydrothermal synthesis reaction is carried out by the above method, the reaction product may be washed in order to remove residues such as raw materials and excess alkaline components. For washing, a non-aqueous polar solvent such as alcohol or acetone can be used in order to further suppress the change to spinel ferrite due to the liberation of the Na component. Further, if necessary, the product after the hydrothermal treatment can be heat-treated in various atmospheres such as in the atmosphere. As for the heat treatment temperature, the upper limit temperature that does not change to the β phase is preferably 730 ° C. or lower as described in
3.ナトリウムイオン二次電池用正極及びナトリウムイオン二次電池
本発明のナトリウムイオン二次電池用正極活物質は、上記した優れた特性(放電容量及びサイクル特性)を利用して、ナトリウムイオン二次電池の正極活物質として有効に利用できる。なお、本明細書において、「ナトリウムイオン二次電池」とは、ナトリウム金属を負極に用いた金属ナトリウム二次電池も包含する概念である。特に、本発明のナトリウムイオン二次電池用正極活物質は、構造中にナトリウムを含有する材料であるため、ナトリウムを含まない負極が使えるだけでなく充電から充放電を行うことができる材料であり、しかも、放電容量及び平均電圧が高く、サイクル特性に優れることから、ナトリウムイオン二次電池用の正極活物質として有用である。本発明のナトリウムイオン二次電池用正極活物質を使用するナトリウムイオン二次電池は、電解質として非水溶媒系電解液を用いる非水電解質ナトリウムイオン二次電池であってもよく、ナトリウムイオン伝導性の固体電解質を用いる全固体型ナトリウムイオン二次電池であってもよい。 3. 3. Positive electrode for sodium ion secondary battery and sodium ion secondary battery The positive electrode active material for sodium ion secondary battery of the present invention utilizes the above-mentioned excellent characteristics (discharge capacity and cycle characteristics) to form a sodium ion secondary battery. It can be effectively used as a positive electrode active material. In the present specification, the "sodium ion secondary battery" is a concept including a metallic sodium secondary battery using a sodium metal as a negative electrode. In particular, since the positive electrode active material for a sodium ion secondary battery of the present invention is a material containing sodium in its structure, it is a material that can be charged and discharged as well as a negative electrode containing no sodium. Moreover, since the discharge capacity and the average voltage are high and the cycle characteristics are excellent, it is useful as a positive electrode active material for a sodium ion secondary battery. The sodium ion secondary battery using the positive electrode active material for the sodium ion secondary battery of the present invention may be a non-aqueous electrolyte sodium ion secondary battery using a non-aqueous solvent-based electrolytic solution as the electrolyte, and may be sodium ion conductivity. It may be an all-solid-state sodium-ion secondary battery using the solid electrolyte of.
非水電解質ナトリウムイオン二次電池及び全固体型ナトリウムイオン二次電池の構造は、本発明のナトリウムイオン二次電池用正極活物質を用いること以外は、公知のナトリウムイオン二次電池と同様とすることができる。 The structures of the non-aqueous electrolyte sodium ion secondary battery and the all-solid-state sodium ion secondary battery are the same as those of the known sodium ion secondary battery except that the positive electrode active material for the sodium ion secondary battery of the present invention is used. be able to.
例えば、非水電解質ナトリウムイオン二次電池については、上記したナトリウムイオン二次電池用正極活物質を使用する他は、基本的な構造は、公知の非水電解質ナトリウムイオン二次電池と同様とすることができる。 For example, the basic structure of the non-aqueous electrolyte sodium ion secondary battery is the same as that of the known non-aqueous electrolyte sodium ion secondary battery, except that the above-mentioned positive electrode active material for the sodium ion secondary battery is used. be able to.
正極としては、上記したナトリウムイオン二次電池用正極活物質を用い、必要に応じて導電剤及びバインダーと混合することで作製した正極合剤をアルミニウム、ニッケル、ステンレス、カーボンクロス等の正極集電体に担持させることで製造することができる。導電剤としては、例えば、黒鉛、コークス類、カーボンブラック、針状カーボン等の炭素材料を用いることができる。 As the positive electrode, the above-mentioned positive electrode active material for a sodium ion secondary battery is used, and a positive electrode mixture prepared by mixing with a conductive agent and a binder as necessary is used to collect positive electrodes such as aluminum, nickel, stainless steel, and carbon cloth. It can be manufactured by supporting it on the body. As the conductive agent, for example, a carbon material such as graphite, coke, carbon black, or needle-shaped carbon can be used.
負極としては、ナトリウムを含有する材料とナトリウムを含有しない材料共に用いることが可能である。例えば、難焼結性炭素、ナトリウム金属、スズ及びこれらを含む合金等、ナトリウムと反応する物質であれば用いることができる。これらの負極活物質についても、必要に応じて導電剤、バインダー等を用いて、アルミニウム、銅、ニッケル、ステンレス、カーボン等からなる負極集電体に担持させて、負極を製造することができる。 As the negative electrode, both a sodium-containing material and a sodium-free material can be used. For example, any substance that reacts with sodium, such as difficult-to-sinter carbon, sodium metal, tin, and alloys containing these, can be used. These negative electrode active materials can also be supported on a negative electrode current collector made of aluminum, copper, nickel, stainless steel, carbon or the like by using a conductive agent, a binder or the like, if necessary, to manufacture a negative electrode.
セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;フッ素樹脂;ナイロン;芳香族アラミド;無機ガラス等の材質からなり、多孔質膜、不織布、織布等の形態の材料を用いることができる。 As the separator, for example, a polyolefin resin such as polyethylene or polypropylene; a fluororesin; nylon; an aromatic aramid; a material such as inorganic glass can be used, and a material in the form of a porous film, a non-woven fabric, a woven fabric or the like can be used.
非水電解質の溶媒としては、例えば、カーボネート、エーテル、ニトリル、含硫黄化合物等の非水溶媒系二次電池の溶媒として公知の溶媒を用いることができる。 As the solvent for the non-aqueous electrolyte, for example, a solvent known as a solvent for a non-aqueous solvent-based secondary battery such as carbonate, ether, nitrile, and sulfur-containing compound can be used.
また、全固体型ナトリウムイオン二次電池についても、本発明のナトリウムイオン二次電池用正極活物質を用いる以外は、公知の全固体型ナトリウムイオン二次電池と同様の構造とすることができる。 Further, the all-solid-state sodium-ion secondary battery can have the same structure as the known all-solid-state sodium-ion secondary battery except that the positive electrode active material for the sodium-ion secondary battery of the present invention is used.
この場合、電解質としては、例えば、ポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖及びポリオキシアルキレン鎖の少なくとも一種を含む高分子化合物等のポリマー系固体電解質の他、硫化物系固体電解質、酸化物系固体電解質等を用いることができる。 In this case, the electrolyte includes, for example, a polymer-based solid electrolyte such as a polyethylene oxide-based polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain and a polyoxyalkylene chain, a sulfide-based solid electrolyte, and oxidation. A physical solid electrolyte or the like can be used.
全固体型ナトリウムイオン二次電池の正極としては、例えば、本発明のナトリウムイオン二次電池用正極活物質を用い、必要に応じて導電剤、バインダー、固体電解質等を含む正極合剤をチタン、アルミニウム、ニッケル、ステンレス等の正極集電体に担持させることで製造することができる。導電剤については、非水溶媒系二次電池と同様に、例えば、黒鉛、コークス類、カーボンブラック、針状カーボン等の炭素材料を用いることができる。 As the positive electrode of the all-solid-state sodium-ion secondary battery, for example, the positive electrode active material for the sodium-ion secondary battery of the present invention is used, and if necessary, a positive electrode mixture containing a conductive agent, a binder, a solid electrolyte, etc. is used in titanium. It can be manufactured by supporting it on a positive electrode current collector such as aluminum, nickel, or stainless steel. As the conductive agent, carbon materials such as graphite, coke, carbon black, and acicular carbon can be used in the same manner as in the non-aqueous solvent type secondary battery.
非水電解質ナトリウムイオン二次電池及び全固体型ナトリウムイオン二次電池の形状についても特に限定はなく、円筒型、角型等のいずれであってもよい。 The shape of the non-aqueous electrolyte sodium ion secondary battery and the all-solid-state sodium ion secondary battery is not particularly limited, and may be any of a cylindrical type, a square type, and the like.
以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は、これらのみに限定されないことは言うまでもない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but it goes without saying that the present invention is not limited to these.
実施例1
ポリテトラフルオロエチレン(PTFE)製ビーカーに水酸化ナトリウム265gと水酸化カリウム(KOH)5gを秤量し、蒸留水150mLを加えてよく攪拌した。得られた混合アルカリ水溶液に0.2mol(17.77g)のα-FeOOHを加えてよく攪拌した。これを水熱反応炉内に静置し、密閉後220℃で48時間水熱処理を行った。水熱処理後、室温付近まで反応炉を冷却後、PTFEビーカーを取り出し、1Lのエタノールでミキサー混合後、濾過することによって過剰の水酸化ナトリウムを除去し、100℃で乾燥させることによって目的とするナトリウム鉄酸化物を得た。蛍光X線分光法によるNa/Fe比(組成式のx値相当)は1.18(7)であることから、組成式はNa1.18(7)FeO2であり、本発明の組成式の範囲内であった。 Example 1
265 g of sodium hydroxide and 5 g of potassium hydroxide (KOH) were weighed in a polytetrafluoroethylene (PTFE) beaker, 150 mL of distilled water was added, and the mixture was stirred well. 0.2 mol (17.77 g) of α-FeOOH was added to the obtained mixed alkaline aqueous solution, and the mixture was stirred well. This was allowed to stand in a hydrothermal reaction furnace, and after sealing, hydrothermal treatment was performed at 220 ° C. for 48 hours. After hydrothermal treatment, cool the reactor to around room temperature, take out the PTFE beaker, mix with 1 L of ethanol in a mixer, remove excess sodium hydroxide by filtering, and dry at 100 ° C to obtain the desired sodium. Iron oxide was obtained. Since the Na / Fe ratio (corresponding to the x value of the composition formula) by fluorescent X-ray spectroscopy is 1.18 (7), the composition formula is Na 1.18 (7) FeO 2 , which is within the range of the composition formula of the present invention. there were.
得られた試料のX線回折パターンを図2に、リートベルト解析プログラムRIETAN-FP(F. Izumi and K. Momma, Solid State Phenom., 130, 15-20 (2007).)で得られた結晶学パラメータを表1に示す。各パラメータは本発明物質の定義値内であることが明らかである。 The X-ray diffraction pattern of the obtained sample is shown in Fig. 2, and the crystals obtained by the Rietveld analysis program RIETAN-FP (F. Izumi and K. Momma, Solid State Phenom., 130, 15-20 (2007).) The academic parameters are shown in Table 1. It is clear that each parameter is within the defined value of the substance of the present invention.
次に、FeのK端EXAFSスペクトルのフーリエ変換図を図3に、第一近接Fe-O及びFe-Feピーク高さとその強度比を表2に示す。測定は立命館大学SRセンターの放射光源にて実施した。得られたFe-Oピーク高さに対するFe-Feピーク高さの比(B/A)は本発明の定義値内であることが明らかである。 Next, the Fourier transform diagram of the K-end EXAFS spectrum of Fe is shown in FIG. 3, and the first proximity Fe-O and Fe-Fe peak heights and their intensity ratios are shown in Table 2. The measurement was carried out with a radiant light source at the SR Center of Ritsumeikan University. It is clear that the ratio (B / A) of the Fe-Fe peak height to the obtained Fe-O peak height is within the definition value of the present invention.
実施例1の試料の充放電特性評価は以下のように行った。露点-50℃以下の超低湿度環境下で、得られたナトリウム鉄酸化物粉末、ケッチェンブラック、及びPTFEを質量比84: 8: 8の割合で混合してアルミニウムメッシュ上に圧着して正極合材を作製した。負極として金属ナトリウム、電解液として支持塩NaPF6を炭酸エチレン(EC)及び炭酸ジエチル(DEC)混合溶媒に溶解させたものを用いてコイン電池を作製した。作製した電池を充放電試験機にて、+30℃において、正極活物質あたりの電流密度10mA/gで充電開始且つ充電容量を100mAh/gに規制し、電位範囲1.5-4.0Vに固定して充放電試験を行った。その結果を図4及び表3に示す。図4及び表3から理解できるように、本発明のナトリウムイオン二次電池用正極活物質は、20サイクルまで高い容量を維持し、1サイクル後に対する20サイクル後の容量維持率(Q20d/Q1d)が99%以上であり、高容量のみならず高サイクル特性を示すことが明らかである。The charge / discharge characteristics of the sample of Example 1 were evaluated as follows. Under an ultra-low humidity environment with a dew point of -50 ° C or less, the obtained sodium iron oxide powder, Ketjen black, and PTFE are mixed at a mass ratio of 84: 8: 8 and pressure-bonded onto an aluminum mesh to form a positive electrode. A mixture was prepared. A coin battery was prepared by dissolving metallic sodium as a negative electrode and supporting salt NaPF 6 as an electrolytic solution in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC). Charge the manufactured battery with a charge / discharge tester at + 30 ° C with a current density of 10 mA / g per positive electrode active material, regulate the charge capacity to 100 mAh / g, and fix it in the potential range of 1.5-4.0 V. A charge / discharge test was performed. The results are shown in FIGS. 4 and 3. As can be understood from FIGS. 4 and 3, the positive electrode active material for a sodium ion secondary battery of the present invention maintains a high capacity up to 20 cycles, and the capacity retention rate after 20 cycles (Q 20d / Q) with respect to after 1 cycle. It is clear that 1d ) is 99% or more, showing not only high capacity but also high cycle characteristics.
比較例1
水酸化ナトリウムに添加するアルカリ源をKOHからLiOH.H2Oを5gに変更した以外は実施例1と同様に試料作製を行った。蛍光X線分光法によるNa/Fe比(組成式のx値相当)は1.14(16)であることから、組成式はNa1.14(16)FeO2であり、本発明組成式の範囲内であった。得られた試料のX線回折パターンを図5に、リートベルト解析プログラムRIETAN-FPで得られた結晶学パラメータを表1に示す。各パラメータは本発明物質の定義値外であることが明らかである。 Comparative Example 1
Samples were prepared in the same manner as in Example 1 except that the alkali source to be added to sodium hydroxide was changed from KOH to 5 g of LiOH.H 2 O. Since the Na / Fe ratio (corresponding to the x value of the composition formula) by fluorescent X-ray spectroscopy is 1.14 (16), the composition formula is Na 1.14 (16) FeO 2 , which is within the range of the composition formula of the present invention. rice field. The X-ray diffraction pattern of the obtained sample is shown in FIG. 5, and the crystallographic parameters obtained by the Rietveld analysis program RIETAN-FP are shown in Table 1. It is clear that each parameter is outside the definition of the substance of the present invention.
次に、FeのK端EXAFSスペクトルのフーリエ変換図を図6に、第一近接Fe-O及びFe-Feピーク高さとその強度比を表2に示す。得られたFe-Oピーク高さに対するFe-Feピーク高さの比(B/A)は本発明の定義値外であることが明らかである。 Next, the Fourier transform diagram of the K-end EXAFS spectrum of Fe is shown in FIG. 6, and the first proximity Fe-O and Fe-Fe peak heights and their intensity ratios are shown in Table 2. It is clear that the ratio (B / A) of the Fe-Fe peak height to the obtained Fe-O peak height is outside the definition value of the present invention.
実施例1の試料と同様に、比較例1の試料の充放電特性評価を行った。その結果を図7及び表3に示す。図7及び表3にあるように比較例1の試料は20サイクルにおいて低い容量を示し、1サイクル後に対する20サイクル後の容量維持率(Q20d/Q1d)が57%しかなくサイクル特性に劣ることが明らかである。以上のことから、水酸化ナトリウムに添加するアルカリ源としてリチウム源を使用した場合は、かえってサイクル特性が悪化することがわかる。Similar to the sample of Example 1, the charge / discharge characteristics of the sample of Comparative Example 1 were evaluated. The results are shown in FIG. 7 and Table 3. As shown in FIGS. 7 and 3, the sample of Comparative Example 1 showed a low capacity in 20 cycles, and the capacity retention rate (Q 20d / Q 1d ) after 20 cycles was only 57% with respect to that after 1 cycle, and the cycle characteristics were inferior. It is clear that. From the above, it can be seen that when a lithium source is used as the alkali source to be added to sodium hydroxide, the cycle characteristics are rather deteriorated.
実施例2
水酸化ナトリウム量を270gとし、KOHを加えない以外は実施例1と同様に試料作製を実施した。蛍光X線分光法によるNa/Fe比(組成式のx値相当)は0.915(14)であることから、組成式はNa0.915(14)FeO2であり、本発明の組成式の範囲内であった。得られた試料のX線回折パターンを図8に、リートベルト解析プログラムRIETAN-FPで得られた結晶学パラメータを表1に示す。各パラメータは本発明物質の定義値内であることが明らかである。 Example 2
Sample preparation was carried out in the same manner as in Example 1 except that the amount of sodium hydroxide was 270 g and KOH was not added. Since the Na / Fe ratio (corresponding to the x value of the composition formula) by fluorescent X-ray spectroscopy is 0.915 (14), the composition formula is Na 0.915 (14) FeO 2 , which is within the range of the composition formula of the present invention. there were. The X-ray diffraction pattern of the obtained sample is shown in FIG. 8, and the crystallographic parameters obtained by the Rietveld analysis program RIETAN-FP are shown in Table 1. It is clear that each parameter is within the defined value of the substance of the present invention.
次にFeのK端EXAFSスペクトルのフーリエ変換図を図9に、第一近接Fe-O及びFe-Feピーク高さとその強度比を表2に示す。得られたFe-Oピーク高さに対するFe-Feピーク高さの比(B/A)は本発明の定義値内であることが明らかである。 Next, the Fourier transform diagram of the K-end EXAFS spectrum of Fe is shown in FIG. 9, and the first proximity Fe-O and Fe-Fe peak heights and their intensity ratios are shown in Table 2. It is clear that the ratio (B / A) of the Fe-Fe peak height to the obtained Fe-O peak height is within the definition value of the present invention.
実施例1の試料と同様に、実施例2の試料の充放電特性評価を行った。その結果を図10及び表3に示す。図10及び表3に記載されているように、実施例2の試料は20サイクルにおいて高い容量を示し、1サイクル後に対する20サイクル後の容量維持率(Q20d/Q1d)が76%であり、サイクル特性に優れることが明らかである。以上のことから特許文献2及び3で達成できなかった充放電特性に優れたナトリウム鉄酸化物が得られることが明らかである。Similar to the sample of Example 1, the charge / discharge characteristics of the sample of Example 2 were evaluated. The results are shown in FIG. 10 and Table 3. As shown in FIG. 10 and Table 3, the sample of Example 2 showed a high capacity at 20 cycles, and the capacity retention rate (Q 20d / Q 1d ) after 20 cycles with respect to after 1 cycle was 76%. It is clear that the cycle characteristics are excellent. From the above, it is clear that sodium iron oxide having excellent charge / discharge characteristics, which could not be achieved in
比較例2
水熱処理条件を150℃、48時間とした以外は実施例2と同様に試料作製を行った。蛍光X線分光法によるNa/Fe比(組成式のx値相当)は1.00(7)であることから、組成式はNa1.00(7)FeO2であり、本発明組成式の範囲内であった。得られた試料のX線回折パターンを図11に、リートベルト解析プログラムRIETAN-FPで得られた結晶学パラメータを表1に示す。各パラメータは本発明物質の定義値外であることが明らかである。 Comparative Example 2
Samples were prepared in the same manner as in Example 2 except that the hydrothermal treatment conditions were set to 150 ° C. and 48 hours. Since the Na / Fe ratio (corresponding to the x value of the composition formula) by fluorescent X-ray spectroscopy is 1.00 (7), the composition formula is Na 1.00 (7) FeO 2 , which is within the range of the composition formula of the present invention. rice field. The X-ray diffraction pattern of the obtained sample is shown in FIG. 11, and the crystallographic parameters obtained by the Rietveld analysis program RIETAN-FP are shown in Table 1. It is clear that each parameter is outside the definition of the substance of the present invention.
次に、FeのK端EXAFSスペクトルのフーリエ変換図を図12に、第一近接Fe-O及びFe-Feピーク高さとその強度比を表2に示す。得られたFe-Oピーク高さに対するFe-Feピーク高さの比(B/A)は本発明の定義値外であることが明らかである。 Next, the Fourier transform diagram of the K-end EXAFS spectrum of Fe is shown in FIG. 12, and the first proximity Fe-O and Fe-Fe peak heights and their intensity ratios are shown in Table 2. It is clear that the ratio (B / A) of the Fe-Fe peak height to the obtained Fe-O peak height is outside the definition value of the present invention.
実施例1の試料と同様に、比較例2の試料の充放電特性評価を行った。その結果を図13及び表3に示す。図13及び表3に記載されているように比較例2の試料は20サイクルにおいて低い容量を示し、1サイクル後に対する20サイクル後の容量維持率(Q20d/Q1d)が32%しかなく、サイクル特性に劣ることが明らかである。以上のことから水熱処理条件を150℃、48時間に変更することにより目的のナトリウム鉄酸化物が得られないことが明らかである。Similar to the sample of Example 1, the charge / discharge characteristics of the sample of Comparative Example 2 were evaluated. The results are shown in FIG. 13 and Table 3. As shown in FIG. 13 and Table 3, the sample of Comparative Example 2 showed a low capacity at 20 cycles, and the capacity retention rate after 20 cycles (Q 20d / Q 1d ) was only 32% with respect to after 1 cycle. It is clear that the cycle characteristics are inferior. From the above, it is clear that the desired sodium iron oxide cannot be obtained by changing the hydrothermal treatment conditions to 150 ° C. for 48 hours.
比較例3
水熱処理条件を特許文献2と同様の220℃、20時間とした以外は実施例2と同様に試料作製を行った。蛍光X線分光法によるNa/Fe比(組成式のx値相当)は1.332(7) であることから、組成式はNa1.332(7)FeO2であり、本発明組成式の範囲外であった。得られた試料のX線回折パターンを図14に、リートベルト解析プログラムRIETAN-FPで得られた結晶学パラメータを表1に示す。各パラメータは本発明物質の定義値外であることが明らかである。 Comparative Example 3
A sample was prepared in the same manner as in Example 2 except that the hydrothermal treatment conditions were 220 ° C. and 20 hours, which were the same as in
実施例1の試料と同様に、比較例3の試料の充放電特性評価を行った。その結果を図15及び表3に示す。図15及び表3に記載されているように、比較例3の試料は20サイクルにおいて低い容量を示し、1サイクル後に対する20サイクル後の容量維持率(Q20d/Q1d)が28%しかなく、サイクル特性に劣ることが明らかである。以上のことから水熱処理条件を220℃、20時間に変更することにより目的のナトリウム鉄酸化物が得られないことが明らかである。Similar to the sample of Example 1, the charge / discharge characteristics of the sample of Comparative Example 3 were evaluated. The results are shown in FIG. 15 and Table 3. As shown in FIG. 15 and Table 3, the sample of Comparative Example 3 showed a low capacity at 20 cycles, and the capacity retention rate after 20 cycles (Q 20d / Q 1d ) was only 28% with respect to after 1 cycle. , It is clear that the cycle characteristics are inferior. From the above, it is clear that the desired sodium iron oxide cannot be obtained by changing the hydrothermal treatment conditions to 220 ° C. for 20 hours.
Claims (8)
NaxFeO2 (1)
[式中、xは0.80~1.30である。]
で表され、
六方晶層状岩塩型結晶構造を有し、
格子定数が、aは3.0235Å以下、cは16.0820Å以下であり、
格子体積が127.360Å3以下である、
ナトリウム鉄酸化物からなるナトリウムイオン二次電池用正極活物質。 General formula (1):
Na x FeO 2 (1)
[In the formula, x is 0.80 to 1.30. ]
Represented by
It has a hexagonal layered rock salt type crystal structure and has a hexagonal layered rock salt type crystal structure.
The lattice constant is 3.0235 Å or less for a and 16.0820 Å or less for c.
Lattice volume is 127.360 Å 3 or less,
Positive electrode active material for sodium ion secondary batteries made of sodium iron oxide.
ナトリウム含有材料と、鉄含有材料と、カリウムを含む中性又はアルカリ性塩とを含み、リチウム含有材料を含まないアルカリ水溶液を用いて、180℃以上の温度で30時間以上水熱合成反応を行う工程
を備える、製造方法。 The method for producing a positive electrode material for a sodium secondary battery according to any one of claims 1 to 4.
A step of performing a hydrothermal synthesis reaction at a temperature of 180 ° C. or higher for 30 hours or longer using an alkaline aqueous solution containing a sodium-containing material , an iron-containing material , and a neutral or alkaline salt containing potassium and not containing a lithium-containing material. A manufacturing method.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017113763 | 2017-06-08 | ||
JP2017113763 | 2017-06-08 | ||
PCT/JP2018/021571 WO2018225740A1 (en) | 2017-06-08 | 2018-06-05 | Positive electrode active material for sodium secondary batteries and method for producing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018225740A1 JPWO2018225740A1 (en) | 2020-04-09 |
JP7085761B2 true JP7085761B2 (en) | 2022-06-17 |
Family
ID=64566708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019523916A Active JP7085761B2 (en) | 2017-06-08 | 2018-06-05 | Positive electrode active material for sodium secondary battery and its manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7085761B2 (en) |
WO (1) | WO2018225740A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106684369A (en) | 2017-02-16 | 2017-05-17 | 长沙理工大学 | Sodium ion battery anode material embedded and coated with sodium fast ion conductor and synthetic method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6083556B2 (en) * | 2012-10-24 | 2017-02-22 | 国立研究開発法人産業技術総合研究所 | Cathode active material for sodium ion secondary battery |
-
2018
- 2018-06-05 JP JP2019523916A patent/JP7085761B2/en active Active
- 2018-06-05 WO PCT/JP2018/021571 patent/WO2018225740A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106684369A (en) | 2017-02-16 | 2017-05-17 | 长沙理工大学 | Sodium ion battery anode material embedded and coated with sodium fast ion conductor and synthetic method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2018225740A1 (en) | 2018-12-13 |
JPWO2018225740A1 (en) | 2020-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11072869B2 (en) | Manganese/nickel composite oxide particles and process for producing the manganese nickel composite oxide particles, positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the positive electrode active substance particles, and non-aqueous electrolyte secondary battery | |
JP6708326B2 (en) | Positive electrode material for sodium secondary batteries | |
JP4963059B2 (en) | Lithium manganese composite oxide containing titanium and nickel | |
JP5263761B2 (en) | Monoclinic lithium manganese composite oxide having cation ordered structure and method for producing the same | |
US8021783B2 (en) | Lithium manganese-based composite oxide and method for preparing the same | |
Zhang et al. | Preferential occupation of Na in P3-type layered cathode material for sodium ion batteries | |
JP3940788B2 (en) | Lithium ferrite composite oxide and method for producing the same | |
JP4997609B2 (en) | Method for producing lithium manganese composite oxide | |
JP6083556B2 (en) | Cathode active material for sodium ion secondary battery | |
Baboo et al. | Facile redox synthesis of layered LiNi1/3Co1/3Mn1/3O2 for rechargeable Li-ion batteries | |
JP6967215B2 (en) | Lithium-manganese-based composite oxide and its manufacturing method | |
JP2019123668A (en) | Lithium sodium composite oxide, cathode active material for secondary battery, and secondary battery | |
WO2007041209A2 (en) | Oxides having high energy densities | |
JP4457213B2 (en) | Method for producing lithium ferrite composite oxide | |
JP7128475B2 (en) | Lithium-manganese composite oxide and method for producing the same | |
JP4423391B2 (en) | Lithium ferrite composite oxide and method for producing the same | |
JP7085761B2 (en) | Positive electrode active material for sodium secondary battery and its manufacturing method | |
JP7048944B2 (en) | Titanium and / or germanium-substituted lithium-manganese-based composite oxide and its production method | |
JP6957013B2 (en) | Positive electrode material for non-aqueous electrolyte secondary batteries and its manufacturing method | |
JP3914981B2 (en) | Cubic rock salt type lithium ferrite oxide and method for producing the same | |
JP6395051B2 (en) | Lithium composite oxide, method for producing lithium composite oxide, positive electrode active material for lithium secondary battery, and lithium secondary battery | |
US11165064B2 (en) | Li-substituted layered spinel cathode materials for sodium ion batteries | |
JP3968420B2 (en) | Cubic rock salt type lithium ferrite complex oxide and method for producing the same | |
JP2020147460A (en) | Lithium composite oxide, its manufacturing method and its use | |
Zhao et al. | Hydrothermal Synthesis and Electrochemical Performance of LiNi0. 5Mn0. 5O2 as Lithium-ion Battery Cathode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210527 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20210527 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210601 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220531 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7085761 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |